
Sebastian Mai

Simultaneous Localisation and
Optimisation – Towards Swarm
Intelligence in Robots

Simultaneous Localisation and Optimisation –
Towards Swarm Intelligence in Robots

Master Thesis

Author
Sebastian Mai

July 30, 2018

Supervisor: Prof. Dr. Sanaz Mostaghim, Chair of Intelligent Systems

Advisor: Dr. Christoph Steup

Sebastian Mai: Simultaneous Localisation and Optimisation –
Towards Swarm Intelligence in Robots
Otto-von-Guericke-Universität
Magdeburg, 2018.

Abstract

This thesis presents a generic approach that enables the use of Particle Swarm
Optimisation in sensor-based environments: The Simultaneous Localisation
and Optimisation method. A lot of promising research has been conducted
to overcome problems specific to robotic applications in swarm intelligence
applications. However, most research is limited to simulation. Often the lo-
calisation of the particles is taken for granted in those simulations, as the
choice of a localisation method would reduce the generality of the results. The
Simultaneous Localisation and Optimisation method that was developed for
this thesis addresses the problem of localisation in swarm robotics. A locali-
sation method inspired by the GPS-free Directed Localisation method is used
to convert data from distance and motion sensors to information on particle
positions. This information is then used by Standard Particle Swarm Optimi-
sation to compute the next robot movement. The Simultaneous Localisation
and Optimisation method encapsulates the swarm intelligence algorithm to
work within a sensor-actor-based robot. The experiments conducted in this
thesis show that the algorithm works. The localisation is most sensitive to
errors in the distance measurements. Additionally, the localisation error can
enhance the exploration behaviour of the algorithm. However, the exploitation
is limited by additive errors in the sensor measurements if the particles move
close to each other. All in all, the Simultaneous Optimisation and Localisa-
tion algorithm showed good results and is suited for further development and
application.

I

Contents

Table of Figures V

Table of Tables VII

Table of Acronyms IX

1 Introduction 1
1.1 Motivation: Swarm Intelligence in Robotic Applications 1
1.2 Goals . 2
1.3 Outline . 3

2 State of the Art 5
2.1 Swarm Movement . 5

2.1.1 Particle Swarm Optimisation 6
2.1.2 Attraction Repulsion Behaviour 9

2.2 Localisation Methods . 9
2.2.1 External Methods . 10
2.2.2 Anchor- and Landmark-Based Localisation 11
2.2.3 Anchor-Free Localisation 12

2.3 Measurements . 14
2.3.1 Movement . 14
2.3.2 Distance . 16

3 Simultaneous Localisation and Optimisation Algorithm 21
3.1 Definition of the Environment 21
3.2 Overview . 22
3.3 Initialisation . 24
3.4 Measurement Phase . 25

III

Contents

3.5 Localisation . 26
3.5.1 Localisation: Solution Computation 26
3.5.2 Error Mitigation . 28
3.5.3 Localisation: Solution Selection 30

3.6 Movement Update . 32

4 Evaluation 35
4.1 Implementation of the Algorithm 35
4.2 Parameter Space . 36
4.3 Experiments . 37
4.4 Error Model . 39
4.5 Experiments with Random Walk Motion 41

4.5.1 Error . 42
4.5.2 Mitigation . 46
4.5.3 Neighbourhood . 49
4.5.4 Prediction Weight . 51

4.6 Experiments with PSO Motion 53
4.7 Discussion of Results . 58

5 Conclusion 61

Bibliography 69

IV

List of Figures

3.1 Overview of the SLO Algorithm and its Interaction with the
Environment. 22

3.2 Triangle Used for Position Estimation. 28
3.3 Symmetry of the solutions to the position estimation problem. . 29

4.1 Multiplicative Range Error . 43
4.2 Influence of a Fixed Velocity Offset 44
4.3 Localisation Error Caused by Sensor Failures 45
4.4 Mitigation Effects for CSS with knn-Neighbourhood 46
4.5 Mitigation in ring neighbourhood CSS and RTS 47
4.6 Mitigation in Random Neighbourhood, CSS, no error 47
4.7 Ring Neighbourhood with CSS selection 50
4.8 Random Neighbourhood with CSS selection 50
4.9 Estimation Error for Different Values of the Prediction Weight . 52
4.10 Estimation Error for Different Values of the Prediction Weight

in Ring Neighbourhood . 53
4.11 Median Particle Distance . 56
4.12 Relative Localisation Error . 57
4.13 Minimal Fitness . 58

V

List of Tables

4.1 Parameters used in the experiment 37
4.2 Data exported from the simulation run. 39
4.3 Error Parameters . 40
4.4 PSO performance . 55

VII

Table of Acronyms

CSS Closest Solution Selection, one component of the localisation in the SLO
algorithm

GDL GPS-free Directed Localization [2], a localisation algorithm

GPS Global Positioning System [15]

knn K Nearest Neighbours, a neighbourhood relationship

PSO Particle Swarm Optimisation, a family of swarm intelligence algorithms

RTS Round Trip Selection, one component of the localisation in the SLO
algorithm

SLAM Simultaneous Localization and Mapping [40]

SLO Simultaneous Localisation and Optimisation, the algorithm/method de-
veloped for this thesis

SPSO (2011) One specific PSO algorithm [56]

IX

1 Introduction

1.1 Motivation: Swarm Intelligence in Robotic
Applications

Swarm intelligence is a field that promises new applications in robotics. Swarm
algorithms are decentralised by nature and offer robustness, scalability and
flexibility. While the algorithms are mostly used to solve problems in numeric
optimisation, the research in biology that inspires them shows the benefits of
swarm behaviour in the physical world. Algorithms such as Particle Swarm
Optimisation (PSO), Attraction Repulsion Behaviour and Ant Colony Optimi-
sation are useful in different robotic domains. Applications of such behaviours
include collective search [8, 35], collision avoidance [12], formation control [13]
and traffic management [9]. Systems using swarm intelligence in robot control
exist nowadays [41] for example in path-planning [57], learning [43] or collec-
tive search [17]. Some platforms developed for swarm robotics also exist, e.g.
the Kilobots [46] or the Kinbots [17].

The main difficulty in applying the algorithms known from swarm intelligence
in robotic applications stems from the assumptions of swarm intelligence the-
ory. Those assumptions do not fully apply to robotic applications. In swarm
intelligence research knowledge about the environment is usually present in all
agents involved in the algorithm. A physical robot in a robotic swarm not have
the same knowledge as an agent in a swarm intelligence algorithm. [42, 17]

In this thesis the following assumptions motivate the approach: A robot must
gather knowledge about its environment through sensors and can act on the
environment through actors. A measurement made by any sensor contains an
unknown error. The sensors often do not directly report the desired infor-
mation. For example, the desired information is the distance covered by the
robot, but the robot is only able to measure the turn rate of its wheels. This

1

1 Introduction

distance in turn may be another data item needed to compute the position
of the robot. In real world applications the sensor information is subject to
additional constraints like limited transmission rates and measurement range.
A robot that only perceives its environment through sensors has a different
perspective on the environment. This difference in perspective is a key rea-
son why swarm intelligence algorithms are difficult to integrate into robotic
applications.

In existing implementations the information is often acquired in a centralised
manner. This limits the benefits of swarm algorithms that are decentralised
by nature. The purpose of this thesis is to create an algorithm that does not
bypass the sensory perception of the environment. A state of the art swarm
intelligence algorithm is to be embedded in an algorithm that only relies on
sensors to perceive the environment.

In swarm intelligence research often a specific pattern of movement update is
used. Each particle is modelled as a point in an n-dimensional space. In each
time step of the algorithm a movement is computed for each particle. The exact
movement is computed based on the other particles’ positions (for more details
on swarm movement see subsection 2.1.1). The reference for those positions is a
global coordinate systems, shared between all particles. Additionally, a particle
must be able to move with the computed velocity. When the swarm intelligence
is used as a high-level control mechanism the robots need information about
their environment. This information includes the position of other particles
and the orientation of the coordinate system. Furthermore, a robot must be
able to move according to the movement command specified by the algorithm.

1.2 Goals

The goal of this thesis is to create an algorithm that combines a swarm in-
telligence algorithm with the sensor data transformation necessary to run it.
The algorithm must be able to work within a sensor-actor-based robot and be
compatible with many other swarm intelligence algorithms. Additionally, it
must be shown that the method works and how the algorithm is affected by
errors. To achieve those goals four tasks must be completed: The algorithm
must be designed, implemented and an experiment must be performed and
analysed.

2

1.3 Outline

1.3 Outline

In chapter two the state of research is presented. This includes relevant local-
isation technologies, the necessary sensors and swarm intelligence algorithms.
A description of the algorithm itself is given in chapter three. The fourth
chapter explains the experiments. The chapter includes the setup of the ex-
periments and a discussion of the most interesting results. The last chapter
concludes with a discussion of potential uses of the algorithm and questions
for further research.

3

2 State of the Art

The goal of this thesis is to decouple a swarm intelligence algorithm from
its direct perception of the environment. Instead, the knowledge about the
environment must be deduced from sensors. This chapter contains an overview
on swarm methods and examines their information need.

The localisation method is a core component of the algorithm. It is difficult
to replace it without changing sensors. Hence, different technologies and tech-
niques must be considered for localisation. This is especially important, as
localisation is always very specific to the application and there is on standard
solution for all use-cases. In the last part of the chapter, different sensors and
technologies, that can be used to measure the values required for the chosen
localisation algorithm, are examined.

2.1 Swarm Movement

A swarm consists of multiple agents that interact locally. Because of this in-
teraction a global behaviour emerges (i.e. a shared movement or a formation).
In swarm intelligence research, the interactions and behaviours of the agents
are chosen to achieve a desirable behaviour of the swarm. [13]

Multiple types of swarm behaviour exist. Some behaviours, like Particle Swarm
Optimisation (PSO) or Ant Colony Optimisation (ACO) are designed to solve
an objective (or multiple objectives) in interaction with the environment.
Other behaviours, such as attraction repulsion behaviours, steer the distri-
bution of swarm members in space without solving a task in the environment.
A good overview on swarm-based search behaviours in robotic applications is
given by Liu et al. [27]. The mostly used swarm algorithms are PSO [56, 41]
and ACO [9]. Another important branch of swarm intelligence algorithms are
attraction repulsion behaviours [13]. Additionally, some algorithms in swarm

5

2 State of the Art

intelligence operate within the sensor-actor pattern (i.e. [17]). Some of those
algorithms are developed for the Kilobot platform [46].

The Kilobots are robots that use local interaction to generate emergent be-
haviour. However, their control algorithms are always specifically designed for
the Kilobots. The “higher level” algorithms like PSO are hardly used at all [46].
Ideally, methods such as attraction repulsion behaviour or PSO can directly be
used in robotic applications. The difficulty in implementing those algorithms
in robotic swarms is the different perspective on the environment. How to
obtain the information needed by the PSO from sensor data is be examined in
more detail in the next sections.

ACO works on a different movement model than attraction repulsion be-
haviours and PSO. Local interaction in attraction repulsion behaviours and
PSO is based on attractive and repulsive forces between the particles. ACO
uses (virtual) pheromone traces in the environment to guide robot decisions [9].
This thesis focusses on PSO, as it is one of the mostly used examples for robot
control algorithms in swarm intelligence. PSO is closely related to attraction
repulsion behaviour, hence the adoption of those behaviours is straightforward.
Changing the algorithm to ACO requires more work, but is also possible in
theory.

2.1.1 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is one of the major swarm intelligence
techniques. Many applications for PSO algorithms exist nowadays [41].
The algorithm Standard Particle Swarm Optimisation 2011 (SPSO 2011) by
Zambrano-Bigiarini et al. [56] is the basis for the PSO algorithm used in this
thesis. Since SPSO is often used as a reference in comparison to other opti-
misation algorithms, it was chosen as the algorithm to be implemented. As a
typical representative of the PSO algorithms, SPSO is explained here. In PSO
a swarm of virtual particles searches for the minimum in a multi-dimensional
objective function that assigns a fitness value f(x) for each value x in the search
space S. The particles can measure the value of the objective function at their
current position. The particles then move according to their knowledge about
the fitness of the current and the last step. Each PSO algorithm contains two
major movement components: The social and the cognitive component. The
social component moves the particle closer to the previous best position of all

6

2.1 Swarm Movement

particles in its neighbourhood. The cognitive component moves each particle
closer to its own previous best position. As the particles move towards the
best known positions the swarm will eventually find an optimum of the fitness
function in the search space.

~pti = ~X t
i + c1~U

t
1 ⊗ (~P t

i − ~X t
i) (2.1)

~lti = ~X t
i + c2~U

t
2 ⊗ (~Lti − ~X t

i) (2.2)

~Gt
i =

(~X t
i + ~pti +

~lti)

3
(2.3)

~V t+1
i =ω~V t

i +Hi(~G
t
i, ‖ ~Gt

i − ~X t
i ‖) (2.4)

~X t+1
i = ~X t

i + ~V t+1
i (2.5)

Equation 2.1 to Equation 2.5 are used in SPSO 2011 [56]. The position ~X t
i

is updated with a velocity vector ~V t
i at each time step. The velocity itself is

computed as a combination of ~pti the cognitive component and ~lti the social
component. In Standard PSO the velocity is randomly selected from a hy-
persphere around the point ~Gt

i that is computed from the social and cognitive
component (Equation 2.3). The inertia ω~V t

i is added to the velocity directly
before it is used to update the position (Equation 2.4).

A lot of randomness is included in the movement of the particles. In the com-
putation of ~pti and ~lti the relative positions of the local best (Lti) and previous
best (P t

i) are not only scaled by the parameters c1 and c2, but also by randomly
chosen vectors ~U t

1,2. In addition, the velocity is based on the random choice of
a point in the hypersphere around Gi. The randomness increases the diversity
in the swarm positions and the particles move more because of the random
processes. This leads to a better exploration behaviour of the algorithm.

The increase in exploration performance is a common theme in many of the
PSO variants [10, 4]. Charged PSO [4] is a PSO variant that uses a repulsion
force between the particles. One part of the swarm acts normally, while another
part of the swarm is repelled by the other particles. The repulsive forces push
the particles apart. Thus, they cover a larger area and the chance of the swarm
to converge to a local optimum is decreased. Heterogeneous PSO [10] takes
a similar approach. By assigning different behaviours to the particles, their
search behaviour is diversified and exploration is increased.

Many topics in current research, for example odour source localisation [18], are
robotic applications. A lot of research was conducted in PSO with noisy fitness

7

2 State of the Art

functions [25, 39, 43]. This is important as the objective is most likely evaluated
by sensors and sensor values are never measured without error. Additionally,
the fitness function may change over time resulting in a dynamic optimisation
problem [39, 44]. In dynamic problems the goal is not simply to find the
optimum in the fitness landscape, but to track a changing optimum in the
environment. Jorhedi [44] gives an overview on the challenges and methods
for solving dynamic problems with PSO.

Not only the sensors pose a challenge to PSO algorithms. Particles are able to
move freely across the search space, but robots are not. Pugh and Alcherio [42]
identified two limitations to the robot movement: The distance each robot can
travel in each time step and the time needed to change a robot’s heading. Those
problems can be mitigated by increasing the time used for each generation of
the PSO [42] or velocity clamping [45]. Still, path planning within PSO is not
well researched. Movement is usually not assumed to be costly in comparison
to fitness evaluation. In most robotic applications, however, reading a sensor
is cheaper than moving the robot in terms of energy and time usage. An
additional problem that is not addressed by PSO research is collision avoidance,
which can pose further challenges to path planning. [42]

PSO is often used for path planning like in [57], however, the approach is
completely different, as the particles are solutions to the decision making of
the robot and are not equivalent to robot positions. Nevertheless, in some
scenarios PSO is considered as a method with the particle-robot association.
Pugh and Alcherio [42] present a simulated PSO-inspired collective search.
In contrast to this thesis their research is focused on noisy fitness, dynamic
environment, movement limitations and collision avoidance. As those factors
are ignored here, their work is a very good resource on the problems not
addressed in this thesis.

Some research also uses PSO within real robotic environments. Krishnanand
and Ghose [26] conducted an experiment in which Glowworm Swarm Optimi-
sation is performed by a swarm of Kinbots. The relative localisation is achieved
by a special sensor built into the robots. Jatmiko et al. [17] successfully used
PSO for odour source localisation with robots tracked by a camera.

8

2.2 Localisation Methods

2.1.2 Attraction Repulsion Behaviour

Another task that can be solved by swarm behaviour is formation control. At-
traction repulsion behaviours are used to generate a certain pattern or distri-
bution of robots in the environment. The interaction mechanism in attraction
repulsion behaviours is an artificial force acting between the particles. An in
depth overview for those algorithms is given by Gazi and Passino [13]. The
behaviours can also be used for collision avoidance in a swarm of robots [12].
Attraction repulsion behaviours use a similar movement- and interaction model
as PSO, thus PSO can easily be replaced by them. Another useful behaviour
is the comfortable distance [13]. One application for this is keeping distances
low enough for stable communication in the swarm. Attraction repulsion be-
haviours can also be used to implement leader following [13, 46].

2.2 Localisation Methods

The key to use swarm intelligence algorithms in robotic applications is the
transformation of sensor data into the data needed by the algorithm. The
most important component of the new algorithm is the localisation of the other
robots in the swarm. Many localisation algorithms exist and most algorithms
solve the localisation problem for a specific set of sensors. In outdoor use-cases
GPS [15] (and alternatives like GLONASS) is the most widely used technology.
Indoors, the GPS reception and accuracy are usually not good enough. This is
the reason why most research on localisation is focused on indoor localisation.
Hightower and Boriello [14] give and overview on those technologies.

The huge variety of sensors and environmental factors entail the need for
many use-case-specific algorithms and technologies. Often, the environment is
adapted for the robotic application. In indoor localisation no “default” solution
such as GPS exists. In addition to the localisation itself, the orientation of the
coordinate system and the robot must be known. Otherwise, the movement
can not be executed by the robot. Localisation methods can be categorised by
the following criteria.

Point of Observation A localisation system is called external, when the pose
or important sensor data are transmitted to the robot from outside. It

9

2 State of the Art

is called internal when the robot computes its pose based on its own
sensors.

Anchor Use A system that uses sensors, transmitters or receivers at known
positions in the environment is called anchor-based. The fixed piece of
equipment is called anchor (node).

Landmark Use Passive components in the environment are called landmarks,
a typical landmark is an AR-tag (see [24]).

Motion If the nodes in the system do not move, the system is called static or
motionless. If movement is required the algorithm is called motion-based.

Sensor Type The localisation algorithms can also be distinguished by the set
of sensors that are used for localisation.

2.2.1 External Methods

The most commonly used technology for localisation is GPS [15]. It works well
for outdoor applications, however, in indoors GPS is not available. Addition-
ally, GPS is not accurate enough for some applications (i.e. collision avoidance
for robots close to each other).

Another technology that is often used is camera tracking. In camera tracking
systems, the robot is usually equipped with markers (i.e AR-Tags [24] or reflec-
tive markers [28]) that can be localised by processing the cameras’ images. To
obtain a 3D position and orientation usually multiple cameras are used. The
flying machine arena at E.T.H. Zurich uses a very advanced setup using up
to 20 cameras to track quadcopters [28]. In external camera tracking systems
the images are processed and the final position estimate is transmitted to the
robot [33, 24, 28].

While camera-based systems are often expensive and difficult to install and cal-
ibrate. They offer good localisation accuracy and update rates. Additionally,
the hardware integrated into the robots using external localisation is minimal
compared to the sensors needed for other localisation techniques. When a cen-
tral component as the localisation is external to the robots, the control of the
robots themselves can also be offloaded (as in [28]). Offloading the control of

10

2.2 Localisation Methods

the robots has the advantage that even less hardware must to be carried by
the robots. However, a centralised system is less flexible, so other solutions
are still important for use-cases in which flexibility matters.

2.2.2 Anchor- and Landmark-Based Localisation

Many indoor localisation systems are based on landmarks or anchor nodes.
An anchor node is a piece of hardware that has a known position and the
robots are capable to measure their distance (or angle) to the anchor node.
Based on the range (or angle) measurements, the robot can use trilateration
(or triangulation) to estimate its position. Landmarks are similar to anchor
nodes as they are features at fixed locations in the environment. When the
landmark positions are known, trilateration (or triangulation) can also be used
to estimate the robot’s position. Jayatilleke et al. [19] make use of AR-tags
with known locations to localise the robot in the environment (’external camera
tracking in reverse’).

If the landmarks have an unknown position, a robot can still use them for
navigation. Simultaneous Localisation and Mapping (SLAM) [40] is a method
to create a map of the environment and to keep track of the robot’s position
within the map. SLAM is usually not used in multi-agent systems, as the
intra-swarm localisation is not easily solved by SLAM. Still, the research by
Pfingsthorn et al. [40] shows that it is possible to synchronise multiple maps to
each other. When the maps of two robots are synchronised, relative localisation
is possible.

SLAM is especially interesting for swarm intelligence algorithms that use stig-
mergy. The map of the environment can be used to store information about the
virtual pheromone traces used in ACO. The disadvantage of using SLAM-based
localisation is that SLAM is dependent on the environment. The environment
must be static and contain enough features to generate a reliable map. More-
over, a representation of the map must be exchanged between the robots. This
can be an obstacle to scalability in larger swarms.

11

2 State of the Art

2.2.3 Anchor-Free Localisation

Another class of localisation algorithms are anchor-free methods. In contrast
to the anchor-based methods, no anchors are placed in the environment, but
the localisation information is just drawn from measurements made between
the robots. Usually, anchor-free localisation methods compute a relative rather
than an absolute position as there is no reference point in the environment.
However, anchor nodes can still be used to compute a global position from the
relative position of the anchor.

One approach to localise nodes is to analyse distance measurements between
the nodes. When a graph with node distances is given, the position of three
points can be used as a reference to localise a fourth node [34]. The Self
Positioning Algorithm by Capkun et al. [5] uses a similar method. A point is
used as origin of the coordinate system, while two other points are used as a
reference to locate all other points. This method was improved by clustering
the nodes to reduce communication overhead (CSPA) [16]. The more recent
Matrix-Transform Based SPA (MSPA) [53] uses matrix transformations to join
the locally established coordinate systems.

The advantage of the SPA algorithms is that only distance measurements are
needed for relative estimation. The main disadvantage is the lack of orien-
tation information. While the relative position of the particles is needed for
swarm algorithms, an important information is still missing: The orientation
of the coordinate system. Without knowing the orientation of the robot within
the coordinate system, a new movement can be computed, but it can not be
translated into an unambiguous movement command.

This problem could be mitigated, if either anchor nodes are present to link the
relative coordinates to a global reference, or the orientation can be measured.

The algorithm chosen for the new method is based on the GPS-free Directed
Localization algorithm by Akcan et al. [2]. GDL was developed for applications
in the area of Wireless Sensor Networks. The advantage of the algorithm is
that it is based on the movement vectors of the particles and on distance
measurements. The algorithm stands out, as it is motion-based while most
other algorithms are designed for motionless networks.

12

2.2 Localisation Methods

The algorithm works by computing relative position estimates for each pair of
particles within a fixed communication radius by solving a similar geometric
problem as described in the next chapter (subsection 3.5.1). The algorithm is
able to deduce the relative location of two points, given the velocity vectors
between two time steps and the distances at those time steps. Because of
symmetry, two solutions to the equations exist, of which only one is correct.
The correct solution is then determined by comparing the position estimates of
two neighbouring particles with the distance between the particles to filter the
correct solution. The GDL algorithm uses only the knowledge gathered in the
last time step and filters solutions that are expected to have high error or can
not be computed because of singularities in the equations. This results in a
very undesirable property of the original GDL algorithm: A location estimate
is not yielded in some of the time steps. Additionally, a robot using GDL must
be able to measure its distance to other robots and its movement direction and
speed, restricting the possible applications for the algorithm [2].

As the particles must be able to execute movement commands for PSO, mea-
suring movement speed and direction is a key aspect of the algorithm, even
without the requirement of the localisation algorithm. A variety of sensors
is also available to measure inter-particle distances. Also, the mathematical
expression of the GDL algorithm is very close to the expression of swarm in-
telligence algorithms. Both algorithms, GDL [2] and PSO[56], rely on directed
movement happening in discrete time steps. While the swarm movement is
usually computed within absolute coordinates, GDL computes local coordi-
nates. Reformulating PSO to use local coordinates is simple at least for particle
to particle interaction.

Two algorithms have been developed by Akcan et al. following the idea of GDL.
The GPS- and Compass free Directional Localization algorithm GCDL [3]
is able to localise the nodes without the need of a compass by moving the
nodes in a specific pattern. Dual Wireless Radio Localisation DWRL [1] is
less similar to the original GDL. It uses two radio modules to obtain four
distance measurements for each pair of nodes. Both GCDL and DWRL could
lead to another version of the localisation algorithm that does not require the
knowledge of a shared reference direction.

13

2 State of the Art

2.3 Measurements

Multiple sensors can measure the values required by the GDL algorithm [2].
This section shows that the sensors required to run the algorithm exist in the
real world. The inputs for the GDL algorithm are a movement vector for
each particle and the distances between the particles. The movement consists
of two entangled pieces of information: Movement distance and direction [2].
The PSO algorithm also uses the fitness of the particle at the current position.
The objective is specific to each application, so no such sensor can be examined
here.

2.3.1 Movement

One measurement needed in the localisation algorithm is the movement in
each time step. Both covered distance and movement direction need to be
measured, with respect to a global frame of reference.

Movement is often measured where it is generated: At the wheels [38, 6].
Sometimes this is called odometry: “Odometry is the measurement of wheel
rotation as a function of time“ [6]. However, the term odometry is often used for
other methods of measuring movement as well (i.e. “visual odometry” [37]). By
measuring the turn rate of the wheels the speed of a robot can be determined.
Applying the method in robotic applications entails problems, though. When
the robot does not move in a straight line, a complex model is needed to
compute the trajectory of the robot. Additionally, slipping wheels and rough
ground can distort the measurements. Chong and Kleeman [6] give an overview
about the error sources of odometry measurements in two wheeled robots.

Other methods to measure speed do not involve the actuators. In visual odom-
etry, camera images are processed to generate movement data [37]. A sensor
specialised in measuring movement over a surface can be found in an computer
mouse1. Most computer mouses work by measuring optical flow. Bees use op-
tical flow to navigate, too [51]. By measuring how fast the image of a camera
moves, an optical flow sensor can determine velocity in two dimensions and
measure covered distance. The main difficulties of optical flow sensors are to

1While most computers use an optical mouse nowadays, wheel odometry was also used in
the past.

14

2.3 Measurements

find features in the environment to track in the camera image, and to measure
the distance between those features and the camera. This means the robot
has to move slowly enough, so the frames overlap enough to track the features.
Essentially, there is an upper bound robot speed that is measurable by sensors
of this type. Additional problems exist if the camera is not mounted within a
fixed distance and orientation to the ground, i.e. in flying robots. One prob-
lem that comes with changing the distance to the ground is the changing focal
pane of the camera. The image quality is reduced when the focus is not set
according to the distance. Severe errors can occur when a flying robot rotates
around the pitch- or yaw axis. A pitch motion introduces a fast optical flow
that does not correspond to robot motion. It can exceed the inherent speed
limit where the camera frames do not overlap any more [48].

Some of the landmark-based techniques for localisation can also be used for
measuring the robot’s movement in space. For example, the movement of a
robot can be tracked with the SLAM method [40]. The position of the robot
in the map can be compared to an old position to obtain the movement that
occurred in between the two positions. While SLAM usually operates in an
unprepared environment, specially placed landmarks can also be tracked opti-
cally to deduce the robot’s movement with reference to the landmark. In case
enough landmarks are placed in the robot’s environment, they can be used to
compute robot movement reliably [19]. Usually, this method is used to com-
pute an absolute position of the robot, but for absolute positioning the position
and orientation of the landmarks must be known. However, landmark-based
localisation schemes such as [19, 24] can be used to compute relative move-
ment in relation to fixed points with unknown location to deduce movement
speed. Most of the presented methods measure more than speed: The goal
of all methods is to provide information on the covered path of a robot. The
localisation obtained by following the robot’s movement from a known posi-
tion onwards is called dead-reckoning [23, 11]. Dead-reckoning is often used to
improve the quality of absolute localisation methods such as GPS [23, 21].

A key piece of information that is often neglected is the orientation of the
robot. Methods to determine a robot’s orientation that are used outdoors
are hardly usable in indoor environments. Those methods include compass-
like magnetometer measurements and estimating the movement direction by
tracking the GPS position over time. While GPS is not receivable in indoor

15

2 State of the Art

environments, the magnetic field is often not consistent indoors. Still, modified
versions of some outdoor methods can often be applied indoors.

One possibility to find out the robot’s orientation is celestial navigation [52].
When the orientation towards a far away landmark like the sun or the stars
can be measured, a globally shared orientation can be deduced. In indoor
environments such landmarks may exist (i.e. a single light in the room) or can
be built (i.e. IR-beacons). The Kinbots use an IR sensor [26] to measure the
angle of arrival of an IR signal that could be suitable for heading estimation
in conjunction with a landmark. Furthermore, some landmarks may directly
offer orientation information [24].

All in all, the movement direction in a shared frame of reference is difficult to
obtain. A localisation method that does not need this information for heading
estimation is therefore desirable. Tough, some of the localisation schemes do
not provide the robots with an information on their own orientation within
the coordinate system. Hence, the robots still need a sensor measuring their
orientation.

2.3.2 Distance

Measuring distance is often necessary in robotic applications. Two different
types of distance measurement exist. Some sensors measure their distance to
the first object within the sensor’s measurement area. Examples for those sen-
sors are IR distance sensors or sonar distance sensors. The type of distance
sensor used in localisation algorithms (like trilateration) needs to measure the
distance from one distance sensor to another specific sensor. Usually, both
sensors are of the same type and an address is used to identify which sen-
sors are measuring their distance [47, 50]. Some systems also allow broadcast
measurements, where one sensor broadcasts a signal and all other sensors can
measure their distance to the beacon that started the measurement [50, 36].

Signal Strength

A very common method to determine distances is measuring signal
strength [55, 36]. As receiver and transmitter of a wireless signal move away
from each other, the received signal strength decays. This mechanism can be

16

2.3 Measurements

used to measure distances on already existing wireless communication plat-
forms, e.g. WLAN, Bluetooth or ZigBee. A major problem of the method is
the propagation pattern of the signal, that is dependent on the antenna type
and orientation. The orientation of the transmitter and receiver antenna al-
ways matters. This introduces a really strong error into the measurements.
Additionally, the environment matters. Wireless signals can be reflected or
absorbed by different materials, therefore, the measurement is strongly depen-
dent on the environment [55, 36].

Time of Arrival

A mechanism that can also be used to measure distances is the time a sig-
nal needs to travel from transmitter to receiver (Time of Arrival, ToA). As
the signal in wireless communication usually travels at light speed, the time
intervals that must be measured are very short. Nevertheless, using the prop-
agation time instead of signal strength has the benefit that antenna direction
is not an important factor to the measurement any more [47, 22]. The envi-
ronment is still influential on the measurement. The signal can be reflected in
the environment if the reflection is measured instead of the real signal. In case
this happens the measured range is distorted. This source of error is called
multipath effect [47].

There are multiple ways to measure the time the signal needs to travel. In
GPS the clocks are synchronised and message is transmitted, that contains the
transmission time stamp. The time signal that is transmitted by the satellites
can be used to synchronise the clock of the receiver to the GPS network.
Once synchronised, the travel time of the signal can be measured. With an
unsynchronised system such as the Decawave sensor, round trips with receive
and transmit time stamps are used to determine the travelled time by factoring
the time needed for returning the signal out of the round trip time [20].

Time Difference of Arrival

A way to measure distances, without the real time constraints of measuring
speed-of-light signal propagation time, is to change the medium the signal trav-
els in. The cricket [50] and active-bat [54] systems use ultrasound pulses to

17

2 State of the Art

measure the travel time. Because sound is much slower than light, measuring
the time spans accurately is easier. But using ultrasound has another advan-
tage. An ultrasound signal and a RF-signal are transmitted simultaneously
and the time difference of arrival (TDoA) is measured. The speed difference of
the signals is known, therefore, the distance can be computed from the TDoA.

A major drawback of the slow travel time of the signal is crosstalk between the
nodes. When one node sends an ultrasound signal, the signal must fade before
another signal is issued by another node sharing the medium. If the signal is
not faded before the next signal is sent, the receiver can mistake both signals
and measure the wrong distance. This leads to a limit to the measurement
frequency in the hole network (or at least sub-networks). As crosstalk is a
problem, cricket or active-bat are less suited for large networks with high
update rates. Advanced scheduling can mitigate the problem, though [54].

Phase Difference

A feature of RF-signals that can be used to measure a distance is the phase of
the signal. By measuring the phase of the signal on multiple frequencies, the
distance between the nodes can be determined. A system that uses this type
of ranging is the ATMEL RTB [49, 29].

Other Methods

One way to compute distances is to use camera tracking. It is possible to
recognise other robots in an image and the size of the robot in the image can
be used to determine its distance. A swarm method to measure distances is
the Hop Count method. However, Hop Count is not well suited for swarms
with small densities [32]. Additionally, the hop count method is not suited
to measure the distance of direct neighbours. Other methods for intra-swarm
distance estimation such as Distributed geometric distance estimation [31] can
mitigate this problem.

Many methods exist to combine multiple sensors readings into a single infor-
mation and to improve a single sensor reading by an underlying model. Those
techniques are not discussed in this thesis.

18

2.3 Measurements

Standard PSO 2011 [56] was chosen as the swarm intelligence algorithm to
be used. It can easily be replaced by other PSO-inspired algorithms and at-
traction repulsion behaviours. The PSO will be modified to work with local
position estimates that are generated by a new localisation algorithm based on
GDL [2]. Dead-reckoning can be used to overcome the disadvantage of GDL
not yielding an estimate in each time step. Following the name of Simulta-
neous Localisation and Mapping, the new algorithm is called Simultaneous
Localisation and Optimisation (SLO).

How the new algorithm works is described in the next chapter.

19

3 Simultaneous Localisation
and Optimisation Algorithm

The algorithm created for this thesis is called Simultaneous Localisation and
Optimisation method. The aim of the SLO method is to combine two major
components: A localisation algorithm inspired by the GDL algorithm by Ak-
can et al. [2] and SPSO 2011 by Zambrano-Bigiarini et al. [56]. The idea behind
this combination is to create a swarm algorithm for a robot that perceives the
environment through sensors and acts on it through actors. Both algorithms
must be modified to create one functioning unit. The original GDL algorithm
does not yield a position estimate in every time step. To overcome this disad-
vantage the new algorithm uses dead-reckoning to close the gaps. SPSO must
be modified to work on local coordinates, as GDL does not compute global
coordinates.

3.1 Definition of the Environment

All particles move within a continuous two dimensional plane without obsta-
cles. Moreover, an objective function maps a fitness value to each point in the
plane. In this thesis, fitness is minimised in all objectives. The goal of the
particles is to find the global minimum of the objective function on the plane.

All information on the environment is gathered through sensor measurements
and changes in the environment are caused by actors. Each measurement
can contain an error. The position of the other robots must be perceived
through sensors too. Movement is an action of a particle within the sensor-
actor model. The particles are assumed to move perfectly according to the
movement command. This simplification is made to have fewer entangled

21

3 Simultaneous Localisation and Optimisation Algorithm

effects1. The feedback of the action is still infused with an error through the
sensor, so the error-free movement is not an oversimplification.

initialise measure

estimate
position

move

environment

Figure 3.1: Overview of the SLO Algorithm and its Interaction with the Envi-
ronment.

A very simple model of timing is used. Time passes in discrete steps. The
measurements made by the sensors are assumed to happen without delay, as
well as the movement of the particles. All particles perform their behaviour in
each time step. A consequence of the simple model of time is that synchronous
updates do not suffer from any drawbacks synchronisation would usually have
in a robotic environment. Examples for those drawbacks are increased time
delays and communication overhead.

3.2 Overview

The SLO method combines two major components: A localisation algorithm
inspired by the GDL algorithm by Akcan et al. [2] and a modified version
of SPSO 2011 by Zambrano-Bigiarini et al [56]. Figure 3.1 shows how the
algorithm works and how it interacts with the environment. First, all the
variables in the algorithm are initialised. After initialisation, the algorithm
runs in a loop until a stopping criterion is reached. In this loop three major
things happen. (1) The sensors measure the data in the environment. (2) The

1An imperfect movement has been implemented, but was not part of the experiment.

22

3.2 Overview

relative positions of the particles are estimated. (3) The particles act according
to the rules of swarm intelligence.

In Algorithm 1, a more detailed description of the algorithm is given. In the
initialisation phase, the population of size P is initialised with values randomly
placed in the search space S. Additionally, the estimates and velocities of the
“previous” time step are initialised with random values.

After the initialisation the main loop of the algorithm begins. In each time
step the sensors measure their values. The measurements include the neigh-
bourhood relationship N , the distances of the particles to each other D and
the velocity vectors of the particles V . The previous estimate and the mea-
surements are used to compute the new position estimate ~x∗i (t). However, the
core localisation algorithm yields two symmetric solutions X. Therefore, an
additional step is needed to select the right position estimate from those solu-
tions. To guide this selection a third estimate obtained by dead-reckoning is
included in X, too. The last step of the algorithm is the position update. Up-
dating the position includes the computation of the desired movement vi(t+1)

for each particle with PSO and the actual update of the particle positions in
the environment. In addition, the previous best value of the PSO must be
updated, because the coordinate system is moved when the particle is moved.
All steps of the algorithm are explained in more detail in the next sections.

23

3 Simultaneous Localisation and Optimisation Algorithm

Algorithm 1: SLO-PSO algorithm
Input : P, S
t = 0
Initialise the PSO individuals:
for i = 1 to P do

~xi(t) = RandomPosition(S)
~vi(t) = RandomMovement()
~x∗i = RandomPosition(S)

end
while stopping criterion not fulfilled do

for i = 1 to P do
/* Measurement: */
Ni = UpdateNeighbours(i)
D = MeasureDistances(Ni, i)
V = MeasureVelocity()
/* Position Estimation: */
X = ComputeLocalisationOptions(V,D, ~x∗i (t− 1))
~x∗i (t) = SelectSolution(X,D, i)
/* Movement: */
~x∗g(t) = FindGlobalBest(Ni, ~x

∗
i (t), i)

~vi(t+ 1) = ComputeVelocity (~xi(t), ~x∗g(t))
~xi(t+ 1) = UpdatePosition(~vi(t), ~xi(t))

end
t = t+ 1

end

3.3 Initialisation

In the initialisation phase multiple variables are set up. The particle positions
are chosen. In a robotic application the robots must be placed in the envi-
ronment. As the algorithm uses data from previous time steps the variables
holding this data are initialised randomly. The estimates for the previous
position of the particles are randomly placed within the search space. The
velocities are the difference vectors between those arrays and another set of
points randomly placed in the search space. In a robotic application this step

24

3.4 Measurement Phase

may be more complex i.e. by creating a known initial state, or a good estimate
for the initial state.

3.4 Measurement Phase

The idea behind SLO is to replace direct knowledge of the environment with
sensor-deduced information. Multiple sensors are required to use the algo-
rithm. The simulation runs with discrete time steps. In each step the following
values must be measured: The movement in between the last and the current
time step (~v∗t), the distances between the particles in the current time step
(d∗t (A,B)) and the fitness of each particle at its current position (f(xi(t))).
The movement measurement needs to include the direction of movement, as
well as the movement speed and is represented as velocity vector.

Additionally, the estimates of the last time step (x∗t−1) and the distances mea-
sured in the last time step (d∗t−1(A,B)) are used in the algorithm.

The neighbourhood of the particles may change because of the particle move-
ment. The neighbourhood relationships are strictly based on the real particle
positions from the simulation. Therefore, the neighbourhood update is a mea-
surement. The following neighbourhoods are considered in this thesis:

k-nearest-neighbours (knn) The k points closest to a point A are its neigh-
bours.

communication radius All points B with d(A,B) < r are neighbours of
point A.

fully-connected Each point is the neighbour of each other point.

random At each time step point B is determined to be a neighbour of point
A with probability p.

ring Each point Xi has the neighbours Xi±kmodN∀k ≤ n, where n controls
the connectedness of the graph (the bigger n, the more connections).

The fully-connected, knn and communication radius neighbourhoods are the
most realistic neighbourhoods in a robotic application. However, the knn and
communication radius combine different properties of a neighbourhood that are
interesting to analyse. The interesting properties are connectedness and rate of

25

3 Simultaneous Localisation and Optimisation Algorithm

change. The degree to which the particles are connected and how many changes
happen in the neighbourhood can be controlled either indirectly or not at all
for the more realistic neighbourhoods. Additionally, those neighbourhoods
are distance-based and affect the absolute localisation error by filtering the
particles for their distances. The random topology and ring topology were
added to address those issues. The ring topology was first introduced as a
comparison to the fully-connected network. Both are static topologies with
a different degree of connectedness. However, the knn and communication
radius topology already include a parameter that controls how densely the
network is connected. For that reason the parameter n was added to the ring
topology that allows to include more particles in the neighbourhood based on
the index of the particles. To control the rate of change in the neighbourhood,
the random topology was added. The parameter p defines a probability that
decides whether a connection in the neighbourhood graph exists in each time
step. While p controls the rate of change as well as the connectedness, the
random topology has the advantage that the neighbourhood relationship is
agnostic to the distance of the particles. Therefore, p does not affect the
absolute localisation error in the same way knn and communication radius
topologies do.

3.5 Localisation

After the measurements are aggregated, a position estimate for each particle
must be computed. The position estimate will later be used by the PSO algo-
rithm to compute a movement command. Computing the position estimates
is a two-step process. First, three solution candidates are computed. In the
second step the correct solution is chosen.

3.5.1 Localisation: Solution Computation

The localisation scheme in the SLO method is based on the GDL algorithm by
Akcan et al. [2]. In GDL, the solution to the geometrical problem yields two
solutions and the correct solution is determined in a later step. As the SLO
localisation is based on GDL, the same symmetry exists and the localisation
yields two solutions. In contrast to GDL a third solution is used in SLO. The

26

3.5 Localisation

third solution is computed by dead-reckoning and is not accurate if the last
estimate is not correct. Since the dead-reckoning solution is computed in a
different way, it can help to decide on the correct solution.

To properly explain the computation the position estimate is assumed to be
computed from A to point B. An estimate for the value of the vector ~AB is
the result of the computation as it represents the relative position of point B
with respect to the reference point A. Furthermore, point A is assumed to be
at (0, 0) and only point B moves with the combined velocities of A and B:
~v∗ = ~v∗B − ~v∗A. Both directions of the estimate are computed independently
(~BA is computed in another call of the function ComputeLocalisationOptions
as ~AB).

As mentioned, two approaches are used to compute an estimate for ~AB. The
easiest way to obtain an estimate is to update the old position with the velocity
vector: ~ABt = ~ABt−1 + ~v∗. This solution is called ~x∗3 in the next steps of the
algorithm. However, ~x∗3 is not sufficient to solve the localisation problem, as
~ABt−1 is not initially known and ~v∗ is a value that contains measurement
errors. Another method to compute ~ABt is needed to solve the initialisation
problem and prevent the accumulation of measurement errors.

The second method to estimate ~x∗1,2 = ~AB is the method inspired by the GDL
algorithm by Akcan et al [2]. When the distance d(A,B) is measured at each
time step the points A,Bt, Bt−1 form a triangle with sides of known lengths
as shown in Figure 3.2. Therefore, Equation 3.1 can be used to compute the
angle α. The angle φ can be computed with Equation 3.2. This is possible
when the movement vector can be measured in a common frame of reference.
With α, φ and the distance d(A,Bt) an estimate of ~AB can be computed as
shown in Equation 3.3.

The major modification of the GDL algorithm [2] is the different formulation
of the problem. By assuming point A to be at (0, 0) at all time steps, the
formulas become simpler and the geometric problem becomes easier to analyse
and understand. The underlying mathematical problem is not changed by this
assumption as just the coordinate system is moved.

This method has a disadvantage, though. As cos(α) is computed, α is derived
by computing an inverse cosine. However, arccos yields two valid, non equiv-
alent solutions: +α and −α. Geometrically, both solutions exist because of
symmetry as shown in Figure 3.3. As one of the solutions is an artefact and

27

3 Simultaneous Localisation and Optimisation Algorithm

one is the real solution to the localisation problem, a method is needed to find
the correct one out of the three solutions {~x∗1, ~x∗2, ~x∗3}.

A

Bt−1

Bt

NN
α

φ

γ

d t−
1

d t
~v

Figure 3.2: Triangle Used for Position Estimation. The triangle that the points
A,Bt, Bt−1 form, labelled with the quantified needed for the equa-
tions 3.1-3.3. ~v is the combined movement of A and B from the
last time step (~v = ~vB − ~vA) and γ = φ± α.

cos(α) =
d∗2t + |~v∗|2 − d∗2t−1

2 · |~v∗| · d∗t−1
(3.1)

φ = atan2(v∗x, v
∗
y) (3.2)

(~x∗1, ~x
∗
2) =

(
sin(φ± α)
cos(φ± α)

)
· d∗t (3.3)

~x∗3 = ~x∗t−1 + ~v∗t−1 (3.4)

3.5.2 Error Mitigation

Some values in the estimation predictably amplify the errors of the estima-
tion inputs. This is the reason why an intermediate computation step in the
computation of the solution candidates can lower the localisation error. Two

28

3.5 Localisation

A

Bt−1

Bt

B′t−1

B′t

d t−
1

d t

v

Figure 3.3: Symmetry of the solutions to the position estimation problem.

factors have been identified that predict error amplification in the two solutions
of the geometrical problem.

First, the inversion of cos(α) in the computation of α can be inaccurate if
cos(α) is close to one. The reason is: If cos(α) is close to one, measurement
errors may result in a singularity where the computed value for cos(α) is not
in the cosine range and therefore no value can be computed. The singularity
problem can be solved in two ways: Clipping cos(α) to the range [−1, 1] or
deleting values for ~x∗1,2 that correspond to the singularity from the tuple of
possible solutions. If ~x∗1,2 are deleted, ~x∗3 will be used as the estimate (the
solution selection process is omitted). Equation 3.5 shows the criterion used to
decide whether ~x∗1,2 should be deleted. If δα is smaller than zero, the condition
is still applied and the value is clipped in the computation. This is the most
general formulation of the problem, hence this solution has been implemented.2

The second variable that is used to estimate the localisation error is the mag-
nitude of the combined velocity vector |~v|. When the particles stay still or
move in parallel, |~v∗| becomes small. Small values of |~v∗| lead to the triangle
in Figure 3.2 becoming very narrow. The ranging errors in d∗t and d∗t−1 become

2As the experiments show, clipping the cos(α) to the cosine range is the preferred solution
for future implementations.

29

3 Simultaneous Localisation and Optimisation Algorithm

more prominent compared to |~v∗|. The conditions used to detect this type of
error are shown in Equation 3.6. Similar to the error mitigation with the cosine
condition, the values for ~x∗1 and ~x∗2 are withheld from the selection method and
~x∗3 is used as the estimate in the current time step when the condition is true.

1− |cos(α)| ≤ δα (3.5)
|~v∗|
d∗t−1

≤ δv
|~v∗|
d∗t
≤ δv (3.6)

3.5.3 Localisation: Solution Selection

Closest Solution Selection

After the solution candidates are computed, a solution must be chosen to be
used in the PSO.

One possibility to select a solution from the solution candidates is to compare
the solutions generated by both methods. When the algorithm has previously
found a good estimate for ~x∗t−1, the dead-reckoning solution ~x∗3 should be close
to one of the two solutions obtained by the distance-based estimation (~x∗1,2).
Therefore, a weighted average between ~x∗3 and the other solution closer to it
(~x∗c) as shown in Equation 3.7 is a good estimate for the next position. The
advantage of using a weighted average is that the trade-off between the errors
in both estimation methods can be fine-tuned to the use-case of the algorithm.

~x∗t = w (~x∗t−1 + ~v∗) + (1− w) ~v∗c (3.7)

The closest solution selection is the least complex of the three selection methods
implemented. While the computational power needed is very low and there
is very little communication, the algorithm has cold start properties: When
the initial position of the particles is unknown, the algorithm struggles to
compute the next solution. If the algorithm runs, the estimate should converge
to the real solution, so the computation is more accurate once a good solution
has been found. This is especially important when the neighbourhood of the
particles is likely to change. Unless there is a strategy to localise new particles,
the algorithm takes multiple time steps to converge to a good solution. If

30

3.5 Localisation

the neighbourhood changes too frequently, this algorithm only produces poor
results.

Round Trip Selection

|| ~AB + ~BC + ~CA|| = || ~AA||+ er = 0 + er (3.8)

The selection of a solution can also be based on a criterion for the relationship
of the particles in the swarm. The Round Trip Selection Method (RTS) uses
the relationship shown in Equation 3.9. When the estimates of a three way
round trip from A to B to C are added, the result should by definition be 0, as
it is equal to the path from A to A. This means the solution candidates for ~AB,
~BC, ~CA can be picked to minimise the round trip error er in Equation 3.9.
That way all the solution sets can be reduced to single solutions unless no
triangles are found in the neighbourhood. In that case the CSS can act as a
fallback (if only a single point is in the neighbourhood, or no triangle can be
formed).

While in the first implementation [30] the best triangle was used first and the
backward edges were adjusted as soon as the forward edge was determined,
the order of computation has changed in the current implementation. As the
new implementation allows to comply with neighbourhood relationships not
every edge has a corresponding backward edge. Additionally, there is a pos-
sibility that no three way round trip including a certain edge exists (i.e. in
a ring topology). Because of this the new implementation of the algorithm
uses the first viable triangle and reduces just a single edge. Reducing multi-
ple possibilities at once is not possible any more. The first triangle used can
be the wrong choice, thus correct edges that are needed to solve later round
trips correctly are removed. Finding the optimal set of solutions according to
the triangle metric is a np-hard optimisation problem in itself. The current
implementation only uses a simple greedy approach to obtain a suboptimal
solution. Investing more computational power potentially unlocks a more ac-
curate localisation algorithm.

There is a problem with the RTS selection method and with the current im-
plementation it is more likely to occur. The metric checks the estimates for
consistency, not for correctness. Initially, the more consistent solution is likely
to be the correct one. The solutions obtained by dead-reckoning are always

31

3 Simultaneous Localisation and Optimisation Algorithm

equally consistent with each other as the previous ones. If there is an error in
the velocity, the new estimate contains an error which the consistency-metric
can not account for. While this problem is severe in theory, it can be mitigated
by changing the evaluation order.

Akcan’s method

|(|| ~AB − ~AC||)− d∗t (B,C)| = || ~AB − ~AC|| − || ~BC|| = 0 + ed (3.9)

Another metric to determine which of the two ranging solutions should be
used, was used in the GDL algorithm by Akcan et al. [2]. As the distance
between points is measured it can be compared to the distance of the estimates.
The solution of the position estimation process where || ~AB− ~AC|| − d∗t (B,C)
is minimised is chosen as the estimate in the current time step. Akcan et
al. explicitly exclude knowledge about the past from their process, however,
in this implementation the third solution ~x∗3 is also tested and used when it
outperforms the other solutions.

In terms of communication overhead, computational cost and performance this
method is in between the CSS and RTS method.

3.6 Movement Update

While the position estimation is a static part of the algorithm, the actual
swarm behaviour can be considered as exchangeable. The swarm behaviour
used in this thesis is based on the Standard Particle Swarm Optimisation
algorithm (SPSO 2011) [56].

As in SPSO 2011 a point Gi(t) is computed for each individual from the best
particle in the neighbourhood Li(t) and the previous best position Pi(t) (Equa-
tion 3.103). While in the original SPSO 2011 algorithm the points Pi and Li
are both selected from past time steps, in this implementation only Pi uses in-
formation on past states, as the position information in a robotic environment
can deteriorate as new measurement errors accumulate. Gi(t) is the centre of

3As a local coordinate system is used terms including Xi(t) get simplified as Xi(t) = 0∀t.

32

3.6 Movement Update

a hypersphere towards which the particle moves. The weights c1 (cognitive
term) and c2 (social term) are used to scale the impact of Pi and Li. c3 and c4
are added to tune the exploration behaviour. c3 = 1 and c4 = 0 represent the
original behaviour of the algorithm. Reducing the area that the algorithm can
reach by random choice could be beneficial to compensate for random errors
in the localisation algorithm.

Gi(t) =1/3 (c1U1 ⊗ Pi(t) + c2U2 ⊗ Li(t)) (3.10)

Vi(t+ 1) =ωVi(t) +Hi(Gi, c3 ‖ Gi ‖ +c4) (3.11)

Xi(t+ 1) =Vi(t+ 1) (3.12)

After the computation of the PSO, the particles’ positions are updated ac-
cording to the movement vectors computed by the swarm behaviour in Equa-
tion 3.11. Since all the particles use local coordinate systems, their knowledge
about their environment needs to be updated as they are moving. This means
that the information on the previous best particle position Pi(t) must be up-
dated, not only by checking whether a better fitness value has been observed,
but also by correcting an old position by the movement of the particle as shown
in Equation 3.13.

Pi(t+ 1) =Pi(t)− Vi(t+ 1) (3.13)

33

4 Evaluation

The goals of this thesis include the implementation of the SLO algorithm and
the analysis of its performance in an experiment. The algorithm is described
in the previous chapter. This chapter describes how the algorithm was imple-
mented and what experiments were performed. The results of the experiments
are discussed as well.

4.1 Implementation of the Algorithm

The algorithm and the experiments are implemented using a Jupyter note-
book. The implementation makes use of the composition software design pat-
tern. The main loop of the algorithm is implemented, so the internal functions
and arguments are passed as keyword arguments. Hence, the algorithm is
composed of different parts that can be chosen independently.

A dictionary holds the data describing the algorithm run. The dictionary
contains the function generating the simulated measurements, the position
estimation function and the movement update function. Additionally, the dic-
tionary contains the arguments to those functions, e.g. measurement errors,
estimation parameters and PSO parameters. Some variables that control the
algorithm run including initial population and the number of generations to be
run are also included in the dictionary. All of the selection methods described
in subsection 3.5.3 were implemented. The CSS selection method can be modi-
fied by the weight of the updated velocity w. Moreover, a perfect localisation is
implemented as a baseline. However, the experiments have shown that the lo-
calisation algorithm (especially with RTS/Akcan’s selection method) produces
nearly the same result when no input error is used. So, the perfect localisation
is not needed.

The output of one algorithm run is the true position of the swarm particles
and all the position estimates. From the positions the particle fitness can be

35

4 Evaluation

reconstructed. The positions together with the estimates are used to compute
the localisation error.

Most parts of the algorithm’s functions are self-implemented. Some python
modules implementing PSO exist, but usually those packages implement dif-
ferent algorithms to obtain the solution of an optimisation problem. Interme-
diate steps can not be modified by the user in those implementations, so they
are not suited for this thesis. In the implementation the particle positions and
movement vectors are represented as numpy array. Many operations can be
executed by linear algebra functions provided by numpy (i.e. the movement
update is formulated as matrix operation that is handled by numpy). The
fitness functions used for benchmarking the algorithm are provided by the
DEAP [7] python package.

To run and store the experiments the pypet-, and for handling data the pandas
package is used. As the algorithm can be configured by a huge set of param-
eters, an automated way of running the experiment with different parameter
settings is needed. This functionality is provided by the pypet package. For
each parameter set the algorithm is run multiple times and the data computed
in the experiment run are saved together with the set of parameters that was
used. As the amount of data created by the algorithm itself is very high,
only a part of the outcome can be saved (or otherwise the data would not
fit into RAM in the evaluation phase). For each run in each parameter set
the aggregated statistics for the localisation error (mean, standard deviation,
median) for different types of error (absolute, relative, angular) is exported.
Furthermore, the inter-particle distance is measured (mean, standard devia-
tion, median). In the PSO experiments some additional values were exported
that are described in section 4.6.

For evaluation the saved data that was saved are loaded and analysed. To
create plots and handle statistical data the matplotlib and seaborn packages
were used.

4.2 Parameter Space

The main difficulty in finding out how the algorithm behaves is that there
are many parameters that affect the algorithm’s performance. Therefore, the

36

4.3 Experiments

method in the experiments is to fix most parameters to see how the modifica-
tion of single parameters affects the overall result. Table 4.1 shows a summary
of the parameters that are used for most experiments (in some of the experi-
ments the error is divided into more components).

To reduce the amount of computation time, the swarm movement is replaced
by a random walk movement in the first experiments. Later experiments use a
fixed set of error- and mitigation parameters to better understand the interac-
tion between PSO and localisation. Each experiment consists of several runs
with different parameter sets. The runs themselves are repeated 31 times to
generate statistically meaningful results. For each experiment one particular
group of parameters is varied systematically to obtain data on the influence of
individual parameters.

Name Default value
Algorithm Selection Method

Prediction Weight 0.5

Neighbourhood Function knn
Parameter 5

SPSO 2011 cognitive c1 0.5 + ln(2)

social c2 0.5 + ln(2)

c3 1

c4 0

Random Walk speed 5
Objective Objective Function line
Error Set Low
Mitigation δcos 0.03

δv 0.03

Table 4.1: Parameters used in the experiment

4.3 Experiments

As mentioned before, testing all parameter combinations is not possible with
the computational resources available. For this reason four experiments have
been designed that change only a subset of the parameters while keeping most
of the parameters fixed. The idea behind grouping the parameters is to find
out the parameters’ individual effect and to see where parameters interact.

37

4 Evaluation

The first experiments do not use the PSO movement to gain a better under-
standing of localisation accuracy. This is necessary as PSO and the large set of
possible objectives would increase the size of the parameter space more than
computing power allows. Only the last experiment looks into the effects of PSO
movement. One reason why PSO is only handled in a single experiment is the
vastly larger parameter space. Another is the fact that the more complex inter-
actions between movement-based localisation and localisation based-movement
often do not allow a conclusive interpretation.

The current implementation for the experiments works in two steps: First,
the simulation is run and the data are exported to a file summarising the
experiment’s results and the parameters that were used. Later, the file is read
and the results are analysed. The advantage of this is that the simulation can
be run on a server, while the results can be viewed on a laptop. A disadvantage
of the method is that only data that are saved in the simulation run are
accessible when the results are evaluated.

The exported data are summarised in Table 4.2. For the localisation error, each
generation mean, median and standard error are saved. The angle error is the
difference between estimated direction of the particle and the real direction.
The absolute error is the distance between estimate and real position of the
other particle. In contrast to that, the relative error is the absolute particle
divided by the distance between both particles.

38

4.4 Error Model

Experiment Variable Name per Run
Random Walk Mean Angle Error
and PSO Std Dev Angle Error

Median Angle Error
Mean Absolute Error
Std Dev Absolute Error
Median Absolute Error
Mean Relative Error
Std Dev Relative Error
Median Relative Error

PSO only Best Fitness
Best Fitness x
Fitness at Last Generation x
Generation Where Criterion is Met x

Table 4.2: Data exported from the simulation run. The last column shows
whether the data item is aggregated per generation or summarised
per run.

4.4 Error Model

To gain knowledge about the impact of errors on the localisation performance,
an error model was implemented that models several error types for both
range and velocity measurements. Based on the error classification by Zug [58]
several error types have been modelled.

The distance measurement (d∗(t)) is generated from the real value (d(t)) that
is modified by multiplying (Em) and adding (Ea) an error value (Equation 4.1).
Em simulates value correlated errors, while Ea simulates constant errors. Ea
is computed by adding two normally distributed values (measurement noise is
often assumed to be normally distributed [58, p. 21]). One of the values is
drawn at the beginning of the run (P = N (0, σ̂)). This value models perma-
nent errors, while the other value is drawn each generation to model stochastic
errors (Equation 4.3).

Additionally, the measured value is set to zero with a probability pfail to em-
ulate (filtered) outliers, omissions and stuck-at-zero errors without drastically
increasing parameter space. Time correlated errors and delays have not been
modelled as timing related issues are simplified by the discrete time model
anyway.

39

4 Evaluation

d∗(t) =

{
0 sensor fails (pfail)

d(t) · Em + Ea else
(4.1)

Em = N (1, σm) + Pm (4.2)

Ea = N (0, σa) + Pa (4.3)

~v∗(t) = R(N (0, σr) + Pr)~v
′(t) (4.4)

The movement measurement ~v∗(t) is computed similarly to the distance mea-
surement. Ea and Em are individually computed and applied for each dimen-
sion, while the sensor failures pfail affect the whole vector. This value (~v′(t))
is then subject to a rotation with a normally distributed angle (Equation 4.4).
Similar to the computation in Ea, one value is drawn in the beginning of the
run (σ̂r) and one in each generation (σr). This type of error was used by Akcan
et al. [2] in the GDL experiments. Since the measurement of the orientation
is considered to be difficult, this rotational error is very interesting.

variable Low High
Range σm 0.010 0.20

σa 0.050 0.30
σ̂m 0.015 0.06
σ̂a 0.150 1.00
pfail 0.050 0.30

Velocity σm 0.050 0.20
σa 0.050 0.30
σ̂m 0.015 0.06
σ̂a 0.050 0.30
pfail 0.050 0.20
σr 0.050 0.20
σ̂r 0.050 0.20

Table 4.3: Error Parameters

In the first experiment in subsection 4.5.1 the effect of the error parameters
is tested in isolation. In the other experiments three sets of injected errors
are used: No, low and high error. The low and high error are chosen so,
the algorithm works very well with low error and struggles to find accurate
localisation estimates with high error. Each variable in the error levels has
been chosen to contribute roughly similar amounts to the overall localisation
error, while the multiplicative σr ranging error has the most significant impact

40

4.5 Experiments with Random Walk Motion

of all the error parameters1. All parameter values for low and high error are
shown in Table 4.3.

4.5 Experiments with Random Walk Motion

The original experiments on GDL presented by Akcan et al. [2] used a random
walk motion to test the algorithm. The particles are placed in an area of 100 x
100 units and move with a random speed |~vi(t)| = U(0, 5) in a randomly chosen
direction. Those parameters are used for all experiments using the random
walk motion. A direct comparison between GDL and the three variants of the
localisation algorithm was implemented as well. With the settings proposed
by Akcan et al. [2] the SLO localisation performs very poorly. The mean
absolute localisation error of the three algorithms was either very close to
the communication radius used by the particles, or much higher. This means
the localisation does not work at all. A randomly chosen point within the
communication radius has a similar amount of localisation error.

There are two reasons why the SLO localisation method does not work with
this combination of communication radius and movement speed. First, the
communication radius is chosen very small compared to the speed of the par-
ticles, so neighbourhood changes are very frequent. As GDL does not use past
results in its computation at all, it can handle this. On the other hand SLO
uses knowledge about prior generations and therefore needs to converge to the
correct solution before the result is usable. Second, GDL does not provide a
localisation result when an error amplifying state is detected (up to 16% of
values in the experiments) [2]. By filtering results with higher error, GDL can
perform much better than SLO in this scenario. SLO provides an estimate
even if an error amplifying input was detected. The value used by SLO in
the error mitigation case is obtained by dead-reckoning. Because of the fre-
quent neighbourhood changes, the previous position is often unknown and the
dead-reckoning is even more disadvantageous.

Trading the disadvantages of the SLO method for the loss of erroneous esti-
mates seems undesirable. However, the missing values are highly problematic
in robot control. When the input to the controller is missing, the robot can

1This error has been determined to be a key influence in the error experiment, likely to
influence the hardware choice for distance sensors.

41

4 Evaluation

not decide where to move which has several undesirable consequences. The
worst problem is that the robot can not even stop when values are missing,
because further movement is needed to localise the robot in the future. If the
convergence does not stop prematurely, the SLO algorithm may also be able
to converge closer to the real value than GDL as more information is exploited
in the computation.

While SLO was clearly outperformed in this experiment, the other experiments
show that SLO works, but a comparison to GDL [2] is not possible. The factors
that are beneficial and harmful to its performance are also analysed in more
detail in those experiments.

4.5.1 Error

The first parameters examined are the error parameters shown in Table 4.3.
In this experiment all error parameters were set to zero while one by one
the parameters were set to different values. In prior experiments with low
swarm size and fewer runs with each parameter, the values for each parameter
that should be examined were determined. This process has been repeated
for all estimation methods and neighbourhoods. All other parameters are not
modified.

The most severe error type is the stochastic value correlated error (σm) in the
range measurements. The same input error value leads to lower localisation
errors for all other parameters. The experiment showing the influence of this
error is depicted in Figure 4.1. It is very interesting that the permanent error
(4.1b) is much less severe than the stochastic error (4.1a). This can be ex-
plained by the geometry of the triangle used for the position estimation (see
subsection 3.5.1). Generally, the distance between the points are likely to be
larger than the velocity, resulting in a triangle with two long sides for dt and
dt−1 and a short side for ~v. When the dt−1 and dt are both modified by the same
value, the triangle is stretched (or shortened), but the angles in the triangle
are not changed by a large amount (especially in such a “thin” triangle). When
the range error changes between generations, d∗t−1 can be stretched, while d∗t
is reduced. In case the error is changing the angles adjacent to the short side
of the triangle change much more compared to a none changing error. As a
consequence, the direction of ~v∗ in the triangle changes more, resulting in a
larger localisation error.

42

4.5 Experiments with Random Walk Motion

0.0 0.01 0.1
σm

0

5

10

15

20

25

m
ea
n
ab
so
lu
te

er
ro
r

akcan
css
rts

(a) Dynamic

0.0 0.01 0.1
σ̂m

0

5

10

15

20

25

m
ea
n
ab
so
lu
te

er
ro
r

akcan
css
rts

(b) Constant

Figure 4.1: Multiplicative Range Error. The mean absolute error as it is af-
fected by the dynamic multiplicative input error σm (a) and the
constant multiplicative input error σ̂m (b).

The estimation error generated by the additive range error is smaller in mag-
nitude than the multiplicative error because in the random walk scenario, the
distances are very long. Therefore, in the random walk scenario the effect of
the additive errors is negligible (when multiplicative errors are present). In
the velocity measurement the additive errors are more relevant. One reason
is that the combined velocity vector ~v∗ is usually shorter than the distance
between the particles. More importantly, the additive velocity error is one
of the main error types causing runaway configurations in the RTS selection
method. As is described in section 3.5.3 the estimate can deteriorate in a
special case: When an estimate has been found, the round trip error er is
computed for three points. This round trip is used to select the correct locali-
sation estimates. However, one of the estimates is the position updated with
the velocity vectors. As this estimation method is a perfect computation, er
does not change, even if the velocity used in the computation contains errors.
This means the dead-reckoning estimate ~x∗3 is always used and the quality of
the solution deteriorates.

Figure 4.2 shows the mean absolute error for the experiments executed with
the constant, additive velocity error. In the RTS selection method the effect of
the runaway configurations can clearly be seen in the fully connected- and ring
neighbourhood. As those neighbourhoods are static, the probability of find-
ing a new configuration with lower er is very low. In changing neighbourhoods
(knn, random, communication radius) the error is less severe. When the neigh-
bourhood changes, another round trip is evaluated – and for this triangle the

43

4 Evaluation

0 20 40 60

communication_radius

akcan

0.0
0.1
0.3

css
rts

0 20 40 60

fully_connected

0 20 40 60

knn

0 20 40 60

random

0
20

40
60

80
100

generation

0 20 40 60

ring

0
20

40
60

80
100

generation
0

20
40

60
80

100
generation

F
igure

4.2:Influence
ofa

F
ixed

V
elocity

O
ffset.

M
ean

absolute
error

for
100

generations
for

each
neighbourhood

and
selection

m
ethod.

44

4.5 Experiments with Random Walk Motion

best localisation (in terms of er) is more likely to be one of the good estimates.
The impact of the neighbourhood is discussed in more detail in section 4.5.3.
However, it is very interesting that the effect of the input errors on localisa-
tion accuracy is strongly affected by the neighbourhood relationship. The RTS
selection method copes comparatively well with the random neighbourhood –
the nemesis of the CSS method. This means that the constant, permanent
velocity error is problematic for the RTS selection method in a static neigh-
bourhood. The CSS method is more affected by all circumstances that slow
down or reset convergence and this can be caused by errors as well as changes
in the neighbourhood. Thus, the selection methods should be combined to
compensate for each other’s weakness.

0.0 0.01 0.1 0.3
pfail

0

2

4

6

8

10

12

m
ea
n
ab
so
lu
te

er
ro
r

akcan
css
rts

(a) Velocity

0.0 0.01 0.1 0.3
pfail

0

2

4

6

8

10

12

m
ea
n
ab
so
lu
te

er
ro
r

akcan
css
rts

(b) Range

Figure 4.3: Localisation Error Caused by Sensor Failures

The localisation algorithm is able to deal with sensor failures remarkably well.
Simulated sensor failures are controlled by the pfail parameter. The range
sensor and the velocity sensor can both fail independently. When a simulated
sensor failure occurs, zero is returned as a measurement. Figure 4.3 shows
the impact of sensor failures on the localisation error. Even a 30% failure
rate results in an acceptably small localisation error. In case of a range sen-
sor failure the new value is computed by dead-reckoning. Therefore, the new
value is correct if the last estimate is correct. When the velocity sensor fails,
the velocity of one of the nodes is zero. Hence, the combined velocity ~v∗ of
two nodes is computed incorrectly and this part of the localisation is erro-
neous. The dead-reckoning uses the old position of the other node as its new
estimate. This keeps the algorithm working. It also explains why the CSS
method is outperformed in those cases by such a large margin, and why RTS

45

4 Evaluation

and Akcan’s selection can deal with range sensor failures better than velocity
sensor failures.

4.5.2 Mitigation

5

10

15

20

25

m
ea
n
ab
so
lu
te

er
ro
r

cos: 0.0|e: High cos: 0.03|e: High cos: 0.1|e: High

5

10

15

20

25

m
ea
n
ab
so
lu
te

er
ro
r

cos: 0.0|e: Low cos: 0.03|e: Low cos: 0.1|e: Low

0.0 0.05 0.1 0.15
δv

5

10

15

20

25

m
ea
n
ab
so
lu
te

er
ro
r

cos: 0.0|e: None

0.0 0.05 0.1 0.15
δv

cos: 0.03|e: None

0.0 0.05 0.1 0.15
δv

cos: 0.1|e: None

Figure 4.4: Mitigation Effects for CSS with knn-Neighbourhood

The mitigation parameters have been used in an earlier implementation of the
algorithm with good results [30]. Nevertheless, it is reasonable to evaluate

46

4.5 Experiments with Random Walk Motion

0.0 0.05 0.1 0.15
δv

0

20

40

60

80

100

m
ea
n
ab
so
lu
te

er
ro
r

(a) CSS

0.0 0.05 0.1 0.15
δv

0

20

40

60

80

100

m
ea
n
ab
so
lu
te

er
ro
r

(b) RTS

Figure 4.5: Mitigation in ring neighbourhood CSS and RTS, with low error.

0.0 0.05 0.1 0.15
δv

40

45

50

55

60

65

70

m
ea
n
ab
so
lu
te

er
ro
r

Figure 4.6: Mitigation in Random Neighbourhood, CSS, no error

δcos and δv in the current implementation, especially as only the mitigation
with both values together has been tested before. δcos filters values close to
the singularity that occurs when the cosine in the computation can not be
computed due to measurement errors (|cos(α)| > 1 can not be solved for α).
δv filters values that are part of an error amplifying configuration that occurs
when the particles move in parallel or too slowly. Section 3.5.2 describes how
the mitigation parameters work.

47

4 Evaluation

The mitigation parameters are tested with all neighbourhoods, the selection
methods and three levels of error (None, Low and High). The selection method
that is most affected by the mitigation parameters is the CSS selection, hence
the focus in this section is on the effectiveness of error mitigation with CSS
selection. The CSS method is most affected because the other two selection
methods have an internal, error-based metric to filter the same values the
mitigation method would filter too. While with the CSS method both the
quality of the solution in a converged state and convergence rate are strongly
affected by the mitigation parameters. The other selection methods can also
benefit from the error mitigation by saving computation power. This means
as long as the mitigation is not harmful, it can be considered to be a positive
component of the algorithm.

Figure 4.4 shows the mean absolute localisation error at the 100th generation
for all tested values of the localisation parameters. The knn-neighbourhood
was used. In each row the input error is varied (top: High, bottom: None). As
both δcos and δv can have negative effects, the values are chosen small enough
to search for an optimal value. The experiment shows that when δcos is varied,
it has almost no effect on the localisation error (as shown in each column of the
Figure 4.4). Only in the error-free configuration a clear effect can be observed.
When more error mitigation is added in an error-free scenario, a negative
impact is not surprising. As the effect is so small, the middle value of 0.03 was
chosen as the default value for δcos in the other experiments. The reason why
δcos is not set to zero is the assumption that no negative impact on localisation
accuracy is still positive in terms of computation effort (computational effort
was not measured, tough). The more important mitigation parameter is δv.
Akcan et al. [2] use a similar mitigation method in GDL. In Figure 4.4 on the
x-axis of each diagram δv is varied. When no input error is present (bottom
row), the negative impact of the mitigation is evident. However, the plots
with low and high input error (middle and top row) show that a small value
for δv sometimes reduces the output error. When higher levels for δv are used,
the slower convergence of the algorithm combined with the errors in the dead-
reckoning outweigh the benefits of the error mitigation again.

Error mitigation has two drawbacks: The error mitigation should filter the
output when the configuration is known to amplify input errors. Yet, a high
input error can still produce wrong output in unfiltered cases. Similarly, small
errors that are amplified might still lead to tolerable output errors. While the
experiments show that the overall error can still be reduced by filtering those

48

4.5 Experiments with Random Walk Motion

configurations, convergence speed of the method is lowered by filtering values.
This is especially a problem in the CSS method.

In Figure 4.4 the knn-neighbourhood was used – a dynamic neighbourhood that
can change in between generations. Figure 4.5a shows the mean localisation
error of the algorithm with the ring topology (static) and low error. Here
the mitigation is more useful, because lower convergence rate is a smaller
problem in the static neighbourhood. In contrast to that, Figure 4.6 shows
that the performance in the random topology is diminished completely by the
mitigation. The impact of events that reset convergence is observable in all
of the experiments. Those events are an important factor to the algorithm’s
performance.

4.5.3 Neighbourhood

The experiments testing the behaviour of the algorithm in different neigh-
bourhoods and different parameters confirm the findings of the previous ex-
periments. Especially the static ring neighbourhood and the random topology
are interesting to examine as they are designed to show the effects of con-
nectedness and neighbourhood changes. At the same time ring and random
neighbourhood are not prone to the bias that knn and communication radius
introduce by filtering for particle distance. The ring neighbourhood is interest-
ing as it is a static neighbourhood (no nodes enter/leave the neighbourhoods)
and the number of connections in the graph can be modified by the parameter
n. In contrast to that the random topology is very dynamic. In the ran-
dom topology the parameter p represents the connection probability that is
re-evaluated for each pair of particles in each generation. Higher values of p
mean less change in the neighbourhood of each node as the probability for a
node to vanish from the neighbourhood is 1− p.

In Figure 4.7 the influence of the connectedness parameter n on the absolute
localisation error is shown for the CSS selection method. The values clearly
show that the connectedness has close to no influence on localisation accuracy.
The influence on the other variants of the algorithm is similarly insignificant.
Figure 4.8a shows similar algorithm runs with three different p values for the
random topology for CSS and RTS selection. The localisation error for different

49

4 Evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
generation

0

20

40

60

80

100

120

140

m
ea
n
ab
so
lu
te

er
ro
r

n = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
generation

n = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
generation

n = 5

High
Low
None

Figure 4.7: Ring Neighbourhood with CSS selection

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
generation

20

40

60

80

100

120

140

m
ea
n
ab
so
lu
te

er
ro
r

p = 0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
generation

p = 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
generation

p = 0.9

High
Low
None

(a) CSS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
generation

0

20

40

60

80

100

120

m
ea
n
ab
so
lu
te

er
ro
r

p = 0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
generation

p = 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
generation

p = 0.9

High
Low
None

(b) RTS

Figure 4.8: Random Neighbourhood with CSS selection

connection probabilities p in the random topology is shown in Figure 4.8.
The performance of the algorithm with the CSS method (Figure 4.8a) is
clearly affected by p. Not only the overall performance is interesting, but
also the convergence behaviour of the algorithm. While the error after 25
generations is much smaller with p = 0.9, the error is smaller during the first
five generations for p = 0.3 and p = 0.5. This indicates that the strategy
for assigning a position to particles entering the neighbourhood produces a

50

4.5 Experiments with Random Walk Motion

smaller error than the random initialisation in the beginning of the algorithm.
The same effect on convergence behaviour can be observed in the RTS method
Figure 4.8b. Apart from that, the algorithm seems largely unaffected by the
random neighbourhood changes when RTS is used. The RTS method clearly
outperforms CSS in the random topology. This is explained by the fact that
particles added to the neighbourhood benefit from the localisation information
in the rest of the swarm that is not used in the CSS method.

4.5.4 Prediction Weight

As the CSS selection method contains a parameter, this parameter should be
examined in an experiment. The parameter in question is the weight w that
decides which solution to chose in a weighted average. CSS selection method
is explained in more detail in section 3.5.3.

w should be chosen from the range [0, 1]. The higher w is, the more influence is
given to the dead-reckoning with the velocity vector. This means high values of
w are best used when the prior estimates are known to be good. The estimates
are especially poor when new neighbours are added to the neighbourhood.
Therefore, a rapidly changing neighbourhood such as the random topology
calls for lower values of w compared to static topologies such as the fully
connected or ring neighbourhood. A factor that should also influence the value
of w is the quality of the distance sensor. More accurate distance sensors allow
smaller values of w. An accurate measurement of the distance only improves
the geometric solutions, not the dead-reckoning.

A value of 0.25 to 0.5 seems to be most reasonable. 0.5 was chosen as the value
for the other experiments using the CSS method as it seems to be a good trade-
off between convergence speed and accuracy enhancement. In Figure 4.10 the
localisation error is plotted over time for different values of w. While the
localisation converges slower, a higher value for w results in more accurate
localisation as more time passes. The intervals where different values w work
best are most interesting. w = 0 works best for the first ten generations. From
ten to 20 generations 0.25 is the best value. After the 50th generation w = 0.75

is the best value. This also means that w is tuned for neighbourhoods that
change in average every 20 to 50 generations. This puts the chosen trade-
off more towards static neighbourhood configurations and partly explains low
accuracy in changing neighbourhoods.

51

4 Evaluation

0 20 40 60 80

100
mean absolute error

H
igh

|
com

m
unication_

radius
H
igh

|
fully_

connected
H
igh

|
knn

H
igh

|
random

H
igh

|
ring

0 20 40 60 80

100

mean absolute error

Low
|
com

m
unication_

radius
Low

|
fully_

connected
Low

|
knn

Low
|
random

Low
|
ring

10
100

generation

0 20 40 60 80

100

mean absolute error

N
one

|
com

m
unication_

radius

10
100

generation

N
one

|
fully_

connected

10
100

generation

N
one

|
knn

10
100

generation

N
one

|
random

10
100

generation

N
one

|
ring

w

0.0
0.25
0.5
0.75

F
igure

4.9:E
stim

ation
E
rror

for
D
ifferent

V
alues

ofthe
P
rediction

W
eight

52

4.6 Experiments with PSO Motion

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
generation

0

5

10

15

20

25

m
ea
n
ab
so
lu
te

er
ro
r

w
0.0
0.25
0.5
0.75

Figure 4.10: Estimation Error for Different Values of the Prediction Weight in
Ring Neighbourhood

4.6 Experiments with PSO Motion

The last experiment was run with the full algorithm, containing the localisation
algorithm as well as the PSO. This experiment is the most complex, this means
interpreting the results is more sophisticated than in the prior experiments.
Nevertheless, the experiment is important as it shows that the components of
the algorithm work well together. The most interesting question that should
be answered by the experiment’s results is whether the location estimates de-
teriorate the performance of the PSO algorithm. Additionally, the movements
generated by the PSO algorithm affect the movement-based localisation algo-
rithm. Therefore, it is important to show that the localisation works with the
movement vectors generated by the PSO algorithm.

Multiple parameters are specific to the PSO movement that was used in this
experiment. First, the parameters to the PSO algorithm must be determined.
Since the goal of this thesis is not to find the best PSO parameters, the de-
fault parameters suggested in [56] have been used for those parameters. The
additional parameters c3 = 1 and c4 = 0 have been chosen, so they are mathe-
matically neutral (multiply by 1 and add 0). Furthermore, the PSO must find

53

4 Evaluation

a minimum in a fitness landscape. Therefore, an objective function is needed
to test the algorithm. The following standardised benchmark functions were
used: Ackley, Griewank, Line, Plane, Rastrigin, Rosenbrock and Sphere. A
short summary for each of the functions is given in the documentation of the
deap-python package [7] that was used as an implementation. All objective
functions are minimisation functions.

Table 4.4 shows how the PSO algorithm performs with the knn-
neighbourhood. The fact that the algorithm often performs better when errors
are introduced into the range and velocity measurements is most interesting.
This fact is explained by conceptualising the performance as a combination of
exploration and exploitation behaviour. Exploration is the algorithm’s ability
to cover a large area and find any optimum beyond the previously known land-
scape. Exploitation is the behaviour that lets the algorithm converge towards
an optimum in a known area.

The sphere function is an objective that is focused on exploitation, as a gradient
is present in all of the search space and there are no local optima. Additionally,
the gradient points directly to the optimal solution. The Ackley function on the
other hand has many local optima that can only be overcome by exploration.
The results of the PSO runs in Table 4.4 clearly show that the algorithms
perform better in the exploration objectives and worse in the exploitation
objective if the range and velocity measurements are infused with an error.
This is also reflected in the fitness values at the end of the run, during the run
and in the number of generations needed to reach a fitness threshold predefined
for each objectives. In the Sphere objective the error-less run yields a much
better result than the runs with error and there is a clear difference between
low and high error. In the Ackley objective the opposite is the case, as the
error-free variant of the algorithm does not explore the search space enough to
find the optimal solution.

Another effect observable is that there is a lower bound to the fitness the
simulation is able to reach in case an error is present. This is explained by
the additive error component Ea that is the dominant source of error when
the particles are very close to each other. The median distance between the
particles is shown in Figure 4.11. In Figure 4.12 the median relative error
for all estimates is shown for the same experiment runs. The error drops
in the first few generations, the particle distance decreases. After about 55
generations, the error starts to increase. At the same time, the particles are

54

4.6 Experiments with PSO Motion

Ta
bl
e
4.
4:

P
SO

pe
rf
or
m
an

ce
w
it
h
kn

n
ne
ig
hb

ou
rh
oo

d.
G
en
er
at
io
ns

to
re
ac
h
qu

al
ity

cr
it
er
ia
,m

in
im

al
fit
ne

ss
pe

r
ru
n,

m
in
im

al
fit
ne
ss

of
th
e
la
st

ge
ne
ra
ti
on

.
A
ll
va
lu
es
:
T
he

m
ed
ia
n
fo
r
th
e
ru
ns

w
it
h
th
e
gi
ve
n
pa

ra
m
et
er
s.

N
on

e
Lo

w
H
ig
h

ge
n

fit
ne
ss

fit
ne
ss

en
d

ge
n

fit
ne
ss

fit
ne
ss

en
d

ge
n

fit
ne
ss

fit
ne
ss

en
d

ac
kl
ey

ak
ca
n

in
f

7.
03
5e
+
00

7.
03
5e
+
00

11
7.
5

9.
57
0e
-0
3

1.
06
8-
02

26
9.
5

2.
10
2e
-0
2

2.
34
2e
-0
2

cs
s

46
.0

5.
15
4e
-0
3

5.
15
4e
-0
3

76
.0

6.
79
8e
-0
3

7.
65
9-
03

40
2.
5

4.
78
5e
-0
2

4.
78
5e
-0
2

rt
s

in
f

3.
18
6e
+
00

3.
18
6e
+
00

16
4.
5

1.
01
7e
-0
2

1.
24
4-
02

47
8.
0

3.
31
2e
-0
2

4.
80
4e
-0
2

gr
ie
w
an

k
ak
ca
n

in
f

1.
50
7e
-0
1

1.
77
5e
-0
1

in
f

5.
38
5e
-0
2

6.
65
6-
02

51
4.
5

5.
72
9e
-0
3

7.
51
4e
-0
3

cs
s

in
f

8.
36
0e
-0
2

1.
06
0e
-0
1

in
f

6.
35
0e
-0
2

7.
12
1-
02

41
4.
0

5.
80
2e
-0
3

7.
72
9e
-0
3

rt
s

in
f

6.
96
1e
-0
2

1.
06
0e
-0
1

in
f

6.
29
4e
-0
2

8.
63
0-
02

63
8.
5

5.
29
3e
-0
3

7.
43
9e
-0
3

lin
e

ak
ca
n

30
.5

8.
59
2e
-0
8

1.
12
9e
-0
5

69
.5

9.
94
9e
-0
5

1.
12
7-
01

19
4.
5

2.
92
2e
-0
4

4.
85
2e
-0
1

cs
s

40
.5

9.
55
5e
-0
9

4.
56
5e
-0
7

54
.5

2.
40
5e
-0
4

2.
14
8-
01

15
0.
5

7.
47
2e
-0
4

5.
55
8e
-0
1

rt
s

31
.0

2.
40
7e
-0
7

4.
88
4e
-0
5

67
.0

1.
15
4e
-0
4

5.
93
0-
02

14
4.
5

8.
42
4e
-0
4

1.
14
9e
+
00

pl
an

e
ak
ca
n

in
f

-6
.4
20
e+

01
-6
.4
20
e+

01
in
f

-3
.0
86
e+

02
-3
.0
86
+
02

17
9.
5

-3
.5
75
e+

07
-3
.5
75
e+

07
cs
s

in
f

-9
.4
37
8+

01
-9
.4
37
e+

01
in
f

-3
.5
82
e+

02
-3
.5
82
+
02

17
1.
0

-1
.0
94
e+

05
-1
.0
94
e+

05
rt
s

in
f

-8
.2
90
7+

01
-8
.2
90
e+

01
in
f

-2
.5
08
e+

02
-2
.5
08
+
02

19
1.
5

-2
.4
46
e+

04
-2
.4
46
e+

04
ra
st
ri
gi
n

ak
ca
n

in
f

5.
09
76
19
e-
01

5.
47
5e
-0
1

10
5.
5

2.
20
5e
-0
4

3.
37
2-
04

13
4.
5

4.
36
3e
-0
5

4.
36
3e
-0
5

cs
s

18
1.
5

4.
61
7e
-0
5

4.
61
7e
-0
5

10
9.
5

6.
44
1e
-0
4

8.
94
7-
04

17
2.
5

3.
94
7e
-0
3

4.
53
0e
-0
3

rt
s

in
f

9.
94
9e
-0
1

9.
94
9e
-0
1

17
2.
0

5.
83
1e
-0
4

5.
83
1-
04

14
1.
5

2.
61
7e
-0
5

3.
04
3e
-0
5

ro
se
nb

ro
ck

ak
ca
n

12
.0

2.
06
7e
+
01

2.
27
5e
+
01

11
.0

4.
90
6e
+
00

8.
87
5+

00
16
.0

4.
73
9e
-0
3

1.
00
7e
-0
2

cs
s

12
.0

5.
89
1e
+
00

9.
69
2e
+
00

15
.0

2.
79
8e
+
00

3.
05
3+

00
16
.0

6.
17
5e
-0
3

8.
05
6e
-0
3

rt
s

11
.0

1.
38
6e
+
01

1.
80
9e
+
01

11
.0

3.
17
7e
+
00

6.
70
9+

00
13
.0

5.
35
6e
-0
3

8.
28
4e
-0
3

sp
he
re

ak
ca
n

19
.0

1.
00
5e
-1
51

1.
00
5e
-1
51

26
.5

7.
09
6e
-1
0

7.
09
6-
10

56
.5

5.
25
7e
-1
0

5.
25
7e
-1
0

cs
s

25
.5

6.
48
4e
-1
40

6.
48
4e
-1
40

30
.0

8.
17
8e
-0
8

3.
49
3-
07

59
.0

3.
19
2e
-0
6

5.
88
5e
-0
6

rt
s

21
.0

7.
59
8e
-1
74

7.
59
8e
-1
74

22
.0

2.
83
5e
-1
0

4.
32
3-
10

55
.5

3.
02
6e
-1
0

3.
02
6e
-1
0

55

4 Evaluation

still moving closer to each other, but at a much smaller rate than before. As
the particles are moving closer to each other, the additive error component
becomes dominant and localisation accuracy diminishes. The fitness will still
improve, even after the localisation degenerated. However, most improvement
is observed in the first generations where the localisation still works well, as
can be seen in Figure 4.13. The fitness improves even after the localisation
deteriorates because of the cognitive component. The previous best solution
improves, while the particles are moving pseudo-randomly. Therefore, the
particles are still able to move closer to each other and improve their fitness
at a slower rate.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
generation

10−4

10−3

10−2

10−1

100

101

m
ed
ia
n
pa
rt
ic
le

di
st
an
ce

High
Low
None

Figure 4.11: Median distance of the particles in the sphere objective with knn
neighbourhood and CSS.

The minimal precision of the PSO algorithm that is caused by the relation
between particle distance and localisation accuracy is one of the most impor-
tant findings of this thesis and should be subject of future research. On one
hand, the minimal precision may not cause problems, as robotic applications
must involve mechanisms for collision avoidance and the distance between the
robots is strictly limited by the size of the robots, even if collisions are allowed
within the robots’ specification. On the other hand, minimal precision may be
a critical variable in the design of an application. Especially when the local-
isation is used to enhance the accuracy of other localisation systems such as

56

4.6 Experiments with PSO Motion

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
generation

0.0

0.5

1.0

1.5

2.0

m
ed
ia
n
re
la
ti
ve

er
ro
r

High
Low
None

Figure 4.12: Relative localisation error for the same run as Figure 4.11.

GPS, minimal precision may be a key factor in the decision for or against a
localisation method.

57

4 Evaluation

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
generation

10−8

10−6

10−4

10−2

100

102

fit
ne
ss

High
Low
None

Figure 4.13: Minimal fitness for each generation, using the same runs as Fig-
ure 4.11

4.7 Discussion of Results

The results of the experiments are very promising. The algorithm works:
The individual components have been implemented and thoroughly tested and
errors can be handled reasonably well. Unfortunately, the performance of the
algorithm can not be compared to the GDL [2] algorithm, as the scenarios
used in the GDL experiments are not within the parameters where SLO works
well. However, the algorithm is well suited for an application if the necessary
sensors are present and no simple localisation scheme like GPS can be used.
Additionally, the algorithm can act as a blueprint for other implementations
working with different swarm intelligence algorithms.

The most important findings of the evaluation are twofold: Ranging errors
affect the algorithm most severely, especially multiplicative noise is a main
source of localisation error. Moreover, permanent errors have a smaller impact
on localisation accuracy than stochastic errors. Sensor failures can be handled
very well by the algorithm.

The PSO experiments have revealed that the localisation deteriorates when
the particles move to close to each other. This is especially important in the
design of new robotic systems, when choosing components and specifying the

58

4.7 Discussion of Results

operating environment. However, this property of the algorithm is only a small
disadvantage. In a real application where the robots have a fixed size they can
not get infinitely close anyway. While the SLO algorithm performs worse in
exploitation tasks if an error is present, the exploration behaviour works better
in the same cases. This also means that the SLO algorithm automatically starts
to explore once the swarm has converged to a single point which may actually
be an interesting property in some use-cases.

59

5 Conclusion

In the thesis a method was created, implemented and tested to embed swarm
intelligence algorithms in a sensor-actor-based environment. The first goal
was to show that the algorithm works when localisation and PSO are used
together. As the experiments show, the algorithms can work together and the
implemented algorithm is useful as a blueprint to future implementations.

A second goal was to find out how measurement errors affect the algorithm’s
results. Thorough experiments have been conducted to analyse this interac-
tion. The most sensitive input is the distance sensor. Errors with a fixed offset
have proved to be less severe than errors that randomly change over time.

The third goal was to learn about the general behaviour of the algorithm.
Results of this research are the interactions between neighbourhood changes,
algorithm parameters and errors that change the convergence rate of the algo-
rithm and the lower boundary for precision.

The relationship between localisation accuracy and particle distance is an im-
portant aspect in designing new robotic systems using the SLO method. There-
fore, more research should be conducted to measure whether the method could
be applied in a scenario with given accuracy requirements. A new criterion
must be defined to easily compute the accuracy with given input parameters.

While the concept has worked in a simulation, an implementation with real
robots, or at least a more realistic simulation with a simulation framework
like v-rep or similar tools is needed to find out about more pitfalls of real
world implementations of the algorithm. In such an implementation collision
avoidance is a major component that must be added to the algorithm. Collision
avoidance by means of attraction repulsion function as described by Gazi [12]
is a topic that could also be examined on the same level of abstraction and the
same simulation used in this thesis.

There are also advanced concepts that may improve other parts of the algo-
rithm. The CSS method works and is easy to implement, but a particle filter

61

5 Conclusion

tracking multiple generations or a Kalman filter should be able to outperform
the CSS selection method, while maintaining the low communication footprint.
Introducing asynchronous sensor readings may complicate RTS and Akcan’s
selection method. As the computation of the error metrics used relies on many
individual sensor readings that can only be aggregated over a span of time,
the first measurements are outdated as the computation takes places. This
problem could be mitigated by running a combination of the selection meth-
ods. CCS could be updated with a relatively high frequency, while RTS or
Akcan’s selection method can be used to find good initial configurations or
rectify dead-reckoning errors.

A more general research topic that has come up during the research of this
paper lies in the performance metric of the swarm intelligence algorithms.
Comparisons between swarm intelligence algorithms usually assume that func-
tion evaluations determine the cost of gathering information. This assumption
is reasonable when solving numerical problems. However, reading a sensor in
a robot is usually a cheap and quick operation, while movement is costly. This
means a new benchmark criterion for swarm algorithms based on the distance
the particles travel may be very beneficial in deciding for a PSO algorithm in
a robotic application [42].

The SLO method was created to apply swarm intelligence algorithms in robot
control by satisfying the information need of swarm intelligence algorithms.
Hopefully, the method is a significant step towards swarm robotics.

62

Bibliography

[1] Hüseyin Akcan and Cem Evrendilek. Gps-free directional localization
via dual wireless radios. Computer Communications, 35(9):1151 – 1163,
2012. Special Issue: Wireless Sensor and Robot Networks: Algorithms
and Experiments.

[2] Hüseyin Akcan, Vassil Kriakov, Hervé Brönnimann, and Alex Delis. GPS-
Free node localization in mobile wireless sensor networks. In Proceedings
of the 5th ACM international workshop on Data engineering for wireless
and mobile access, pages 35–42. ACM, 2006.

[3] Hüseyin Akcan, Vassil Kriakov, Hervé Brönnimann, and Alex Delis.
Managing cohort movement of mobile sensors via gps-free and compass-
free node localization. Journal of Parallel and Distributed Computing,
70(7):743 – 757, 2010.

[4] Tim M. Blackwell and Peter J. Bentley. Dynamic search with charged
swarms. In GECCO, 2002.

[5] Srdjan Čapkun, Maher Hamdi, and Jean-Pierre Hubaux. Gps-free posi-
tioning in mobile ad hoc networks. Cluster Computing, 5(2):157–167, Apr
2002.

[6] Kok Seng Chong and Lindsay Kleeman. Accurate odometry and error
modelling for a mobile robot. In Robotics and Automation, 1997. Pro-
ceedings., 1997 IEEE International Conference on, volume 4, pages 2783–
2788. IEEE, 1997.

[7] François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gard-
ner, Marc Parizeau, and Christian Gagné. Deap: A python framework
for evolutionary algorithms. In Proceedings of the 14th Annual Confer-
ence Companion on Genetic and Evolutionary Computation, GECCO ’12,
pages 85–92, New York, NY, USA, 2012. ACM.

63

Bibliography

[8] S. Doctor, G. Venayagamoorthy, and V. Gudise. Optimal pso for col-
lective robotic search applications. In Proceedings of IEEE Congress on
Evolutionary Computation, pages 1390–1395, 2004.

[9] Marco Dorigo and Thomas Stützle. Ant colony optimization: Overview
and recent advances. Technical Report TR/IRIDIA/2009-013, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium, May 2009.

[10] Andries P. Engelbrecht. Heterogeneous particle swarm optimization. In
Marco Dorigo, Mauro Birattari, Gianni A. Di Caro, René Doursat, An-
dries P. Engelbrecht, Dario Floreano, Luca Maria Gambardella, Roderich
Groß, Erol Şahin, Hiroki Sayama, and Thomas Stützle, editors, Swarm
Intelligence, pages 191–202, Berlin, Heidelberg, 2010. Springer Berlin Hei-
delberg.

[11] Yasutaka Fuke and Eric Krotkov. Dead reckoning for a lunar rover on
uneven terrain. In Robotics and Automation, 1996. Proceedings., 1996
IEEE International Conference on, volume 1, pages 411–416. IEEE, 1996.

[12] Veysel Gazi and Kevin M. Passino. A class of attractions/repulsion func-
tions for stable swarm aggregations. International Journal of Control,
77(18):1567–1579, 2004.

[13] Veysel Gazi and Kevin M. Passino. Swarm stability and optimization.
Springer, Berlin, 2011. OCLC: 711872796.

[14] J. Hightower and G. Borriello. Location systems for ubiquitous comput-
ing. Computer, 34(8):57–66, Aug 2001.

[15] Ian A.R. Hulbert and John French. The accuracy of GPS for wildlife
telemetry and habitat mapping. Journal of Applied Ecology, 38(4):869–
878, August 2001.

[16] Rajagopal Iyengar and Biplab Sikdar. Scalable and distributed GPS free
positioning for sensor networks. In Communications, 2003. ICC’03. IEEE
International Conference on, volume 1, pages 338–342. IEEE, 2003.

[17] W Jatmiko, F Jovan, RYS Dhiemas, Alvissalim M Sakti, Fanany M Ivan,
T Fukuda, and K Sekiyama. Robots implementation for odor source
localization using pso algorithm. WSEAS Transactions on Circuits and
Systems, 10(4):115–125, 2011.

64

Bibliography

[18] Wisnu Jatmiko, Petrus Mursanto, Benyamin Kusumoputro, Kosuke
Sekiyama, and Toshio Fukuda. Modified pso algorithm based on flow
of wind for odor source localization problems in dynamic environments.
WSEAS Transaction on System, 7(3):106–113, 2008.

[19] L. Jayatilleke and N. Zhang. Landmark-based localization for unmanned
aerial vehicles. In 2013 IEEE International Systems Conference (SysCon),
pages 448–451, April 2013.

[20] Yi Jiang and Victor CM Leung. An asymmetric double sided two-way
ranging for crystal offset. In Signals, Systems and Electronics, 2007.
ISSSE’07. International Symposium on, pages 525–528. IEEE, 2007.

[21] Wei-Wen Kao. Integration of gps and dead-reckoning navigation systems.
In Vehicle Navigation and Information Systems Conference, 1991, vol-
ume 2, pages 635–643, Oct 1991.

[22] Benjamin Kempke, Pat Pannuto, and Prabal Dutta. Polypoint: Guiding
indoor quadrotors with ultra-wideband localization. In Proceedings of the
2Nd International Workshop on Hot Topics in Wireless, HotWireless ’15,
pages 16–20, New York, NY, USA, 2015. ACM.

[23] Lindsay Kleeman. Optimal estimation of position and heading for mo-
bile robots using ultrasonic beacons and dead-reckoning. In Robotics and
Automation, 1992. Proceedings., 1992 IEEE International Conference on,
pages 2582–2587. IEEE, 1992.

[24] Tomáš Krajník, Matías Nitsche, Jan Faigl, Petr Vaněk, Martin Saska,
Libor Přeučil, Tom Duckett, and Marta Mejail. A practical multirobot
localization system. Journal of Intelligent & Robotic Systems, 76(3):539–
562, Dec 2014.

[25] Thiemo Krink, Bogdan Filipic, Gary B Fogel, and René Thomsen. Noisy
optimization problems-a particular challenge for differential evolution?
In IEEE congress on Evolutionary Computation, pages 332–339. Citeseer,
2004.

[26] K. N. Krishnanand and D. Ghose. A Glowworm Swarm Optimization
Based Multi-robot System for Signal Source Localization, pages 49–68.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

65

Bibliography

[27] Dikai Liu, LingfengWang, and Kay Chen Tan, editors. Design and Control
of Intelligent Robotic Systems, volume 177 of Studies in Computational
Intelligence. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[28] Sergei Lupashin, Markus Hehn, Mark W Mueller, Angela P Schoellig,
Michael Sherback, and Raffaello D’Andrea. A platform for aerial robotics
research and demonstration: The flying machine arena. Mechatronics,
24(1):41–54, 2014.

[29] Y. Ma and E. C. Kan. Accurate indoor ranging by broadband harmonic
generation in passive nltl backscatter tags. IEEE Transactions on Mi-
crowave Theory and Techniques, 62(5):1249–1261, May 2014.

[30] Sebastian Mai, Christoph Steup, and Sanaz Mostaghim. Movement-based
localisation for pso-inspired search behaviour of robotic swarms. In Ac-
cepted at ANTS 2018 Proceedings. Springer, 2018.

[31] Sabrina Merkel, Sanaz Mostaghim, and Hartmut Schmeck. Distributed
geometric distance estimation in ad hoc networks. In International Con-
ference on Ad-Hoc Networks and Wireless, pages 28–41. Springer, 2012.

[32] Sabrina Merkel, Sanaz Mostaghim, and Hartmut Schmeck. Hop count
based distance estimation in mobile ad hoc networks – challenges and
consequences. Ad Hoc Networks, 15:39 – 52, 2014. Smart solutions for
mobility supported distributed and embedded systems.

[33] Alan G Millard, James A Hilder, Jon Timmis, and Alan FT Winfield. A
low-cost real-time tracking infrastructure for ground-based robot swarms.
In Swarm Intelligence: 9th International Conference, ANTS 2014, Brus-
sels, Belgium, September 10-12, 2014. Proceedings, volume 8667, page
278. Springer, 2014.

[34] David Moore, John Leonard, Daniela Rus, and Seth Teller. Robust dis-
tributed network localization with noisy range measurements. In Proceed-
ings of the 2nd international conference on Embedded networked sensor
systems, pages 50–61. ACM, 2004.

[35] Sanaz Mostaghim, Christoph Steup, and Fabian Witt. Energy aware
particle swarm optimization as search mechanism for aerial micro-robots.
In IEEE Swarm Intelligence Symposium, IEEE SSCI 2016, 2016.

[36] Alireza Nafarieh and Jacek Ilow. A testbed for localizing wireless lan
devices using received signal strength. In Communication Networks and

66

Bibliography

Services Research Conference, 2008. CNSR 2008. 6th Annual, pages 481–
487. IEEE, 2008.

[37] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. In
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceed-
ings of the 2004 IEEE Computer Society Conference on, volume 1, pages
I–I. Ieee, 2004.

[38] Evangelos Papadopoulos and Michael Misailidis. On differential drive
robot odometry with application to path planning. In Control Conference
(ECC), 2007 European, pages 5492–5499. IEEE, 2007.

[39] Konstantinos Parsopoulos and Michael Vrahatis. Particle swarm optimizer
in noisy and continuously changing environments. pages 289–294, 01 2001.

[40] Max Pfingsthorn, Bayu Slamet, and Arnoud Visser. A scalable hybrid
multi-robot slam method for highly detailed maps. In Robot Soccer World
Cup, pages 457–464. Springer, 2007.

[41] Riccardo Poli. Analysis of the publications on the applications of particle
swarm optimisation. Journal of Artificial Evolution and Applications,
2008, 2008.

[42] Jim Pugh and Alcherio Martinoli. Inspiring and modeling multi-robot
search with particle swarm optimization. In Swarm Intelligence Sympo-
sium, 2007. SIS 2007. IEEE, pages 332–339. IEEE, 2007.

[43] Jim Pugh, Alcherio Martinoli, and Yizhen Zhang. Particle swarm opti-
mization for unsupervised robotic learning. In Swarm Intelligence Sympo-
sium, 2005. SIS 2005. Proceedings 2005 IEEE, pages 92–99. IEEE, 2005.

[44] Ahmad Rezaee Jordehi. Particle swarm optimisation for dynamic op-
timisation problems: a review. Neural Computing and Applications,
25(7):1507–1516, Dec 2014.

[45] Dian Palupi Rini, Siti Mariyam Shamsuddin, and Siti Sophiyati Yuhaniz.
Particle swarm optimization: technique, system and challenges. Interna-
tional journal of computer applications, 14(1):19–26, 2011.

[46] Michael Rubenstein, Christian Ahler, Nick Hoff, Adrian Cabrera, and
Radhika Nagpal. Kilobot: A low cost robot with scalable operations
designed for collective behaviors. Robotics and Autonomous Systems,
62(7):966 – 975, 2014. Reconfigurable Modular Robotics.

67

Bibliography

[47] A. R. Jiménez Ruiz and F. Seco Granja. Comparing ubisense, be-
spoon, and decawave uwb location systems: Indoor performance analysis.
IEEE Transactions on Instrumentation and Measurement, 66(8):2106–
2117, Aug 2017.

[48] Angel Santamaria-Navarro, Joan Sola, and Juan Andrade-Cetto. High-
frequency mav state estimation using low-cost inertial and optical flow
measurement units. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pages 1864–1871. IEEE, 2015.

[49] Yannic Schröder, Georg von Zengen, and Lars Wolf. Poster: Nlos-aware
localization based on phase shift measurements. In Proceedings of the 21st
Annual International Conference on Mobile Computing and Networking,
MobiCom ’15, pages 224–226, New York, NY, USA, 2015. ACM.

[50] H. Song, V. Shin, and M. Jeon. Mobile node localization using fu-
sion prediction-based interacting multiple model in cricket sensor net-
work. IEEE Transactions on Industrial Electronics, 59(11):4349–4359,
Nov 2012.

[51] M Srinivasan, Shaowu Zhang, M Lehrer, and T Collett. Honeybee navi-
gation en route to the goal: visual flight control and odometry. Journal
of Experimental Biology, 199(1):237–244, 1996.

[52] Ashitey Trebi-Ollennu, Terry Huntsberger, Yang Cheng, Eric T Baum-
gartner, Brett Kennedy, and Paul Schenker. Design and analysis of a sun
sensor for planetary rover absolute heading detection. IEEE Transactions
on Robotics and Automation, 17(6):939–947, 2001.

[53] Lei Wang and Qingzheng Xu. GPS-Free Localization Algorithm for Wire-
less Sensor Networks. Sensors, 10(6):5899–5926, June 2010.

[54] Oliver J Woodman and Robert K Harle. Concurrent scheduling in the ac-
tive bat location system. In 2010 8th IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOM Work-
shops), pages 431–437. IEEE, 2010.

[55] Jiuqiang Xu, Wei Liu, Fenggao Lang, Yuanyuan Zhang, and Chenglong
Wang. Distance Measurement Model Based on RSSI in WSN. Wireless
Sensor Network, 02(08):606–611, 2010.

[56] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas. Standard particle swarm
optimisation 2011 at cec-2013: A baseline for future pso improvements.

68

Bibliography

In 2013 IEEE Congress on Evolutionary Computation, pages 2337–2344,
June 2013.

[57] J. Zou, S. Gundry, J. Kusyk, C. S. Sahin, and M. Ü. Uyar. Bio-inspired
topology control mechanism for autonomous underwater vehicles used in
maritime surveillance. In 2013 IEEE International Conference on Tech-
nologies for Homeland Security (HST), pages 201–206, Nov 2013.

[58] Sebastian Zug. Architektur für verteilte, fehlertolerante Sensor-Aktor-
Systeme. PhD thesis, Otto-von-Guericke Universität, Magdeburg, 2011.

69

Declaration of Authorship

I hereby declare that this thesis was created by me and me alone using only
the stated sources and tools.

Sebastian Mai Magdeburg, July 30, 2018

	Table of Figures
	Table of Tables
	Table of Acronyms
	Introduction
	Motivation: Swarm Intelligence in Robotic Applications
	Goals
	Outline

	State of the Art
	Swarm Movement
	Particle Swarm Optimisation
	Attraction Repulsion Behaviour

	Localisation Methods
	External Methods
	Anchor- and Landmark-Based Localisation
	Anchor-Free Localisation

	Measurements
	Movement
	Distance

	Simultaneous Localisation and Optimisation Algorithm
	Definition of the Environment
	Overview
	Initialisation
	Measurement Phase
	Localisation
	Localisation: Solution Computation
	Error Mitigation
	Localisation: Solution Selection

	Movement Update

	Evaluation
	Implementation of the Algorithm
	Parameter Space
	Experiments
	Error Model
	Experiments with Random Walk Motion
	Error
	Mitigation
	Neighbourhood
	Prediction Weight

	Experiments with PSO Motion
	Discussion of Results

	Conclusion
	Bibliography

