Clique Tree Representations

Problems

The propagation algorithm as presented can only deal with trees.
Can be extended to polytrees (i.e. singly connected graphs with multiple parents per node).
However, it cannot handle networks that contain loops!

Idea

Main Objectives:

Transform the cyclic directed graph into a secondary structure without cycles.
Find a decomposition of the underlying joint distribution.

Task:

Combine nodes of the original (primary) graph structure.
These groups form the nodes of a secondary structure.
Find a transformation that yields tree structure.

Idea (2)

Secondary Structure:

We will generate an undirected graph mimicking (some of) the conditional independence statements of the cyclic directed graph.

Maximal cliques are identified and form the nodes of the secondary structure.
Specify a so-called potential function for every clique such that the product of all potentials yields the initial joint distribution.

In order to propagate evidence, create a tree from the clique nodes such that the following property is satisfied:

If two cliques have some attributes in common, then these attributes have to be contained in every clique of the path connecting the two cliques. (called the running intersection property, RIP)

Justification:

Tree: Unique path of evidence propagation.
RIP: Update of an attribute reaches all cliques which contain it.

Prerequisites

Complete Graph

An undirected Graph $G=(V, E)$ is called complete, if every pair of (distinct) nodes is connected by an edge.

Induced Subgraph

Let $G=(V, E)$ be an undirected graph and $W \subseteq V$ a selection of nodes. Then, $G_{W}=\left(W, E_{W}\right)$ is called the subgraph of G induced by W with E_{W} being

$$
E_{W}=\{(u, v) \in E \mid u, v \in W\}
$$

Incomplete graph

Subgraph $\left(W, E_{W}\right)$ with $W=\{A, B, C, E\}$

Complete (sub)graph

Prerequisites (2)

Complete Set, Clique

Let $G=(V, E)$ be an undirected graph. A set $W \subseteq V$ is called complete iff it induces a complete subgraph. It is further called a clique, iff W is maximal, i.e. it is not possible to add a node to W without violating the completeness condition.
a) W is complete $\Leftrightarrow W$ induces a complete subgraph
b) W is a clique $\Leftrightarrow W$ is complete and maximal

$$
\begin{aligned}
& C_{1}=\{A, B, C, D\} \\
& C_{2}=\{B, D, E\} \\
& C_{3}=\{E, F\}
\end{aligned}
$$

Prerequisites (3)

Perfect Ordering

Let $G=(V, E)$ be an undirected graph with n nodes and $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ a total ordering on V. Then, α is called perfect, if the following sets

$$
\operatorname{adj}\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\} \quad i=1, \ldots, n
$$

are complete, where $\operatorname{adj}\left(v_{i}\right)=\left\{w \mid\left(v_{i}, w\right) \in E\right\}$ returns the adjacent nodes of v_{i}.

i	$\operatorname{adj}\left(v_{i}\right)$	$\left\{v_{1}, \ldots, v_{i-1}\right\} \cap \operatorname{adj}\left(v_{i}\right)$		
1	$\{C\}$	$\emptyset \cap\{C\}$	$=\emptyset$	complete
2	$\{A, D, F\}$	$\{A\} \cap\{A, D, F\}$	$=\{A\}$	complete
3	$\{C, B, E, F\}$	$\{A, C\} \cap\{C, B, E, F\}$	$=\{C\}$	complete
4	$\{G, C, D, E, H\}$	$\{A, C, D\} \cap\{G, C, D, E, H\}$	$=\{C, D\}$	complete
5	$\{B, D, F, H\}$	$\{A, C, D, F\} \cap\{B, D, F, H\}$	$=\{D, F\}$	complete
6	$\{D, E\}$	$\{A, C, D, F, E\} \cap\{D, E\}$	$=\{D, E\}$	complete
7	$\{F, E\}$	$\{A, C, D, F, E, B\} \cap\{F, E\}$	$=\{F, E\}$	complete
8	$\{F\}$	$\{A, C, D, F, E, B, H\} \cap\{F\}$	$=\{F\}$	complete

α is a perfect ordering
$\alpha=\langle A, C, D, F, E, B, H, G\rangle$

Prerequisites (4)

Running Intersection Property

Let $G=(V, E)$ be an undirected graph with p cliques. An ordering of these cliques has the running intersection property (RIP), if for every $j>1$ there exists an $i<j$ such that:

$$
C_{j} \cap\left(C_{1} \cup \cdots \cup C_{j-1}\right) \subseteq C_{i}
$$

C_{6}

j				
2	$C_{2} \cap C_{1}$	$=\{C\}$	$\subseteq C_{1}$	1
3	$C_{3} \cap\left(C_{1} \cup C_{2}\right)$	$=\{D, F\}$	$\subseteq C_{2}$	2
4	$C_{4} \cap\left(C_{1} \cup C_{2} \cup C_{3}\right)$	$=\{D, E\}$	$\subseteq C_{3}$	3
5	$C_{5} \cap\left(C_{1} \cup C_{2} \cup C_{3} \cup C_{4}\right)$	$=\{E, F\}$	$\subseteq C_{3}$	3
6	$C_{6} \cap\left(C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \cup C_{5}\right)$	$=\{F\}$	$\subseteq C_{5}$	5

ξ has running intersection property

Prerequisites (5)

If a node ordering α of an undirected graph $G=(V, E)$ is perfect and the cliques of G are ordered according to the highest rank (w.r.t. α) of the containing nodes, then this clique ordering has RIP.

Clique	Rank		
$\{A, C\}$	$\max \{\alpha(A), \alpha(C)\}$	$=2$	$\rightarrow C_{1}$
$\{C, D, F\}$	$\max \{\alpha(C), \alpha(D), \alpha(F)\}$	$=4$	$\rightarrow C_{2}$
$\{D, E, F\}$	$\max \{\alpha(D), \alpha(E), \alpha(F)\}$	$=5$	$\rightarrow C_{3}$
$\{B, D, E\}$	$\max \{\alpha(B), \alpha(D), \alpha(E)\}$	$=6$	$\rightarrow C_{4}$
$\{F, E, H\}$	$\max \{\alpha(F), \alpha(E), \alpha(H)\}$	$=7$	$\rightarrow C_{5}$
$\{F, G\}$	$\max \{\alpha(F), \alpha(G)\}$	$=8$	$\rightarrow C_{6}$

How to get a perfect ordering?

Triangulated Graphs

Triangulated Graph

An undirected graph is called triangulated if every simple loop (i. e. path with identical start and end node but with any other node occurring at most once) of length greater 3 has a chord.

not triangulated

triangulated

not triangulated

no chord for $\langle A, B, E, C\rangle$

Triangulated Graphs (2)

Maximum Cardinality Search

Let $G=(V, E)$ be an undirected graph. An ordering according maximum cardinality search (MCS) is obtained by first assigning 1 to an arbitray node. If n numbers are assigned the node that is connected to most of the nodes already numbered gets assigned number $n+1$.

3 can be assigned to D or F
6 can be assigned to H or B

Triangulated Graphs (3)

If an undirected graph is triangulated, then the ordering obtained by MCS is perfect.
To check whether a graph is triangulated is efficient to implement. The optimization problem that is related to the triangulation task is NP-hard. However, there are good heuristics.

Moral Graph (Repetition)

Let $G=(V, E)$ be a directed acyclic graph. If $u, w \in W$ are parents of $v \in V$ connect u and w with an (arbitrarily oriented) edge. After the removal of all edge directions the resulting graph $G_{m}=\left(V, E^{\prime}\right)$ is called the moral graph of G.

Join-Tree Construction (1)

Given directed graph.

Join-Tree Construction (2)

- Moral graph

Join-Tree Construction (3)

- Moral graph
- Triangulated graph

Join-Tree Construction (4)

- Moral graph
- Triangulated graph
- MCS yields perfect ordering

Join-Tree Construction (5)

- Moral graph
- Triangulated graph
- MCS yields perfect ordering
- Clique order has RIP

Join-Tree Construction (6)

- Moral graph
- Triangulated graph
- MCS yields perfect ordering
- Clique order has RIP
- Form a join-tree

Two cliques can be connected if they have a non-empty intersection. The generation of the tree follows the RIP. In case of a tie, connect cliques with the largest intersection. (e.g. $D B E-F E D$ instead of $D B E-C F D)$ Break remaining ties arbitrarily.

Example: Expert Knowledge

Qualitative knowledge:

Metastatic cancer is a possible cause of brain tumor, and is also an explanation for increased total serum calcium. In turn, either of these could explain a patient falling into a coma. Severe headache is also possibly associated with a brain tumor.

Special case:

The patient has heavy headache.

Query:

Will the patient fall into coma?

Example: Choice of State Space

Attribute	Possible Values	
A	metastatic cancer	$\operatorname{dom}(A)=\left\{a_{1}, a_{2}\right\}$
$\cdot{ }^{\prime}=$ existing		
B	increased total serum calcium	$\operatorname{dom}(B)=\left\{b_{1}, b_{2}\right\}$
$\cdot 2=$ notexisting		
C	brain tumor	$\operatorname{dom}(C)=\left\{c_{1}, c_{2}\right\}$
D	coma	$\operatorname{dom}(D)=\left\{d_{1}, d_{2}\right\}$
E	severe headache	$\operatorname{dom}(E)=\left\{e_{1}, e_{2}\right\}$

Exhaustive state space:

$$
\Omega=\operatorname{dom}(A) \times \operatorname{dom}(B) \times \operatorname{dom}(C) \times \operatorname{dom}(D) \times \operatorname{dom}(E)
$$

Marginal and conditional probabilities are of interest for the user!

Example: Qualitative Knowledge

$$
\left.\left.\begin{array}{rl}
P\left(e_{1} \mid c_{1}\right) & =0.8 \\
P\left(e_{1} \mid c_{2}\right) & =0.6 \\
P\left(d_{1} \mid b_{1}, c_{1}\right) & =0.8 \\
P\left(d_{1} \mid b_{1}, c_{2}\right) & =0.8 \\
P\left(d_{1} \mid b_{2}, c_{1}\right) & =0.8 \\
P\left(d_{1} \mid b_{2}, c_{2}\right) & =0.05 \\
P\left(b_{1} \mid a_{1}\right) & =0.8 \\
P\left(b_{1} \mid a_{2}\right) & =0.2 \\
P\left(c_{1} \mid a_{1}\right) & =0.2 \\
P\left(c_{1} \mid a_{2}\right) & =0.05 \\
P\left(a_{1}\right) & =0.2
\end{array}\right\} \text { headaches common, but more common if tumor present } \quad \begin{array}{c}
\text { increased calcium uncommon, } \\
\text { but common consequence of metastases }
\end{array}\right\} \text { brain tumor rare, and uncommon consequence of metastases }
$$

Example (1)

Example: Metastatic Cancer

Dependencies

Moralization/Triangulation

MCS, hyper graph

Example (2)

Quantitative knowledge:

(a, b, c)	$P(a, b, c)$
a_{1}, b_{1}, c_{1}	0.032
a_{2}, b_{1}, c_{1}	0.008
\vdots	\vdots
a_{2}, b_{2}, c_{2}	0.608

(b, c, d)	$P(b, c, d)$
b_{1}, c_{1}, d_{1}	0.032
b_{2}, c_{1}, d_{1}	0.032
\vdots	\vdots
b_{2}, c_{2}, d_{2}	0.608

(c, e)	$P(c, e)$
c_{1}, e_{1}	0.064
c_{2}, e_{1}	0.552
c_{1}, e_{2}	0.016
c_{2}, e_{2}	0.368

Decomposition:

$$
\begin{aligned}
P(A, B, C, D, E) & =P(A) P(B \mid A) P(C \mid A) P(D \mid B C) P(E \mid C) \\
& =\frac{P(A, B) P(B, C, D), P(C, E)}{P(B C) P(C)}
\end{aligned}
$$

Example (3)

Marginal distributions in the HUGIN tool.

Example (4)

Conditional marginal distributions with evidence $E=e_{1}$

