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Reminder: Operating with Truth Values

Any ⊤ (⊥) can be used to represent conjunction (disjunction).  

However, now only ⊤min and ⊥max shall be used.

Let P be set of imprecise statements that can be combined by and, or.  

truth : P → [0, 1] assigns truth value truth(a) to every a ∈ P.  

truth(a) = 0 means a is definitely false.

truth(a) = 1 means a is definitely true.

If 0 <  truth(a) < 1, then only gradual truth of statement a.
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Extension Principle

Combination of two statements a, b ∈ P:

truth(a and b) =  
truth(a or b) =

For infinite number of statements ai , i ∈ I:

truth(∀i ∈ I : ai) = inf {truth(ai) | i ∈ I} ,
truth(∃i ∈ I : ai) = sup{truth(ai) | i ∈ I}

This concept helps to extend φ : Xn → Y to φ̂: F(X )n → F(Y).
• Crisp tuple (x1, . . . ,xn) is mapped to crisp value φ(x1,. . . ,xn).
• Imprecise descriptions (µ1, . . . ,µn) of (x1, . . . ,xn) are mapped to  

fuzzy value φ (̂µ1,. . . ,µn).
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Example – How to extend the addition?

+ : IR × IR→ IR, (a,b) ›→  a +b

Extension to sets: + : 2IR × 2IR → 2IR

(A,B) ›→  A+B = {y | (∃a)(∃b)(y = a +b)∧ (a ∈ A)∧ (b ∈ B)}  

Extensions to fuzzy sets:

+ : F(IR) × F(IR) → F(IR), (µ1, µ2) ›→ µ1⊕ µ2

truth(y ∈ µ1⊕ µ2) = truth((∃a)(∃b) : (y = a +b)∧ (a ∈ µ1)∧ (b ∈ µ2))

1
= sup{truth(y = a +b)∧ truth(a∈ µ )∧

a,b:y=a+b

a,b

truth(b ∈ µ2)}

= sup {min(µ1(a), µ2(b))}
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Example – How to extend the addition?

0 1 2
0

1 µ1
⊕

0 1 2
0

1 µ2
=

0 1 2 3 4
0

1 µ

µ(2) = 1 because µ1(1) = 1 and µ2(1) =1

µ(5) = 0 because if a + b = 5, then min{µ1(a), µ2(b)} = 0

µ(1) = 0.5 because it is the result of an optimization task with  
optimum at, e.g. a = 0.5 and b =0.5
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Definition
Let φ : Xn → Y be a mapping. The extension φ̂ of φ is given by

φ̂     : [2X ]n→ 2Y with

φ̂ (A1,. . . ,An) = {y ∈ Y | ∃(x1, . . . ,xn)∈ A1 × . . . × An :
φ(x1,. . . ,xn) = y}.

Part2 7 /105



Definition
Let φ : Xn → Y be a mapping. The extension φ̂ of φ is given by

φ̂    : [F(X )]n →F(Y ) with

φ (̂µ1,. . . ,µn)(y) = sup{min{µ1(x1), . . . ,µn(xn)} |
n

(x1, . . . ,xn)∈ X ∧φ(x1,. . . ,xn) = y}

assuming that sup ∅=0.
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Example I

Let fuzzy set “approximately 2” be defined as





 x − 1, if 1 ≤ x ≤ 2
µ(x) = 3 −x, if 2 ≤ x ≤ 3

0, otherwise.

The extension of φ : IR → IR, x ›→ x 2 to fuzzy sets on IRis

φ (̂µ)(y ) = supµ(x ) . 2.  x ∈ IR ∧ x = y
, . ,






√ y − 1, if 1 ≤ y ≤ 4
= 3 −√y, if 4 ≤ y ≤ 9

0, otherwise.
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Example II

1

0
0 1 2 3 4 5 6 7 8 9

The extension principle is taken as basis for “fuzzifying” whole theories.  
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Fuzzy Relations



Fuzzy Relations

A grey level picture can be interpreted as a fuzzy set



Definition of Relation

R(x1, . . . ,xn) =

A relation among crisp sets X1, . . . ,Xn is a subset of the Cartesian
Product X1 × . . . × Xn . It is denoted as R(X1, . . . ,Xn) or R(Xi | 1 ≤ i ≤ n).
So, the relation R(X1, . . . ,Xn)⊆ X1 × . . . × Xn is set, too.  The 

basic concept of sets can be also applied to relations:
• containment, subset, union, intersection, complement

Each crisp relation can be defined by its characteristic function
.

1, if and only if (x1, . . . ,xn)∈ R,  0,
otherwise.

The membership of (x1, . . . ,xn) in R indicates whether the elements
of (x1, . . . ,xn) are related to each other or not.
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Fuzzy Relations

The characteristic function of a crisp relation can be generalized to  
allow tuples to have degrees of membership.

A fuzzy relation R is a fuzzy set of X1 × . . . × Xn

The membership grade indicates strength of the present relation  
between elements of the tuple.

The fuzzy relation can also be represented by an n-dimensional  
membership array.
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Example

Let R be a fuzzy relation between two sets X = {New York City,Paris}  and Y = 
{Beijing, New York City,London}.

R shall represent relational concept “very far”.

It can be represented (subjectively) as two-dimensional membership array:

NYC Paris
Beijing 1 0.9

NYC 0 0.7
London 0.6 0.3
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Cartesian Product of Fuzzy Sets: nDimensions

Let A1, . . . ,An be fuzzy sets (n ≥ 2) in X1, . . . ,Xn, respectively

The (fuzzy) Cartesian product of A1, . . . ,An, denoted by A1 × . . . × An, is 
a  fuzzy relation of the product space X1 × . . . × Xn.

It is defined by its membership function

µA1×...×An(x1, . . . ,xn) =⊤ (µA1(x1), . . . ,µAn(xn))

for xi  ∈Xi, 1 ≤ i ≤ n.

In most applications⊤ = min is chosen.
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Cartesian Product of Fuzzy Sets in two Dimensions

A special case of the Cartesian product is when n = 2.

Then the Cartesian product of fuzzy sets A∈ F(X) and B ∈ F(Y ) is  a fuzzy
relation A× B ∈ F(X × Y) defined by

µA×B(x,y) =⊤ [µA(x), µB(y)], for all x ∈ X , and y ∈ Y .
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Example: 
Cartesian Product in F(X × Y )with t-norm = min
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Example

Consider the sets X1 = {0, 1}, X2 = {0, 1}, X3 = {0, 1, 2} and the  ternary 
fuzzy relation on X1 × X2 × X3 defined asfollows:

Let Rij = [R ↓ {Xi,Xj}] and Ri = [R ↓ {Xi}] for all i, j ∈ {1,2,3}.  Using this 

notation, all possible projections of R are given below.

(x1, x2, x3) R(x1, x2,x3) R12(x1, x2) R13(x1, x3) R23(x2, x3) R1(x1) R2(x2) R3(x3)
0 0 0 0.4 0.9 1.0 0.5 1.0 0.9 1.0
0 0 1 0.9 0.9 0.9 0.9 1.0 0.9 0.9
0 0 2 0.2 0.9 0.8 0.2 1.0 0.9 1.0
0 1 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 1 1 0.0 1.0 0.9 0.5 1.0 1.0 0.9
0 1 2 0.8 1.0 0.8 1.0 1.0 1.0 1.0
1 0 0 0.5 0.5 0.5 0.5 1.0 0.9 1.0
1 0 1 0.3 0.5 0.5 0.9 1.0 0.9 0.9
1 0 2 0.1 0.5 1.0 0.2 1.0 0.9 1.0
1 1 0 0.0 1.0 0.5 1.0 1.0 1.0 1.0
1 1 1 0.5 1.0 0.5 0.5 1.0 1.0 0.9
1 1 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Example: Detailed Calculation

Here, only consider the projection R12:

(x1, x2, x3) R(x1,x2, x3) R12(x1,x2)
0 0 0 0.4
0 0 1 0.9 max[R(0, 0,0),R(0, 0,1),R(0, 0,2)] = 0.9
0 0 2 0.2
0 1 0 1.0
0 1 1 0.0 max[R(0, 1,0),R(0, 1,1),R(0, 1,2)] = 1.0
0 1 2 0.8
1 0 0 0.5
1 0 1 0.3 max[R(1, 0,0),R(1, 0,1),R(1, 0,2)] = 0.5
1 0 2 0.1
1 1 0 0.0
1 1 1 0.5 max[R(1, 1,0),R(1, 1,1),R(1, 1,2)] = 1.0
1 1 2 1.0
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Binary Fuzzy Relations



Representation and Inverse

Consider e.g. the membership matrix R = [rxy] with rxy = R(x,y).

Its inverse R−1 (Y ,X) of R(X,Y) is a relation on Y × X defined by

R−1(y,x) = R(x,y) for all x ∈ X , y ∈ Y.

xyR−1 = [r−1] representing R−1(y,x) is the transpose of R for R(X,Y)

(R−1)−1 = R
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Standard Composition

Consider the binary relations P(X,Y), Q(Y ,Z) with common set Y.

The standard composition of P and Q is defined as

(x,z)∈ P ◦ Q ⇐⇒∃y ∈ Y : {(x,y)∈ P∧ (y,z)∈ Q}.

In the fuzzy case this is generalized by

[P ◦ Q](x,z) = sup {min{P(x,y), Q(y,z)} }, for all x ∈ X a        n            d                            z ∈ Z.
y∈Y

If Y is finite, sup operator can be replaced bymax.

The standard composition is also called max-min composition.
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Inverse of Standard Composition

The inverse of the max-min composition follows from its definition:

[P(X,Y)◦ Q(Y,Z)] −1 = Q −1(Z,Y)◦ P −1(Y ,X).

Its associativity also comes directly from its definition:

[P(X,Y)] ◦ Q(Y ,Z)]◦ R(Z,W) = P(X,Y) ◦ [Q(Y ,Z)◦ R(Z,W)].

Note that the standard composition is not commutative.

Matrix notation: [rij] = [pik]◦ [qkj] with rij = maxk min(pik,qkj).
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Example

P ◦ Q = R


0  
 .3

 

 0 . 9  =1





 
.3 .5 .8 .9 .5 .7 .7

 .7 1 ◦ .2
.4 .6 .5 1 0 .5 .5

For instance:

r11 = max{min(p11,q11),min(p12,q21),min(p13,q31)}
= max{min(.3, .9),min(.5, .3),min(.8,1)}
= .8

r32 = max{min(p31,q12),min(p32,q22),min(p33,q32)}
= max{min(.4, .5),min(.6, .2),min(.5,0)}
= .4

Part2 54 / 105



Example: Properties of Airplanes  
(Speed, Height, Type)

4 possible speeds:
3 heights:
2 types:

s1, s2, s3, s4  
h1, h2, h3
t1, t2

Consider the following fuzzy relations for airplanes:
• relation A between maximal speed and maximal height,
• relation B between maximal height and the type.

A h1 h2 h3
s1 1 .2 0
s2 .1 1 0
s3 0 1 1
s4 0 .3 1

1B t t2
h1 1 0
h2 .9 1
h3 0 .9
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Example (cont.)
matrix multiplication scheme

1 0
A ◦ B .9 1

0 .9
1 .2 0 1 .2
.1 1 0 .9 1
0 1 1 .9 1
0 .3 1 .3 .9

A ◦ B speed-type relation

s1

flow scheme

s2 s3 s4

h1 h2 h3

.3 1

1 .9

t1 t2

(A ◦ B)(s4 , t2 ) = max{min{.3, 1}, min{1, .9}}
= .9
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Binary Relations on a Single Set



Binary Relations on a Single Set

It is also possible to define crisp or fuzzy binary relations among  
elements of a single set X.

Such a binary relation can be denoted by R(X,X) or R(X2) which is a  
subset of X × X = X2.

These relations are often referred to as directed graphs which is also  an 
representation of them.

• Each element of X is represented asnode.
• Directed connections between nodes indicate pairs of x ∈ X for  

which the grade of the membership is nonzero.
• Each connection is labeled by its actual membership grade of the  

corresponding pair in R.
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Example

1 2 3 4
1 .7 0 .3 0
2 0 .7 1 0
3 .9 0 0 1
3 0 0 .8 .5

1 2

3 4

.3
1

1

.9

.8

An example of R(X,X) defined on X = {1,2,3,4}.  Two 

different representation are shown below.
.7 .7

.5
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Fuzzy Arithmetic



Fuzzy Sets of IR

There are many different types of fuzzy sets µ : IR → [0,1],

They play important role in many applications, e.g. fuzzy control,  
decision making, approximate reasoning, optimization, and statistics  
with imprecise probabilities.
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Some Special Fuzzy Sets I

Here, we only consider special classes F(IR) of fuzzy sets µ on IR.

Definition

(a) FN(IR) d=ef{µ ∈ F(IR) | ∃x ∈ IR: µ(x) = 1} ,

(b) FC(IR) d=ef{µ ∈ FN(IR) | ∀α ∈ (0,1] : [µ]α is compact } ,

(c) FI(IR) d=ef{µ ∈ FN(IR)| ∀a,b, c ∈ IR: c ∈ [a,b]⇒

µ(c) ≥ min{µ(a), µ(b)} }.
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Some Special Fuzzy Sets II
An element in FN (IR) is called normal fuzzy set:

• It’s meaningful if µ ∈ FN (IR) is used as imprecise description of  an 
existing (but not precisely defined) set⊆ IR.

• In such cases it would not be plausible to assign maximum  
membership degree of 1 to no single real number at all.

Sets in FC (IR) are uppersemi-continuous:
• Function f is upper semi-continuous at point x0 iff

limsupx→x0 f (x) ≤ f(x0).
• This property simplifies arithmetic operations.

Fuzzy sets in FI (IR) are called fuzzy intervals:
• The are normal and fuzzyconvex.
• Their core is a classical interval.
• If µ ∈ FI (IR) is used for describing an imprecise real number, then

often people say: µ is a fuzzy number.
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Basic Types of Fuzzy Numbers

0 0

1 1

“around r ”  
symmetric bell-shaped

“around r ”  
asymmetric bell-shaped

0

1 

0

1

“large number”  
right-open sigmoid

“small number”  
left-open sigmoid

R. Kruse, J. Schulze FS – Approximate Reasoning Part2 15 / 105Part2 15 / 105
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Quantitative Fuzzy Variables

The concept of a fuzzy number plays fundamental role in formulating
quantitative fuzzy variables.

These are variables whose states are fuzzy numbers.

When the fuzzy numbers represent linguistic concepts, e.g.  
very small, small, medium, etc.

then final constructs are called linguistic variables.

Each linguistic variable is defined in terms of base variable which is a  
variable in classical sense, e.g. temperature, pressure, age.

Linguistic terms representing approximate values of base variable are  
captured by appropriate fuzzy numbers.
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Linguistic Variables

0

1
very small small medium large very large

ν(performance)

Each linguistic variable is defined by quintuple (ν,T,X,g,m).
• name ν of the variable
• set T of linguistic terms ofν
• base variable X ⊆ IR
• syntactic rule g (grammar) for generating linguistic terms
• semantic rule m that assigns meaning m(t) to every t ∈ T ,

i.e. m : T → F(X )
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Operations on Linguistic Variables

To deal with linguistic variables, consider
• not only set-theoretic operations
• but also arithmetic operations on fuzzy numbers (i.e. interval  

arithmetic).

Statistics with vague data
• Given a sample = (small, medium, small, large, ...).
• How to define mean value or standard deviation?
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Analysis of Linguistic Data
Linguistic Data

A B C

1 large very large medium

2 2.5 medium about 7

3 [3,4] small [7,8]

.

linguistic  
modeling

Fuzzy Data
A B C

1

2
bb

3

.

computing with  
words

statisticswith  
fuzzy sets

“The mean w.r.t. A  
is approximatly 4.”

linguistic  
approximation mean of attribute A
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Example – Application of Linguistic Data

Consider the problem to model the climatic conditions of several  
towns.

A tourist may want information about tourist attractions.

Assume that linguistic random samples are based on subjective  
observations of selected people, e.g.

• climatic attributeclouding
• linguistic values cloudless, clear, fair, cloudy, ...
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Example – Linguistic Modeling by an Expert

The attribute clouding is modeled by elementary linguistic values, e.g.

cloudless ›→ sigmoid(0,−0.07)  
clear ›→ Gauss(25,15)

fair ›→ Gauss(50,20)  
cloudy ›→ Gauss(75,15)

overcast ›→ sigmoid(100,0.07)  
exactly)(x ) ›→ exact(x )  

approx)(x) ›→Gauss(x,3)
between(x,y) ›→rectangle(x,y)

approx_between(x,y) ›→trapezoid(x − 20,x,y,y +20)

where x, y ∈ [0, 100] ⊂ IR.
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Example

Gauss(a, b) is, e.g. a function defined by
.

f (x ) = exp −
b

Σ. x − aΣ2
, x,a,b ∈ IR, b > 0

induced language of expressions:

<expression> := <elementary linguistic value> |
( <expression> ) |
{ not | dil | con | int } <expression> |
<expression> { and | or } <expression> ,

e.g. approx(x ) and cloudy is represented by function

min{Gauss(x,3),Gauss(75,15)} .
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Example – Linguistic Random Sample

Attribute  
Observations

: Clouding
: Limassol,Cyprus

2009/10/23
2009/10/24
2009/10/25
2009/10/26
2009/10/27
2009/10/28
2009/10/29
2009/11/30
2009/11/31
2009/11/01
2009/11/02
2009/11/03
. ..
2009/11/10

: cloudy
: dil approx_between(50, 70)
: fair or cloudy
: approx(75)
: dil(clear or fair)
: int cloudy
: con fair
: approx(0)
: cloudless
: cloudless or dil clear
: overcast
: cloudy and between(70, 80)
: . . .
: clear

Statistics with fuzzy sets are necessary to analyze linguistic data.
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Example – Ling. Random Sample of 3 People

no. age (linguistic data) age (fuzzy data)

1 approx. between 70 and 80 and  
definitely not older than 80

µ1

64 70 80

2 between 60 and 65

µ2

60 65

3 62

µ3 bb

62
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Example – Mean Value of Ling. Random Sample

1
mean(µ1,µ2, µ3) = 3 (µ1⊕ µ2⊕ µ3)

mean(µ1,µ2,µ3)

62 64 69

i.e. approximately between 64 and 69 but not older than 69
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Efficient Operations I

How to define arithmetic operations for calculating with F(IR)?

Using extension principle for sum µ ⊕ µ′, product µ ⊙ µ′ andreciprocal  
value rec(µ) of arbitrary fuzzy sets µ, µ′ ∈ F(IR)

′(µ ⊕ µ )(t) = sup min{ 1
′

2µ(x ), µ (x )
. .. 1 2 1 2

Σ
} x , x ∈ IR, x + x = t ,

′(µ ⊙ µ )(t) = sup min{ 1
′

2µ(x ), µ (x )
. .. 1 2 1 2

Σ
} x , x ∈ IR, x · x = t ,

. ....rec(µ)(t) = sup µ(x) x
1
x

Σ
∈ IR \ {0}, = t .

In general, operations on fuzzy sets are much more complicated  
(especially if vertical instead of horizontal representation is applied).

It’s desirable to reduce fuzzy arithmetic to ordinary set arithmetic.  

Then, we apply elementary operations of interval arithmetic.
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Efficient Operations II

Definition
A family (Aα)α∈(0,1) of sets is called set representation of µ ∈ FN(IR)
if

(a) 0 <  α < β < 1 =⇒Aβ ⊆ Aα ⊆ IRand

(b) µ(t) = sup {α ∈ [0, 1] | t ∈Aα}
holds where sup ∅=0.

Theorem
Let µ ∈ FN (IR). The family (Aα)α∈(0,1) of sets is a set representation
of µ if and only if

[µ]α = {t ∈ IR | µ(t) >  α} ⊆ Aα ⊆ {t ∈ IR | µ(t) ≥ α} =[µ]α
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Efficient Operations III
Theorem
Let µ1, µ2, . . . , µn be normal fuzzy sets of IR and φ : IRn → IR be a  
mapping. Then the followingholds:

(a) ∀α ∈ [0,1) : [φ (̂µ1,. . . ,µn)]α = φ([µ1]α, . . . , [µn]α),

(b) ∀α ∈ (0,1] : [φ (̂µ1,. . . ,µn)]α ⊇ φ([µ1]α, . . . , [µn]α),

(c) if ((Ai )α)α∈(0,1) is a set representation of µi for 1 ≤ i ≤ n, then (φ((A1)α,
. . . , (An)α))α∈(0,1) is a set representation of φ (̂µ1,. . . ,µn).

For arbitrary mapping φ, set representation of its extension φ̂ can be  
obtained with help of set representation ((Ai)α)α∈(0,1), i = 1,2, . . . ,n.

It’s used to carry out arithmetic operations on fuzzy sets efficiently.
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Example I

0

1 µ1

0
−4 −2 0 2 4 6 0 2 4 6 8 10

1 µ2

For µ1, µ2, the set representationsare
• [µ1]α = [2α − 1, 2− α],
• [µ2]α = [α +3,5 − α]∪ [α +5,7 − α].

Let add(x,y) = x +y, then (Aα)α∈(0,1) represents µ1 ⊕ µ2

α 1 α 2 αA = add([µ ] , [µ ] ) = [3α + 2, 7 − 2α] ∪ [3α + 4, 9 −2α]

=
.

[3α +2,7 − 2α]∪ [3α +4,9 − 2α], if α ≥ 0.6  
[3α +2,9− 2α], if α ≤ 0.6.
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Example II

0

1 µ1 ⊕µ2

(µ1⊕ µ2)(x) =



x−2

 7−x , 2

 3
x−4,

 2
 9−x ,
0,

0 2 4 6 8 10

 3 , if 2 ≤ x ≤ 5
if 5 ≤ x ≤ 5.8
if 5.8 ≤ x ≤ 7
if 7 ≤ x ≤ 9  
otherwise
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Interval Arithmetic I

[a,b] · [c, d] =

Determining the set representations of arbitrary combinations of fuzzy  
sets can be reduced very often to simple interval arithmetic.

Using fundamental operations of arithmetic leads to the following  
(a,b,c, d ∈ IR):

[a, b]+[c, d] = [a+c, b +d]
[a, b]− [c, d] = [a− d, b − c]


 [ a c , bd],

[bd,ac],
[min{ad, bc}, max{ad, bc}],

[min{ad,bc}, max{ac,bd}],

for a ≥ 0∧ c ≥ 0  for
b < 0∧ d < 0
for ab ≥ 0∧ cd ≥ 0∧ ac < 0  for
ab < 0∨ cd < 0

1
[a,b]

=

Σ Σ
 1 , 1 ,

b
1 1

a

Σ b   a Σ    . Σ
, ∞ ∪ −∞, ,Σ Σ

 1 , ∞ , . b
1Σ−∞, a ,

if 0 ∈/[a, b]
if a < 0 ∧ b > 0 if
a = 0 ∧ b > 0 if a
< 0∧ b = 0
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Interval Arithmetic II
In general, set representation of α-cuts of extensions φ (̂µ1,. . . ,µn)  
cannot be determined directly from α-cuts.

It only works always for continuous φ and fuzzy sets in FC (IR).

Theorem
Let µ1,µ2, . . . ,µn ∈ FC(IR) and φ : IRn → IR be a continuous  
mapping. Then

∀α ∈ (0,1] : [φ (̂µ1,. . . ,µn)]α = φ([µ1]α, . . . , [µn]α).

So, a horizontal representation is better than a vertical one.
Finding φ̂ values is easier than directly applying the extensionprinciple.  
However, all α-cuts cannot be stored in a computer.
Only a finite number of α-cuts can be stored.
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Fuzzy Control Basics



Fuzzy Control

Biggest success of fuzzy systems in industry and commerce.

Special kind of non-linear table-based control method.

Definition of non-linear transition function can be made without  
specifying each entry individually.

Examples: technical systems
• Electrical engine moving an elevator,
• Heating installation

Goal: define certain behavior
• Engine should maintain certain number of revolutions per minute.
• Heating should guarantee certain room temperature.
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Table-based Control

Control systems all share a time-dependent output variable:

• Revolutions per minute,

• Room temperature.

Output is controlled by control variable:

• Adjustment of current,

• Thermostat.

Also, disturbance variables influence output:

• Load of elevator, ...,

• Outside temperature or sunshine through a window, ...
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Table-based Control

Computation of actual value incorporates both

control variable measurements of current output variable ξand

dtchange of output variable ∆ ξ =  dξ .

If ξ is given in finite time intervals,  

then set ∆ ξ ( t n + 1 )  = ξ(tn+1) −  ξ(tn).

In this case measurement of ∆ ξ not necessary.
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Example: Cartpole Problem

M
F

θ
l

m

g

Balance an upright standing pole by moving its  
foot.

Lower end of pole can be moved unrestrained along
horizontal axis.

Mass m at foot and mass M at head.

Influence of mass of shaft itself is negligible.

Determine force F (control variable) that is  
necessary to balance pole standing upright.

That is measurement of following output variables:
• angle θ of pole in relation to vertical axis,

dt• change of angle, i.e. triangular velocity θ̇ = dθ .

Both should converge to zero.
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Notation
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Example: Cartpole Problem (cont.)

Angle θ∈ X1 = [−90◦ , 90◦]

Theoretically, every angle velocity θ̇ possible.  

Extreme θ̇are artificially achievable.

Assume −45 ◦/s ≤ θ̇ ≤ 45◦/s holds,
2i.e. θ̇ ∈ X = [−45 ◦/s, 45 ◦/s].

Absolute value of force |F| ≤ 10N.

Thus define F ∈ Y = [−10N,10N].
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Example: Cartpole Problem (cont.)

Differential equation of cartpole problem:

(M+m)sin2θ· l · θ̈+m· l ·sinθcosθ· θ̇2−(M+m)·g ·sinθ = −F ·cosθ  Compute F 

(t) such that θ(t) and θ (̇t) converge towards zero quickly.  Physical analysis 

demands knowledge about physical process.
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Problems of Classical Approach

Often very difficult or even impossible to specify accurate  
mathematical model.

Description with differential equations is very complex.  

Profound physical knowledge from engineer.

Exact solution can be very difficult.

Should be possible: to control process without physical-mathematical  
model,
e.g. human being knows how to ride bike without knowing existence of  
differential equations.
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Fuzzy Approach

Simulate behavior of human who knows how to control.

That is a knowledge-based analysis.  

Directly ask expert to perform analysis.

Then expert specifies knowledge as linguistic rules, e.g. for cartpole  
problem:

“If θ is approximately zero and θ is also approximately zero,  
then F has to be approximately zero,too.”
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Fuzzy Approach: Fuzzy Partitioning

1. Formulate set of linguisticrules:

Determine linguistic terms (represented by fuzzy sets).

X1, . . . , Xn and Y is partitioned into fuzzysets.

1
(1) (1)

1 p1 1 1Define p  distinct fuzzy sets µ ,. . . ,µ ∈ F(X ) on set X .

Associate linguistic term with each set.
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Coarse and Fine Fuzzy Partitions

0 90−90

1
negative approx. zero positive

90−90

neg.  
big

neg
.medium

neg.  
small1

approx
zero

pos.  
small

pos
medium

pos.  
big
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Fuzzy Approach: Fuzzy Partitioning II

Of set X1 corresponds to interval [a, b] of real line,then

1
(1) (1)

p1 1µ ,. . . ,µ ∈ F(X ) are triangular functions

µx0,ε : [a, b] → [0,1]
x ›→ 1 − min{ε · |x − x0|, 1}.

If a < x1 < . . . < xp < b, only µ(1), . . . ,µ(1) are triangular.
1 2 p1−1

Boundaries are treated differently.
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Fuzzy Approach: Fuzzy Partitioning III

left fuzzy set:

(1)
1µ : [a,b] → [0,1]

x ›→
.

1,
1 − min{ε · (x − x1),1}

if x ≤ x1

otherwise

right fuzzy set:

(1)
p1µ : [a,b] → [0,1]

x ›→
.

1,
1 − min{ε · (xp1 − x), 1}

if xp1  ≤ x
otherwise
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Example: Cartpole Problem (cont.)

X1 partitioned into 7 fuzzysets.

4Similar fuzzy partitions for X2 and Y .

Next step: specify rules

if ξ1 is A(1) and . . . and ξn is A(n) then η is B,

A(1), . . . , A(n) and B represent linguistic terms correspondingto
µ(1), . . . ,µ(n) and µ according to X1, . . . ,Xn and Y.

Rule base consists of k rules.
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Example: Cartpole Problem (cont.)

θ

θ̇

nb nm ns az ps pm pb
nb
nm  
ns
az
ps
pm
pb

ps pb
pm

nm ns ps
nb nm ns az ps pm pb

ns ps pm
nm
nb ns

19 rules for cartpole problem, often not necessary to determine all  
table entries e.g.

If θ is approximately zero and is negative medium
then F is positivemedium.
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Architecture of a Fuzzy Controller I

controlled  
system

measure
d  
values

controller  
output

not  
fuzzy

not  
fuzzy

fuzzification  
interface fuzzy

decision  
logic fuzzy

defuzzification  
interface

knowledg
e  base

Part2 82 / 105



Fuzzy Approach: Challenge

Develop the desired table-based controller by using (imprecise and fuzzy) 
knowledge, i.e. fuzzy rules.

Main Problem:  
How to define function ϕ : X1 x X2 → Y that fits to a fuzzy rule set?
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Approximate Reasoning with Fuzzy Rules

General schema
Rule 1:
Rule 2:

if X is M1, then Y is N1
if X is M2, then Y is N2

. ..
Rule r :  
Fact:
Conclusion:

.
if X is Mr , then Y is Nr
X is Mʹ

Y is Nʹ

Given r if-then rules and fact “X is Mʹ”, we conclude “Y is Nʹ”.  

Expert like to describe a function f by using fuzzy rules. 

This modus ponens style of reasoning is often used in fuzzy controllers. 
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X3 4

Imprecise rule: if X = [3, 4] then Y = [5, 6].

Interpretation : [3, 4] × [5, 6] is a „patch“, where the function „passes“. 

Y

6

5
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XM1

M2

M3

N1

N2

Several imprecise rules: if X = M1 then Y = N1, if X = M2 then Y = N2, 
if X = M3 then Y = N3.
Disjunctive Interpretation: Several rules form  a “patchwork rug”   
for the function’s graph.

Y  
N3

Part 2 86 / 105

Method 1: Several Rules



X

Method 1: Conclusion

Y

Possible output
B = {x0} ◦ S = B

input x0
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Method 1: Fuzzy Rules

one fuzzy rule:
if X = nm then Y = ps

x

y

Rνps

µnm

R = µnm × νps

several fuzzy rules:
ns → ns’, az → az’, ps → ps’

x

y

Rνps

νaz

νns

µns µaz µps

R = µns × νns’∪
µaz × νaz’ ∪ µps ×νps’

Part 2 88 / 105



Method 1: Fuzzy Conclusion

R

input

output

x0

Three fuzzy rules
Every pyramid is specified by a fuzzy rule (Cartesian product).  

Input x0 leads to gray-shaded fuzzy output {x0} ◦ R.
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Method 1: Fuzzy Rules for Interpolation 

R

input

output

x0

Three fuzzy rules
Every pyramid is specified by a fuzzy rule (Cartesian product).  

Input x0 leads to gray-shaded fuzzy output {x0} ◦ R.
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Method 2

X3 4

Imprecise rule: if X = [3, 4] then Y = [5, 6]

Interpretation: Constraints

Black values are impossible, white ones are allowed.

Y

6

5
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Method 2: Rules are constraints
Several imprecise rules: if X = M1 then Y =N1, if X = M2 then Y = N2, 
if X = M3 then Y = N3

Conjunctive interpretation: “corridor” (white area) for the function

XM1

M2

M3

N1

N2

Y  

N3
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X

Method 2: Conclusion in case of imprecise rules 

Y

possible  
output

x0

output = {x0} ◦ R
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Method 2: Fuzzy Rules

if X is approx. 2.5 then Y is approx.5.5

2 4
0

0.25

0.50

0.75

1.00

x

µ(x)

4 6
0

0.25

0.50

0.75

1.00

y

ν(y)
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Method 2: Fuzzy Rule modelled as Fuzzy Relation by Gödel Implication
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Method 2 : Conjunctive Fuzzy Rule Bases
R1 : if X = µM1  then Y = νB1, . .. , Rn : if X = µMn then Y =νBn

1≤i≤r

µR = minµRi

For input µA, the output is η ,

x∈X
η(y) = supmin{

A
µ (x ),µ R(x,y)} .
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Method 3 

Given µ1, . . . , µr of X and ν1, . . . , νr of Y and r rules if µi then νi.  What 

is a fuzzy relation ̺ that fits the rule system?

One solution is to find a relation ̺ such that

∀i ∈ {1, . . . , r } : νi= µi ◦ ̺,

µ ◦ ̺ : Y → [0, 1],
x ∈X

y ›→ sup min{µ(x ), ̺(x , y )}.
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Example
µA = ( .9 1 .7 )

̺ A�∼B

� �
1 .4 .8 .7

= � 1 .4 .8   .7 �
� �

1 .4 1 1

1  .4 .8 .7
1  .4 .8 .7
1 .4 1 1

νB  = ( 1 .4 .8 .7 )

1

�
0 0 0 .7

̺ = � 1 .4 .8�
0 0 0 0

�

0 �
�

2

�

�
0 .4 .8 0

̺ = � 1 0 0
0 0 0 .7

�

0 �
�

.9 1 .7 1 .4 .8 .7

̺A�∼B largest solution, ̺1, ̺2 are two minimal solutions.

Solution space forms upper semilattice.
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Solution of a Relational Equation

Theorem
i) Let “if A then B” be a rule with µA ∈ F(X ) and νB ∈ F(Y ).

Then the relational equation νB = µA ◦ ̺ can be solved iff the  Gödel 
relation ̺A�∼B is a solution.
A̺�∼B : X × Y → [0, 1] is defined by

.
1 if µA(x ) ≤ νB(y ),  
νB(y ) otherwise.

(x , y ) ›→

ii) If ̺ is a solution, then the set of solutions R =
{ ̺S ∈ F(X × Y ) | νB = µA ◦ S̺ } has the following property: If
̺S ′  , ̺S ′ ′  ∈ R, then ̺S ′  ∪ ̺S ′ ′  ∈ R.

iii) If ̺A�∼B is a solution, then ̺A�∼B is the largest solution w.r.t.⊆.
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Solution of a Set of Relational Equations

Generalization of this result to system of r relational equations:

Theorem
Let νBi = µAi ◦ ̺ for i = 1, . . . , r be a system of relational equations.

i) There is a solution iff
T r

i =1 Ai �∼Bi̺ is a solution.
ii) If

T r
i =1 Ai �∼Bi̺ is a solution, then this solution is the biggest solu-

tion w.r.t. ⊆.

Remark: if there is no solution, then Gödel relation is often at least a  
good approximation.
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