Diego Perez, Sanaz Mostaghim

diego.perez@ovgu.de, sanaz.mostaghim@ovgu.de

Magdeburg, Germany, 2014

Otto von Guericke University Magdeburg, Magdeburg, Germany

Autumn 2014

Outline

@ Organization of this workshop

© Computational Intelligence for Games
© The GVGAI Framework

© Our GVG Contest

© Agent Decision Making
@ MCTS and Sampling methods
@ Evolutionary algorithms

Outline

@ Organization of this workshop

T —
The Workshop (1)

@ Professional skills:
o Reading scientific papers.
o Practising to present a technical talk.
e Practising to write scientific texts.
@ Practical skills:
o Improving your programming skills.
o Learning new algorithms.
o Solving problems.
o Soft skills:
o Team work.
o Taking part in international communities and competitions.

T —
The Workshop (1)

Groups of 3 students:

e A name for the group.

o Full names of all group members.

o A contact email.

Each group will create 3 controllers:

Heuristic based controller (deadline: 12th November 2014).
Reinforcement learning controller. (deadline: 26th November 2014).
Nature-inspired controller (deadline: 10th December 2014).

Each controller will require:

@ Submission of the controller to the website before the deadline.

o 3 slides / 5 minutes presentation explaining the submitted controller.
Each group will deliver:

o A 15-20 minute presentation on the whole Team Project.

o A 10-15 pages report.
@ Assessment:
e 1/3: Team Project Presentation.
e 1/3: Team Project Report.
o 1/3: Submitted controllers.

T —
The Workshop (111)

6 important dates:
@ 22nd October 2014

o Today! First contact, introduction to the project, form groups, ...
(+ 3 weeks) 12th November 2014

o Deadline for submitting your first controller (Heuristic controller).

o You will do a 3 slides / 5 minutes presentation about your controller.
o We'll introduce some ideas for the next (RL) controller
(4 2 weeks) 26th November 2014
o Deadline for submitting your second controller (RL controller).
o You will do a 3 slides / 5 minutes presentation about your controller.
o We'll introduce some ideas for the next (Nature-inspired) controller.
(+ 2 weeks) 10th December 2014
o Deadline for submitting your third controller (Nature inspired controller).
o You will do a 3 slides / 5 minutes presentation about your controller.
@ 21st January 2015

o Team Project Presentation.
@ 21st January 2015

o Deadline for Team Project Report.

6)/54

Outline

© Computational Intelligence for Games

Why games?

. ¥ &5 ¥
: .
1L ; - - "
P, d o -
o8, " B B

Why games?

o Constantly growing industry.

55.05

4938

4429

Revenue in billion U, dollars

2012 2013 2014* 2015*

Video game console hardware/software revenue worldwide from 2012 to 2015 (in billion U.S. dollars)

Source: Gartner, Statista 2014

Why games?

o Multiple devices.

10)/54

Intelligence in Games

o Al Gap between industry and academia.
@ Industry: behaviour of Non Playable Characters (NPCs).
o Path planning or pathfinding: how to move intelligently.

|

o Proper behaviour: Finite State Machine, Behaviour Trees, Goal Action Plan-
ning.

healthpoints
are low

PN
|x|wander| |€| attack n.yalnhnge?| |PiLkW=pun| IPm:l’hyﬂ| m
\/

player is out
of sight

Intelligence in Games

o Industry (cont.)

o Player believability.

V 4

o Al Directors, Computational Narrative, ...

12)/54

Intelligence in Games

@ Academia
Henry
Not Guilty ‘ Guilty

>4 |68

o Game theor
y 2 Years 5 Years
| = |
]

(i.e. Prisoner's dilemma).
[[e,
{3 &
1Vr

5 Vears 3 Years

Not Guilty

4
B

Gullty

Copyright 2008 - Investopeiia cam

o (Player) Decision Making.
o Board games: Chess, Checkers, Backgammon, Reversi, Go
o Video (real-time) games: Racing, Real-Time Strategy, Platformer, Physics-based

o Procedural Content Generation (PCG): generation of games, levels, etc

o Player experience, player modelling, game mining, BCI for games, etc
13)/54

Research

@ Conferences and journals are great source of information:
o IEEE Conference on Computational Intelligence and Games (CIG).
o AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-
ment (AlIDE).
o Foundations of Digital Games (FDG).
o Games tracks in many general Al conferences:
o EvoGames (EvoStar).
o Digital Entertainment and Arts (Genetic and Evolutionary Computation Confer-
ence - GECCO).
o Computational Intelligence and Games (Congress on Evolutionary Computation -
CEC).

o IEEE Trans. on Computational Intelligence and Artificial Intelligence in Games.
o Hindawi International Journal of Computer Games Technology.
o |IEEE Transactions on Evolutionary Computation.

14)/54

Competitions

o Multiple video-game competitions in the past years.
o (the largest) subset of these is about agent decision making:

u.v.:z i
m‘nn§ \
b\

15)/54

General Game Playing (GGP)

@ First Alll GGP Competition, by the Stanford University Logic Group.

@ > 1s decision time.

16)/54

.
General Video-Game Playing (GVGP)

@ Actions performed at much higher rate (= 40ms).

@ Atari 2600 Collection:
o Arcade Learning Environment (ALE) [1]
o Evaluation of Al agents in domain-independent environments (55 games).

Pitfalll and Space Invaders, from [Bellemare et al., 2013]

e RL, UCT and MCTS.
o Contingency awareness.

17)/54

.
General Video-Game Playing (GVGP)

o Levine et al. (2010) [2] propose creation of new benchmark for GVGP.
@ Compliments ALE in two ways:

o Creation of games in a more general framework.

o No screen capture analysis needed, information via encapsulated objects.

o Video Game Description Language (VGDL) [3].
e Benchmark for learning and planning problems.
o Base for the GVG-Al Framework, used in this workshop and in the GVG-AI
Competition.

18)/54

Outline

© The GVGAI Framework

-
The GVGAI Website

http://www.gvgai.net

The General Video Game Al Competition - 2014

The 2014 GVG-Al Competition is over! The winner is adriencix (Adrien Couetoux, Academia Sinica, 1S, TW).
The complete and final results are available herel

Also, the validation set games have been made public. You can waich videos about these games (plus their explanations) here
The validation set games have been added to the GVG-Al framework, which you can download from the software page.

Welcome to the General Video Game Al Competition webpage. The GVG-Al
Competition explores the problem of creating controllers for general video
game playing. How weuld you create a single agent that is able to play any
game it is given? Could you program an agent that is able to play a wide
variety of games, without knowing which games are to be played?

In this website, you will be able to participate in the General Video Game Al
Competition, that will be held at CIG 2014. This competition is run by Diego
Perez, Spyridon Samothrakis, Julian Togelius, Tom Schaul and Simon
Lucas. You will be able to download the starter kit for the competition and
submit your controller to be in the rankings Boulder Dash

20)/54

http://www.gvgai.net

-
The GVGAI Website

http://www.gvgai.net
Getting Started

Create a Controller for GVGAI Submit it and Get in the Rankings

Sign up in this website to participate, play and submit
Submit (or update) your controller for evaluation
Your controller will be introduced in the rankings.
Join our Google group for updates and discussions

Get the java-vgdl framework code and documentation.
Create a controller following the instructions.

Have a look at our Sample Controllers for inspiration.
Check framework documentation and competition rules

Bwp e
[N

Useful links

VGDL Creating Controllers Forward Model

. e 1a Startel e:
Competition Rankings

Participant area:

http://www.gvgai.net

Introduction
':'E"I:T;ﬁf:hysim Java, Unix.
Dsrc o examples — gridphysics: Game and levels files.
EZI”"“ @ controllers: Sample working controllers.

Ez:‘;‘f"” o core: Core codebase of the framework.
[game @ core.competition: Competition parameters.
E:ﬁ:ﬂimﬂ @ core.content: Game and sprite creation.
E::L‘::e"‘ad“”a o core.game: Game engine, Forward Model and Ob-
€ % SpriteGroup servations.

£) ' VGDLFactory

~Si @ core.player: Abstract class for players.

: b VGDLR=gistry @ core.termination: Game termination conditions.

©) & VGDLSprite . . .

©) b VGDLViewer @ ontology: Definitions for sprites, avatars, physics
B ontdlogy and events.

[57] avatar

] effects o tools: Several useful classes.

h . .

E:’p::: o Test java: Entry point to run the framework.

b Types
1 tools

»
c
b Test N

-
VGDL - Game Definitions

gasicGame
Spriteset
base > Immovable color=WHITE img=base
svatar > FlakAvatar stype=sam
missile > Missile

sam > orientation=UP color=BLUE singleton=True img=spaceship

bomb > orientation=DOWN color=RED speed=8.5 img=bomb
alien > Bomber stype=bomb prob=8.81 cooldoun=3 speed=8.8 img=alien
portal >

portalSlow > SpawnPoint stypesalien cooldown=16 total=28 img=portal
portalFast > SpawnPoint stypesalien cooldown=12 total=28 img=portal

LevelMapping
@ > base
1 > portalSlow
2 > portalFast

TerminationSet
SpriteCounter stype=avatar 1imit=8 w:
MultiSpriteCounter stypel=portal stype?=alien limit=8 win=True

False

InteractionSet
avatar EOS 3 stepBack
alien EOS > turnAround
missile E0S > killSprite
missile base > killSprite
base borb > killSprite
base sam > killSprite scorsChange=1
base alien > killSprite
svatar alien > killSprite scoreChange=-1
svatar bomb > killSprite scoreChange=-1
>

alien sam killSprite scoreChange=2

-
VGDL - Level Definitions

W W
wl W
woea W
waea W
W W
W W
W W
W W
W 288 2a8088 288 W

W ae888 jegegetslsicicie] 88888 w
w 8 2 e ae 20088 w
W A W

A Sample (random) controller

package random; //The package name is the same as the username in the web

public class Agent extends AbstractPlayer {

protected Random randomGenerator;

//Constructor. It must return in 1 second maximum.
public Agent(StateObservation so, ElapsedCpuTimer elapsedTimer)

{

randomGenerator = new Random();

/fAct function. Called every game step, it must return an action in 48 ms maximum.
public Types.ACTIONS act(StateObservation stateObs, ElapsedCpuTimer elapsedTimer) {

/IGet the available actions in this game.
Arraylist<Types.ACTIONS> actions = stateObs.getAvailableActions();

/fDetermine an index randomly and get the action to return.
int index - randomGenerator.nextInt(actions.size());

Types.ACTIONS action = actions.get(index);

//Return the action.
return action;

StateObservation (1)

o Allows the agent to query the state of the game:

StateObservation.getGameScore();
StateObservation.getGameTick();
StateObservation.getGameWinner();
StateObservation.isGameOver();
StateObservation.getWorldDimension()

.. the state of the avatar:

StateObservation.getAvatarPosition();
StateObservation.getAvatarSpeed();
StateObservation.getAvatarOrientation();
StateObservation.getAvatarResources();

.. the available actions in the game:

StateObservation.getAvailableActions();

.. the history of events (collisions) in the game:

StateObservation.getEventsHistory();

StateObservation (I1)

@ ... Observations in the game:
StateObservation.getObservationGrid();
StateObservation.getNPCPositions(position?);
StateObservation.getlmmovablePositions(position?);
StateObservation.getMovablePositions(position?);
StateObservation.getResourcesPositions(position?);
o StateObservation.getPortalsPositions(position?);

o StateObservation.getFromAvatarSpritesPositions(position?);

What is an Observation? It is an object that contains:

int itype: Type of sprite of this observation.

int category: Category of this observation (static, resource, npc, etc.).
int obsID: Unique ID for this observation.

Vector?2 position: Position of the observation.

Vector?2 reference: Reference (pivot) position.

double sqDist: Distance from this observation to the reference.

27)/54

StateObservation (111)

In StateObservation:
1 ArrayList<Observation >[][] getObservationGrid();

o Bi-dimensional array, matching the level grid. N
@ Each ArraylList contains list of Observations in .. =
that position. -
Q|

1 ArrayList<Observation >[] getNPCPositions();
2 ArraylList<Observation >[] getNPCPositions(Vector2d reference);

@ Returns a list of observations of NPC in the game.

@ As there can be NPCs of different type, each entry in the array corresponds
to a sprite type.

@ Every ArrayList contains a list of objects of type Observation.

o If “reference” is given, Observations are sorted by distance to the reference’s
position.

28)/54

The Forward Model

Also, in StateObservation:

1 StateObservation copy();

o Create a copy of the StateObservation object.

1 void advance(Types.ACTIONS action);

o Advances the StateObservation object, applying the action supplied.
o Allows to simulate the effects of applying actions.

@ The StateObservation updates itself to reflect the next state.
o Important: The games are stochastic in nature!

o The next state must be considered as a possible future state when applying a
certain action.

e The agent has the responsibility to deal with these inaccuracies.

29)/54

Outline

© Our GVG Contest

Our GVG Contest - www.gvgai.net - Sets and steps

@ There are three different sets where you can submit your controller.

@ You must submit to all of them before each upcoming deadline.
o Two sets are for training, and their games are included in the framework.
o The third set is for test, and you won't know the games at all!

@ Sign up (one account per controller).
o eg: GROUPNAME_HR, GROUPNAME_RL, GROUPNAME_NI
o For now, just create one account with the username GROUPNAME_HR.
@ Get framework from nttp://www.gvgai.net/software.php.
© Submit your source code to http://www.gvgai.net/submit_gvg_ovgu.php.
o Important: See the instructions on that page:
o Your agent must be implemented in a file called Agent.java.
o The Java package where it is contained must be the same as your username.
o Your controller will be compiled and executed automatically.
@ Check the rankings:
o Training Set 1: http://www.gvgai.net/gvg_rankings_ovgu_t1.php.
e Training Set 2: http://www.gvgai.net/gvg_rankings_ovgu_t2.php.
o Test Set: http://www.gvgai.net/gvg_rankings_ovgu_test.php.

31)/54

http://www.gvgai.net/software.php
http://www.gvgai.net/submit_gvg_ovgu.php
http://www.gvgai.net/gvg_rankings_ovgu_t1.php
http://www.gvgai.net/gvg_rankings_ovgu_t2.php
http://www.gvgai.net/gvg_rankings_ovgu_test.php

Our GVG Contest - www.gvgai.net - Rankings

o Evaluation in 10 games, 5 levels per game, 1 times.
@ Three results are considered per game, in this order:
o Number of victories (1).
o Total score (7).
o Time spent ({).
o All entries ranked and awarded with points: 25,18,15,12,10,8,6,4,2,1.

o Final rankings by adding all points across all games.

Game Username Country Points Winner Score Timesteps
Chase IdealStandard Switzerland £ 25 5 50 349
Chase JinJerry Taiwan, ROC @ 18 5 49 665
Chase adrienctx Taiwan, ROC @ 15 5 48 2166
Chase FastEvoMCTS United Kingdom gig 12 4 48 2367
Chase MnMCTS United Kingdom gig 10 4 47 2652
Chase MMbot Korea, Republic of 8 4 39 5610
Chase sampleMCTS United Kingdom 6 3 a7 6196
Chase sampleGA United Kingdom gi3 4 3 24 8996
Chase ssamot United Kingdom 2 2 37 7305
Chase T2Thompson United Kingdom i3 1 2 23 5686
Chase random United Kingdom {5 0 1 22 4910
Chase Normal_MCTS Korea. Republic of 0 1 20 8820

32)/54

Our GVG Contest - 12/11/2014 - Groups

12/11/2014 - HR rankings and groups of the contest:

Team TopBug

Martin Hiinermund and Jens Dieskau.
TR1: 1%t, TR2: 15, TEST: 1.

Team emergence

Julian Blank and Frederick Sander.
TR1: 2" TR2: 2" TEST: 2n.

Team Taccocat

Erik Schondorff, Xenija Neufeld, Florian Uhde.
TR1: 4t TR2: 4th TEST: 37.

Team xixue

Shengnan Chen, Vishnu Unnikrishnan and Shadi Akhras
TR1: 3 TR2: 3 TEST: 4th

Outline

© Agent Decision Making
@ MCTS and Sampling methods
@ Evolutionary algorithms

Agent Decision Making

o How to make a decision?

A Markov Decision Process is a tuple < S, A, P, R,y >

@ S: Finite set of all possible states of the game.

A: Finite set of all possible actions in the game

P: A State Transition Probability Matrix P2, = P[s'|s, a.

R: A Reward Function, R? = EJ[r|s, a.
~: A discount factor v € [0,1].

RX
()

35)/54

One Step Look Ahead

@ Try them all, pick the action with the highest reward.

m actions

/R 30)/ 54

One Step Look Ahead

public Types.ACTIONS act(Statelbservation statelbs, ElapsedCpuTimer elapsedTimer) |

Types. ACTICNS bestRetion = null;

double max(= DDu.ble.NEGAI'M_Il\TINH‘Y:

SimpleStateHeuristic heuristic = new SimpleStateHeuristic{statelbs):
for (Types.ACTIONS acticn : statelbs.getAwvailablelctions()) {

Statelbservation stCopy = statelbs.copy():
stCopy.advance (action);

double O = heuristic.evaluateState (atlopy);
if (@ > maxQ) {

maxQ = Q7
bestAction = action;

return bestiction;

L 37)/84

A Simple Value Function

public double evaluateState(Statelbservation a_gameState) |
boolean gameOver = a_game5tate.isGamelwver();
Types.WINNER win = a_gameState.getGameWinner();

double rawScore = a_gameState.getGFameScore():

if {gameCver & win == Types.WINNER.PLAYER LOSES)
return HUGE NEGATIVE:

if {gamelver & win == Types.WINNER.FPLAYER WINS)
return HUGE POSITIVE;:

return rawScore;

/R 38) /54

e
N-Step Look Ahead

o Build a tree: search exhaustively N steps in the future.
@ Pick the action that leads to the highest reward after these N steps.

N Steps

39454

Flat Monte Carlo (Flat MC)

o lteratively, apply N consecutive actions picked randomly.

@ Pick the action that leads to:
o the highest reward after N steps.
o the highest average reward after N steps, etc.

m actions

N Steps

Random Selection
of Actions

T T (rollout)

Rz

40)/54

T —
Upper Confidence Bound for Trees (UCT) (1)

The Multi-Armed Bandit Problem.

Set of unknown distributions B = {Ry, R, ..., R} of rewards.

Played iteratively, during H action selections.

Mean values of these reward distributions: {1, pa, ..., pk}

The goal is to maximize the sum of rewards (minimizing the loss).

Each action is pulling one lever. How do you choose?

o Play randomly.

o Epsilon-greedy strategies.

o Many more ... AT

Upper Confidence Bound for Trees (UCT) (Il)

Balance exploration and exploitation.
An example: UCBL.

In N(s)
a* = argmax< Q(s,a) + Cy| ——=
acA(s) { () N(S7 CL) }

Q(s, a): Average of rewards after taking action a from state s.

N(s): Times the state s has been visited.

N(s, a): Times the action a has been picked from state s.

C: Balances exploitation (Q) and exploration (,/--~) terms.

o Application dependant.

o Typical value, for single player games with rewards normalized in (0, 1): V/2:

42)/ 54

Flat UCB

o Use UCBL to select action from the
root node (or current state).

Pick (N — 1) actions at random.
Repeat iteratively, return action
with:

o the highest reward after N steps.

o the highest average reward after 1
step (Q(s, a)).

o the most visited node after 1 step
(highest a for N(s, a)).

o the highest UCB1 value after 1 step,
etc.

m actions

Rz

1 Selection
by UCB1

(N-1)
Random
Selections

43)/54

e
Building a tree with UCB1

@ Build a tree: search N steps in the future.

@ The search is not exhaustive: tree grows asymmetrically.
o Repeat iteratively, return action with:

the highest reward after N steps.

the highest average reward after 1 step (Q(s, a)).

the most visited node after 1 step (highest a for N(s, a)).

]
]
]
o the highest UCB1 value after 1 step, etc.

m actions

N Steps,
Selection
by UCB1

44y 54

Monte Carlo Tree Search (MCTS)

Default
policy

1. Tree selection.~”

(UCBL) .~

2. Expansion

4. Back-propagation
3. Monte Carlo

simulation
D(— State evaluation

(Random)

4554

Open vs. Closed loop control

@ Our methods must face the challenge of stochasticity.
o If MCTS stores the nodes in the tree: closed loop.
o This means that, once the node is added, the state is unchanged.
o Quite possibly, this might lead to inaccuracies (P2, = PP[s'|s, a]).
o It is possible to do statistics on the actions (open loop).
@ In Closed loop control:
o Intermediate states are stored during the algorithm.
o Every new action is applied over a (previously) stored state.
o In MCTS, each node stores a state, within the node statistics.
@ In Open loop control:
o Intermediate states are not stored during the algorithm.
o Every new action is applied over the state reached at that moment.
o In MCTS, each node stores only the statistics, not the store.
o In other words, each decision in the tree uses the Forward Model.

o Summarizing:
o Closed loop control works on a sequence of (state,action) pairs.

e Open loop control works on a sequence of actions.
46)/54

Evolutionary algorithms (EA)

“Traditional” Evolutionary Algorithms:

o Population of individuals, each one is a solution to a given problem.

o Each individual is evaluated in the problem, and assigned a fitness.

@ The fitness indicates how good this solution is to the given problem.

@ Population evolves during several generations, creating new individuals by
recombination and mutation of individuals in the population.

o Elitism: population does not discard the best individual(s) of a generation.

Possibility, following a “classical” approach for General Video Game Playing:

o Each individual is a player: determines how action decisions are made.
@ This is offline training:

o EA determines the best agent first.

o The submitted agent does not use online evolution.

47) /54

e
Rolling Horizon Evolutionary Algorithms (RH-EA)

No offline training, evolution is use online, while playing the game.

@ Each individual is a sequence of
actions to apply from the current
state: it is open loop control.

o Fitness: Evaluation of the state
reached after applying the sequence
of actions.

o Within the real-time constraints, the
RH-EA evolves the best sequence of
actions.

o Evolve the population normally:
mutation, crossover, elitism, etc.

@ When the process is over, apply first .
action of the best individual.

@ SampleGA Sample Controller.

m actions

N Steps

= individual length
T Each action
i v ‘:, at each step given
by the individual

48)/54

Some additional ideas

Other things that can be included:
@ Reducing the search space:
o Macro-actions.
o Avoid consecutive opposite actions.
o Avoid actions that do not change the state.
o Knowledge discovery:
o Use the states visited during the simulations to discover game features.
o i.e.: what events (collisions) seem to award points?
o i.e.: what events make the avatar win/lose the game?
o Maximize exploration:
o i.e.: reward states that visit newly found positions.
@ i.e.: reward states with events rarely seen.
o Incorporate this into the state evaluation function.
o New ideas?
o Neural Networks.
o Particle Swarm Optimization.
o Ant Colony Optimization.

49)/54

TeamProject Report - Due 21st January 2015

@ Two templates provided, see TeamProject website: Word and LaTeX.
@ 15-20 pages.

o Suggested structure:

Introduction.

Literature Review.

Background.

Techniques Implemented.

Experimental Study.

Conclusions and Future Work.

References.
@ Results to report:
o On the three controllers implemented.
o Comparisons must be as fair as possible: state evaluation, look-ahead depth, etc.
o Make clear this in the report. If something cannot be made equal, explain why.
o Results in the final rankings on the website (you can keep submitting!).
o More importantly: results comparing your three controllers.
o Victory rate, score, time steps.

50)/54

On 21st January 2015 ... TeamProject Presentations

Each team gives a 15-20 minutes presentation.

Describe all controllers implemented.

o Brief description of the core techniques used (MCTS, EA?).
o Explain how they have been adapted for GVGAI.

Report results.

Development process:

o What things worked? What things didn’t work? Was something surprising (in
either way)?

o Evolution of the State Evaluation function: how has it changed from controller
to controller.

Main problems and difficulties found.
Conclusions: main findings and lessons learned.
o Future work.

o Ahh... and make it interesting! (= fun).

51)/54

Marking breakdown

@ 40% Final Presentation.

o Clarity, time, all points above, etc.
@ 40% Final Report.

o Clarity, explanations, references, all points above, etc.
@ 20% Code.

o Quality: re-usability, clarity, comments, efficiency, etc.

/I 52\ /B4

Some Readings

MCTS Survey:

@ Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis and Simon
Colton, A Survey of Monte Carlo Tree Search Methods, |IEEE Transactions on
Computational Intelligence and Al in Games (2012), pp. Vol. 4:1 143-191.

About MCTS for GVG and other real-time games. Also macro-actions:

@ Diego Perez, Spyridon Samothrakis and Simon M. Lucas, Knowledge-based Fast
Evolutionary MCTS for General Video Game Playing, Proceedings of the IEEE
Conference on Computational Intelligence and Games (2014), pp. 68-75.

@ Diego Perez, Edward Powley, Philipp Rohlfshagen, Daniel Whitehouse, Spyridon
Samothrakis, Peter Cowling and Simon Lucas, Solving the Physical Travelling
Salesman Problem: Tree Search and Macro Actions, IEEE Transactions on
Computational Intelligence and Al in Games, 6:1, pp. 31-45, 2013.

Scientific writing:

@ Turabian KL A Manual for Writers of Research Papers, Theses, and Dissertations{
8th edition. Chicago (lllinois): The University of Chicago Press, 2013.

53)/54

References for General Video Game Playing

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: an evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47(1):253-279, 2013.

John Levine, Clare B. Congdon, Michal Bida, Marc Ebner, Graham Kendall, Simon Lucas,
Risto Miikkulainen, Tom Schaul, and Tommy Thompson. General Video Game Playing.
Dagstuhl Follow-up, 6:1-7, 2013.

Tom Schaul. A Video Game Description Language for Model-based or Interactive
Learning. In Proceedings of the IEEE Conference on Computational Intelligence in Games,
Niagara Falls, 2013. IEEE Press.

54)/ 54

	Organization of this workshop
	Computational Intelligence for Games
	The GVGAI Framework
	Our GVG Contest
	Agent Decision Making
	MCTS and Sampling methods
	Evolutionary algorithms

