# Manual Building of Bayes Networks

Manual creation of a reasoning system based on a graphical model:



Problem: strong assumptions about the statistical effects of causal relations. Nevertheless this approach often yields usable graphical models.



See paper on our website.

#### Danish Jersey Cattle Blood Type Determination



- 21 attributes:
  - 1 dam correct?
  - 2 sire correct?
  - 3 stated dam ph.gr. 1 14 factor 40
  - $4 \text{stated dam ph.gr. } 2 \qquad 15 \text{factor } 41$
  - 5-stated sire ph.gr. 1 16-factor 42
  - 6-stated sire ph.gr. 2
  - 7 true dam ph.gr. 1
  - 8 true dam ph.gr. 2
- 9 true sire ph.gr. 1
- 10 true sire ph.gr. 2

- 11 offspring ph.gr. 1
- 12 offspring ph.gr. 2
- 13 offspring genotype

- 17 factor 43
- 18 -lysis 40
- 19 -lysis 41
- 20 -lysis 42
- 21 -lysis 43

The grey nodes correspond to observable attributes.

This graph was specified by human domain experts, based on knowledge about (causal) dependences of the variables.

Rudolf Kruse, Alexander Dockhorn

**Bayesian** Networks

Full 21-dimensional domain has  $2^6 \cdot 3^{10} \cdot 6 \cdot 8^4 = 92\ 876\ 046\ 336$  possible states. Bayesian network requires only 306 conditional probabilities.

Example of a conditional probability table (attributes 2, 9, and 5):

| sire    | true sire    | stated sire phenogroup 1 |      |      |
|---------|--------------|--------------------------|------|------|
| correct | phenogroup 1 | F1                       | V1   | V2   |
| yes     | F1           | 1                        | 0    | 0    |
| yes     | V1           | 0                        | 1    | 0    |
| yes     | V2           | 0                        | 0    | 1    |
| no      | F1           | 0.58                     | 0.10 | 0.32 |
| no      | V1           | 0.58                     | 0.10 | 0.32 |
| no      | V2           | 0.58                     | 0.10 | 0.32 |

The probabilities are acquired from human domain experts or estimated from historical data.



**moral graph** (already triangulated) join tree

Marginal distributions before setting evidence:



Conditional distributions given evidence in the input variables:



#### Strategy of the VW Group

| Marketing strategy | Vehicle specification by | Bestsellers defined by |
|--------------------|--------------------------|------------------------|
|                    | clients                  | manufacturer           |
| Complexity         | Huge number of variants  | Small number of vari-  |
|                    |                          | ants                   |



#### Vehicle specification

| Equipment | fastback      | 2,8l,150kW | Type Alpha | 4     | leather    |     |
|-----------|---------------|------------|------------|-------|------------|-----|
| Group     | car body type | engine     | radio      | doors | seat cover | ••• |

Approx. 200 equipment groups

2 to 50 items per group

Therefore more than  $2^{200}$  possible vehicle specifications

Choice of valid specifications is constrained by a rule system (10000 technical rules, plus marketing and production rules)

Example of technical rules:

If Engine= $e_1$  then Transmission= $t_3$ 

If Engine= $e_4$  and Heating= $h_2$  then Generator  $\in \{g_3, g_4, g_5\}$ 

### **Problem Representation**



capacity restrictions, ...)

## **Complexity of the Planning Problem**

#### Equipment table

|        | Engine | Transmission | Heating | Generator | •••   |
|--------|--------|--------------|---------|-----------|-------|
| 1      | $e_1$  | $t_3$        | $h_1$   | $g_1$     | • • • |
| 2      | $e_2$  | $t_4$        | $h_3$   | $g_5$     | •••   |
|        | • • •  | • • •        | • • •   | • • •     | •••   |
| 100000 | $e_7$  | $t_1$        | $h_3$   | $g_2$     | •••   |

#### Installation rates

| Engine | Transmission | Heating | Generator | • • • | Rate      |
|--------|--------------|---------|-----------|-------|-----------|
| $e_1$  | $t_1$        | $h_1$   | $g_1$     | • • • | 0.0000012 |
| • • •  | • • •        | • • •   | •••       | • • • | •••       |

Result is a 200-dimensional, finite probability space

$$P(\text{Engine} = e_1, \text{Transmission} = t_3) = ?$$

 $P(\text{Heating} = h_1 \mid \text{Generator} = g_3) = ?$ 

## Solution: Decomposition into Subspaces



 $P(E, H, T, A) = P(A \mid E, H, T) \cdot P(T \mid E, H) \cdot P(E \mid H) \cdot P(H)$  $\stackrel{\text{here}}{=} P(A \mid E, H) \quad \cdot P(T \mid E) \quad \cdot P(E) \quad \cdot P(H)$ 



Hypergraph Decomposition

## Clique Tree of the VW Bora



Rudolf Kruse, Alexander Dockhorn

**Bayesian** Networks

## **Typical Planning Operation: Focusing**

### Application:

#### $\circ$ Compute item demand

Calculation of installation rates of equipment combinations

#### • Simulation

Analyze customer requirements (e.g. of persons having ordered a navigation system for a VW Polo)

Input: Equipment combinations

#### **Operation:** Compute

- $\circ\,$  the conditional network distribution and
- the probabilities of the specified equipment combinations.

## **Implementation and Deployment**

Project leader: Intelligent System Consulting (Gebhardt)

- Client server system
- Server on 6–8 maschines
- Quadcore platform
- Terabyte hard drive
- Java, Linux, Oracle
- WebSphere application server
- Software used daily worldwide
- 20 developers
- 5000 Bayesian networks are currently used

