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Excursus: Learning Decision Trees



A Very Simple Decision Tree
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Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B



Classification with a Decision Tree
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Recursive Descent:

Start at the root node.

If the current node is an leaf node:

◦ Return the class assigned to the node.

If the current node is an inner node:

◦ Test the attribute associated with the node.

◦ Follow the branch labeled with the outcome of the test.

◦ Apply the algorithm recursively.

Intuitively: Follow the path corresponding to the case to be classified.



Classification in the Example
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Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B
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Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B



Classification in the Example
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Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B



Induction of Decision Trees
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Top-down approach

◦ Build the decision tree from top to bottom
(from the root to the leaves).

Greedy Selection of a Test Attribute

◦ Compute an evaluation measure for all attributes.

◦ Select the attribute with the best evaluation.

Divide and Conquer / Recursive Descent

◦ Divide the example cases according to the values of the test attribute.

◦ Apply the procedure recursively to the subsets.

◦ Terminate the recursion if – all cases belong to the same class

– no more test attributes are available



Induction of a Decision Tree: Example
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Patient database

12 example cases

3 descriptive attributes

1 class attribute

Assignment of drug

(without patient attributes)

always drug A or always drug B:

50% correct (in 6 of 12 cases)

No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B
10 female 30 normal A
11 female 26 low B
12 male 54 high A



Induction of a Decision Tree: Example
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Sex of the patient

Division w.r.t. male/female.

Assignment of drug

male: 50% correct (in 3 of 6 cases)

female: 50% correct (in 3 of 6 cases)

total: 50% correct (in 6 of 12 cases)

No Sex Drug

1 male A
6 male A
12 male A
4 male B
8 male B
9 male B

3 female A
5 female A
10 female A
2 female B
7 female B
11 female B



Induction of a Decision Tree: Example
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Age of the patient

Sort according to age.

Find best age split.
here: ca. 40 years

Assignment of drug

≤ 40: A 67% correct (in 4 of 6 cases)

> 40: B 67% correct (in 4 of 6 cases)

total: 67% correct (in 8 of 12 cases)

No Age Drug

1 20 A
11 26 B
6 29 A
10 30 A
4 33 B
3 37 A

8 42 B
5 48 A
7 52 B
12 54 A
9 61 B
2 73 B



Induction of a Decision Tree: Example
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Blood pressure of the patient

Division w.r.t. high/normal/low.

Assignment of drug

high: A 100% correct (in 3 of 3 cases)

normal: 50% correct (in 3 of 6 cases)

low: B 100% correct (in 3 of 3 cases)

total: 75% correct (in 9 of 12 cases)

No Blood pr. Drug

3 high A
5 high A
12 high A

1 normal A
6 normal A
10 normal A
2 normal B
7 normal B
9 normal B

4 low B
8 low B
11 low B



Induction of a Decision Tree: Example
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Current Decision Tree:

Blood pressure

high
normal

low

Drug A ? Drug B



Induction of a Decision Tree: Example

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 367

Blood pressure and sex

Only patients
with normal blood pressure.

Division w.r.t. male/female.

Assignment of drug

male: A 67% correct (2 of 3)

female: B 67% correct (2 of 3)

total: 67% correct (4 of 6)

No Blood pr. Sex Drug

3 high A
5 high A
12 high A

1 normal male A
6 normal male A
9 normal male B

2 normal female B
7 normal female B
10 normal female A

4 low B
8 low B
11 low B



Induction of a Decision Tree: Example
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Blood pressure and age

Only patients
with normal blood pressure.

Sort according to age.

Find best age split.
here: ca. 40 years

Assignment of drug

≤ 40: A 100% correct (3 of 3)

> 40: B 100% correct (3 of 3)

total: 100% correct (6 of 6)

No Blood pr. Age Drug

3 high A
5 high A
12 high A

1 normal 20 A
6 normal 29 A
10 normal 30 A

7 normal 52 B
9 normal 61 B
2 normal 73 B

11 low B
4 low B
8 low B



Result of Decision Tree Induction
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Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B



Decision Tree Induction: Notation
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S a set of case or object descriptions

C the class attribute

A(1), . . . , A(m) other attributes (index dropped in the following)

dom(C) = {c1 , . . . , cnC
}, nC : number of classes

dom(A) = {a1, . . . , anA
}, nA: number of attribute values

N.. total number of case or object descriptions i.e. N.. = |S|
Ni. absolute frequency of the class ci

N.j absolute frequency of the attribute value aj

Nij absolute frequency of the combination of the class ci and the attribute value aj.
It is Ni. =

∑nA

j=1Nij and N.j =
∑nC

i=1Nij.

pi. relative frequency of the class ci, pi. =
Ni.

N..

p.j relative frequency of the attribute value aj, p.j =
N.j

N..

pij relative frequency of the combination of class ci and attribute value aj, pij =
Nij

N..

pi|j relative frequency of the class ci in cases having attribute value aj, pi|j =
Nij

N.j
= pij

p.j



Decision Tree Induction: General Algorithm
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function grow tree (S : set of cases) : node;
begin

best v := WORTHLESS;
for all untested attributes A do

compute frequencies Nij, Ni., N.j for 1 ≤ i ≤ nC and 1 ≤ j ≤ nA;
compute value v of an evaluation measure using Nij, Ni., N.j;
if v > best v then best v := v; best A := A; end;

end
if best v = WORTHLESS
then create leaf node x;

assign majority class of S to x;
else create test node x;

assign test on attribute best A to x;
for all a ∈ dom(best A) do x.child[a] := grow tree(S|best A=a); end;

end;
return x;

end;



Evaluation Measures
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Evaluation measure used in the above example:
rate of correctly classified example cases.

◦ Advantage: simple to compute, easy to understand.

◦ Disadvantage: works well only for two classes.

If there are more than two classes, the rate of misclassified example cases neglects
a lot of the available information.

◦ Only the majority class—that is, the class occurring most often in (a subset
of) the example cases—is really considered.

◦ The distribution of the other classes has no influence. However, a good choice
here can be important for deeper levels of the decision tree.

Therefore: Study also other evaluation measures. Here:

◦ Information gain and its various normalizations.

◦ χ2 measure (well-known in statistics).



Excursus: Shannon Entropy
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Let X be a random variable with domain dom(X) = {x1, . . . , xn}. Then,

H(Shannon)(X) = −
n∑

i=1

P (xi) log2P (xi)

is called the Shannon entropy of (the probability distribution of) X ,
where 0 · log2 0 = 0 is assumed.

Intuitively: Expected number of yes/no questions that have to be asked
in order to determine the obtaining value of X.

◦ Suppose there is an oracle, which knows the obtaining value,
but responds only if the question can be answered with “yes” or “no”.

◦ A better question scheme than asking for one alternative after the other can easily
be found: Divide the set into two subsets of about equal size.

◦ Ask for containment in an arbitrarily chosen subset.

◦ Apply this scheme recursively → number of questions bounded by ⌈log2 n⌉.



Question/Coding Schemes
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P (x1) = 0.10, P (x2) = 0.15, P (x3) = 0.16, P (x4) = 0.19, P (x5) = 0.40

Shannon entropy: −∑i P (xi) log2P (xi) = 2.15 bit/symbol

Linear Traversal

x4, x5

x3, x4, x5

x2, x3, x4, x5

x1, x2, x3, x4, x5

0.10 0.15 0.16 0.19 0.40
x1 x2 x3 x4 x5
1 2 3 4 4

Code length: 3.24 bit/symbol
Code efficiency: 0.664

Equal Size Subsets

x1, x2, x3, x4, x5

0.25 0.75
x1, x2 x3, x4, x5

0.59
x4, x5

0.10 0.15 0.16 0.19 0.40
x1 x2 x3 x4 x5
2 2 2 3 3

Code length: 2.59 bit/symbol
Code efficiency: 0.830



Question/Coding Schemes
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Splitting into subsets of about equal size can lead to a bad arrangement of the
alternatives into subsets→ high expected number of questions.

Good question schemes take the probability of the alternatives into account.

Shannon-Fano Coding (1948)

◦ Build the question/coding scheme top-down.

◦ Sort the alternatives w.r.t. their probabilities.

◦ Split the set so that the subsets have about equal probability
(splits must respect the probability order of the alternatives).

Huffman Coding (1952)

◦ Build the question/coding scheme bottom-up.

◦ Start with one element sets.

◦ Always combine those two sets that have the smallest probabilities.



Question/Coding Schemes
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P (x1) = 0.10, P (x2) = 0.15, P (x3) = 0.16, P (x4) = 0.19, P (x5) = 0.40

Shannon entropy: −∑i P (xi) log2P (xi) = 2.15 bit/symbol

Shannon–Fano Coding (1948)

x1, x2, x3, x4, x5

0.25

0.41

x1, x2

x1, x2, x3
0.59
x4, x5

0.10 0.15 0.16 0.19 0.40
x1 x2 x3 x4 x5
3 3 2 2 2

Code length: 2.25 bit/symbol
Code efficiency: 0.955

Huffman Coding (1952)

x1, x2, x3, x4, x5

0.60
x1, x2, x3, x4

0.25 0.35
x1, x2 x3, x4

0.10 0.15 0.16 0.19 0.40
x1 x2 x3 x4 x5
3 3 3 3 1

Code length: 2.20 bit/symbol
Code efficiency: 0.977



Question/Coding Schemes
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It can be shown that Huffman coding is optimal if we have to determine the
obtaining alternative in a single instance.
(No question/coding scheme has a smaller expected number of questions.)

Only if the obtaining alternative has to be determined in a sequence of (indepen-
dent) situations, this scheme can be improved upon.

Idea: Process the sequence not instance by instance, but combine two, three
or more consecutive instances and ask directly for the obtaining combination of
alternatives.

Although this enlarges the question/coding scheme, the expected number of ques-
tions per identification is reduced (because each interrogation identifies the ob-
taining alternative for several situations).

However, the expected number of questions per identification cannot be made ar-
bitrarily small. Shannon showed that there is a lower bound, namely the Shannon
entropy.



Interpretation of Shannon Entropy
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P (x1) =
1
2, P (x2) =

1
4, P (x3) =

1
8, P (x4) =

1
16, P (x5) =

1
16

Shannon entropy: −∑iP (xi) log2 P (xi) = 1.875 bit/symbol

If the probability distribution allows for a
perfect Huffman code (code efficiency 1),
the Shannon entropy can easily be inter-
preted as follows:

−
∑

i

P (xi) log2P (xi)

=
∑

i

P (xi)
︸ ︷︷ ︸

occurrence
probability

· log2
1

P (xi)︸ ︷︷ ︸
path length

in tree

.

In other words, it is the expected number
of needed yes/no questions.

Perfect Question Scheme

x4, x5

x3, x4, x5

x2, x3, x4, x5

x1, x2, x3, x4, x5

1
2

1
4

1
8

1
16

1
16

x1 x2 x3 x4 x5
1 2 3 4 4

Code length: 1.875 bit/symbol
Code efficiency: 1



Reference to Kullback-Leibler Information Divergence
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Information Content

The information content of an event F ∈ E that occurs with
probability P (F ) is defined as

InfP (F ) = − log2 P (F ).

Intention:

Neglect all subjective references to F and let the information content
be determined by P (F ) only.

The information of a certain message (P (Ω) = 1) is zero.

The less frequent a message occurs (i. e., the less probable it is), the more inter-
esting is the fact of its occurrence:

P (F1) < P (F2) ⇒ InfP (F1) > InfP (F2)

We only use one bit to encode the occurrence of a message with probability 1
2.



Excursus: Information Content
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The function Inf fulfills all these requirements:

Inf

P (F )

1

2

1

The expected value (w. r. t. to a probability distri-
bution P1) of InfP2 can be written as follows:

EP1(InfP2) = −
∑

F∈E
P1(F ) · log2P2(F )

H(Shannon)(P ) is the expected value (in bits) of
the information content that is related to the oc-
currence of the events F ∈ E :

H(P ) = EP (InfP )

H(Shannon)(P ) =
∑

F∈E
P (F )︸ ︷︷ ︸

Probability of F

· (− log2 P (F ))︸ ︷︷ ︸
Information content of F



Excursus: Approximation Measure
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Let P ∗ be a hypothetical probability distribution and P a (given or known) prob-
ability distribution that acts as a reference.

We can compare both P ∗ and P by computing the difference of the expected
information contents:

EP (InfP ∗)− EP (InfP ) = −
∑

F∈E
P (F ) log2 P

∗(F ) +
∑

F∈E
P (F ) log2 P (F )

=
∑

F∈E

(
P (F ) log2P (F )− P (F ) log2 P ∗(F )

)

=
∑

F∈E
P (F )

(
log2P (F )− log2P

∗(F )
)

IKLdiv(P, P
∗) =

∑

F∈E
P (F ) log2

P (F )

P ∗(F )



An Information-theoretic Evaluation Measure
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Information Gain (Kullback and Leibler 1951, Quinlan 1986)

Based on Shannon Entropy H = −
n∑

i=1

pi log2 pi (Shannon 1948)

Igain(C,A) = H(C) − H(C|A)

=

︷ ︸︸ ︷

−
nC∑

i=1

pi. log2 pi. −

︷ ︸︸ ︷
nA∑

j=1

p.j


−

nC∑

i=1

pi|j log2 pi|j




H(C) Entropy of the class distribution (C: class attribute)

H(C|A) Expected entropy of the class distribution
if the value of the attribute A becomes known

H(C)−H(C|A) Expected entropy reduction or information gain



Inducing the Decision Tree with Information Gain
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Information gain for drug and sex:

H(Drug) = −
(
1

2
log2

1

2
+
1

2
log2

1

2

)
= 1

H(Drug | Sex) = 1

2

(
−1
2
log2

1

2
− 1

2
log2

1

2︸ ︷︷ ︸
H(Drug|Sex=male)

)
+

1

2

(
−1
2
log2

1

2
− 1

2
log2

1

2︸ ︷︷ ︸
H(Drug|Sex=female)

)
= 1

Igain(Drug, Sex) = 1− 1 = 0

No gain at all since the initial the uniform distribution of drug is splitted into two
(still) uniform distributions.



Inducing the Decision Tree with Information Gain
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Information gain for drug and age:

H(Drug) = −
(
1

2
log2

1

2
+

1

2
log2

1

2

)
= 1

H(Drug | Age) = 1

2

(
−2
3
log2

2

3
− 1

3
log2

1

3︸ ︷︷ ︸
H(Drug|Age≤40)

)
+
1

2

(
−1
3
log2

1

3
− 2

3
log2

2

3︸ ︷︷ ︸
H(Drug|Age>40)

)
≈ 0.9183

Igain(Drug,Age) = 1− 0.9183 = 0.0817

Splitting w. r. t. age can reduce the overall entropy.



Inducing the Decision Tree with Information Gain
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Information gain for drug and blood pressure:

H(Drug) = −
(
1

2
log2

1

2
+
1

2
log2

1

2

)
= 1

H(Drug | Blood pr) =
1

4
· 0 + 1

2

(
−2
3
log2

2

3
− 1

3
log2

1

3︸ ︷︷ ︸
H(Drug|Blood pr=normal)

)
+
1

4
· 0 = 0.5

Igain(Drug,Blood pr) = 1− 0.5 = 0.5

Largest information gain, so we first split w. r. t. blood pressure (as in the example
with misclassification rate).



Inducing the Decision Tree with Information Gain
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Next level: Subtree blood pressure is normal.

Information gain for drug and sex:

H(Drug) = −
(
1

2
log2

1

2
+

1

2
log2

1

2

)
= 1

H(Drug | Sex) = 1

2

(
−2
3
log2

2

3
− 1

3
log2

1

3︸ ︷︷ ︸
H(Drug|Sex=male)

)
+
1

2

(
−1
3
log2

1

3
− 2

3
log2

2

3︸ ︷︷ ︸
H(Drug|Sex=female)

)
= 0.9183

Igain(Drug, Sex) = 0.0817

Entropy can be decreased.



Inducing the Decision Tree with Information Gain
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Next level: Subtree blood pressure is normal.

Information gain for drug and age:

H(Drug) = −
(
1

2
log2

1

2
+
1

2
log2

1

2

)
= 1

H(Drug | Age) = 1

2
· 0 + 1

2
· 0 = 0

Igain(Drug,Age) = 1

Maximal information gain, that is we result in a perfect classification (again, as in
the case of using misclassification rate).


