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Abstract—The best-of-n problem has been a popular research
topic for understanding collective decision-making in recent
years. Researchers aim to enable a swarm of agents to collectively
converge to a single opinion out of a series of potential options,
using only local interactions. In this paper, we investigate the
viability of decision-making via majority rule using ranked
voting systems in multi-option scenarios where n>2. We focus
on two ranked voting systems, single transferable vote (STV)
and Borda count (BC). The proposed algorithms are tested in
a discrete collective estimation scenario, and compared against
two benchmark algorithms, direct comparison (DC) and majority
rule using first-past-the-post voting (FPTP). We have analyzed the
experimental results, focusing on the trade-off between accuracy
and speed in decision-making. We have concluded that ranked
voting systems can significantly improve the performances of
collective decision-making strategies in multi-option scenarios.
Our experiments show that BC is the best performing algorithm
in the studied scenario.

I. INTRODUCTION

Collective decision-making is a long-standing area of study
within swarm intelligence. The aim of this field is to under-
stand the decision-making mechanisms of naturally existing
intelligent swarms, as well as construct decision-making strate-
gies for artificial swarm intelligence systems. Researchers
especially seek to imitate the decentralized and localized
decision-making process of natural swarm intelligence such as
insect swarms or bird flocks, who exhibit complex behaviors
via no centralized control mechanism [1].

Within the field of collective decision-making, best-of-
n problems encompass the scenarios where the individual
agents need to form a consensus out of a discrete list of
options collectively [2]. Various collective decision-making
strategies have been proposed to enable decision-making in
such scenarios. A popular inspiration for collective decision-
making strategies is the behavior of natural intelligent swarms,
such as bees or ants. An example of such algorithms is
the biologically inspired collective comparison proposed by
Parker et al. [3]. Such algorithms are characterized by an
explicit preference by the agents for one of the options,
while the agents try to recruit other agents to their preference
during the decision-making process. This approach has been
continuously improved when applied to artificial agents. More
recent approaches in this class include weighted voter model,
represented by the algorithm Direct Modulation of Voter-based

Decisions (DMVD) [4], and majority rule, represented by
the algorithm Direct Modulation of Majority-based Decisions
(DMMD) [5].

In this paper, we pay close attention to decision-making
via majority rule, where the agents decide among available
options via local majority voting. This process is akin to
how voters choose among political candidates in real-world
elections. DMMD has been extensively studied in various
binary collective decision-making scenarios, including site
selection [6] and collective perception [7]. In such binary
decision-making scenarios, agents can decide on the optimal
option via a simple majority vote. In recent years, there
has been a trend to move beyond simple binary collective
decision-making scenarios and towards multi-option scenarios.
Many approaches have been proposed and tested in multi-
option site selection scenarios, such as opinion pooling [8]
and cross inhibition [9]. We thus seek to extend the classical
majority rule decision-making strategy into a multi-option
scenario, where an absolute majority cannot be easily reached.
Therefore, we take inspiration from real-world ranked voting
systems, which are used as a method to decide among multiple
candidates by many democratic countries around the world.

In this study, we focus on two popular real-world ranked
voting systems, namely single transferable vote (STV) and
Borda count (BC), and investigate their performances when
applied to the majority rule decision-making processes of
artificial collective intelligence. We have used a simple first-
past-the-post (FPTP) voting as a benchmark. We have also
compared the performances of majority rule decision-making
strategy with a popular benchmark algorithm in collective
decision-making, namely direct comparison (DC). The con-
sidered algorithms are investigated using a discrete collective
estimation scenario. This scenario is an extension of the
classical collective perception scenario [10] into a multi-option
scenario.

The structure of this paper is as follows. In Section 2,
we describe the investigated scenario in detail and cover
related works on similar problems and related decision-making
strategies proposed in literatures. In Section 3, we present the
proposed decision-making strategies based on majority voting
and the underlying agent behaviors. Section 4 includes the
experiment setup and the results. In Section 5, we discuss our



findings and compare them with related works. And finally,
Section 6 is the conclusion.

II. PROBLEM STATEMENT & RELATED WORKS

Fig. 1. Example illustration of the investigated discrete collective estimation
scenario. The arena is a 2m × 2m square covered by 400 tiles in black &
white. Red dots are mobile robots that roam the arena.

We investigate the considered decision-making strategies
using a discrete collective estimation scenario as shown in
Figure 1. This scenario is inspired by the extensively studied
collective perception scenario proposed by Valentini et al. [10],
and serves as an extension of it into a multi-option decision-
making situation. A continuous collective estimation scenario
has also been studied by Strobel et al. [11].

The settings of the decision-making task here are as follows.
There is an arena as shown in Figure 1, which is covered in
black and white tiles of with a particular ratio. A number of
mobile robots are tasked with collectively determining the ratio
of area in the arena covered in black, which is referred to as the
fill ratio, out of a discrete list of hypotheses. The robots have
limited communication, sensory and processing capabilities,
and they also only have simple reactive behaviors.

The classical binary collective perception scenario, where
the robots determine which color occupies the majority of area,
has been well studied in previous literatures. Valentini et al.
[10] have investigated the performances of various decision-
making strategies, including DMMD, DMVD and DC. Strobel
et al. [12] have examined the same strategies under a series
of increasingly more difficult fill ratios, which progressively
approach 50%. Bartashevich et al. [7] have researched the
performances of these algorithms in environments with con-
centrated distributions of features.

Multi-option collective decision-making has been a hot
research topic these few years. Cross inhibition [13] is a
nature-inspired algorithm that is shown to perform well in site
selection scenarios [9]. Opinion pooling is another approach
that received much attention, where the belief masses of
options are transmitted and fused directly. Such approaches
have been investigated in site selection scenarios [8] and
collective perception scenarios [14], [15]. In addition, a similar

fusion approach has been attempted in pooling rankings of
options and achieving collective learning of the true preference
order of the options [16].

The ranked voting algorithms investigated in this paper
are an extension to the binary DMMD algorithm proposed
in [5]. The base version of DMMD functions as follows.
An individual agent alternates between two behaviors, explo-
ration and dissemination. During the exploration phase, the
agent performs random walk in the arena and compute the
quality of its current chosen option from its observations on
the environment. During the dissemination phase, the agent
exchanges its choice with its peers, and by the end of the
dissemination phase, the agent switches to the choice which
has received the most votes among its neighbors. The length
of the dissemination phase is proportional to the quality of
the current option, which is computed during the exploration
phase. This feature enables the swarm to collectively converge
to the correct option.

When applying this decision-making process to a multi-
option scenario, the probability of any single option achieving
absolute majority is low. Thus, we need to introduce a voting
system to resolve the deadlock in the decision-making process
when no option holds an absolute majority. We therefore take
inspiration from real-world elections and apply the follow-
ing voting systems to the aforementioned process, namely
first-past-the-post (FPTP), single transferable vote (STV) and
Borda count (BC). FPTP is the most straightforward voting
system when more than two options are concerned, where
the candidate with the most votes wins regardless of whether
absolute majority is achieved. It is a widely used and long-
standing voting system in many democratic countries around
the world. It has received some criticisms from political
scientists [17], and many alternative voting systems have been
proposed.

In this paper, we focus on two ranked voting systems,
STV and BC. STV [18] is a popular alternative to FPTP.
It was proposed in the 19th century by Thomas Wright
Hill. In STV, voters would rank the candidates according to
preference. The ballots are initially tallied according to the first
preferences. The candidate with the least votes will then be
eliminated, whose corresponding votes will be redistributed to
other candidates according to the voters’ rankings. The process
continues until a single candidate holds an absolute majority.
BC is another ranked voting system, which is less commonly
adopted in political processes than the previous two. It has
been independently proposed several times, most notably in
the 18th century by Jean-Charles de Borda [19]. In BC, each
voter’s ballot gives points to the candidates according to the
voter’s ranking. The least preferred candidate receives 1 point,
the next least preferred candidate receives 2 points, and the
most preferred candidates receives the most points. The winner
is the candidate who received the most points in total from all
ballots.

In addition, we have also implemented direct comparison
(DC) decision-making strategy as a benchmark for the afore-
mentioned algorithms based on majority rule. DC is a popular



1: Algorithm 1: Decision making behavior of an agent
using majority rule strategies

2: Input: Initialized belief: ρ
n

, Initialized decision: dn
3: Output: Converged decisions: dn
4: Set parameters η, σ, τ
5: Ballot box Rn = ∅, Individual ballot rn
6: Initialize dn with random valid values
7: staten = 0, timern = 0
8: while Decisions in swarm have not converged do
9: timern = timern − 1

10: if staten = 0 then
11: #Exploration State
12: ob = CollectObservation
13: ρ

n
= Normalize(ρ

n
◦ (K · ob))

14: if timern < 0 then
15: staten = 1
16: timern = Sample(exp(σρn[dn]))
17: end if
18: else
19: #Dissemination State
20: Rn = Rn ∪ rm if |Rn| < η, m is the index of a

neighboring robot
21: rn = ComputeBallot(ρ

n
, dn)

22: Compute and broadcast rn
23: if timern < 0 then
24: Rn = Rn ∪ rn
25: dn = V oteTally(Rn)
26: dn = RandomChoice([(dn + 1), (dn − 1)], τ )
27: staten = 0
28: timern = Sample(exp(σ))
29: end if
30: end if
31: end while

benchmark algorithm for collective decision-making strategies
and has been used frequently in collective perception scenarios
[10]. It has also been used in multi-option scenarios [9].

III. METHODOLOGY

In this section, we describe the decision-making strategies
in detail, together with the underlying behaviors of the robots.

A. Basic Underlying Decision-Making Behaviors

The basic underlying decision-making behaviors of the
investigated majority rule strategies are the same and shown
in Algorithm 1. We have largely kept the overall decision-
making mechanisms of binary DMMD in collective perception
scenarios.

In the exploration state (line 11-17), the agent keeps making
observations of the color of the arena floor at its current
position, and modifies its belief of the fill ratio ρ

n
. We utilize

the same mechanism to compute the option qualities for all
considered decision-making strategies. The method we used is
based on Bayesian statistics and similar to our previous work
[14], and is as follows.

We consider H = 10 hypotheses on the fill ratio of the
arena, expressed in the following matrix K.

K =


0.05 0.95
0.15 0.85
· · ·

0.95 0.05

 (1)

The first column represents the proportion of black tiles PB ,
and conversely, the second column represents the proportion
of white tiles 1− PB .

When the robot makes an observation on the color of the
ground beneath them, the observation is expressed as either

ob =

[
1
0

]
when the ground is black, or ob =

[
0
1

]
when the

ground is white. The belief ρ
n

is then computed iteratively in
line 13 via the element-wise product of the old ρ

n
value and

K · ob as follows.

ρ
n

= Normalize(ρ
n
◦ (K · ob)) (2)

In the dissemination state (line 19-30), the agent exchanges
opinions with its neighbors. At the end of the dissemination
state, it determines its new chosen decision based on its
observations and the information obtained from its neighbors,
using a particular majority voting system. The lengths of
the dissemination state are modified in line 16 based on the
computed quality of the chosen decision ρn[dn], similar to in
previous implementations of DMMD.

This decision-making process is tuned by three parameters,
maximum number of neighbors η, mean length of explo-
ration/dissemination state σ, and mutation rate τ . It has been
observed that in binary decision-making problems, DMMD’s
performance is heavily affected by the maximum number of
neighbors it is allowed to receive opinions from during a
dissemination period [6]. In our implementation, η represent
the same parameter and is used as a cap on the number of
received messages in line 20. Similarly, such decision-making
algorithms are also affected by the average lengths of explo-
ration and dissemination periods [20], which is controlled by
the parameter σ in our implementation. Different from binary
implementations of DMMD, we have added a mechanism to
enforce diversity of opinions among the agents and prevent
premature convergence to a wrong option. At the end of
dissemination periods, an agent will mutate its chosen decision
to a neighboring decision on the list of hypotheses with the
probability of τ (line 26).

B. Collective Decision Making via Majority Rule
In this subsection, we will introduce the majority voting

mechanisms investigated in this paper.
Algorithm 2 shows how agent n computes ballots rn (line

21 in Algorithm 1) for both STV and BC. The agent would
rank the available options according to its computed qualities.
Its current chosen decision dn will always be ranked 1st
regardless of quality.

Algorithms 3,4 and 5 are the vote tallying mechanisms of
the voting systems investigated in this paper, and are used in
line 25 of Algorithm 1.



1: Algorithm 2: Computing Ranked Ballots
2: ComputeBallotRanked(ρ

n
, dn)

3: Input: Belief ρ
n

, decision dn
4: Output: Ranked ballot rn
5: ρ∗

n
= ρ

n
6: ρ∗

n
[dm] = MaxV alue

7: rn = argsort(argsort(−ρ∗
n
))

1: Algorithm 3: Single Transferable Vote
2: V oteTallySTV (Rn)
3: Input: Collected ballots Rn = {rm,m = 1..M}
4: Output: Winning hypothesis index h∗
5: v : vh, h = 1..H is vote tallies of all considered hypothe-

ses based on 1st preference
6: while max(v) ≤ sum(v)/2 do
7: Eliminate hypothesis ĥ = argmin(v)
8: Votes for ĥ are transferred to their next best choice
9: end while

10: h∗ = argmax(v)

Algorithm 3 shows the vote tallying mechanism of STV.
Here the agent collects M ballots from its peers and itself.
Vector v tallies the votes for every option according to the 1st
preferences on the ballots. The agent then iteratively eliminate
the least popular option ĥ and redistribute its associated votes
to their next best preferences.

1: Algorithm 4: Borda Count
2: V oteTallyBC(Rn)
3: Input: Collected ballots Rn = {rm,m = 1..M}
4: Output: Winning hypothesis index h∗
5: v = Σm=1..M (H − rm)
6: h∗ = argmax(v)

Algorithm 4 shows the vote tallying mechanism of BC. The
agent collects the same M ballots as before. The vote tally v is
calculated by summing up the corresponding points for each
option according to the ranking on every ballot. The winning
option is the one with the maximum number of points.

1: Algorithm 5: First Past the Post
2: V oteTallyFPTP (Rn)
3: Input: Collected ballots Rn = {rm,m = 1..M}
4: Output: Winning hypothesis index h∗
5: vh, h = 1..H is vote tallies of all considered hypotheses
6: h∗ = argmax(vh)

Finally, Algorithm 5 shows the vote tallying mechanisms
of FPTP. FPTP is not a ranked voting system, and thus the
ballots are scalars indicating only the chosen decision dm.
The tallying process is also simple, as the option with the
highest number of votes wins regardless of whether absolute
majority is achieved. Compared to ranked voting systems
described above, FPTP uses less communication bandwidth
and computational power. It serves as a naive implementation

of majority rule decision-making on multi-option scenarios,
and a benchmark algorithm.

C. Benchmark Algorithm: Direct Comparison (DC)

We also use the decision-making strategy of DC as a bench-
mark for the aforementioned strategies based on majority rule.
The decision-making process of DC works similar to the one
shown in Algorithm 1. The key difference is that the agents ex-
change their chosen options and the corresponding computed
qualities during the dissemination periods. The agent then
switch to the option with the highest corresponding quality
among the recorded messages. The lengths of dissemination
periods also do not scale with the option qualities.

It has been commented in previous literatures on binary
decision-making scenarios that the direct sharing of option
qualities increases the communication bandwidth required
[10]. In multi-option scenarios, this practice is also observed to
propagate inaccurate quality estimates among the agents and
distort the decision-making process [9]. However, DC remains
a popular benchmark algorithm for collective decision-making
strategies, and we use it to gauge the viability of the majority
rule strategies proposed above.

IV. EXPERIMENTS & RESULTS

In this section, we will show our experimental setup and re-
sults to determine the performances of the considered decision-
making strategies.

A. Experimental Setup

In our experiments, we simulate 20 mobile robots with
the specification of e-puck [21]. A robot has a linear speed
of 0.16m/s and a rotational speed of 0.75rad/s. During an
experimental instance, they perform random walk continuously
in a 2m × 2m arena. The arena is filled with 400 tiles of a
particular fill ratio and pattern. An illustration is shown in
Figure 1.

The low-level control mechanism directing the random walk
is similar to the one used in [10], and is as follows. The robots
alternate between two behaviors, namely going forward in
a straight line and rotating in place in a random direction.
The durations of the two behaviors are sampled from two
random variables, exp(40) and unif(0, 4.5) respectively. To
avoid collision, an agent moving forward will stop when the
edge of the arena or another robot is detected in front of it
and start rotating.

The lengths of the control loop for all decision-making
strategies are set to 1s for all considered algorithms. As we
are using a Bayesian statistics-based technique in computing
the option qualities, it has been observed in other literatures
that use a similar technique that too small an interval between
collecting observations can lead to a reduction in the decision-
making accuracy [22]. It has also been deduced in our previous
work that an interval of 1s is suitable for this environment [14],
we thus continue with this setting.



(a) Random Pattern (b) Block Pattern

Fig. 2. Example illustrations of the two patterns of feature distribution
investigated

It has been observed that the patterns of feature distribution
have a significant impact on the performances of decision-
making strategies in collective perception [7]. Most decision-
making strategies experience a drop in performance when the
environmental features are more concentrated compared to a
purely random distribution. This has also been confirmed in
our previous work [14]. Therefore, we conduct experiments in
both environments as shown in Figure 2.

B. Experimental Results

We first conduct experiments in arenas with randomly
distributed black and white tiles, as shown in Figure 2a.
Each experimental instance uses a randomly generated arena
environment. We have tested the performances of considered
algorithms in fill ratios of 0.05, 0.15, 0.25, 0.35 and 0.45, each
with 20 independent experimental instances. We pay attention
to 3 aspects of the performances, namely accuracy, speed and
reliability. We use three metrics to measure them, mean abso-
lute error, mean consensus time and failure rate respectively.
These metrics are computed from all experimental instances
of a particular parameter configuration.

In related literatures on binary collective perception, per-
formances are usually measured by the probability of making
the correct decision and the mean consensus time [7], [10],
[12]. However, in the multi-option scenario here, agents have
a possibility of reaching a decision-making deadlock and
not able to form a consensus at all. Therefore, we set a
maximum time limit for our experiments to be 1200s, which
is largely beyond the consensus time of a typical instance,
and terminates the experimental instance if the agents fail to
reach a consensus by that time. The proportion of experimental
instances terminated in this way is referred to as the failure
rate.

1) Parameter settings of STV: The performances of STV
at various parameter settings are shown in Figure 3 and 4.
Figure 3 shows the mean consensus time vs the mean absolute
error performances together with their corresponding failure
rate and maximum neighbor settings η. The Pareto frontiers
of the consensus time vs absolute error trade-off at different
η settings are shown in different colors and line styles. It can
be observed that the performances of STV is not significantly
affected by the limit on maximum number of neighbors, as
the Pareto frontiers are very close together.
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Fig. 3. Performances of STV in environments with random feature distribution
with respect to the maximum limit on number of neighbors η. +-red
dotted:η = 2, x-green dash-dot:η = 5, ∆-blue solid:η = 10. Color codings
of markers show failure rate
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Fig. 4. Performances of STV in environments with random feature distribution
with respect to the mutation rate τ and mean exp/diss time σ. +-red
dotted:τ = 0, x-green dash-dot:τ = 0.01, ∆-blue dashed:τ = 0.03, ◦-
black solid:τ = 0.05. Color codings of markers show the corresponding σ
settings

The same data points are shown in Figure 4 regarding the
other two parameters, namely the mutation rate τ and the mean
time of exploration and dissemination periods σ. Here, both
parameters have significant impacts on the performances of
STV. As shown via the Pareto frontiers at different τ settings,
as τ increases, there is a reduction in error and a slight increase
in consensus time, resulting in a high τ setting of 0.05 being
able to achieve a good performance of 0.0606 error and 302s
consensus time at the bottom left. On the other hand, as shown
by the color coding of markers, an increasing σ raises the
mean consensus time significantly and also reduces the error
produced. The performances also become insensitive to other
parameters if σ is large, as shown in the clustering of data
points when σ is 20s or 50s.

2) Parameter settings of BC: The same plots are made for
BC in Figure 5 and 6. When comparing the performances
of BC here with those of STV in Figure 3 and 4, it can be
noticed that BC can achieve much lower errors and failure
rates, while being able to come to a faster consensus. As
shown in Figure 5, the performance of BC is slightly affected
by the parameter η. Specifically, at the left-hand side of the
Pareto frontiers, a higher η raises the consensus time needed
to reach an error of 0. In Figure 6, it can be seen that σ has
similar effects compared to STV. However, increasing τ does
not straightforwardly increase accuracy as before. Notably,
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Fig. 6. Performances of BC in environments with random feature distribution
regarding the mutation rate τ and mean exp/diss time σ. +-red dotted:τ = 0,
x-green dash-dot:τ = 0.01, ∆-blue dashed:τ = 0.03, ◦-black solid:τ =
0.05. Color codings of markers show the corresponding σ settings

the Pareto frontier produced when τ = 0.05 is completely
dominated by that produced when τ = 0.03. On the other
hand, increasing τ has the similar effects of reducing the lower
bound of error obtained and increasing the lower bound of
consensus time as in STV.
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Fig. 7. Pareto frontiers of consensus time vs absolute error for all consid-
ered algorithms. +-red:DC, x-green:FPTP, ∆-blue:STV, ◦-black:BC. Color
codings of markers show the failure rates

3) Comparison of considered algorithms in random envi-
ronments: The performances of the 4 decision-making strate-
gies considered in this paper are compared against each
other in Figure 7. All considered strategies exhibit trade-
offs between consensus time and absolute error. As a naive
implementation of majority rule, FPTP outperforms DC at

high consensus times of beyond 400s. It, however, produces
slightly higher failure rates, as shown by the color of the
data points. In addition, when a decision need to be reached
quickly, the errors produced by FPTP increase rapidly at the
bottom right portion of the Pareto frontier.

Compared to the two benchmark algorithms, STV can
achieve superior performance in the middle of its Pareto
frontier, around the consensus time of 300s. However, at very
high consensus time, its performance is dominated by that
of FPTP, and at very low consensus time, its performance is
dominated by DC. In addition, it can achieve lower failure
rates than FPTP when consensus time is high. On the other
hand, BC can dominate most results produced by the other
algorithms, except at very low consensus time.

Additionally, we need to consider that the amount of re-
quired communication in these decision-making strategies is
different. In DC, agents exchange both the chosen option and
the corresponding quality estimate. In FPTP, agents exchange
only the chosen option. While in the STV and BC, agents
exchange the rankings of all options. Therefore, the commu-
nication bandwidth required of the 4 considered algorithms
would have the relationship of FPTP < DC < STV = BC.
With this in mind, it can be seen that STV only provides a sit-
uational improvement in performances over both benchmarks.
In contrast, BC can display superior performance and reach
an error of 0 at far lower consensus time than the others.

4) Concentrated environmental feature - block pattern: In
the following, we examine the performances of considered
algorithms in environments with concentrated feature distri-
butions, specifically arenas where black tiles are arranged in
blocks, as shown in Figure 2b. The experimental environments
are generated as follows. We fix the fill ratio of these generated
environments all at 0.45. Square blocks of black tiles with a
random width is sampled from N (12, 12) and first placed in
random positions in the arena. The placements happen until
the fill ratio is close to the target ratio of 0.45. If the fill ratio
is not at 0.45, random individual black tiles will be added or
removed from the edge of a square until the targeted fill ratio
is reached.
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Fig. 8. Pareto frontiers of consensus time vs absolute error for all considered
algorithms in environments with concentrated feature distribution. +-red:DC,
x-green:FPTP, ∆-blue:STV, ◦-black:BC. Color codings of markers show the
failure rates. Dashed lines show the Pareto frontiers achieved previously in
random environments

The Pareto frontiers of all considered algorithms’ perfor-



mances in environments with concentrated feature distribution
are shown in Figure 8. The Pareto frontiers obtained earlier
in random environments are shown in dashed lines. There is a
significant drop in performances for all considered algorithms
compared to in random environments. Both FPTP and STV
experience an increase in primarily the error. However, fast
convergences can still be achieved, as shown on the bottom
right end of the Pareto frontiers. On the other hand, DC and
BC experience an increase in both decision time and error.

Among the considered algorithms, BC’s performances are
the least elastic in terms of error, and extending the decision
time has very little effects in reducing the error, while for
all other algorithms, there are apparent and linear trade-
offs between the two metrics. On the other hand, BC still
has superior performance compared to the other algorithms.
However, at higher decision times, the performances of BC
come very close to those of FPTP and STV.

V. DISCUSSION

In the experimental results above, it is demonstrated that BC
is a promising technique in multi-option collective decision-
making problems. It can significantly outperform our bench-
marks in the scenarios investigated in this paper. There is a
parallel between the decision mechanism of BC used here
and opinion fusion techniques such as in [23] and [15],
where the option qualities are combined to update the agents’
beliefs. The decision mechanism of BC achieves a limited
form of opinion fusion with a predetermined set of beliefs,
which are the point allocation used in the tallying process.
Compared with full opinion fusion, this design choice has
two advantages. First, transmitting the ranking of options
takes up less communication bandwidth than transmitting the
associated qualities, thus can be achieved with cheaper equip-
ments. Second, limiting the propagation of option qualities can
minimize the impact of extreme or faulty estimations to the
whole swarm, as indicated in [9].

On the other hand, STV fails to significantly outperform the
benchmarks while using more communication bandwidth. It is
caused by the stochasticity in the decision-making process of
STV. In real-life elections, STV rarely deals with situations
with more candidates than voters, which is frequently the
case in the scenario in this paper. When multiple options
receive no first preferences during voting, the elimination
process will eliminate a random option among them. This can
cause valid options to be prematurely eliminated. In a typical
swarm intelligence setting, the decision-making strategy needs
to form a decision based on the information in a small locality
and thus STV struggles in such environment. It is however
capable of faster convergence than BC, as it is better at
eliminating unfavorable options quickly.

FPTP is frequently the worst performing algorithm among
the 4 considered. In FPTP, the chosen options are only
selected from the first choices of the voters, causing inadequate
information transfer among the agents. However, it uses the
least communication bandwidth, and therefore should only be
considered a viable algorithm when the communication needs

to be minimized. Otherwise, a ranked voting system should
be utilized in a similar collective decision-making scenario.

In our experiments, the maximum number of neighbors
η only has a minimal impact on the performances of the
considered algorithm. This runs contrary to the findings in [6].
The reason is that our experimental scenario has a relatively
small swarm size. Thus, agents frequently only communicate
with a few agents during a dissemination period. It is therefore
worth investigating similar scenarios with bigger swarms and
observe how that impact the performances.

VI. CONCLUSION

In this paper, we investigated the viability of majority
rule collective decision-making strategies in multi-option best-
of-n scenarios. We have examined two ranked voting al-
gorithms, single transferable vote (STV) and Borda count
(BC), as well as first-past-the-post (FPTP). We have also
utilized direct comparison (DC) as a benchmark algorithm.
The considered algorithms are tested in a discrete collective
estimation problem with both random environments as well
as environments with concentrated feature distributions. The
performances of considered algorithms are analyzed using a
bi-objective framework to fully describe the speed vs accuracy
trade-off.

We have concluded that adopting a ranked voting system,
although increasing the communication bandwidth, can signif-
icantly improve the performances of majority rule decision-
making strategies. Among our examined voting systems, BC
has the best performance in our experimental scenario, while
STV fails to significantly outperform the benchmarks.

In future works, we aim to examine these ranked voting
systems’ performances in other multi-option scenarios, such as
site selection or multi-color collective perception. We would
also study the viability of alternative point allocation methods
for BC, such as the Dowdall system.
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