Building Bayes Networks: Parameter Learning

Learning Naive Bayes Classifier

Given: A database of samples from domain of interest. The graph underlying a graphical model for the domain.
Desired: Good values for the numeric parameters of the model.

Example: Naive Bayes Classifiers

A naive Bayes classifier is a Bayesian network with star-like structure.
The class attribute is the only unconditional attribute.
All other attributes are conditioned on the class only

The structure of a naive Bayes classifier is fixed once the attributes have been selected. The only remaining task is to estimate the parameters of the needed probability distributions.

Probabilistic Classification

A classifier is an algorithm that assigns a class from a predefined set to a case or object, based on the values of descriptive attributes.

An optimal classifier maximizes the probability of a correct class assignment.

- Let C be a class attribute with $\operatorname{dom}(C)=\left\{c_{1}, \ldots, c_{n_{C}}\right\}$, which occur with probabilities $p_{i}, 1 \leq i \leq n_{C}$.
- Let q_{i} be the probability with which a classifier assigns class c_{i}. $\left(q_{i} \in\{0,1\}\right.$ for a deterministic classifier $)$
- The probability of a correct assignment is

$$
P(\text { correct assignment })=\sum_{i=1}^{n_{C}} p_{i} q_{i}
$$

- Therefore the best choice for the q_{i} is

$$
q_{i}= \begin{cases}1, & \text { if } p_{i}=\max _{k=1}^{n_{C}} p_{k} \\ 0, & \text { otherwise }\end{cases}
$$

Probabilistic Classification

Consequence: An optimal classifier should assign the most probable class.
This argument does not change if we take descriptive attributes into account.

- Let $U=\left\{A_{1}, \ldots, A_{m}\right\}$ be a set of descriptive attributes with domains $\operatorname{dom}\left(A_{k}\right), 1 \leq k \leq m$.
- Let $A_{1}=a_{1}, \ldots, A_{m}=a_{m}$ be an instantiation of the descriptive attributes.
- An optimal classifier should assign the class c_{i} for which

$$
\begin{aligned}
& P\left(C=c_{i} \mid A_{1}=a_{1}, \ldots, A_{m}=a_{m}\right)= \\
& \quad \max _{j=1}^{n_{C}} P\left(C=c_{j} \mid A_{1}=a_{1}, \ldots, A_{m}=a_{m}\right)
\end{aligned}
$$

Problem: We cannot store a class (or the class probabilities) for every possible instantiation $A_{1}=a_{1}, \ldots, A_{m}=a_{m}$ of the descriptive attributes.
(The table size grows exponentially with the number of attributes.)
Therefore: Simplifying assumptions are necessary.

Bayes' Rule and Bayes' Classifiers

Bayes' classifiers: Compute the class probabilities as

$$
\begin{aligned}
& P\left(C=c_{i} \mid A_{1}=a_{1}, \ldots, A_{m}=a_{m}\right)= \\
& \quad \frac{P\left(A_{1}=a_{1}, \ldots, A_{m}=a_{m} \mid C=c_{i}\right) \cdot P\left(C=c_{i}\right)}{P\left(A_{1}=a_{1}, \ldots, A_{m}=a_{m}\right)}
\end{aligned}
$$

Looks unreasonable at first sight: Even more probabilities to store.

Naive Bayes Classifiers

Naive Assumption:

The descriptive attributes are conditionally independent given the class.

Bayes' Rule:
$P\left(C=c_{i} \mid \omega\right)=\frac{P\left(A_{1}=a_{1}, \ldots, A_{m}=a_{m} \mid C=c_{i}\right) \cdot P\left(C=c_{i}\right)}{P\left(A_{1}=a_{1}, \ldots, A_{m}=a_{m}\right)}$
$\leftarrow p_{0}$
abbrev. for the normalizing constant

Chain Rule of Probability:
$P\left(C=c_{i} \mid \omega\right)=\frac{P\left(C=c_{i}\right)}{p_{0}} \cdot \prod_{k=1}^{m} P\left(A_{k}=a_{k} \mid A_{1}=a_{1}, \ldots, A_{k-1}=a_{k-1}, C=c_{i}\right)$
Conditional Independence Assumption:
$P\left(C=c_{i} \mid \omega\right)=\frac{P\left(C=c_{i}\right)}{p_{0}} \cdot \prod_{k=1}^{m} P\left(A_{k}=a_{k} \mid C=c_{i}\right)$

Naive Bayes Classifiers (continued)

Consequence: Manageable amount of data to store.
Store distributions $P\left(C=c_{i}\right)$ and $\forall 1 \leq k \leq m: P\left(A_{k}=a_{k} \mid C=c_{i}\right)$.

Classification: Compute for all classes c_{i}

$$
P\left(C=c_{i} \mid A_{1}=a_{1}, \ldots, A_{m}=a_{m}\right) \cdot p_{0}=P\left(C=c_{i}\right) \cdot \prod_{j=1}^{n} P\left(A_{j}=a_{j} \mid C=c_{i}\right)
$$

and predict the class c_{i} for which this value is largest.
Relation to Bayesian Networks:

Decomposition formula:

$$
\begin{aligned}
& P\left(C=c_{i}, A 1=a_{1}, \ldots, A_{n}=a_{n}\right) \\
= & P\left(C=c_{i}\right) \cdot \prod_{j=1}^{n} P\left(A_{j}=a_{j} \mid C=c_{i}\right)
\end{aligned}
$$

Naive Bayes Classifiers: Parameter Estimation

Estimation of Probabilities:

Nominal/Categorical Attributes

$$
\hat{P}\left(A_{k}=a_{k} \mid C=c_{i}\right)=\frac{\#\left(A_{k}=a_{k}, C=c_{i}\right)+\gamma}{\#\left(C=c_{i}\right)+n_{A_{k}} \gamma}
$$

$\#(\varphi)$ is the number of example cases that satisfy the condition φ
$n_{A_{j}}$ is the number of values of the attribute A_{j}.
γ is called Laplace correction
$\gamma=0$: Maximum likelihood estimation.
Common choices: $\gamma=1$ or $\gamma=\frac{1}{2}$.
Laplace correction help to avoid problems with attribute values
that do not occur with some class in the given data.
It also introduces a bias towards a uniform distribution.

Naive Bayes Classifiers: Parameter Estimation

Estimation of Probabilities:

Metric/Numeric Attributes: Assume a normal distribution.

$$
P\left(A_{k}=a_{k} \mid C=c_{i}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{k}\left(c_{i}\right)} \exp \left(-\frac{\left(a_{k}-\mu_{k}\left(c_{i}\right)\right)^{2}}{2 \sigma_{k}^{2}\left(c_{i}\right)}\right)
$$

Estimate of mean value

$$
\hat{\mu}_{k}\left(c_{i}\right)=\frac{1}{\#\left(C=c_{i}\right)} \sum_{j=1}^{\#\left(C=c_{i}\right)} a_{k}(j)
$$

Estimate of variance

$$
\hat{\sigma}_{k}^{2}\left(c_{i}\right)=\frac{1}{\xi} \sum_{j=1}^{\#\left(C=c_{i}\right)}\left(a_{k}(j)-\hat{\mu}_{k}\left(c_{i}\right)\right)^{2}
$$

$\xi=\#\left(C=c_{i}\right) \quad:$ Maximum likelihood estimation
$\xi=\#\left(C=c_{i}\right)-1:$ Unbiased estimation

Naive Bayes Classifiers: Simple Example 1

No	Sex	Age	Blood pr.	Drug
1	male	20	normal	A
2	female	73	normal	B
3	female	37	high	A
4	male	33	low	B
5	female	48	high	A
6	male	29	normal	A
7	female	52	normal	B
8	male	42	low	B
9	male	61	normal	B
10	female	30	normal	A
11	female	26	low	B
12	male	54	high	A

P (Drug)	A	B
	0.5	0.5
P (Sex \| Drug)	A	B
male	0.5	0.5
female	0.5	0.5
P (Age \| Drug)	A	B
μ	36.3	47.8
σ^{2}	161.9	311.0
P (Blood Pr. \mid Drug)	A	B
low	0	0.5
normal	0.5	0.5
high	0.5	0

A simple database and estimated (conditional) probability distributions.

Naive Bayes Classifiers: Simple Example 1

```
\(P(\) Drug A | male, 61, normal)
    \(=c_{1} \cdot P(\) Drug A \() \cdot P(\) male \(\mid\) Drug A \() \cdot P(61 \mid\) Drug A \() \cdot P(\) normal \(\mid\) Drug A \()\)
    \(\approx c_{1} \cdot 0.5 \cdot 0.5 \cdot 0.004787 \cdot 0.5=c_{1} \cdot 5.984 \cdot 10^{-4}=0.219\)
\(P\) (Drug B | male, 61, normal)
    \(=c_{1} \cdot P(\) Drug B \() \cdot P(\) male \(\mid\) Drug B \() \cdot P(61 \mid\) Drug B \() \cdot P(\) normal \(\mid\) Drug B \()\)
    \(\approx c_{1} \cdot 0.5 \cdot 0.5 \cdot 0.017120 \cdot 0.5=c_{1} \cdot 2.140 \cdot 10^{-3}=0.781\)
\(P\) (Drug A | female, 30, normal)
    \(=c_{2} \cdot P(\) Drug A \() \cdot P(\) female \(\mid \operatorname{Drug} \mathrm{A}) \cdot P(30 \mid \operatorname{Drug} \mathrm{A}) \cdot P(\) normal \(\mid \operatorname{Drug} \mathrm{A})\)
    \(\approx c_{2} \cdot 0.5 \cdot 0.5 \cdot 0.027703 \cdot 0.5=c_{2} \cdot 3.471 \cdot 10^{-3}=0.671\)
\(P\) (Drug B | female, 30, normal)
        \(=c_{2} \cdot P(\) Drug B\() \cdot P(\) female \(\mid\) Drug B\() \cdot P(30 \mid\) Drug B\() \cdot P(\) normal \(\mid\) Drug B\()\)
        \(\approx c_{2} \cdot 0.5 \cdot 0.5 \cdot 0.013567 \cdot 0.5=c_{2} \cdot 1.696 \cdot 10^{-3}=0.329\)
```


Naive Bayes Classifiers: Simple Example 2

100 data points, 2 classes

Small squares: mean values

Inner ellipses:
one standard deviation

Outer ellipses:
two standard deviations

Classes overlap:
classification is not perfect

Naive Bayes Classifier

Naive Bayes Classifiers: Simple Example 3

20 data points, 2 classes

Small squares: mean values

Inner ellipses:
one standard deviation

Outer ellipses:
two standard deviations

Attributes are not conditionally independent given the class

Naive Bayes Classifier

Learning the parameters of a Graphical Model

Probability values can be estimated using methods of inductive statistics.

Learning the parameters of a Graphical Model

Flu G	\bar{g}	\bar{g}	\bar{g}	\bar{g}	g	g	g	g
Malaria M	$\overline{\mathrm{m}}$	$\overline{\mathrm{m}}$	m	m	$\overline{\mathrm{m}}$	$\overline{\mathrm{m}}$	m	m
Fever F	$\overline{\mathrm{f}}$	f	$\overline{\mathrm{f}}$	f	$\overline{\mathrm{f}}$	f	$\overline{\mathrm{f}}$	f
$\#$	34	6	2	8	16	24	0	10

Database D with 100 entries for 3 attributes.

As the structure given by the graph of the previous slide suggests, the probability of $P(g, m, f)$ can be computed by:

$$
P(\mathrm{~g}, \mathrm{~m}, \mathrm{f})=P(\mathrm{~g}) P(\mathrm{~m}) P(\mathrm{f} \mid \mathrm{g}, \mathrm{~m})
$$

Estimates for these probabilities can be calculated, e.g. using the database

$$
\begin{aligned}
& \hat{P}(\mathrm{f} \mid \mathrm{g}, \mathrm{~m})=\frac{\hat{P}(\mathrm{f}, \mathrm{~g}, \mathrm{~m})}{\hat{P}(\mathrm{~g}, \mathrm{~m})}=\frac{\frac{\#(\mathrm{~g}, \mathrm{~m}, \mathrm{f})}{|D|}}{\frac{\#(\mathrm{~g}, \mathrm{~m})}{|D|}}=\frac{\#(\mathrm{~g}, \mathrm{~m}, \mathrm{f})}{\#(\mathrm{~g}, \mathrm{~m})}=\frac{10}{10}=1.00 \\
& \hat{P}(\mathrm{f} \mid \overline{\mathrm{g}}, \overline{\mathrm{~m}})=\frac{\hat{P}(\mathrm{f}, \overline{\mathrm{~g}}, \overline{\mathrm{~m}})}{\hat{P}(\overline{\mathrm{~g}}, \overline{\mathrm{~m}})}=\frac{\frac{\#(\overline{\mathrm{~g}}, \overline{\mathrm{~m}}, \mathrm{f})}{|D|}}{\frac{\#(\overline{\mathrm{~g}}, \overline{\mathrm{~m}})}{|D|}}=\frac{\#(\overline{\mathrm{~g}}, \overline{\mathrm{~m}}, \mathrm{f})}{\#(\overline{\mathrm{~g}}, \overline{\mathrm{~m}})}=\frac{6}{40}=0.15
\end{aligned}
$$

Likelihood of a Database

Let B_{P} be the description of the parameters, B_{S} be the given structure and D the data.
The likelihood of the calculated probabilities $P\left(D \mid B_{S}, B_{P}\right)$ can be computed under presence of three assumptions:

1. The data generation process can be described exactly by a Bayesian network $\left(B_{S}, B_{P}\right)$
2. The single tuples of the dataset are independent of each other.
3. All tuples are complete, therefore no missing values hinder the probability inference

The first assumption legitimates the search of an appropriate bayesian network.
The second assumption is required for an unbiased observation of dataset tuples.
Assumption three ensures the inference of B_{P} using D and B_{S} as shown on the previous slides.

Likelihood of a Database

Flu G	\bar{g}	\bar{g}	\bar{g}	\bar{g}	g	g	g	g
Malaria M	\bar{m}	\bar{m}	\mathbf{m}	\mathbf{m}	\bar{m}	\bar{m}	\mathbf{m}	\mathbf{m}
Fever F	\bar{f}	f	$\overline{\mathrm{f}}$	f	$\overline{\mathrm{f}}$	f	$\overline{\mathrm{f}}$	f
$\#$	34	6	2	8	16	24	0	10

Database D with 100 entries c_{h} for 3 attributes.

$$
P\left(D \mid B_{S}, B_{P}\right)=\prod_{h=1}^{100} P\left(c_{h} \mid B_{S}, B_{P}\right)
$$

Likelihood of a Database

$$
\begin{aligned}
& P\left(D \mid B_{S}, B_{P}\right)=\prod_{h=1}^{100} P\left(c_{h} \mid B_{S}, B_{P}\right) \\
& =P(\mathrm{f} \mid \mathrm{g}, \mathrm{~m})^{10} P(\overline{\mathrm{f}} \mid \mathrm{g}, \mathrm{~m})^{0} P(\mathrm{f} \mid \mathrm{g}, \overline{\mathrm{~m}})^{24} P(\overline{\mathrm{f}} \mid \mathrm{g}, \overline{\mathrm{~m}})^{16} \\
& \\
& \\
& \quad \cdot P(\mathrm{f} \mid \overline{\mathrm{g}}, \mathbf{m})^{8} P(\overline{\mathrm{f}} \mid \overline{\mathrm{g}}, \mathrm{~m})^{2} P(\mathbf{f} \mid \overline{\mathrm{g}}, \overline{\mathrm{~m}})^{6} P(\overline{\mathrm{f}} \mid \overline{\mathrm{g}}, \overline{\mathrm{~m}})^{34} \\
&
\end{aligned}
$$

The last equation shows the principle of reordering the factors:
First, we sort by attributes (here: F, G then M).
Within the same attributes, factors are grouped by the parent attributes' values combinations (here: for $F:(\mathrm{g}, \mathrm{m}),(\mathrm{g}, \overline{\mathrm{m}}),(\overline{\mathrm{g}}, \mathrm{m})$ and $(\overline{\mathrm{g}}, \overline{\mathrm{m}})$).
Finally, it is sorted by attribute values (here: for F : first f, then \bar{f}).
Bayes Theorem gives the likelihood $P\left(B_{P} \mid D, B_{S}\right)$.
Maximum likelihood approach gives a good estimate for \hat{B}_{P}.

Likelihood of a Database

General likelihood of a database D given a known Bayesian network structure B_{S} and the parameters B_{P} :

$$
P\left(D \mid B_{S}, B_{P}\right)=\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \prod_{k=1}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}}
$$

General potential table:

A_{i}	$Q_{i 1}$	\cdots	$Q_{i j}$	\cdots	$Q_{i q_{i}}$
$a_{i 1}$	$\theta_{i 11}$	\cdots	$\theta_{i j 1}$	\cdots	$\theta_{i q_{i} 1}$
\vdots	\vdots	\ddots	\vdots	\ddots	\vdots
$a_{i k}$	$\theta_{i 1 k}$	\cdots	$\theta_{i j k}$	\cdots	$\theta_{i q_{i} k}$
\vdots	\vdots	\ddots	\vdots	\ddots	\vdots
$a_{i r_{i}}$	$\theta_{i 1 r_{i}}$	\cdots	$\theta_{i j r_{i}}$	\cdots	$\theta_{i q_{i} r_{i}}$

$$
\begin{gathered}
P\left(A_{i}=a_{i k} \mid \operatorname{parents}\left(A_{i}\right)=Q_{i j}\right)=\theta_{i j k} \\
\sum_{k=1}^{r_{i}} \theta_{i j k}=1
\end{gathered}
$$

