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Probability Foundations



Reminder: Probability Theory

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 35

Goal: Make statements and/or predictions about
results of physical processes.

Even processes that seem to be simple at first sight
may reveal considerable difficulties when trying to predict.

Describing real-world physical processes always calls
for a simplifying mathematical model.

Although everybody will have some intuitive notion about
probability, we have to formally define the underlying
mathematical structure.

Randomness or chance enters as the incapability of precisely
modelling a process or the inability of measuring the initial conditions.

◦ Example: Predicting the trajectory of a billard ball over more than 9 banks
requires more detailed measurement of the initial conditions (ball location,
applied momentum etc.) than physically possible according to Heisenberg’s
uncertainty principle.



Formal Approach on the Model Side
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We conduct an experiment that has a set Ω of possible outcomes.
E. g.:

◦ Rolling a die (Ω = {1, 2, 3, 4, 5, 6})

◦ Arrivals of phone calls (Ω = N0)

◦ Bread roll weights (Ω = R+)

Such an outcome is called an elementary event.

All possible elementary events are called the frame of discernment Ω
(or sometimes universe of discourse).

The set representation stresses the following facts:

◦ All possible outcomes are covered by the elements of Ω.
(collectively exhaustive).

◦ Every possible outcome is represented by exactly one element of Ω.
(mutual disjoint).



Events
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Often, we are interested in higher-level events
(e. g. casting an odd number, arrival of at least 5 phone calls or
purchasing a bread roll heavier than 80 grams)

Any subset A ⊆ Ω is called an event which occurs, if the outcome ω0 ∈ Ω of
the random experiment lies in A:

Event A ⊆ Ω occurs ⇔
∨

ω∈A

(ω = ω0) = true ⇔ ω0 ∈ A

Since events are sets, we can define for two events A and B:

◦ A ∪B occurs if A or B occurs; A ∩B occurs if A and B occurs.

◦ A occurs if A does not occur (i. e., if Ω\A occurs).

◦ A and B are mutually exclusive, iff A ∩B = ∅.



Event Algebra
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A family of sets E = {E1, . . . , En} is called an event algebra,
if the following conditions hold:

◦ The certain event Ω lies in E .

◦ If E ∈ E , then E = Ω\E ∈ E .

◦ If E1 and E2 lie in E , then E1 ∪ E2 ∈ E and E1 ∩ E2 ∈ E .

If Ω is uncountable, we require the additional property:

For a series of events Ei ∈ E , i ∈ N, the events
∞⋃

i=1

Ei and
∞⋂

i=1

Ei are also in E .

E is then called a σ-algebra.

Side remarks:

Smallest event algebra: E = {∅,Ω}

Largest event algebra (for finite or countable Ω): E = 2Ω = {A ⊆ Ω | true}



Probability Function
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Given an event algebra E , we would like to assign every event E ∈ E its
probability with a probability function P : E → [0, 1].

We require P to satisfy the so-called Kolmogorov Axioms:

◦ ∀E ∈ E : 0 ≤ P (E) ≤ 1

◦ P (Ω) = 1

◦ For pairwise disjoint events E1, E2, . . . ∈ E holds:

P (
∞⋃

i=1

Ei) =
∞∑

i=1

P (Ei)

From these axioms one can conclude the following (incomplete) list of properties:

◦ ∀E ∈ E : P (E) = 1− P (E)

◦ P (∅) = 0

◦ If E1, E2 ∈ E are mutually exclusive, then P (E1 ∪ E2) = P (E1) + P (E2).



Elementary Probabilities and Densities
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Question 1: How to calculate P ?

Question 2: Are there “default” event algebras?

Idea for question 1: We have to find a way of distributing (thus the
notion distribution) the unit mass of probability over all elements ω ∈ Ω.

◦ If Ω is finite or countable a probability mass function p is used:

p : Ω→ [0, 1] and
∑

ω∈Ω

p(ω) = 1

◦ If Ω is uncountable (i. e., continuous) a probability density
function f is used:

f : Ω→ R and
∫

Ω
f(ω) dω = 1



“Default” Event Algebras
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Idea for question 2 (“default” event algebras) we have to distinguish
again between the cardinalities of Ω:

◦ Ω finite or countable: E = 2Ω

◦ Ω uncountable, e. g. Ω = R: E = B(R)

B(R) is the Borel Algebra, i. e., the smallest σ-algebra
that contains all closed intervals [a, b] ⊂ R with a < b.

B(R) also contains all open intervals and single-item sets.

It is sufficient to note here, that all intervals are contained

{[a, b] , ]a, b] , ]a, b[ , [a, b[ ⊂ R | a < b} ⊂ B(R)

because the event of a bread roll having a weight between
80 g and 90 g is represented by the interval [80, 90].



Example: Rolling a Die
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Ω = {1, 2, 3, 4, 5, 6} X = id

p1(ω) =
1
6 F1(x) = P (X ≤ x)

1 2 3 4 5 6

1

6

ω

p1(ω)

1 2 3 4 5 6

1

0.5

x

F1(x)

∑

ω∈Ω

p1(ω) =
6∑

i=1

p1(ωi)

=
6∑

i=1

1

6
= 1

P (X ≤ x) =
∑

x′≤x

P (X = x′)

P (a < X ≤ b) = F1(b)− F1(a)

P (X = x) = P ({X = x}) = P (X−1(x)) = P ({ω ∈ Ω | X(ω) = x})
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Basics of Applied Probability Theory



Why (Kolmogorov) Axioms?
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If P models an objectively observable probability, these axioms
are obviously reasonable.

However, why should an agent obey formal axioms when modeling
degrees of (subjective) belief?

Objective vs. subjective probabilities

Axioms constrain the set of beliefs an agent can abide.

Finetti (1931) gave one of the most plausible arguments why
subjective beliefs should respect axioms:

“When using contradictory beliefs, the agent will eventually fail.”



Unconditional Probabilities
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P (A) designates the unconditioned or a priori probability
that A ⊆ Ω occurs if no other additional information is present.

For example:

P (cavity) = 0.1

Note: Here, cavity is a proposition.

A formally different way to state the same would be via
a binary random variable Cavity:

P (Cavity = true) = 0.1

A priori probabilities are derived from statistical surveys or general rules.



Unconditional Probabilities
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In general a random variable can assume more than two values:

P ( Weather = sunny ) = 0.7

P ( Weather = rainy ) = 0.2

P ( Weather = cloudy) = 0.02

P ( Weather = snowy ) = 0.08

P (Headache = true ) = 0.1

P (X) designates the vector of probabilities for the
(ordered) domain of the random variable X :

P (Weather) = 〈0.7, 0.2, 0.02, 0.08〉

P (Headache) = 〈0.1, 0.9〉

Both vectors define the respective probability distributions
of the two random variables.



Conditional Probabilities
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New evidence can alter the probability of an event.

Example: The probability for cavity increases if information
about a toothache arises.

With additional information present, the a priori knowledge
must not be used!

P (A | B) designates the conditional or a posteriori probability
of A given the sole observation (evidence) B.

P (cavity | toothache) = 0.8

For random variables X and Y P (X | Y ) represents the
set of conditional distributions for each possible value of Y .



Conditional Probabilities
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P (Weather | Headache) consists of the following table:

h =̂ Headache = true ¬h =̂ Headache = false

Weather = sunny P (W = sunny | h) P (W = sunny | ¬h)

Weather = rainy P (W = rainy | h) P (W = rainy | ¬h)

Weather = cloudy P (W = cloudy | h) P (W = cloudy | ¬h)

Weather = snowy P (W = snowy | h) P (W = snowy | ¬h)

Note that we are dealing with two distributions now!
Therefore each column sums up to unity!

Formal definition:

P (A | B) =
P (A ∧B)

P (B)
if P (B) > 0



Conditional Probabilities
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P (A | B) =
P (A ∧B)

P (B)

Product Rule: P (A ∧B) = P (A | B) · P (B)

Also: P (A ∧B) = P (B | A) · P (A)

A and B are independent iff

P (A | B) = P (A) and P (B | A) = P (B)

Equivalently, iff the following equation holds true:

P (A ∧B) = P (A) · P (B)



Interpretation of Conditional Probabilities
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Caution! Common misinterpretation:

“P (A | B) = 0.8 means, that P (A) = 0.8, given B holds.”

This statement is wrong due to (at least) two facts:

P (A) is always the a-priori probability,
never the probability of A given that B holds!

P (A | B) = 0.8 is only applicable as long as no other evidence except B is present.
If C becomes known, P (A | B ∧ C) has to be determined.

In general we have:

P (A | B ∧ C) 6= P (A | B)

E. g. C → A might apply.



Joint Probabilities
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Let X1, . . . , Xn be random variables over the same framce of descernment Ω and
event algebra E . Then ~X = (X1, . . . , Xn) is called a random vector with

~X(ω) = (X1(ω), . . . , Xn(ω))

Shorthand notation:

P ( ~X = (x1, . . . , xn)) = P (X1 = x1, . . . , Xn = xn) = P (x1, . . . , xn)

Definition:

P (X1 = x1, . . . , Xn = xn) = P

({
ω ∈ Ω |

n∧

i=1

Xi(ω) = xi

})

= P

( n⋂

i=1

{Xi = xi}
)



Joint Probabilities
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Example: P (Headache,Weather) is the joint probability distribution of both
random variables and consists of the following table:

h =̂ Headache = true ¬h =̂ Headache = false

Weather = sunny P (W = sunny ∧ h) P (W = sunny ∧ ¬h)

Weather = rainy P (W = rainy ∧ h) P (W = rainy ∧ ¬h)

Weather = cloudy P (W = cloudy ∧ h) P (W = cloudy ∧ ¬h)

Weather = snowy P (W = snowy ∧ h) P (W = snowy ∧ ¬h)

All table cells sum up to unity.



Calculating with Joint Probabilities
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All desired probabilities can be computed from a joint probability distribution.

toothache ¬toothache

cavity 0.04 0.06

¬cavity 0.01 0.89

Example: P (cavity ∨ toothache) = P ( cavity ∧ toothache)

+ P (¬cavity ∧ toothache)

+ P ( cavity ∧ ¬toothache) = 0.11

Marginalizations: P(cavity) = P ( cavity ∧ toothache)

+ P ( cavity ∧ ¬toothache) = 0.10

Conditioning:

P (cavity | toothache) =
P (cavity ∧ toothache)

P (toothache)
=

0.04

0.04 + 0.01
= 0.80



Problems
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Easiness of computing all desired probabilities comes at an unaffordable price:

Given n random variables with k possible values each, the joint probability
distribution contains kn entries which is infeasible in practical applications.

Hard to handle.

Hard to estimate.

Therefore:

1. Is there a more dense representation of joint probability distributions?

2. Is there a more efficient way of processing this representation?

The answer is no for the general case, however, certain dependencies and inde-
pendencies can be exploited to reduce the number of parameters to a practical
size.



Stochastic Independence
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Two events A and B are stochastically independent iff

P (A ∧B) = P (A) · P (B)

⇔

P (A | B) = P (A) = P (A | B)

Two random variables X and Y are stochastically independent iff

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : P (X = x, Y = y) = P (X = x) · P (Y = y)

⇔

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : P (X = x | Y = y) = P (X = x)

Shorthand notation: P (X, Y ) = P (X) · P (Y ).

Note the formal difference between P (A) ∈ [0, 1] and P (X) ∈ [0, 1]|dom(X)|.



Conditional Independence
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Let X , Y and Z be three random variables. We call X and Y conditionally

independent given Z, iff the following condition holds:

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : ∀z ∈ dom(Z) :

P (X = x, Y = y | Z = z) = P (X = x | Z = z) · P (Y = y | Z = z)

Shorthand notation: X ⊥⊥P Y | Z

Let X = {A1, . . . , Ak}, Y = {B1, . . . , Bl} and Z = {C1, . . . , Cm} be three
disjoint sets of random variables. We call X and Y conditionally independent

given Z, iff

P (X,Y | Z) = P (X | Z) · P (Y | Z)⇔ P (X | Y ,Z) = P (X | Z)

Shorthand notation: X ⊥⊥P Y | Z



Conditional Independence
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The complete condition for X ⊥⊥P Y | Z would read as follows:

∀a1 ∈ dom(A1) : · · · ∀ak ∈ dom(Ak) :

∀b1 ∈ dom(B1) : · · · ∀bl ∈ dom(Bl) :

∀c1 ∈ dom(C1) : · · · ∀cm ∈ dom(Cm) :

P (A1 = a1, . . . , Ak = ak, B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

= P (A1 = a1, . . . , Ak = ak | C1 = c1, . . . , Cm = cm)

· P (B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

Remarks:

1. If Z = ∅ we get (unconditional) independence.

2. We do not use curly braces ({}) for the sets if the context is clear. Likewise,
we use X instead of X to denote sets.



Conditional Independence — Example 1
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(Weak) Dependence in the entire dataset: X and Y dependent.
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No Dependence in Group 1: X and Y conditionally independent given Group 1.
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No Dependence in Group 2: X and Y conditionally independent given Group 2.
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• dom(G) = {mal, fem} Geschlecht (gender)
• dom(S) = {sm, sm} Raucher (smoker)
• dom(M) = {mar,mar} Verheiratet (married)
• dom(P ) = {preg, preg} Schwanger (pregnant)

pGSMP
G = mal G = fem

S = sm S = sm S = sm S = sm

M = mar
P = preg 0 0 0.01 0.05

P = preg 0.04 0.16 0.02 0.12

M = mar
P = preg 0 0 0.01 0.01

P = preg 0.10 0.20 0.07 0.21



Conditional Independence — Example 2
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P (G= fem) = P (G=mal) = 0.5 P (P=preg) = 0.08

P (S= sm) = 0.25 P (M=mar) = 0.4

Gender and Smoker are not independent:

P (G= fem | S= sm) = 0.44 6= 0.5 = P (G= fem)

Gender and Marriage are marginally independent but
conditionally dependent given Pregnancy:

P (fem,mar | preg) ≈ 0.152 6= 0.169 ≈ P (fem | preg) · P (mar | preg)



Bayes Theorem
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Product Rule (for events A and B):

P (A ∩B) = P (A | B)P (B) and P (A ∩B) = P (B | A)P (A)

Equating the right-hand sides:

P (A | B) =
P (B | A)P (A)

P (B)

For random variables X and Y :

∀x∀y : P (Y =y | X=x) =
P (X=x | Y =y)P (Y =y)

P (X=x)

Generalization concerning background knowledge/evidence E:

P (Y | X,E) =
P (X | Y,E)P (Y | E)

P (X | E)



Bayes Theorem — Application

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 64

P (toothache | cavity) = 0.4

P (cavity) = 0.1 P (cavity | toothache) =
0.4 · 0.1

0.05
= 0.8

P (toothache) = 0.05

Why not estimate P (cavity | toothache) right from the start?

Causal knowledge like P (toothache | cavity) is more robust than diagnostic
knowledge P (cavity | toothache).

The causality P (toothache | cavity) is independent of the a priori
probabilities P (toothache) and P (cavity).

If P (cavity) rose in a caries epidemic, the causality P (toothache | cavity) would
remain constant whereas both P (cavity | toothache) and P (toothache) would
increase according to P (cavity).

A physician, after having estimated P (cavity | toothache), would not know a rule
for updating.



Bayes Theorem — Using absolute Numbers
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P (toothache | cavity) = 0.4 P (cavity) = 0.1

P (toothache | ¬cavity) = 1
90 P (cavity | toothache) =

40

40 + 10
= 0.8

1000 people

100 cavity 900 ¬cavity

40 toothache 60 ¬toothache 10 toothache 890 ¬toothache

P (C | T ) =
P (T | C) · P (C)

P (T )
=

P (T | C) · P (C)

P (T | C) · P (C) + P (T | ¬C) · P (¬C)



Relative Probabilities
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Assumption:
We would like to consider the probability of the diagnosis GumDisease as well.

P (toothache | gumdisease) = 0.7

P (gumdisease) = 0.02

Which diagnosis is more probable?

If we are interested in relative probabilities only (which may be sufficient for some
decisions), P (toothache) needs not to be estimated:

P (C | T )

P (G | T )
=

P (T | C)P (C)

P (T )
·

P (T )

P (T | G)P (G)

=
P (T | C)P (C)

P (T | G)P (G)
=

0.4 · 0.1

0.7 · 0.02

= 28.57
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If we are interested in the absolute probability of P (C | T ) but do not know P (T ),
we may conduct a complete case analysis (according C) and exploit the fact that
P (C | T ) + P (¬C | T ) = 1.

P (C | T ) =
P (T | C)P (C)

P (T )

P (¬C | T ) =
P (T | ¬C)P (¬C)

P (T )

1 = P (C | T ) + P (¬C | T ) =
P (T | C)P (C)

P (T )
+

P (T | ¬C)P (¬C)

P (T )

P (T ) = P (T | C)P (C) + P (T | ¬C)P (¬C)
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Plugging into the equation for P (C | T ) yields:

P (C | T ) =
P (T | C)P (C)

P (T | C)P (C) + P (T | ¬C)P (¬C)

For general random variables, the equation reads:

P (Y =y | X=x) =
P (X=x | Y =y)P (Y =y)

∑

∀y′∈dom(Y )

P (X=x | Y =y′)P (Y =y′)

Note the “loop variable” y′. Do not confuse with y.
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The patient complains about a toothache. From this first evidence the dentist
infers:

P (cavity | toothache) = 0.8

The dentist palpates the tooth with a metal probe which catches into a fracture:

P (cavity | fracture) = 0.95

Both conclusions might be inferred via Bayes rule. But what does the combined
evidence yield? Using Bayes rule further, the dentist might want to determine:

P (cavity | toothache ∧ fracture) =
P (toothache ∧ fracture | cavity) · P (cavity)

P (toothache ∧ fracture)
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Problem:
He needs P (toothache∧catch | cavity), i. e. diagnostics knowledge for all combinations
of symptoms in general. Better incorporate evidences step-by-step:

P (Y | X,E) =
P (X | Y,E)P (Y | E)

P (X | E)

Abbreviations:

C — cavity

T — toothache

F — fracture

C

T F

Objective:
Computing P (C | T, F ) with just using information about P ( · | C) and under
exploitation of independence relations among the variables.
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A priori: P (C)

Evidence toothache: P (C | T ) = P (C)
P (T | C)

P (T )

Evidence fracture: P (C | T, F ) = P (C | T )
P (F | C, T )

P (F | T )

Information about conditional independence

P (F | C, T ) = P (F | C)

P (C | T, F ) = P (C)
P (T | C)

P (T )

P (F | C)

P (F | T )

Seems that we still have to cope with symptom inter-dependencies?!
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Compound equation from last slide:

P (C | T, F ) = P (C)
P (T | C) P (F | C)

P (T ) P (F | T )

= P (C)
P (T | C) P (F | C)

P (F, T )

P (F, T ) is a normalizing constant and can be computed
if P (F | ¬C) and P (T | ¬C) are known:

P (F, T ) = P (F, T | C)︸ ︷︷ ︸
P (F |C)P (T |C)

P (C) + P (F, T | ¬C)︸ ︷︷ ︸
P (F |¬C)P (T |¬C)

P (¬C)

Therefore, we finally arrive at the following solution...
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P (C | F, T ) =
P (C) P (T | C) P (F | C)

P (F | C) P (T | C) P (C) + P (F | ¬C) P (T | ¬C) P (¬C)

Note that we only use causal probabilities P ( · | C) together with the a priori
(marginal) probabilities P (C) and P (¬C).
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Multiple evidences can be treated by reduction on

a priori probabilities

(causal) conditional probabilities for the evidence

under assumption of conditional independence

General rule:

P (Z | X,Y ) = α P (Z) P (X | Z) P (Y | Z)

for X and Y conditionally independent given Z and with normalizing constant α.
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Marylin Vos Savant in her riddle column in the New York Times:

You are a candidate in a game show and have to choose between three doors. Behind
one of them is a Porsche, whereas behind the other two there are goats. After you chose
a door, the host Monty Hall (who knows what is behind each door) opens another (not
your chosen one) door with a goat. Now you have the choice between keeping your
chosen door or choose the remaining one.

Which decision yields the best chance of winning the Porsche?
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G You win the Porsche.

R You revise your decision.

A Behind your initially chosen door is (and remains) the Porsche.

P (G | R) = P (G,A | R) + P (G,A | R)

= P (G | A,R)P (A | R) + P (G | A,R)P (A | R)

= 0 · P (A | R) + 1 · P (A | R)

= P (A | R) = P (A) =
2

3

P (G | R) = P (G,A | R) + P (G,A | R)

= P (G | A,R)P (A | R) + P (G | A,R)P (A | R)

= 1 · P (A | R) + 0 · P (A | R)

= P (A | R) = P (A) =
1

3
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Example: C = Patient takes medication, E = patient recovers

E ¬E
∑

Recovery rate
C 20 20 40 50%
¬C 16 24 40 40%∑

36 44 80

Men E ¬E
∑

Rec.rate Women E ¬E
∑

Rec.rate
C 18 12 30 60% C 2 8 10 20%
¬C 7 3 10 70% ¬C 9 21 30 30%

25 15 40 11 29 40

P (E | C) > P (E | ¬C)

but P (E | C,M) < P (E | ¬C,M)

P (E | C,W ) < P (E | ¬C,W )
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Philosophical topic, studied e.g. by Kant, Gärdenfors

Example for Focusing

◦ Prior knowledge: fair die

◦ New evidence: the result is an odd number

◦ Aposteriori knowledge via focusing: conditional probability

◦ Underlying probability measure did not change

Example for Revision

◦ Prior knowledge: fair die

◦ New evidence: weight near the 6

◦ Belief change via revision

◦ Underlying probability measure did change



Excursus: Causality vs. Correlation
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Philosophical topic, studied e.g. by Aristoteles, still under discussion

Press acceleration pedal → car is faster (causality)

Stork population high → human birthrate (correlation, but no causality)

Visit doctor often → high risk of dying (correlation, but no causality)

countryside

stork population human birthrate

health status

number of visits risk of dying
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Probabilistic reasoning is difficult and may be problematic:

◦ P (A ∧B) is not determined simply by P (A) and P (B):
P (A) = P (B) = 0.5 ⇒ P (A ∧B) ∈ [0, 0.5]

◦ P (C | A) = x, P (C | B) = y ⇒ P (C | A ∧B) ∈ [0, 1]
Probabilistic logic is not truth functional !

Central problem: How does additional information affect the current knowledge?
I. e., if P (B | A) is known, what can be said about P (B | A ∧ C)?

High complexity: n propositions → 2n full conjunctives

Hard to specify these probabilities.
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Uncertainty is inevitable in complex and dynamic scenarios
that force agents to cope with ignorance.

Probabilities express the agent’s inability to vote for a
definitive decision. They model the degree of belief.

If an agent violates the axioms of probability, it may exhibit
irrational behavior in certain circumstances.

The Bayes rule is used to derive unknown probabilities from
present knowledge and new evidence.

Multiple evidences can be effectively included into computations
exploiting conditional independencies.


