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Probabilistic Graphical Models



The Big Objective(s)
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In a wide variety of application fields two main problems need to be addressed over
and over:

1. How can (expert) knowledge of complex domains be efficiently rep-
resented?

2. How can inferences be carried out within these representations?

3. How can such representations be (automatically) extracted from
collected data?

We will deal with all three questions during the lecture.



Example 1: Planning in car manufacturing
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Available information

“Engine type e1 can only be combined with transmission t2 or t5.”

“Transmission t5 requires crankshaft c2.”

“Convertibles have the same set of radio options as SUVs.”

Possible questions/inferences:

“Can a station wagon with engine e4 be equipped with tire set y6?”

“Supplier S8 failed to deliver on time. What production line
has to be modified and how?”

“Are there any peculiarities within the set of cars that suffered
an aircondition failure?”



Example 2: Medical reasoning
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Available information:

“Malaria is much less likely than flu.”

“Flu causes cough and fever.”

“Nausea can indicate malaria as well as flu.”

“Nausea never indicated pneunomia before.”

Possible questions/inferences

“The patient has fever. How likely is he to have malaria?”

“How much more likely does flu become if we can exclude malaria?”



Common Problems
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Both scenarios share some severe problems:

Large Data Space
It is intractable to store all value combinations, i. e. all car part combinations or
inter-disease dependencies.

(Example: VW Bora has 10200 theoretical value combinations∗)

Sparse Data Space
Even if we could handle such a space, it would be extremely sparse, i. e. it would
be impossible to find good estimates for all the combinations.

(Example: with 100 diseases and 200 symptoms, there would be about 1062 dif-
ferent scenarios for which we had to estimate the probability.∗)

∗ The number of particles in the observable universe is estimated to be between 1078 and 1085.



Idea to Solve the Problems
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Given: A large (high-dimensional) distribution δ representing the
domain knowledge.

Desired: A set of smaller (lower-dimensional) distributions {δ1, . . . , δs}
(maybe overlapping) from which the original δ could be
reconstructed with no (or as few as possible) errors.

With such a decomposition we can draw any conclusions from {δ1, . . . , δs} that
could be inferred from δ — without, however, actually reconstructing it.



Example: Car Manufacturing
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Let us consider a car configuration is described by three attributes:

◦ Engine E, dom(E) = {e1, e2, e3}
◦ Breaks B, dom(B) = {b1, b2, b3}
◦ Tires T , dom(T ) = {t1, t2, t3, t4}

Therefore the set of all (theoretically) possible car configurations is:

Ω = dom(E)× dom(B)× dom(T )

Since not all combinations are technically possible (or wanted by marketing) a set
of rules is used to cancel out invalid combinations.



Example: Car Manufacturing
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Possible car configurations
Every cube designates a valid
value combination.

10 car configurations in our model.

Different colors are intended to
distinguish the cubes only.



Example
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2-D projections
Is it possible to reconstruct δ from
the δi?



Example: Reconstruction of δ with δBE and δET
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Example: Reconstruction of δ with δBE and δET
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Example: Reconstruction of δ with δBE and δET
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Objective
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Is it possible to exploit local constraints (wherever they may come from — both struc-
tural and expert knowledge-based) in a way that allows for a decomposition of the large
(intractable) distribution P (X1, . . . , Xn) into several sub-structures {C1, . . . , Cm}
such that:

The collective size of those sub-structures is much smaller than that of the original
distribution P .

The original distribution P is recomposable (with no or at least as few as possible
errors) from these sub-structures in the following way:

P (X1, . . . , Xn) =
m∏

i=1

Ψi(ci)

where ci is an instantiation of Ci and Ψi(ci) ∈ R
+ a factor potential.



The Big Picture / Lecture Roadmap
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Bayes Networks



Bayes Network
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A Bayes Network (V,E, P ) consists of a set V = {X1, . . . , Xn} of random
variables and a set E of directed edges between the variables.

Each variable has a finite set of mutual exclusive and collectively exhaustive states.

The variables in combination with the edges form a directed, acyclic graph.

Each variable with parent nodes B1, . . . , Bm is assigned a
table P (A | B1, . . . , Bm).

Note, that the connections between the nodes not necessarily express a causal
relationship.

For every belief network, the following equation holds:

P (V ) =
∏

v∈V :P (c(v))>0

P (v | c(v))

with c(v) being the parent nodes of v.



Probabilistic Dependency Networks
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Probabilistic dependency networks are directed acyclic graphs (DAGs) where the nodes
represent propositions or variables and the directed edges model a direct dependence
between the connected nodes. The strength of dependence is defined by conditional
probabilities.

X1

X2 X3

X4 X5

X6

In general (according chain rule):

P (X1, . . . , X6) = P (X6 | X5, . . . , X1)·
P (X5 | X4, . . . , X1)·
P (X4 | X3, X2, X1)·
P (X3 | X2, X1)·
P (X2 | X1)·
P (X1)



Probabilistic Dependency Networks
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Probabilistic dependency networks are directed acyclic graphs (DAGs) where the nodes
represent propositions or variables and the directed edges model a direct causal de-
pendence between the connected nodes. The strength of dependence is defined by
conditional probabilities.

X1

X2 X3

X4 X5

X6

According graph (independence structure):

P (X1, . . . , X6) = P (X6 | X5)·
P (X5 | X2, X3)·
P (X4 | X2)·
P (X3 | X1)·
P (X2 | X1)·
P (X1)



Formal Framework
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Nomenclature for the next slides:

X1, . . . , Xn Variables
(properties, attributes, random variables, propositions)

Ω1, . . . ,Ωn respective finite domains
(also designated with dom(Xi))

Ω =
n×
i=1

Ωi Universe of Discourse (tuples that characterize objects
described by X1, . . . , Xn)

Ωi = {x(1)i , . . . , x
(ni)
i } n = 1, . . . , n, ni ∈ N



Formal Framework
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The product space (Ω, 2Ω, P ) is unique iff P ({(x1, . . . , xn)}) is specified
for all xi ∈ {x(1)i , . . . , x

(ni)
i }, i = 1, . . . , n.

When the distribution P (X1, . . . , Xn) is given in tabular form, then
∏n
i=1 |Ωi|

entries are necessary.

For variables with |Ωi| ≥ 2 at least 2n entries.

The application of DAGs allows for the representation of existing (in)dependencies.



Constructing a DAG
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input P (X1, . . . , Xn)
output a DAG G

1: Set the nodes of G to {X1, . . . , Xn}.
2: Choose a total ordering on the set of variables
(e. g. X1 ≺ X2 ≺ · · · ≺ Xn)

3: For Xi find the smallest (uniquely determinable) set Si ⊆ {X1, . . . , Xn} sucht
that P (Xi | Si) = P (Xi | X1 . . . , Xi−1).

4: Connect all nodes in Si with Xi and store P (Xi | Si) as quantization of the
dependencies for that node Xi (given its parents).

5: return G



Example
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Let a1, a2, a3 be three blood groups and b1, b2, b3 three indications of a blood
group test.

Variables: A (blood group) B (indication)

Domains: ΩA = {a1, a2, a3} ΩB = {b1, b2, b3}
It is conjectured that there is a causal relationship between the variables.

P ({(ai, bj)}) b1 b2 b3
∑

a1 0.64 0.08 0.08 0.8
a2 0.01 0.08 0.01 0.1
a3 0.01 0.01 0.08 0.1∑

0.66 0.17 0.17 1

A B

P (A,B) = P (B | A) · P (A)
We are dealing with a belief net-
work.



Example
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Expert Knowledge

Metastatic cancer is a possible cause of brain cancer, and an explanation for elevated
levels of calcium in the blood. Both phenomena together can explain that a patient
falls into a coma. Severe headaches are possibly associated with a brain tumor.

Special Case

The patient has severe headaches.

Question

Will the patient is go into a coma?



Example
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Choice of universe of discourse

Variable Domain
A metastatic cancer {a1, a2}
B increased serum calcium {b1, b2}
C brain tumor {c1, c2}
D coma {d1, d2}
E headache {e1, e2}

(·1 — present,·2 — absent)

Ω = {a1, a2} × · · · × {e1, e2}
|Ω| = 32

Analysis of dependencies
A

B C

D E



Example
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Choice of probability parameters

P (a, b, c, d, e)
abbr.
= P (A = a,B = b, C = c,D = d,E = e)

= P (e | c)P (d | b, c)P (c | a)P (b | a)P (a)✻

Shorthand notation

11 values to store instead of 31

Consult experts, textbooks, case studies, surveys, etc.

Calculation of conditional probabilities

Calculation of marginal probabilities



Crux of the Matter
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Knowledge acquisition (Where do the numbers come from?)
→ learning strategies

Computational complexities
→ exploit independencies

Problem:

When does the independency of X and Y given Z hold in (V,E, P )?

How to determine a decomposition based of the graph structure?



Example
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A B

C

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

If C is not known, A and B are independent.

If C is known, then A and B become (conditionally) dependent given C.

A⊥6⊥B | C



Formal Representation
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A B

C

Converging Connection: Marginal Independence

Decomposition according to graph:

P (A,B,C) = P (C | A,B) · P (A) · P (B)

Embedded Independence:

P (A,B,C) =
P (A,B,C)

P (A,B)
· P (A) · P (B) with P (A,B) 6= 0

P (A,B) = P (A) · P (B)

⇒ A⊥⊥B | ∅



Example (cont.)
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A B

C

D

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

D restaurant success

If nothing is known about the restaurant success or meal quality or both, the
cook’s skills and quality of the ingredients are unrelated, that is, independent.

However, if we observe that the restaurant has no success, we can infer that the
meal quality might be bad.

If we further learn that the ingredients quality is high, we will conclude that the
cook’s skills must be low, thus rendering both variables dependent.

A⊥6⊥B | D



Dependencies
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Diverging Connection

A B

C

Diagnosis

A body temperature

B cough

C disease

If C is unknown, knowledge about A ist relevant for B and vice versa, i. e. A and
B are marginally dependent.

However, if C is observed, A and B become conditionally independent given C.

A influences B via C. If C is known it in a way blocks the information from
flowing from A to B, thus rendering A and B (conditionally) independent.



Formal Representation
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A B

C

Diverging Connection: Conditional Independence

Decomposition according to graph:

P (A,B,C) = P (A | C) · P (B | C) · P (C)

Embedded Independence:

P (A,B | C) = P (A | C) · P (B | C)

⇒ A⊥⊥B | C

Alternative derivation:

P (A,B,C) = P (A | C) · P (B,C)

P (A | B,C) = P (A | C)

⇒ A⊥⊥B | C



Dependencies
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Serial Connection

A B

C

Accidents

A rain

B accident risk

C road conditions

Analog scenario to case 2

A influences C and C influences B. Thus, A influences B.
If C is known, it blocks the path between A and B.



Formal Representation
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A B

C

Serial Connection: Conditional Independence

Decomposition according to graph:

P (A,B,C) = P (B | C) · P (C | A) · P (A)

Embedded Independence:

P (A,B,C) = P (B | C) · P (C,A)

P (B | C,A) = P (B | C)

⇒ A⊥⊥B | C



Formal Representation
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Trivial Cases:

Marginal Independence:

A B P (A,B) = P (A) · P (B)

Marginal Dependence:

A B P (A,B) = P (B | A) · P (A)



Question
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Question: Are X2 and X3 independent given X1?

X1

X2 X3

X4 X5

X6

evidence X1 = x1



Repetition: d-Separation
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Let G = (V,E) a DAG and X, Y, Z ∈ V three nodes.

a) A set S ⊆ V \{X, Y } d-separates X and Y , if S blocks all
paths between X and Y . (paths may also route in opposite edge direction)

b) A path π is d-separated by S if at least one pair of consecutive edges along π is
blocked. There are the following blocking conditions:

1. X ← Y → Z tail-to-tail

2.
X ← Y ← Z

head-to-tail
X → Y → Z

3. X → Y ← Z head-to-head

c) Two edges that meet tail-to-tail or head-to-tail in node Y are blocked if Y ∈ S.

d) Two edges meeting head-to-head in Y are blocked if neither Y nor its successors
are in S.



Relation to Conditional independence
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If S ⊆ V \{X, Y } d-separates X and Y in a Belief network (V,E, P ) then X and Y
are conditionally independent given S:

P (X, Y | S) = P (X | S) · P (Y | S)

Application to the previous example:

X1

X2 X3

X4 X5

X6

Paths: π1 = 〈X2−X1−X3〉, π2 = 〈X2−X5−X3〉
π3 = 〈X2−X4−X1−X3〉, S = {X1}

π1 X2←X1→X3 tail-to-tail
X1 ∈ S ⇒ π1 is blocked by S

π2 X2→X5←X3 head-to-head
X5, X6 /∈ S ⇒ π2 is blocked by S

π3 X4←X1→X3 tail-to-tail
X2→X4←X1 head-to-head
both connections are blocked ⇒ π3 is blocked



Example (cont.)
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Answer: X2 and X3 are d-separated via {X1}. Therefore X2 and X3 become
conditionally independent given X1.

S = {X1, X4} ⇒ X2 and X3 are d-separated by S

S = {X1, X6} ⇒ X2 and X3 are not d-separated by S



Algebraic structure of CI statements
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Question: Is it possible to use a formal scheme to infer new
conditional independence (CI) statements from
a set of initial CIs?

Repetition

Let (Ω, E , P ) be a probability space and W,X, Y, Z disjoint subsets of variables. If X
and Y are conditionally independent given Z we write:

X ⊥⊥P Y | Z

Often, the following (equivalent) notation is used:

IP (X | Z | Y ) or IP (X, Y | Z)

If the underlying space is known the index P is omitted.



(Semi-)Graphoid Axioms
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Definition: Let V be a set of (mathematical) objects and (· ⊥⊥ · | ·) a three-place
relation of subsets of V . Furthermore, let W, X, Y, and Z be four disjoint subsets
of V . The four statements

symmetry: (X ⊥⊥ Y | Z) ⇒ (Y ⊥⊥X | Z)
decomposition: (W ∪X ⊥⊥ Y | Z) ⇒ (W ⊥⊥ Y | Z) ∧ (X ⊥⊥ Y | Z)
weak union: (W ∪X ⊥⊥ Y | Z) ⇒ (X ⊥⊥ Y | Z ∪W )

contraction: (X ⊥⊥ Y | Z ∪W ) ∧ (W ⊥⊥ Y | Z) ⇒ (W ∪X ⊥⊥ Y | Z)

are called the semi-graphoid axioms. A three-place relation (· ⊥⊥ · | ·) that satisfies
the semi-graphoid axioms for all W, X, Y, and Z is called a semi-graphoid.
The above four statements together with

intersection: (W ⊥⊥ Y | Z ∪X) ∧ (X ⊥⊥ Y | Z ∪W ) ⇒ (W ∪X ⊥⊥ Y | Z)

are called the graphoid axioms. A three-place relation (· ⊥⊥ · | ·) that satisfies the
graphoid axioms for all W, X, Y, and Z is called a graphoid.



Example
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D⊥⊥A,C | ∅ ∧ B⊥⊥C | A,D
w. union
=⇒ D⊥⊥C | A ∧ B⊥⊥C | A,D

symm.⇐⇒ C ⊥⊥D | A ∧ C ⊥⊥B | A,D
contr.
=⇒ C ⊥⊥B,D | A

decomp.
=⇒ C ⊥⊥B | A

symm.⇐⇒ B⊥⊥C | A

D

A

E

B

C



Illustration of the (Semi-)Graphoid Axioms
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decomposition: W
X

Z Y ⇒ W
Z Y ∧

X
Z Y

weak union:
W
X

Z Y ⇒ W
X

Z Y

contraction:
W
X

Z Y ∧ W
Z Y ⇒ W

X
Z Y

intersection:
W
X

Z Y ∧ W
X

Z Y ⇒ W
X

Z Y

Similar to the properties of separation in graphs.
Idea: Represent conditional independence by separation in graphs.



Separation in Graphs
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Definition: Let G = (V, E) be an undirected graph and X, Y, and Z three disjoint
subsets of nodes. Z u-separates X and Y in G, written 〈X | Z | Y 〉G, iff all paths
from a node in X to a node in Y contain a node in Z. A path that contains a node in
Z is called blocked (by Z), otherwise it is called active.

Definition: Let ~G = (V, ~E) be a directed acyclic graph and X,Y, and Z three
disjoint subsets of nodes. Z d-separates X and Y in ~G, written 〈X | Z | Y 〉 ~G,
iff there is no path from a node in X to a node in Y along which the following two
conditions hold:

1. every node with converging edges either is in Z or has a descendant in Z,

2. every other node is not in Z.

A path satisfying the two conditions above is said to be active,
otherwise it is said to be blocked (by Z).



Separation in Directed Acyclic Graphs
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Example Graph:

A1

A2

A3

A4 A5

A6

A7

A8

A9

Valid Separations:

〈{A1} | {A3} | {A4}〉 〈{A8} | {A7} | {A9}〉
〈{A3} | {A4, A6} | {A7}〉 〈{A1} | ∅ | {A2}〉

Invalid Separations:

〈{A1} | {A4} | {A2}〉 〈{A1} | {A6} | {A7}〉
〈{A4} | {A3, A7} | {A6}〉 〈{A1} | {A4, A9} | {A5}〉



Conditional (In)Dependence Graphs
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Definition: Let (· ⊥⊥δ · | ·) be a three-place relation representing the set of conditional
independence statements that hold in a given distribution δ over a set U of attributes.
An undirected graph G = (U,E) over U is called a conditional dependence
graph or a dependence map w.r.t. δ, iff for all disjoint subsets X, Y, Z ⊆ U of
attributes

X ⊥⊥δ Y | Z ⇒ 〈X | Z | Y 〉G,

i.e., if G captures by u-separation all (conditional) independences that hold in δ and
thus represents only valid (conditional) dependences. Similarly, G is called a condi-
tional independence graph or an independence map w.r.t. δ, iff for all disjoint
subsets X,Y, Z ⊆ U of attributes

〈X | Z | Y 〉G ⇒ X ⊥⊥δ Y | Z,

i.e., if G captures by u-separation only (conditional) independences that are valid in δ.
G is said to be a perfect map of the conditional (in)dependences in δ, if it is both a
dependence map and an independence map.



Conditional (In)Dependence Graphs
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Definition: A conditional dependence graph is called maximal w.r.t. a distribu-
tion δ (or, in other words, a maximal dependence map w.r.t. δ) iff no edge can
be added to it so that the resulting graph is still a conditional dependence graph w.r.t.
the distribution δ.

Definition: A conditional independence graph is called minimal w.r.t. a distribu-
tion δ (or, in other words, a minimal independence map w.r.t. δ) iff no edge can
be removed from it so that the resulting graph is still a conditional independence graph
w.r.t. the distribution δ.

Conditional independence graphs are sometimes required to be minimal.

However, this requirement is not necessary for a conditional independence graph
to be usable for evidence propagation.

The disadvantage of a non-minimal conditional independence graph is that
evidence propagation may be more costly computationally than necessary.



Limitations of Graph Representations
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Perfect directed map, no perfect undirected map:

A

C

B A = a1 A = a2pABC
B = b1 B = b2 B = b1 B = b2

C = c1
4/24

3/24
3/24

2/24
C = c2

2/24
3/24

3/24
4/24

Perfect undirected map, no perfect directed map:

A

B C

D

A = a1 A = a2pABCD
B = b1 B = b2 B = b1 B = b2

D = d1
1/47

1/47
1/47

2/47
C = c1 D = d2

1/47
1/47

2/47
4/47

D = d1
1/47

2/47
1/47

4/47
C = c2 D = d2

2/47
4/47

4/47
16/47



Limitations of Graph Representations
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There are also probability distributions for which
there exists neither a directed nor an undirected perfect map:

A

B C

A = a1 A = a2pABC
B = b1 B = b2 B = b1 B = b2

C = c1
2/12

1/12
1/12

2/12
C = c2

1/12
2/12

2/12
1/12

In such cases either not all dependences or not all independences

can be captured by a graph representation.
In such a situation one usually decides to neglect some of the independence
information, that is, to use only a (minimal) conditional independence graph.

This is sufficient for correct evidence propagation,
the existence of a perfect map is not required.



Markov Properties of Undirected Graphs
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Definition: An undirected graph G = (U,E) over a set U of attributes is said to
have (w.r.t. a distribution δ) the

pairwise Markov property,

iff in δ any pair of attributes which are nonadjacent in the graph are conditionally
independent given all remaining attributes, i.e., iff

∀A,B ∈ U,A 6= B : (A,B) /∈ E ⇒ A⊥⊥δB | U − {A,B},
local Markov property,

iff in δ any attribute is conditionally independent of all remaining attributes given its
neighbors, i.e., iff

∀A ∈ U : A⊥⊥δ U − closure(A) | boundary(A),
global Markov property,

iff in δ any two sets of attributes which are u-separated by a third are conditionally
independent given the attributes in the third set, i.e., iff

∀X,Y, Z ⊆ U : 〈X | Z | Y 〉G ⇒ X ⊥⊥δ Y | Z.



Markov Properties of Directed Acyclic Graphs
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Definition: A directed acyclic graph ~G = (U, ~E) over a set U of attributes is said to
have (w.r.t. a distribution δ) the

pairwise Markov property,

iff in δ any attribute is conditionally independent of any non-descendant not among
its parents given all remaining non-descendants, i.e., iff

∀A,B ∈ U : B ∈ non-descs(A)− parents(A) ⇒ A⊥⊥δB | non-descs(A)− {B},
local Markov property,

iff in δ any attribute is conditionally independent of all remaining non-descendants
given its parents, i.e., iff

∀A ∈ U : A⊥⊥δ non-descs(A)− parents(A) | parents(A),
global Markov property,

iff in δ any two sets of attributes which are d-separated by a third are conditionally
independent given the attributes in the third set, i.e., iff

∀X,Y, Z ⊆ U : 〈X | Z | Y 〉 ~G ⇒ X ⊥⊥δ Y | Z.



Equivalence of Markov Properties
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Theorem: If a three-place relation (· ⊥⊥δ · | ·) representing the set of conditional
independence statements that hold in a given joint distribution δ over a set U of
attributes satisfies the graphoid axioms, then the pairwise, the local, and the global
Markov property of an undirected graph G = (U,E) over U are equivalent.

Theorem: If a three-place relation (· ⊥⊥δ · | ·) representing the set of conditional
independence statements that hold in a given joint distribution δ over a set U of
attributes satisfies the semi-graphoid axioms, then the local and the global Markov
property of a directed acyclic graph ~G = (U, ~E) over U are equivalent.

If (· ⊥⊥δ · | ·) satisfies the graphoid axioms, then the pairwise, the local, and the global
Markov property are equivalent.
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Can two distinct graphs represent the exactly the same set
of conditional independence statements?

The answer is relevant for learning graphical models from data, because it deter-
mines whether we can expect a unique graph as a learning result or not.

Definition: Two (directed or undirected) graphs G1 = (U,E1) and G2 = (U,E2)
with the same set U of nodes are called Markov equivalent iff they satisfy the
same set of node separation statements (with d-separation for directed graphs and
u-separation for undirected graphs), or formally, iff

∀X, Y, Z ⊆ U : 〈X | Z | Y 〉G1
⇔ 〈X | Z | Y 〉G2

.

No two different undirected graphs can be Markov equivalent.

The reason is that these two graphs, in order to be different, have to differ in at
least one edge. However, the graph lacking this edge satisfies a node separation
(and thus expresses a conditional independence) that is not statisfied (expressed)
by the graph possessing the edge.
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Definition: Let ~G = (U, ~E) be a directed graph.
The skeleton of ~G is the undirected graph G = (V, E) where E contains the same
edges as ~E, but with their directions removed, or formally:

E = {(A,B) ∈ U × U | (A,B) ∈ ~E ∨ (B,A) ∈ ~E}.

Definition: Let ~G = (U, ~E) be a directed graph and A,B,C ∈ U three nodes of ~G.
The triple (A,B,C) is called a v-structure of ~G iff (A,B) ∈ ~E and (C,B) ∈ ~E,
but neither (A,C) ∈ ~E nor (C,A) ∈ ~E, that is, iff ~G has converging edges from A
and C at B, but A and C are unconnected.

Theorem: Let ~G1 = (U, ~E1) and ~G2 = (U, ~E2) be two directed acyclic graphs with
the same node set U . The graphs ~G1 and ~G2 are Markov equivalent iff they possess
the same skeleton and the same set of v-structures.

Intuitively:
Edge directions may be reversed if this does not change the set of v-structures.
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A

B C

D

A

B C

D

Graphs with the same skeleton, but converging edges at different nodes, which start
from connected nodes, can be Markov equivalent.

A

B C

D

A

B C

D

Of several edges that converge at a node only a subset may actually represent a
v-structure. This v-structure, however, is relevant.
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Definition: A probability distribution pV over a set V of variables is called decom-
posable or factorizable w.r.t. an undirected graph G = (V,E) iff it can be
written as a product of nonnegative functions on the maximal cliques of G.

That is, letM be a family of subsets of variables, such that the subgraphs of G in-
duced by the sets M ∈ M are the maximal cliques of G. Then there exist functions
φM : EM → IR+

0 , M ∈M, ∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

pV




∧

Ai∈V
Ai = ai


 =

∏

M∈M
φM




∧

Ai∈M
Ai = ai


.

Example:

A1 A2

A3 A4

A5 A6

pV (A1 = a1, . . . , A6 = a6)

= φA1A2A3
(A1 = a1, A2 = a2, A3 = a3)

· φA3A5A6
(A3 = a3, A5 = a5, A6 = a6)

· φA2A4
(A2 = a2, A4 = a4)

· φA4A6
(A4 = a4, A6 = a6).
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Definition: A probability distribution pU over a set U of attributes is called de-
composable or factorizable w.r.t. a directed acyclic graph ~G = (U, ~E) over
U, iff it can be written as a product of the conditional probabilities of the attributes
given their parents in ~G, i.e., iff

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

pU


 ∧

Ai∈U
Ai = ai


 =

∏

Ai∈U
P


Ai = ai

∣∣∣∣∣∣

∧

Aj∈parents~G(Ai)
Aj = aj


.

Example:

A1 A2 A3

A4 A5

A6 A7

P (A1 = a1, . . . , A7 = a7)
= P (A1 = a1) · P (A2 = a2 | A1 = a1) · P (A3 = a3)
· P (A4 = a4 | A1 = a1, A2 = a2)
· P (A5 = a5 | A2 = a2, A3 = a3)
· P (A6 = a6 | A4 = a4, A5 = a5)
· P (A7 = a7 | A5 = a5).
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Core Theorem of Graphical Models:
Let pV be a strictly positive probability distribution on a set V of (discrete) variables.
A directed or undirected graph G = (V,E) is a conditional independence graph
w.r.t. pV if and only if pV is factorizable w.r.t. G.

Definition: A Markov network is an undirected conditional independence graph
of a probability distribution pV together with the family of positive functions φM of
the factorization induced by the graph.

Definition: A Bayesian network is a directed conditional independence graph of
a probability distribution pU together with the family of conditional probabilities of
the factorization induced by the graph.

Sometimes the conditional independence graph is required to be minimal,
if it is to be used as the graph underlying a Markov or Bayesian network.
For correct evidence propagation it is not required that the graph is minimal.
Evidence propagation may just be less efficient than possible.


