Inference in Belief Trees




Inference in Belief Networks

A Bayesian Network is a complete model for the variables and their relationships.
It can be used to answer queries about them.

Typical question:
Given observes variables, what is the updated knowledge about the other variables.

There are exact inference methods for this task.
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Motivation

Choice of universe of discourse

Variable Domain
A metastatic cancer {ay, a0}
B increased serum calcium  {by, by}
C'  brain tumor {c1,00}
D coma {dq,d>}
E  headache {e1,eo}

Analysis of dependencies

Rudolf Kruse, Alexander Dockhorn

(-1 — present,-9 — absent)

(0 ={ay, a9} x -+ X {eq1, 2}
0] = 32
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Motivation

P = 0.8
(e | er) headaches common, but more common if tumor present
P(61 ’ CQ) = 0.6
P(dl by, Cl) = 0.8 )
P(d1 by, (32) = 0.8 o :
P(dy | by, cy) =08 > coma rare but common, if either cause is present
P(dy | bg,c9) =0.05 |
P(by|a;) =08 ) increased calcium uncommon,
P(by | ag) =02 f but common consequence of metastases
Plavta) =02 1 o d f metast
P(es | ay) = 0.05 rain tumor rare, and uncommon consequence of metastases
P(a1) =0.2 } incidence of metastatic cancer in relevant clinic
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Motivation
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Marginal distributions in the HUGIN tool.
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Motivation
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Conditional marginal distributions with evidence F = ey
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Probability Propagation in Trees

Given that the BN has a tree structure, any node divides the network into two
independent subtrees

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 209



Basic Equations

Given certain evidence, E (subset of instantiated variables), the posterior prob-
ability for a value ¢ of any variable B, can be obtained by applying the Bayes
rule:

P(B;|E) = P(B;)P(E|B;)/P(E)

We can separate the evidence into:
o F7: Evidence in the tree rooted in B.
o ET: All other evidence.

Then:

P(Bj|E) = P(B;)P(E~, E'|B;)/ P(E)
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Basic Equations

Given that ET and E~ are independent, by applying the Bayes rule again, we
obtain.

P(B;|E) = aP(B;|[ET)P(E™|B;)

Where o 1s a normalization constant.

We define the following terms:
A(B;) = P(E™|B;)

m(B;) = P(B;|E")

Then:
P(B;|E) = ar(B;)\(B;)
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Propagation Algorithm

The computation of the posterior probability of any node B is decomposed into
two parts:

o the evidence coming from the sons of B in the tree (\)

o and the evidence coming from the parent of B, ()

Each node B in the tree is like a simple processor that stores
o its vectors m(B) and \(B)

o its conditional probability table, P(B|A)

Evidence is propagated via a message passing mechanism
o each node sends the corresponding messages to its parent and sons in the tree
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Messages

A message sent from node B to its parent A
= >_ P(Bj|A)A(B))
J

A message sent from node B to its son S}, :

Wk<B = CWT H )\l
Ik

where [ refers to each one of the sons of B
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Combination and Propagation

Each node can receive several A messages, which are combined via a term by term
multiplication for the A messages received from each son (.Sy.):

NB;) = 1;[ As, (B;)

The propagation algorithm starts by assigning the evidence to the known variables,
and then propagating it through the message passing mechanism until:

o the root of the tree is reached for the A messages

o the leaves are reached for the m messages
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Bottom-up propagation
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Top-down propagation

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 216



Initial Conditions

Leaf nodes:
o If not known, A =[1,1,...,1] (a uniform distribution)
o If known, A = [0,0,...,1,...,0] (one for the assigned value and zero for all
other values).

Root node:
o If not known, m = P(A) (prior marginal probability vector)
o If known, m = [0,0,...,1,...,0] (one for the assigned value and zero for all
other values).
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Top-down propagation

Consider that the only evidence is F' = false - initial conditions for the leaf nodes

P(FIE) | el
fi 0.9
fo 0.1

€1

€2

0.7

0.4

0.3

0.6

are: A\p = [1,0] and \p = [1, 1] (no evidence)

Rudolf Kruse, Alexander Dockhorn

Bayesian Networks

218



Example - A propagation

Multiplying the A vectors by the corresponding CPTs

Ap(E)=[1 0 [8? 8;] = 0.9 0.5]

()= [1 1] |03 ) = [1 1

Then, A(£) is obtained by combining the messages from its two sons:

ME) = {09 05| x [1 1) =[0.9 05]

Propagation to its parent, C:

0.9 0.7

Ap(C) =109 05 [0.1 03

] = |0.86 0.78]
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Example - m propagation

Given that C'is not instantiated, 7(C) = [0.8 0.2]

Propagate to its son, £/, which also corresponds to multiplying the m vector by
the corresponding CPT"

0.9 0.7

r(E) =08 0.2] [O.l 05

;
] — [0.86 0.14}

We now propagate to its son D; however, given that E has another son, F', we
also need to consider the A message from this other son, thus:

0.7 04

m(D) = [0.86 0.14] x [0.9 0.5 [0.3 0.6

]T = |0.57 0.27]
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Example - Posterior Probabilities

Given the A and 7 vectors for each unknown variable, we just multiply them term
by term and then normalize to obtain the posterior probabilities:

P(C) = (0.8 0.2 x [0.86 0.78] ~ o [0.69 0.16]
~ 0.815 0.185]

P(E) = |0.86 0.14] x [0.9 05] &~ [0.77 0.07)
~ 0917 0.083]

P(D) =057 027] x [1 1] ~a|057 0.27]
~ [0.675 0.325}
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Analysis

The time complexity to obtain the posterior probability of all the variables in the
tree is proportional to the diameter of the network (the number of arcs in the
trajectory from the root to the most distant leaf).

The message passing mechanism can be directly extended to polytrees, as these
are also singly connected networks. In this case, a node can have multiple parents,
so the X messages should be sent from a node to all its parents

The propagation algorithm only applies to singly connected network
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Implementation of Belief Trees

Belief Tree: Parameters:
TIALP P(a1)201 P(bl|a1):O.7
P(by | ag) =0.2
P(d; | ay) = 0.8 P(e; | by) = 0.4
o P(dy | ag) = 0.4 P(ey | by) = 0.001
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Implementation of Belief Trees (2)

Belief Tree: Initialization Phase:

Set all A-messages and
A-values to 1.
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Implementation of Belief Trees (3)

Belief Tree: Initialization Phase:

Set all A-messages and
A-values to 1.

m(a1) = P(aq) and
m(az) = Pla)
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Implementation of Belief Trees (4)

Belief Tree: Initialization Phase:

Set all A-messages and
A-values to 1.

m(a1) = P(aq) and
m(az) = Plag).

A sends m-messages to

B and D.
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Implementation of Belief Trees (5)

Belief Tree: Initialization Phase:

Set all A-messages and
A-values to 1.
m(a1) = P(a1) and
i m(az) = Pla).
01| 104 A sends m-messages to
0.56 | 1| 0.56 B al’ld D
B and D update their
m-values.
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Implementation of Belief Trees (6)

Belief Tree: Initialization Phase:
T AP Set all A-messages and
a; |0.1] 101
4y |00 100 A-values to 1.

m(a1) = P(aq) and

i m(az) = P(ag).

401 oA A sends m-messages to

do | 0.56 | 1] 0.56 B al’ld D
B and D update their
m-values.
B sends m-message to C.

by by

(0.25, 0.75)/
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Implementation of Belief Trees (7)

Belief Tree: Initialization Phase:
T AP Set all A-messages and
a; |0.1] 101
4y |00 100 A-values to 1.

m(a1) = P(aq) and
m(az) = Plag).

A
401 oA A sends m-messages to

do | 0.56 | 1] 0.56 B and D

(0%5’0{)%5) y B and D update their
| m-values.
) b L B sends m-message to C.
) C' updates it m-value.

c1 | 0.10075 | 1 | 0.10075
co | 0.89925 | 1 | 0.89925
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Implementation of Belief Trees (8)

Belief Tree: Initialization Phase:
T AP Set all A-messages and
a; |01 101
4y |00 100 A-values to 1.

m(a1) = P(a1) and
i m(ag) = Plag).
401 0 A sends m-messages to
do | 0.56 | 1] 0.56 B and D

B and D update their

by by

02 0'75)/ | m-values.
., 2 LT B sends m-message to C.
1) C' updates it m-value.
T [A] P Initialization finished.

c1 | 0.10075 | 1 | 0.10075
co | 0.89925 | 1 | 0.89925
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Larger Network (1): Parameters
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PA) ] 0
al 0.4
a 0.6

Bayesian Networks
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0.25

0.1

0.75

0.9

PI|F)| h || f
i 0.25 || 0.5
i 0.75 | 05
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Larger Network (2): After Initialization

di
do

Rudolf Kruse, Alexander Dockhorn

ai

0.4

a2

0.6

0.4444

0.5556

Bayesian Networks

0.1285

0.8715

i

0.3643

i9

0.6357




Larger Network (3): Set Evidence ¢y, g1, h;
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ai

0.4

a2

0.6

| =
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= >

o

1]

0.3643

i9

0.6357
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Larger Network (4): Propagate Evidence
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ai

0.4

az

0.6

O | >
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0.3643

0.6357
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Larger Network (5): Propagate Evidence, cont.

B| n A P
b1 1 0.26 | 0.15 | 0.1048
by | 0.74 | 0.45 | 0.8952

by by
(0.15,0.45)
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ai

0.4

a2

0.6

H AP
h1 1)1
ho 0|0

Bayesian Networks

P

€1

0.19 ] 0.25 | 0.3696

0.1 | 0.6304

2

(0.25,0.1)

O = >

I T P
i1 | 0.3643 0.3643
i9 | 0.6357 0.6357
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Larger Network (6): Propagate Evidence, cont.

a; | 04104

ar | 061106

B| w P C| m A P
by | 0.26 | 0.15 | 0.1048 c1 1 0.19 | 0.25 | 0.3696
by | 0.74 | 0.45 0.1 | 0.6304

/ c1 9
(0.335,0.47)

bil f2
D] =« \(\0.3529,0.0914) NP
dy | 0.389 1|1
dy | 0.611 0

H | r P I T P
h1 111 i1 | 0.3643 | 1 | 0.3643
ho 010 19 | 0.6357 | 1 | 0.6357
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Larger Network (7): Propagate Evidence, cont.

by | 0.26 | 0.15 | 0.1048
by | 0.74 ] 0.45

D T A P

dy | 0.1361 | 1 | 0.3657 e1

dy | 0.2360 | 1 | 0.6343 e

O = >

| =
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A P

ai

0.4

0.39 | 0.4194

a2

0.6

0.36 | 0.5806

H|n| AP
h1 1)1
ho 00

Bayesian Networks

/ c1 €2
(0.335,0.47)

f1 P
(03529, 0.0014)

C| « A P
c1 | 0.19 | 0.0838 | 0.2948
0.047 | 0.7052

O = >

I T P
i1 | 0.1339 0.3014
i9 | 0.3104 0.6986
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Larger Network (8): Propagate Evidence, cont.

b1 1 0.26 | 0.15 | 0.1048

by | 0.74 | 0.45 | 0.8952
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A P

ai

0.4

0.39 | 0.4194

az

0.6

0.36 | 0.5806

aj DDNN

(0.0507,0.0562)

A P

H AP
h1 1)1
ho 0|0

Bayesian Networks

C1 c9
(0.0475, 0.0SlV

€1

0.19 | 0.0838

0.2948

2

0.81 | 0.047

0.7052

O = >

u

110.3014

i9
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Larger Network (9): Propagate Evidence, cont.

B| n A P
b1 1 0.26 | 0.15 | 0.1048
by | 0.74 | 0.45 | 0.8952

di

do
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A

P

ai

0.4

0.0198

0.3945

a2

0.6

0.0202

0.6055

ag DO
(0.0507, 0.0562

™

Bl

0.0628

0.65 | 0.

0.0657

PO =
| ot
&l S
5| &0

H|n| AP
h1 1)1
ho 00
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)

C1 c9
0.0475,0.081

V4

€1

0.19 | 0.0838

0.2948

2

0.81 | 0.047

0.7052

O = >

I T P
i1 | 0.1339 0.3014
i9 | 0.3104 0.6986
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Larger Network (10): Propagate Evidence, cont.
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ay a9
(0.0203, ().(]332%

ai

0.4

0.0198

0.3945

az

0.6

0.0202

0.6055

ay as
(0.1560, 0.2160)

H AP
h1 1)1
ho 0|0

Bayesian Networks

I T P
i1 | 0.1339 0.3014
i9 | 0.3104 0.6986

240



Larger Network (11): Propagate Evidence, cont.

ai | 0.4 1 0.0198 | 0.3945
as | 0.6 | 0.0202 | 0.6055

al a9 ai as
0.0203, 0.0337 0.1560, 0.2160
\

T P s P
0.0142 0.1061 0.0696 0.2910
0.0398 0.8939 0.3024 0.7090

D T AN P
dy | 0.1361 111
dy | 0.2360 0

H|n| X P I T A P
hy 1)1 i1 1 0.0062 | 1 | 0.3108
ho 0|0 i9 | 0.0138 | 1 | 0.6892
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Larger Network (12): Propagate Evidence, cont.

b1 | 0.0142 | 0.15
by | 0.0398 | 0.45

b1 b

2
(0.0021, 0.017y

di

do
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ai

0.4

0.0198

0.3945

az

0.6

0.0202

0.6055

P

H AP
h1 1)1
ho 0|0
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(&) c9
(0.0174, o.o3oy

€1

0.0696 | 0.0838

0.2910

2

0.3024

0.047

0.7090

O = >

u

11 0.3108

i9

1 10.6892




Larger Network (13): Propagate Evidence, cont.

b1 | 0.0142 | 0.15

by | 0.0398 | 0.45

by by
(0.0021,0.0179) 7

P
dy 1 0.0073 | 1 | 0.3659
do | 0.0127 | 1 | 0.6341
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€1

€2

O = >

| =

ai

0.4

0.0198 | 0.3945

a2

0.6

0.0202 | 0.6055

Bl

0.0234

0.0243

0.65 | 0.
)

H|n| AP
h1 1)1
ho 00
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€1

0.0696 | 0.0838

0.2910

2

0.3024

0.047

0.7090

O = >

I T P
i1 | 0.0062 0.3108
i9 | 0.0138 0.6892
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Larger Network (14): Propagate Evidence, cont.
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ai

0.4

0.0198

0.3945

az

0.6

0.0202

0.6055

O | >

O =
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i

0.3108

i9

0.6892
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Larger Network (15): Finished

ai | 0.4 1 0.0198 | 0.3945
as | 0.6 | 0.0202 | 0.6055

P
0.2910
0.7090
D T A P E|n| AP G|« P
dy | 0.0073 | 1 | 0.3659 el 111 q1 1
dy | 0.0127 | 1 | 0.6341 €9 0 90

H|n| X P I T A P
hy 1)1 i1 | 0.0062 | 1 | 0.3106
ho 0 i9 | 0.0138 | 1 | 0.6894
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