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Decomposition



Object Representation
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Property
family

Car
body

Motor Radio Doors Seat
cover

Makeup
mirrow

. . .

Property Hatch-
back

2.8 L
150 kW
Otto

Type
alpha

4 Leather,
Type L3

yes . . .

About 200 variables

Typically 4 to 8, but up to 150 possible in-
stances per variable

More than 2200 possible combinations available



Example 1: Planning in car manufacturing
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Available information: 10000 technical rules, 200 attributes

“If Motor = m4 and Heating = h1 then Generator ∈ {g1, g2, g3}”

“Engine type e1 can only be combined with transmission t2 or t5.”

“Transmission t5 requires crankshaft c2.”

“Convertibles have the same set of radio options as SUVs.”

Each peace of information corresponds to a constraint in a high dimensional subspace,
possible questions/inferences:

“Can a station wagon with engine e4 be equipped with tire set y6?”

“Supplier S8 failed to deliver on time. What production line
has to be modified and how?”

“Are there any peculiarities within the set of cars that suffered
an aircondition failure?”



Idea to Solve the Problems
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Given: A large (high-dimensional) δ representing the
domain knowledge.

Desired: A set of smaller (lower-dimensional) {δ1, . . . , δs}
(maybe overlapping) from which the original δ could be
reconstructed with no (or as few as possible) errors.

With such a decomposition we can draw any conclusions from {δ1, . . . , δs} that
could be inferred from δ — without, however, actually reconstructing it.



Example
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Example World Relation

color shape size
small
medium
small
medium
medium
large
medium
medium
medium
large

• 10 simple geometric objects, 3 attributes

• One object is chosen at random and examined

• Inferences are drawn about the unobserved attributes



The Reasoning Space
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large

medium

small

medium

The reasoning space consists of a finite set Ω of states.

The states are described by a set of n attributes Ai, i = 1, . . . , n,

whose domains {a
(i)
1 , . . . , a

(i)
ni } can be seen as sets of propositions or events.

The events in a domain are mutually exclusive and exhaustive.



The Relation in the Reasoning Space
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Relation

color shape size

small
medium
small
medium
medium
large
medium
medium
medium
large

Relation in the Reasoning Space

large

medium

small

Each cube represents one tuple.

The spatial representation helps to understand the decomposition mechanism.



Possibility-Based Formalization

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 88

Definition: Let Ω be a (finite) sample space.
A discrete possibility measure R on Ω is a function R : 2Ω → {0, 1} satisfying

1. R(∅) = 0 and

2. ∀E1, E2 ⊆ Ω : R(E1 ∪ E2) = max{R(E1), R(E2)}.

Similar to Kolmogorov’s axioms of probability theory.

If an event E can occur (if it is possible), then R(E) = 1,
otherwise (if E cannot occur/is impossible) then R(E) = 0.

R(Ω) = 1 is not required, because this would exclude the empty relation.

From the axioms it follows R(E1 ∩ E2) ≤ min{R(E1), R(E2)}.

Attributes are introduced as random variables (as in probability theory).

R(A = a) and R(a) are abbreviations of R({ω | A(ω) = a}).



Operations on the Relations
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Projection / Marginalization

Let RAB be a relation over two attributes A and B. The projection (or marginaliza-
tion) from schema {A,B} to schema {A} is defined as:

∀a ∈ dom(A) : RA(A = a) = max
∀b∈dom(B)

{RAB(A = a,B = b)}

This principle is easily generalized to sets of attributes.



Object Representation
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Cylindrical Extention

Let RA be a relation over an attribute A. The cylindrical extention RAB from {A}
to {A,B} is defined as:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RAB(A = a,B = b) = RA(A = a)

This principle is easily generalized to sets of attributes.



Object Representation
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Intersection

Let R
(1)
AB and R

(2)
AB be two relations with attribute schema {A,B}. The intersection

RAB of both is defined in the natural way:

∀a ∈ dom(A) : ∀b ∈ dom(B) :

RAB(A = a,B = b) = min{R
(1)
AB(A = a,B = b), R

(2)
AB(A = a,B = b)}

This principle is easily generalized to sets of attributes.



Object Representation
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Conditional Relation

Let RAB be a relation over the attribute schema {A,B}. The conditional relation of
A given B is defined as follows:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RA(A = a | B = b) = RAB(A = a,B = b)

This principle is easily generalized to sets of attributes.



Object Representation
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(Unconditional) Independence

Let RAB be a relation over the attribute schema {A,B}. We call A and B relationally
independent (w. r. t. RAB) if the following condition holds:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RAB(A = a,B = b) = min{RA(A = a), RB(B = b)}

This principle is easily generalized to sets of attributes.



Object Representation
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(Unconditional) Independence

Intuition: Fixing one (possible) value of A does not
restrict the (possible) values of B and vice versa.

Conditioning on any possible value of B always re-
sults in the same relation RA.

Alternative independence expression:

∀b ∈ dom(B) : RB(B = b) = 1 :

RA(A = a | B = b) = RA(A = a)



Decomposition
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Obviously, the original two-dimensional relation can be reconstructed from the
two one-dimensional ones, if we have (unconditional) independence.

The definition for (unconditional) independence already told us how to do so:

RAB(A = a,B = b) = min{RA(A = a), RB(B = b)}

Storing RA and RB is sufficient to represent the information of RAB.

Question: The (unconditional) independence is a rather strong restriction. Are
there other types of independence that allow for a decomposition as well?



Conditional Relational Independence
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Clearly, A and C are unconditionally dependent, i. e.
the relation RAC cannot be reconstructed from RA
and RC .



Conditional Relational Independence
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However, given all possible values of B, all respective
conditional relations RAC show the independence of
A and C.

RAC(a, c | b) = min{RA(a | b), RC(c | b)}

With the definition of a conditional relation, the de-
composition description for RABC reads:

RABC(a, b, c) = min{RAB(a, b), RBC(b, c)}



Conditional Relational Independence
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Again, we reconstruct the initial relation from
the cylindrical extentions of the two relations
formed by the attributes A,B and B,C.

It is possible since A and C are (relationally)
independent given B.



Possibility-Based Formalization (continued)
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Definition: Let U = {A1, . . . , An} be a set of attributes defined on a (finite) sample
space Ω with respective domains dom(Ai), i = 1, . . . , n. A relation rU over U is the
restriction of a discrete possibility measure R on Ω to the set of all events that can be
defined by stating values for all attributes in U . That is, rU = R|EU , where

EU =



E ∈ 2Ω

∣∣∣∣∣∣
∃a1 ∈ dom(A1) : . . . ∃an ∈ dom(An) : E =̂

∧

Aj∈U

Aj = aj





=



E ∈ 2Ω

∣∣∣∣∣∣
∃a1 ∈ dom(A1) : . . . ∃an ∈ dom(An) :

E =



ω ∈ Ω

∣∣∣∣∣∣

∧

Aj∈U

Aj(ω) = aj







.

A relation corresponds to the notion of a probability distribution.
Advantage of this formalization: No index transformation functions are needed
for projections, there are just fewer terms in the conjunctions.



Possibility-Based Formalization (continued)
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Definition: Let U = {A1, . . . , An} be a set of attributes and rU a relation over U .
Furthermore, letM = {M1, . . . ,Mm} ⊆ 2U be a set of nonempty (but not necessarily
disjoint) subsets of U satisfying ⋃

M∈M

M = U.

rU is called decomposable w.r.t.M iff

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

rU




∧

Ai∈U

Ai = ai


 = min

M∈M



rM




∧

Ai∈M

Ai = ai





.

If rU is decomposable w.r.t.M, the set of relations

RM = {rM1
, . . . , rMm

} = {rM |M ∈ M}

is called the decomposition of rU .

Equivalent to join decomposability in database theory (natural join).



Using other Projections 1
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large

medium

small

large

medium

small

large

medium

small

large

medium

small

This choice of subspaces does not yield a decomposition.



Using other Projections 2
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large

medium

small

large

medium

small

large

medium

small

large

medium

small

This choice of subspaces does not yield a decomposition.



Is Decomposition Always Possible?
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large

medium

small
1

2

large

medium

small

large

medium

small

large

medium

small

A modified relation (without tuples 1 or 2) may not possess a decomposition.



The Relation in the Reasoning Space
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Relation

color shape size

small
medium
small
medium
medium
large
medium
medium
medium
large

Relation in the Reasoning Space

large

medium

small

Each cube represents one tuple.

The spatial representation helps to understand the decomposition mechanism.



Reasoning
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Let it be known (e.g. from an observation) that the given object is green.
This information considerably reduces the space of possible value combinations.
From the prior knowledge it follows that the given object must be

◦ either a triangle or a square and

◦ either medium or large.

large

medium

small

large

medium

small



Relational Evidence Propagation
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Due to the fact that color and size are conditionally independent given the shape,
the reasoning result can be obtained using only the projections to the subspaces:

color

shape

size

s m l

s m l

extend

project extend

project

This reasoning scheme can be formally justified with discrete possibility measures.



Relational Evidence Propagation, Step 1
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R(B = b | A = aobs)

= R


 ∨

a∈dom(A)

A = a,B = b,
∨

c∈dom(C)

C = c

∣∣∣∣∣∣
A = aobs




A: color
B: shape
C: size

(1)
= max

a∈dom(A)
{ max
c∈dom(C)

{R(A = a,B = b, C = c | A = aobs)}}

(2)
= max

a∈dom(A)
{ max
c∈dom(C)

{min{R(A = a,B = b, C = c), R(A = a | A = aobs)}}}

(3)
= max

a∈dom(A)
{ max
c∈dom(C)

{min{R(A = a,B = b), R(B = b, C = c),

R(A = a | A = aobs)}}}

= max
a∈dom(A)

{min{R(A = a,B = b), R(A = a | A = aobs),

max
c∈dom(C)

{R(B = b, C = c)}

︸ ︷︷ ︸
=R(B=b)≥R(A=a,B=b)

}}

= max
a∈dom(A)

{min{R(A = a,B = b), R(A = a | A = aobs)}}.



Relational Evidence Propagation, Step 1 (continued)
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(1) holds because of the second axiom a discrete possibility measure has to satisfy.

(3) holds because of the fact that the relation RABC can be decomposed w.r.t. the
setM = {{A,B}, {B,C}}. (A: color, B: shape, C: size)

(2) holds, since in the first place

R(A = a,B = b, C = c |A = aobs) = R(A = a, B = b, C = c, A = aobs)

=

{
R(A = a,B = b, C = c), if a = aobs,
0, otherwise,

and secondly

R(A = a | A = aobs) = R(A = a,A = aobs)

=

{
R(A = a), if a = aobs,
0, otherwise,

and therefore, since trivially R(A = a) ≥ R(A = a,B = b, C = c),

R(A = a,B = b, C = c | A = aobs)

= min{R(A = a,B = b, C = c), R(A = a | A = aobs)}.



Relational Evidence Propagation, Step 2
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R(C = c | A = aobs)

= R


 ∨

a∈dom(A)

A = a,
∨

b∈dom(B)

B = b, C = c

∣∣∣∣∣∣
A = aobs




A: color
B: shape
C: size

(1)
= max

a∈dom(A)
{ max
b∈dom(B)

{R(A = a,B = b, C = c | A = aobs)}}

(2)
= max

a∈dom(A)
{ max
b∈dom(B)

{min{R(A = a,B = b, C = c), R(A = a | A = aobs)}}}

(3)
= max

a∈dom(A)
{ max
b∈dom(B)

{min{R(A = a,B = b), R(B = b, C = c),

R(A = a | A = aobs)}}}

= max
b∈dom(B)

{min{R(B = b, C = c),

max
a∈dom(A)

{min{R(A = a,B = b), R(A = a | A = aobs)}}

︸ ︷︷ ︸
=R(B=b|A=aobs)

}

= max
b∈dom(B)

{min{R(B = b, C = c), R(B = b | A = aobs)}}.



Example: Car Manufacturing
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Probable car configurations

0.05

0.15

0.2

0.1

0.3

Every cube designates a value
combination with its probability.

The installation rate of a value
combinations is a good estimate
for the probability



Extensions to Probability Distribution
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Reasoning with Projections
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Using the information that the given object is green:
The observed color has a posterior probability of 1.



Probabilistic Decomposition: Simple Example
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✎ As for relational networks, the three-dimensional probability distribution can
be decomposed into projections to subspaces, namely the marginal distribution
on the subspace formed by color and shape and the marginal distribution on
the subspace formed by shape and size.

✎ The original probability distribution can be reconstructed from the marginal
distributions using the following formulae ✽✐❀ ❥❀ ❦ :

P (✦
(color)
✐ ❀ ✦

(shape)
❥ ❀ ✦

(size)
❦ ) = P (✦

(color)
✐ ❀ ✦

(shape)
❥ ) ✁ P (✦

(size)
❦ ❥ ✦

(shape)
❥ )

= P (✦
(color)
✐ ❀ ✦

(shape)
❥ ) ✁

P (✦
(shape)
❥ ❀ ✦

(size)
❦ )

P (✦
(shape)
❥ )

✎ These equations express the conditional independence of attributes color and
size given the attribute shape, since they only hold if ✽✐❀ ❥❀ ❦ :

P (✦
(size)
❦ ❥ ✦

(shape)
❥ ) = P (✦

(size)
❦ ❥ ✦

(color)
✐ ❀ ✦

(shape)
❥ )



Example: VW Bora
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186 dim Proba-
bility space
174 Marginal
Probability
spaces



Probabilistic Decomposition

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 115

Definition: Let U = {A1, . . . , An} be a set of attributes and pU a probability
distribution over U . Furthermore, letM = {M1, . . . ,Mm} ⊆ 2U be a set of nonempty
(but not necessarily disjoint) subsets of U satisfying

⋃

M∈M

M = U.

pU is called decomposable or factorizable w.r.t. M iff it can be written as a
product of m nonnegative functions φM : EM → IR+

0 , M ∈M, i.e., iff

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

pU


 ∧

Ai∈U

Ai = ai


 =

∏

M∈M

φM


 ∧

Ai∈M

Ai = ai


.

If pU is decomposable w.r.t.M the set of functions

ΦM = {φM1
, . . . , φMm

} = {φM |M ∈M}

is called the decomposition or the factorization of pU .
The functions in ΦM are called the factor potentials of pU .



Conditional Independence
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Definition: Let Ω be a (finite) sample space, P a probability measure on Ω, and
A, B, and C attributes with respective domains dom(A), dom(B), and dom(C). A
and B are called conditionally probabilistically independent given C, written
A⊥⊥P B | C, iff

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

P (A = a,B = b | C = c) = P (A = a | C = c) · P (B = b | C = c)

Equivalent formula (sometimes more convenient):

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

P (A = a | B = b, C = c) = P (A = a | C = c)

Conditional independences make it possible to consider parts of a probability
distribution independent of others.
Therefore it is plausible that a set of conditional independences may enable a
decomposition of a joint probability distribution.



Conditional Independence: An Example
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Dependence (fictitious) between
smoking and life expectancy.

Each dot represents one person.

x-axis: age at death
y-axis: average number of

cigarettes per day

Weak, but clear dependence:

The more cigarettes are smoked,
the lower the life expectancy.

(Note that this data is artificial
and thus should not be seen as
revealing an actual dependence.)



Conditional Independence: An Example
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Group 1

Conjectured explanation:

There is a common cause,
namely whether the person
is exposed to stress at work.

If this were correct,
splitting the data should
remove the dependence.

Group 1:
exposed to stress at work

(Note that this data is artificial
and therefore should not be seen
as an argument against health
hazards caused by smoking.)



Conditional Independence: An Example
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Group 2

Conjectured explanation:

There is a common cause,
namely whether the person
is exposed to stress at work.

If this were correct,
splitting the data should
remove the dependence.

Group 2:
not exposed to stress at work

(Note that this data is artificial
and therefore should not be seen
as an argument against health
hazards caused by smoking.)



Probabilistic Decomposition (continued)
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Chain Rule of Probability:

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

P



∧n

i=1
Ai = ai


 =

n∏

i=1

P


Ai = ai

∣∣∣∣∣∣

∧i−1
j=1

Aj = aj




The chain rule of probability is valid in general
(or at least for strictly positive distributions).

Chain Rule Factorization:

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

P


∧n

i=1
Ai = ai


 =

n∏

i=1

P


Ai = ai

∣∣∣∣∣∣

∧
Aj∈parents(Ai)

Aj = aj




Conditional independence statements are used to “cancel” conditions.



Reasoning with Projections
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Due to the fact that color and size are conditionally independent given the shape,
the reasoning result can be obtained using only the projections to the subspaces:

s

s

m

m

l

l

color
new

old

shape

new old

size
old

new

old
new

old
new

·new
old

∑
line

·new
old

∑
column

0 0 0 1000

220 330 170 280

40
0
180

0
20

0
160
572

12
0
6

0
120

0
102
364

168
0
144

0
30

0
18
64

572 400

364 240

64 360

20
29

180
257

200
286

40
61

160
242

40
61

180
32

120
21

60
11

240 460 300

122 520 358

This reasoning scheme can be formally justified with probability measures.



Probabilistic Evidence Propagation, Step 1
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P (B = b | A = aobs)

= P


 ∨

a∈dom(A)

A = a,B = b,
∨

c∈dom(C)

C = c

∣∣∣∣∣∣
A = aobs




A: color
B: shape
C: size

(1)
=

∑

a∈dom(A)

∑

c∈dom(C)

P (A = a,B = b, C = c | A = aobs)

(2)
=

∑

a∈dom(A)

∑

c∈dom(C)

P (A = a,B = b, C = c) ·
P (A = a | A = aobs)

P (A = a)

(3)
=

∑

a∈dom(A)

∑

c∈dom(C)

P (A = a,B = b)P (B = b, C = c)

P (B = b)
·
P (A = a | A = aobs)

P (A = a)

=
∑

a∈dom(A)

P (A = a,B = b) ·
P (A = a | A = aobs)

P (A = a)

∑

c∈dom(C)

P (C = c | B = b)

︸ ︷︷ ︸
=1

=
∑

a∈dom(A)

P (A = a,B = b) ·
P (A = a | A = aobs)

P (A = a)
.



Probabilistic Evidence Propagation, Step 1 (continued)

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 123

(1) holds because of Kolmogorov’s axioms.

(3) holds because of the fact that the distribution pABC can be decomposed w.r.t.
the setM = {{A,B}, {B,C}}. (A: color, B: shape, C: size)

(2) holds, since in the first place

P (A = a,B = b, C = c |A = aobs) =
P (A = a,B = b, C = c, A = aobs)

P (A = aobs)

=





P (A = a,B = b, C = c)

P (A = aobs)
, if a = aobs,

0, otherwise,
and secondly

P (A = a,A = aobs) =

{
P (A = a), if a = aobs,
0, otherwise,

and therefore

P (A = a,B = b, C = c | A = aobs)

= P (A = a,B = b, C = c) ·
P (A = a | A = aobs)

P (A = a)
.



Probabilistic Evidence Propagation, Step 2
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P (C = c | A = aobs)

= P


 ∨

a∈dom(A)

A = a,
∨

b∈dom(B)

B = b, C = c

∣∣∣∣∣∣
A = aobs




A: color
B: shape
C: size

(1)
=

∑

a∈dom(A)

∑

b∈dom(B)

P (A = a,B = b, C = c | A = aobs)

(2)
=

∑

a∈dom(A)

∑

b∈dom(B)

P (A = a,B = b, C = c) ·
P (A = a | A = aobs)

P (A = a)

(3)
=

∑

a∈dom(A)

∑

b∈dom(B)

P (A = a,B = b)P (B = b, C = c)

P (B = b)
·
P (A = a | A = aobs)

P (A = a)

=
∑

b∈dom(B)

P (B = b, C = c)

P (B = b)

∑

a∈dom(A)

P (A = a,B = b) ·
R(A = a | A = aobs)

P (A = a)
︸ ︷︷ ︸

=P (B=b|A=aobs)

=
∑

b∈dom(B)

P (B = b, C = c) ·
P (B = b | A = aobs)

P (B = b)
.



Objective
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It is often possible to exploit local constraints (wherever they may come from —
both structural and expert knowledge-based) in a way that allows for a decomposi-
tion of the large (intractable) distribution P (X1, . . . , Xn) into several sub-structures
{C1, . . . , Cm} such that:

The collective size of those sub-structures is much smaller than that of the original
distribution P .

The original distribution P is decomposable (with no or at least as few as possible
errors) from these sub-structures in the following way:

P (X1, . . . , Xn) =
m∏

i=1

Ψi(ci)

where ci is an instantiation of Ci and Ψi(ci) ∈ R
+ a factor potential.


