Decomposition

Property	Car	Motor	Radio	Doors	Seat	Makeup	
family	body				cover	mirrow	
Property	Hatch-	2.8 L	Type	4	Leather,	yes	
	back	$150\mathrm{kW}$	alpha		Type L3		
		Otto					

About 200 variables

- Typically 4 to 8, but up to 150 possible instances per variable
- More than 2^{200} possible combinations available

Example 1: Planning in car manufacturing

Available information: 10000 technical rules, 200 attributes

"If Motor = m_4 and Heating = h_1 then Generator $\in \{g_1, g_2, g_3\}$ "

"Engine type e_1 can only be combined with transmission t_2 or t_5 ."

"Transmission t_5 requires crankshaft c_2 ."

"Convertibles have the same set of radio options as SUVs."

Each peace of information corresponds to a constraint in a high dimensional subspace, possible questions/inferences:

"Can a station wagon with engine e_4 be equipped with tire set y_6 ?"

"Supplier S_8 failed to deliver on time. What production line has to be modified and how?"

"Are there any peculiarities within the set of cars that suffered an aircondition failure?" **Given:** A large (high-dimensional) δ representing the domain knowledge.

Desired: A set of smaller (lower-dimensional) $\{\delta_1, \ldots, \delta_s\}$ (maybe overlapping) from which the original δ could be reconstructed with no (or as few as possible) errors.

With such a decomposition we can draw any conclusions from $\{\delta_1, \ldots, \delta_s\}$ that could be inferred from δ — without, however, actually reconstructing it.

Example

Example World

Relation

color	shape	size
	0	small
	0	medium
	0	small
	0	medium
	\bigtriangleup	medium
	\bigtriangleup	large
		medium
		medium
	\triangle	medium
	\bigtriangleup	large

- 10 simple geometric objects, 3 attributes
- One object is chosen at random and examined
- Inferences are drawn about the unobserved attributes

The Reasoning Space

The reasoning space consists of a finite set Ω of states.

The states are described by a set of n attributes A_i , i = 1, ..., n, whose domains $\{a_1^{(i)}, \ldots, a_{n_i}^{(i)}\}$ can be seen as sets of propositions or events. The events in a domain are mutually exclusive and exhaustive.

The Relation in the Reasoning Space

Relation

color	shape	size
	\bigcirc	small
	\bigcirc	medium
	\bigcirc	small
	\bigcirc	medium
	\bigtriangleup	medium
	\bigtriangleup	large
		medium
		medium
	\bigtriangleup	medium
	\bigtriangleup	large

Relation in the Reasoning Space

Each cube represents one tuple.

The spatial representation helps to understand the decomposition mechanism.

Possibility-Based Formalization

Definition: Let Ω be a (finite) sample space. A **discrete possibility measure** R on Ω is a function $R : 2^{\Omega} \to \{0, 1\}$ satisfying

- 1. $R(\emptyset) = 0$ and
- 2. $\forall E_1, E_2 \subseteq \Omega : R(E_1 \cup E_2) = \max\{R(E_1), R(E_2)\}.$

Similar to Kolmogorov's axioms of probability theory.

If an event E can occur (if it is possible), then R(E) = 1, otherwise (if E cannot occur/is impossible) then R(E) = 0.

 $R(\Omega) = 1$ is not required, because this would exclude the empty relation.

From the axioms it follows $R(E_1 \cap E_2) \leq \min\{R(E_1), R(E_2)\}$.

Attributes are introduced as random variables (as in probability theory).

R(A = a) and R(a) are abbreviations of $R(\{\omega \mid A(\omega) = a\})$.

Projection / Marginalization

Let R_{AB} be a relation over two attributes A and B. The projection (or marginalization) from schema $\{A, B\}$ to schema $\{A\}$ is defined as:

$$\forall a \in \operatorname{dom}(A): R_A(A = a) = \max_{\forall b \in \operatorname{dom}(B)} \{ R_{AB}(A = a, B = b) \}$$

Cylindrical Extention

Let R_A be a relation over an attribute A. The cylindrical extention R_{AB} from $\{A\}$ to $\{A, B\}$ is defined as:

$$\forall a \in \operatorname{dom}(A) : \forall b \in \operatorname{dom}(B) : R_{AB}(A = a, B = b) = R_A(A = a)$$

Intersection

Let $R_{AB}^{(1)}$ and $R_{AB}^{(2)}$ be two relations with attribute schema $\{A, B\}$. The intersection R_{AB} of both is defined in the natural way:

$$\forall a \in \text{dom}(A) : \forall b \in \text{dom}(B) :$$

$$R_{AB}(A = a, B = b) = \min\{R_{AB}^{(1)}(A = a, B = b), R_{AB}^{(2)}(A = a, B = b)\}$$

Conditional Relation

Let R_{AB} be a relation over the attribute schema $\{A, B\}$. The conditional relation of A given B is defined as follows:

 $\forall a \in \operatorname{dom}(A) : \forall b \in \operatorname{dom}(B) : R_A(A = a \mid B = b) = R_{AB}(A = a, B = b)$

(Unconditional) Independence

Let R_{AB} be a relation over the attribute schema $\{A, B\}$. We call A and B relationally independent (w.r.t. R_{AB}) if the following condition holds:

 $\forall a \in \operatorname{dom}(A) : \forall b \in \operatorname{dom}(B) : R_{AB}(A = a, B = b) = \min\{R_A(A = a), R_B(B = b)\}$

(Unconditional) Independence

Intuition: Fixing one (possible) value of A does not restrict the (possible) values of B and vice versa.

Conditioning on any possible value of B always results in the same relation R_A .

Alternative independence expression:

$$\forall b \in \operatorname{dom}(B) : R_B(B = b) = 1 :$$
$$R_A(A = a \mid B = b) = R_A(A = a)$$

Obviously, the original two-dimensional relation can be reconstructed from the two one-dimensional ones, if we have (unconditional) independence.

The definition for (unconditional) independence already told us how to do so:

$$R_{AB}(A = a, B = b) = \min\{R_A(A = a), R_B(B = b)\}$$

Storing R_A and R_B is sufficient to represent the information of R_{AB} .

Question: The (unconditional) independence is a rather strong restriction. Are there other types of independence that allow for a decomposition as well?

Conditional Relational Independence

Clearly, A and C are unconditionally dependent, i.e. the relation R_{AC} cannot be reconstructed from R_A and R_C .

Conditional Relational Independence

 $a_1 a_2 a_3 a_4$

However, given all possible values of B, all respective conditional relations R_{AC} show the independence of A and C.

 $c_1^{c_2}$ $R_{AC}(\cdot, \cdot \mid B = b_2)$

 $R_{AC}(a, c \mid b) = \min\{R_A(a \mid b), R_C(c \mid b)\}$

With the definition of a conditional relation, the decomposition description for R_{ABC} reads:

 $R_{ABC}(a, b, c) \; = \; \min\{R_{AB}(a, b), R_{BC}(b, c)\}$

 $R_{AC}(\cdot, \cdot \mid B = b_1)$

Conditional Relational Independence

Again, we reconstruct the initial relation from the cylindrical extentions of the two relations formed by the attributes A, B and B, C.

It is possible since A and C are (relationally) independent given B.

Definition: Let $U = \{A_1, \ldots, A_n\}$ be a set of attributes defined on a (finite) sample space Ω with respective domains dom (A_i) , $i = 1, \ldots, n$. A **relation** r_U over U is the restriction of a discrete possibility measure R on Ω to the set of all events that can be defined by stating values for all attributes in U. That is, $r_U = R|_{\mathcal{E}_U}$, where

$$\mathcal{E}_{U} = \left\{ E \in 2^{\Omega} \middle| \exists a_{1} \in \operatorname{dom}(A_{1}) : \dots \exists a_{n} \in \operatorname{dom}(A_{n}) : E \cong \bigwedge_{A_{j} \in U} A_{j} = a_{j} \right\}$$
$$= \left\{ E \in 2^{\Omega} \middle| \exists a_{1} \in \operatorname{dom}(A_{1}) : \dots \exists a_{n} \in \operatorname{dom}(A_{n}) : E = \left\{ \omega \in \Omega \middle| \bigwedge_{A_{j} \in U} A_{j}(\omega) = a_{j} \right\} \right\}.$$

A relation corresponds to the notion of a probability distribution. Advantage of this formalization: No index transformation functions are needed for projections, there are just fewer terms in the conjunctions. **Definition:** Let $U = \{A_1, \ldots, A_n\}$ be a set of attributes and r_U a relation over U. Furthermore, let $\mathcal{M} = \{M_1, \ldots, M_m\} \subseteq 2^U$ be a set of nonempty (but not necessarily disjoint) subsets of U satisfying | | M = U

$$\bigcup_{M \in \mathcal{M}} M = U$$

 r_U is called **decomposable** w.r.t. \mathcal{M} iff

$$\forall a_1 \in \operatorname{dom}(A_1) : \dots \forall a_n \in \operatorname{dom}(A_n) :$$
$$r_U \left(\bigwedge_{A_i \in U} A_i = a_i \right) = \min_{M \in \mathcal{M}} \left\{ r_M \left(\bigwedge_{A_i \in M} A_i = a_i \right) \right\}.$$

If r_U is decomposable w.r.t. \mathcal{M} , the set of relations

$$\mathcal{R}_{\mathcal{M}} = \{r_{M_1}, \dots, r_{M_m}\} = \{r_M \mid M \in \mathcal{M}\}$$

is called the **decomposition** of r_U .

Equivalent to **join decomposability** in database theory (natural join).

Rudolf Kruse, Alexander Dockhorn

Bayesian Networks

Using other Projections 1

This choice of subspaces does not yield a decomposition.

Using other Projections 2

This choice of subspaces does not yield a decomposition.

Is Decomposition Always Possible?

A modified relation (without tuples 1 or 2) may not possess a decomposition.

The Relation in the Reasoning Space

Relation

color	shape	size
	\bigcirc	small
	\bigcirc	medium
	\bigcirc	small
	\bigcirc	medium
	\bigtriangleup	medium
	\bigtriangleup	large
		medium
		medium
	\bigtriangleup	medium
	\bigtriangleup	large

Relation in the Reasoning Space

Each cube represents one tuple.

The spatial representation helps to understand the decomposition mechanism.

Reasoning

Let it be known (e.g. from an observation) that the given object is green. This information considerably reduces the space of possible value combinations. From the prior knowledge it follows that the given object must be

- $\circ~$ either a triangle or a square and
- either medium or large.

Due to the fact that color and size are conditionally independent given the shape, the reasoning result can be obtained using only the projections to the subspaces:

This reasoning scheme can be formally justified with discrete possibility measures.

Relational Evidence Propagation, Step 1

Rudolf Kruse, Alexander Dockhorn

Bayesian Networks

Relational Evidence Propagation, Step 1 (continued)

- (1) holds because of the second axiom a discrete possibility measure has to satisfy.
- (3) holds because of the fact that the relation R_{ABC} can be decomposed w.r.t. the set $\mathcal{M} = \{\{A, B\}, \{B, C\}\}$. (A: color, B: shape, C: size)
- (2) holds, since in the first place

$$\begin{split} R(A = a, B = b, C = c | A = a_{obs}) &= R(A = a, B = b, C = c, A = a_{obs}) \\ &= \begin{cases} R(A = a, B = b, C = c), \text{ if } a = a_{obs}, \\ 0, & \text{otherwise,} \end{cases} \end{split}$$

and secondly

$$R(A = a \mid A = a_{obs}) = R(A = a, A = a_{obs})$$
$$= \begin{cases} R(A = a), & \text{if } a = a_{obs}, \\ 0, & \text{otherwise,} \end{cases}$$

and therefore, since trivially $R(A = a) \ge R(A = a, B = b, C = c)$,

$$\begin{split} R(A = a, B = b, C = c \mid A = a_{obs}) \\ = &\min\{R(A = a, B = b, C = c), R(A = a \mid A = a_{obs})\}. \end{split}$$

Relational Evidence Propagation, Step 2

$$\begin{split} R(C = c \mid A = a_{obs}) & \qquad A: \text{ color } \\ &= R\left(\bigvee_{a \in dom(A)} A = a, \bigvee_{b \in dom(B)} B = b, C = c \mid A = a_{obs}\right) & \qquad A: \text{ color } \\ B: \text{ shape } \\ C: \text{ size} & \qquad C: \text{ size} & \quad C:$$

Example: Car Manufacturing

Probable car configurations

Every cube designates a value combination with its probability.

The installation rate of a value combinations is a good estimate for the probability

Extensions to Probability Distribution

The numbers state the probability of the corresponding value combination. Compared to the example relation, the possible combinations are now frequent.

Reasoning with Projections

Using the information that the given object is green: The observed color has a posterior probability of 1.

Probabilistic Decomposition: Simple Example

- As for relational networks, the three-dimensional probability distribution can be decomposed into projections to subspaces, namely the marginal distribution on the subspace formed by color and shape and the marginal distribution on the subspace formed by shape and size.
- The original probability distribution can be reconstructed from the marginal distributions using the following formulae $\forall i, j, k$:

$$P(\omega_i^{(\text{color})}, \omega_j^{(\text{shape})}, \omega_k^{(\text{size})}) = P(\omega_i^{(\text{color})}, \omega_j^{(\text{shape})}) \cdot P(\omega_k^{(\text{size})} \mid \omega_j^{(\text{shape})})$$
$$= P(\omega_i^{(\text{color})}, \omega_j^{(\text{shape})}) \cdot \frac{P(\omega_j^{(\text{shape})}, \omega_k^{(\text{size})})}{P(\omega_j^{(\text{shape})})}$$

• These equations express the *conditional independence* of attributes *color* and *size* given the attribute *shape*, since they only hold if $\forall i, j, k$:

$$P(\omega_k^{\text{(size)}} \mid \omega_j^{\text{(shape)}}) = P(\omega_k^{\text{(size)}} \mid \omega_i^{\text{(color)}}, \omega_j^{\text{(shape)}})$$

Example: VW Bora

Probabilistic Decomposition

Definition: Let $U = \{A_1, \ldots, A_n\}$ be a set of attributes and p_U a probability distribution over U. Furthermore, let $\mathcal{M} = \{M_1, \ldots, M_m\} \subseteq 2^U$ be a set of nonempty (but not necessarily disjoint) subsets of U satisfying

$$\bigcup_{M \in \mathcal{M}} M = U.$$

 p_U is called **decomposable** or **factorizable** w.r.t. \mathcal{M} iff it can be written as a product of m nonnegative functions $\phi_M : \mathcal{E}_M \to \mathbb{R}^+_0, M \in \mathcal{M}$, i.e., iff

$$\forall a_1 \in \operatorname{dom}(A_1) : \dots \forall a_n \in \operatorname{dom}(A_n) :$$
$$p_U \left(\bigwedge_{A_i \in U} A_i = a_i \right) = \prod_{M \in \mathcal{M}} \phi_M \left(\bigwedge_{A_i \in M} A_i = a_i \right) :$$

If p_U is decomposable w.r.t. \mathcal{M} the set of functions

$$\Phi_{\mathcal{M}} = \{\phi_{M_1}, \dots, \phi_{M_m}\} = \{\phi_M \mid M \in \mathcal{M}\}$$

is called the **decomposition** or the **factorization** of p_U . The functions in $\Phi_{\mathcal{M}}$ are called the **factor potentials** of p_U .

Rudolf Kruse, Alexander Dockhorn

Conditional Independence

Definition: Let Ω be a (finite) sample space, P a probability measure on Ω , and A, B, and C attributes with respective domains dom(A), dom(B), and dom(C). A and B are called **conditionally probabilistically independent** given C, written $A \perp P B \mid C$, iff

$$\forall a \in \operatorname{dom}(A) : \forall b \in \operatorname{dom}(B) : \forall c \in \operatorname{dom}(C) :$$
$$P(A = a, B = b \mid C = c) = P(A = a \mid C = c) \cdot P(B = b \mid C = c)$$

Equivalent formula (sometimes more convenient):

$$\forall a \in \operatorname{dom}(A) : \forall b \in \operatorname{dom}(B) : \forall c \in \operatorname{dom}(C) :$$
$$P(A = a \mid B = b, C = c) = P(A = a \mid C = c)$$

Conditional independences make it possible to consider parts of a probability distribution independent of others.

Therefore it is plausible that a set of conditional independences may enable a decomposition of a joint probability distribution.

Conditional Independence: An Example

Dependence (fictitious) between smoking and life expectancy.

Each dot represents one person. x-axis: age at death y-axis: average number of cigarettes per day

Weak, but clear dependence:

The more cigarettes are smoked, the lower the life expectancy.

> (Note that this data is artificial and thus should not be seen as revealing an actual dependence.)

Conditional Independence: An Example

Conjectured explanation:

There is a common cause, namely whether the person is exposed to stress at work.

If this were correct, splitting the data should remove the dependence.

Group 1: exposed to stress at work

> (Note that this data is artificial and therefore should not be seen as an argument against health hazards caused by smoking.)

Conditional Independence: An Example

Conjectured explanation:

There is a common cause, namely whether the person is exposed to stress at work.

If this were correct, splitting the data should remove the dependence.

Group 2: **not** exposed to stress at work

> (Note that this data is artificial and therefore should not be seen as an argument against health hazards caused by smoking.)

Probabilistic Decomposition (continued)

Chain Rule of Probability:

$$\forall a_1 \in \operatorname{dom}(A_1) : \dots \forall a_n \in \operatorname{dom}(A_n) :$$
$$P\left(\bigwedge_{i=1}^n A_i = a_i\right) = \prod_{i=1}^n P\left(A_i = a_i \middle| \bigwedge_{j=1}^{i-1} A_j = a_j\right)$$

The chain rule of probability is valid in general (or at least for strictly positive distributions).

Chain Rule Factorization:

$$\forall a_1 \in \operatorname{dom}(A_1) : \dots \forall a_n \in \operatorname{dom}(A_n) :$$
$$P\left(\bigwedge_{i=1}^n A_i = a_i\right) = \prod_{i=1}^n P\left(A_i = a_i \middle| \bigwedge_{A_j \in \operatorname{parents}(A_i)} A_j = a_j\right)$$

Conditional independence statements are used to "cancel" conditions.

Rudolf Kruse, Alexander Dockhorn

Bayesian Networks

Due to the fact that color and size are conditionally independent given the shape, the reasoning result can be obtained using only the projections to the subspaces:

This reasoning scheme can be formally justified with probability measures.

Probabilistic Evidence Propagation, Step 1

$$\begin{split} P(B = b \mid A = a_{\text{obs}}) &= P\left(\bigvee_{a \in \text{dom}(A)} A = a, B = b, \bigvee_{c \in \text{dom}(C)} C = c \mid A = a_{\text{obs}}\right) & \begin{bmatrix} A: & \text{color} \\ B: & \text{shape} \\ C: & \text{size} \end{bmatrix} \\ &\stackrel{(1)}{=} \sum_{a \in \text{dom}(A)} \sum_{c \in \text{dom}(C)} P(A = a, B = b, C = c \mid A = a_{\text{obs}}) \\ &\stackrel{(2)}{=} \sum_{a \in \text{dom}(A)} \sum_{c \in \text{dom}(C)} P(A = a, B = b, C = c) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \\ &\stackrel{(3)}{=} \sum_{a \in \text{dom}(A)} \sum_{c \in \text{dom}(C)} \frac{P(A = a, B = b)P(B = b, C = c)}{P(B = b)} \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(B = b)} \\ &= \sum_{a \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \underbrace{\sum_{c \in \text{dom}(C)} P(C = c \mid B = b)}_{=1} \\ &= \sum_{a \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \underbrace{\sum_{c \in \text{dom}(C)} P(C = c \mid B = b)}_{=1} \\ &= \sum_{a \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \underbrace{\sum_{c \in \text{dom}(C)} P(C = c \mid B = b)}_{=1} \\ &= \sum_{a \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \underbrace{\sum_{c \in \text{dom}(C)} P(C = c \mid B = b)}_{=1} \\ &= \sum_{a \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \underbrace{\sum_{c \in \text{dom}(C)} P(C = c \mid B = b)}_{=1} \\ &= \sum_{a \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \underbrace{\sum_{c \in \text{dom}(C)} P(C = c \mid B = b)}_{=1} \\ &= \sum_{c \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \underbrace{\sum_{c \in \text{dom}(C)} P(C = c \mid B = b)}_{=1} \\ &= \sum_{c \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \underbrace{\sum_{c \in \text{dom}(C)} P(C = c \mid B = b)}_{=1} \\ &= \sum_{c \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \underbrace{\sum_{c \in \text{dom}(C)} P(C = c \mid B = b)}_{=1} \\ &= \sum_{c \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \underbrace{\sum_{c \in \text{dom}(C)} P(C = c \mid B = b)}_{=1} \\ &= \sum_{c \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \underbrace{\sum_{c \in \text{dom}(C)} P(A = a \mid A = a_{\text{obs}})}_{=1} \\ &= \sum_{c \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a \mid A = a_{\text{obs}})}$$

Probabilistic Evidence Propagation, Step 1 (continued)

- holds because of Kolmogorov's axioms. (1)
- holds because of the fact that the distribution p_{ABC} can be decomposed w.r.t. (3)the set $\mathcal{M} = \{\{A, B\}, \{B, C\}\}.$ (A: color, B: shape, C: size)
- holds, since in the first place (2)

$$P(A = a, B = b, C = c | A = a_{obs}) = \frac{P(A = a, B = b, C = c, A = a_{obs})}{P(A = a_{obs})}$$
$$= \begin{cases} \frac{P(A = a, B = b, C = c)}{P(A = a_{obs})}, \text{ if } a = a_{obs}, \\ 0, & \text{otherwise,} \end{cases}$$

 $\mathbf{D}(\mathbf{A})$

 \mathbf{D}

and secondly

$$P(A = a, A = a_{\text{obs}}) = \begin{cases} P(A = a), & \text{if } a = a_{\text{obs}}, \\ 0, & \text{otherwise}, \end{cases}$$

and therefore

$$P(A = a, B = b, C = c \mid A = a_{obs})$$

= $P(A = a, B = b, C = c) \cdot \frac{P(A = a \mid A = a_{obs})}{P(A = a)}$

Rudolf Kruse, Alexander Dockhorn

Bayesian Networks

Probabilistic Evidence Propagation, Step 2

$$\begin{split} P(C = c \mid A = a_{\text{obs}}) &= P\left(\bigvee_{a \in \text{dom}(A)} A = a, \bigvee_{b \in \text{dom}(B)} B = b, C = c \mid A = a_{\text{obs}}\right) & \begin{matrix} A: \text{ color} \\ B: \text{ shape} \\ C: \text{ size} \end{matrix}$$

$$\begin{aligned} &\stackrel{(1)}{=} \sum_{a \in \text{dom}(A)} \sum_{b \in \text{dom}(B)} P(A = a, B = b, C = c \mid A = a_{\text{obs}}) \\ &\stackrel{(2)}{=} \sum_{a \in \text{dom}(A)} \sum_{b \in \text{dom}(B)} P(A = a, B = b, C = c) \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \\ &\stackrel{(3)}{=} \sum_{a \in \text{dom}(A)} \sum_{b \in \text{dom}(B)} \frac{P(A = a, B = b)P(B = b, C = c)}{P(B = b)} \cdot \frac{P(A = a \mid A = a_{\text{obs}})}{P(A = a)} \\ &= \sum_{b \in \text{dom}(B)} \frac{P(B = b, C = c)}{P(B = b)} \underbrace{\sum_{a \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{R(A = a \mid A = a_{\text{obs}})}{P(A = a)} \\ &= \sum_{b \in \text{dom}(B)} \frac{P(B = b, C = c)}{P(B = b)} \underbrace{\sum_{a \in \text{dom}(A)} P(A = a, B = b) \cdot \frac{R(A = a \mid A = a_{\text{obs}})}{P(A = a)} \\ &= P(B = b|A = a_{\text{obs}}) \end{aligned}$$

Rudolf Kruse, Alexander Dockhorn

It is often possible to exploit local constraints (wherever they may come from — both structural and expert knowledge-based) in a way that allows for a decomposition of the large (intractable) distribution $P(X_1, \ldots, X_n)$ into several sub-structures $\{C_1, \ldots, C_m\}$ such that:

The collective size of those sub-structures is much smaller than that of the original distribution P.

The original distribution P is decomposable (with no or at least as few as possible errors) from these sub-structures in the following way:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^m \Psi_i(c_i)$$

where c_i is an instantiation of C_i and $\Psi_i(c_i) \in \mathbb{R}^+$ a factor potential.