
Christian Wustrau

Building a Scalable Swarm
Application Using Sphero Robots

Intelligent Cooperative Systems
Computational Intelligence

Building a Scalable Swarm Application Using
Sphero Robots

Bachelor Thesis

Christian Wustrau

May 30, 2020

Supervisor: Prof. Dr. Sanaz Mostaghim

Advisor: Dr. Christoph Steup

Christian Wustrau: Building a Scalable Swarm Application Us-
ing Sphero Robots
Otto-von-Guericke Universität
Intelligent Cooperative Systems
Computational Intelligence
Magdeburg, 2020.

Abstract

Swarm robotics as an approach to the coordination of multi-robot systems is
guided in its design by swarm intelligence principles. This thesis aims to im-
plement a swarm scenario using spherical robots, called Spheros which were
developed by Orbotix. Using the Robot Operating System and an external
robot localization framework, we design a scalable swarm of spherical robots
to display aggregation behavior. We investigate the application of swarm al-
gorithms to the robot platform and evaluate if global complex behavior can be
achieved by using simple rules on relatively simple robots.

The experiments conducted in this thesis show that theoretical concepts of
swarm intelligence can be applied to a swarm of spherical robots to achieve
complex behavior. The number of individuals in our robot swarm can be scaled
up but results convey that typical swarm robotic challenges aggravate in the
process of doing so.

I

Acknowledgements

I would first like to thank my thesis supervisor Prof. Dr.-Ing. habil. Sanaz
Mostaghim, for the continuous encouragement and inspiration she provided
which allowed this paper to be my own work and steered me in the right the
direction whenever I struggled.

I would also like to acknowledge Dr.-Ing. Christoph Steup as my advisor for
this thesis. I am thankful and indebted to him for sharing his valuable expertise
and providing guidance through the process of writing this thesis.

My sincere thanks goes to Palina Bartashevich for always offering her support
and providing valuable comments on my thesis. I would also like to extend my
thanks to Michael Preuß for his help in offering me the necessary resources to
create my application.

Finally, I must express my gratitude to my parents for providing me with
unfailing support and continuous encouragement throughout my years of study.

This accomplishment would not have been possible without them. Thank you.

III

Contents

List of Figures VII

List of Tables IX

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 3
1.3 Outline . 4

2 Background 5
2.1 Swarm Intelligence . 5

2.1.1 Swarm Stability . 6
2.1.2 Swarm Movement . 9

2.2 Swarm Robotics . 10
2.2.1 Robot Swarm Applications 13
2.2.2 Swarm Robots . 15
2.2.3 Kilobots . 15
2.2.4 Spheros . 17
2.2.5 Conclusion and Comparison 20

2.3 Software . 23
2.3.1 ROS . 23
2.3.2 Navigation . 24
2.3.3 Camera Tracking . 26

3 Implementation 29
3.1 Concept . 29
3.2 Node Architecture . 32

3.2.1 Hardware . 33

V

Contents

3.2.2 Navigation . 34
3.2.3 Swarm . 35

3.3 Integration . 36

4 Evaluation 39
4.1 Metrics . 39
4.2 Scenario . 41
4.3 Environment . 42
4.4 Results . 45
4.5 Discussion . 50

5 Conclusion 53

Bibliography 55

VI

List of Figures

2.1 Attraction/repulsion function g(·) 8
2.2 Image of the Kilobot . 16
2.3 Sphero SPRK+ . 17
2.4 Differential Drive kinematics . 19
2.5 Basic structure of communication between nodes in ROS 24
2.6 Architecture of the robot localization framework 26

3.1 Graph of main ROS nodes . 33

4.1 Camera view of the arena . 42
4.2 Resulting map that represents the arena 43
4.3 Observations on the aggregation behavior with three individuals. 45
4.4 Observations on the aggregation behavior with four individuals. 46
4.5 Observations on the aggregation behavior with five individuals. . 46
4.6 Observations on the leader-follower scenario with a rectangular

route. 47
4.7 Observations on the leader-follower scenario with an ellipsoid

route. 48
4.8 Observations on the leader-follower scenario with a robot failure. 48
4.9 Comparison of the normalized position entropy for the aggrega-

tion behavior with different swarm sizes. 49

VII

List of Tables

2.1 Comparison of presented robot platforms 22

4.1 Parameters for the ROS navigation package 44

IX

1 Introduction

1.1 Motivation

The Rolling Swarm project aims at creating a swarm of autonomously mov-
ing robots to investigate swarm intelligence behavior on robots in a fully au-
tonomous mode. In this scope, our goal is to create a presentable swarm
robotic application as a practical and straightforward tech demo that scales
with the number of robots. To do this, we realize and evaluate a theoretical
swarm model on a corresponding physical robot platform as a proof of concept.

The Rolling Swarm is one of the five robot platforms in the SwarmLab of
the Chair of Computational Intelligence at the Otto von Guericke University
Magdeburg and contains over 65 Sphero robots. The Sphero is a spherical
differential drive robot that can be controlled via Bluetooth. The robots are
well fitted for swarm robotic applications due to their straightforward control
mechanisms and convenient functionalities and were, therefore, selected as our
robot platform. They can be used to perform various collective behaviors such
as exploration in unknown environments or geometric pattern formation.

The considered application is implemented as a swarm robotic scenario and not
as a classic multi-agent scenario. Swarm robotics is a very specific approach
in the field of multi-robot systems and will be covered in detail in Section 2.2.
In the following, we shortly introduce the main differences between these two
types.

By definition, multi-agent systems are multiple autonomous agents that com-
municate with each other when they need to achieve a task jointly. The au-
tonomy and communication aspects are crucial here since every agent has only
information about its immediate environment and may need to achieve its
own goals and tasks. To perform a global task, the agents have to directly
communicate and coordinate with other agents.

1

1 Introduction

Multi-agent systems consist of entities (e.g., robots or humans) that are each
specialized for a certain task. In these systems, each robot is capable of some-
thing possibly unique, and together they cooperate to solve more complex
tasks that could not be solved or just with great additional effort for a single
individual agent or a monolithic system [1].

In turn, swarm robotics is an approach to the coordination of multi-robot
systems which consist of a large amount of relatively simple robots. Here,
the desired collective behavior emerges from the local interaction between the
robots and the interaction of robots with the environment.

Swarm robotics shows great flexibility and adaptability due to its homogeneity
and scalability. In this regard, the considered Rolling Swarm as a robotic plat-
form is homogeneous because every robot has the same capabilities as all other
Spheros. Due to the limited battery life and a large number of robots, they
have to be interchangeable to keep the system’s performance. Such specific
properties of our robot platform demand the scalability factor in our applica-
tion. At the same time, multi-agent systems may achieve better performance
on specialized tasks, but at the cost of their flexibility, reusability and scal-
ability [47]. Based on the criteria mentioned above, swarm robotics is more
suitable for our application and is chosen as the approach for the implementa-
tion of a scalable system using Spheros.

In the current state of the art, there also exist other swarm robotic platforms
like the Kilobot, which is designed to enable programming and experimenting
with collective behaviors in large-scale autonomous swarms. In the following,
we highlight its main differences with the Sphero.

The Kilobot is a robot that is designed for swarm robotics research by the
Self-Organizing Systems Research Group at Harvard University [19]. At the
first sight, these robots seem to be better suited for swarm robotics applica-
tions as they are smaller and cheaper compared to the Sphero but there are
essential drawbacks with them. Kilobots move using a slip-stick based locomo-
tion powered by two sealed coin-shaped vibration motors. Due to this type of
locomotion, Kilobots are unable to move precisely over long distances or an ex-
tended period of time. Additionally, they are not equipped with any real form
of odometry [39]. The vibrating leg technology requires flat surfaces to move
and prevents the robot from moving as fast as the Sphero can. Since Kilo-
bots do not offer self-localization capability, due to a missing encoder/sensor

2

1.2 Goals

to trace the movement or dead reckoning [33], they do not seem suitable for
our application.

Spheros are more practicable compared to Kilobots as they can move smoother,
have a wide range of sensors including odometry, can be tracked by our external
localization framework and can drive on different floors. As a result, we decided
to use them as our robot platform for the swarm application as we find them
generally better suited for the task of creating a swarm robotic application
for aggregation. Chapter 2.2 provides more insight on the Sphero robot, the
Kilobot and other swarm robots.

1.2 Goals

The goal of this thesis is to practically apply swarm intelligence algorithms
to swarm robotics. That is to say, we want to apply a theoretical model of a
swarm to a real robotic platform and create a dynamic tech demo. Therefore,
this thesis aims to answer the question of whether it is possible to transfer
the theoretical concepts of swarm aggregation to practice in form of a robot
swarm.

Additionally, the tech demo should demonstrate the dynamics within the
swarm and serve as a prototype to highlight the basic swarm robotics prin-
ciples. The demo should catch the interest of the audience to convince them
of the viability of swarm robotics. Besides, the robots should show more
movement than in a typical aggregation scenario. The swarm scenario must,
therefore, be expanded by either using an approach that takes into account
the environmental influence or by implementing an additional leader-follower
principle.

Finally, we determine to which extent we can scale the number of individuals in
our swarm and whether they are able to exhibit complex behavior with simple
rules. Moreover, we measure and evaluate the performance of the swarm in
the real world in different scenarios. The performance of the swarm is based
on the extent to which the swarm is aligned and has formed a circle.

3

1 Introduction

1.3 Outline

The next chapter covers three main background topics: swarm intelligence,
swarm robotics and software used in the context of this thesis. The swarm
intelligence section provides basic theoretical background about swarm sta-
bility and movement. The swarm robotics section gives insight into different
accomplishments in the field of swarm robotics, describes the Sphero robot in
detail and compares it to a set of different swarm robots. The last section
covers the software libraries used in our implementation including the robot
operation system, navigation software and localization framework. Chapter
3 covers the general concept, structure and detailed node architecture of our
proposed application. In Chapter 4, we report the metrics and scenarios for
our experiments. Additionally, we present and evaluate the experiment results
and discuss them in context with the previous chapter. The paper concludes
with a discussion about future work and a summary in Chapter 5.

4

2 Background

As the proposed application is a software implementation for the swarm behav-
ior of robots, the following chapter first covers the aspects of swarm intelligence,
swarm movement and swarm stability. The next section covers the robots that
were already introduced in Chapter 1 in detail and presents additional swarm
robotic platforms and their applications. The last section wraps up this chap-
ter with the robotic framework and software that was used to implement this
application.

2.1 Swarm Intelligence

Swarm intelligence is the collective behavior of natural and artificial systems
composed of many individuals having simple rules with the ability to interact
locally. The source of inspiration is the shown complex behavior of natural
organisms when they are in groups. Mainly ants, termites, bees and many
other insect species with a complex social structure are often referenced as
inspiration. The term swarm intelligence was introduced and used for the
first time by Beni et al. [11] in the context of cellular robotic systems where
they define robot intelligence and robot system intelligence in terms of the
unpredictability of improbable behavior.

The individuals that form the swarm coordinate using decentralized control
and self-organization. Essential and complex behaviors emerge from relatively
simple interactions between the individual members. Emergent behaviors are
also sometimes considered to be systems that are more complex than the sum of
their parts. That is to say, the behavior of a system is not explicitly described
by the behavior of the components of the system, and is, therefore, unexpected
to a designer or observer.

The complex collective group behavior observed in a swarm emerges from in-
teractions between individuals that exhibit simple behavior [3]. In general, an

5

2 Background

emergent behavior can be described as a non-obvious side effect that shows up
when combining different capabilities of individuals. Therefore, it is not neces-
sary to invoke individual complexity to explain and achieve complex collective
behavior as individuals can exhibit simple behaviors [12]. It is necessary to
point out that emergent behaviors are very difficult to foresee until they man-
ifest themselves and can either be advantageous or beneficial but also harmful
or destructive. Nevertheless, the main focus of swarm intelligence are the
positive or desired behaviors.

To simulate and understand the behavior of a swarm, the swarm and its dy-
namics have to be modeled. The basic swarming model consists of three simple
steering behaviors and was first described by Reynolds [37]. It is proposed that
individuals maneuver based on the positions and velocities of its nearby indi-
viduals according to the three rules of

Attraction (Cohesion) Individuals move towards other individuals or more
precisely towards the average position of local flock-mates.

Repulsion (Separation) Individuals of the swarm steer to avoid crowding
local flock-mates to avoid collisions with neighbors.

Alignment All swarm members steer towards the average heading of local
flock-mates.

2.1.1 Swarm Stability

In control theory, a dynamic system is considered to be stable when its output
is under control. In terms of swarm intelligence, the swarm can be seen as
a dynamical system where individuals move on trajectories. For aggregating
swarms, this means that the swarm is able to preserve its density or even
desired formation as individuals should stabilize their relative distance towards
each other. Stability is a desirable property of a swarm to enable task allocation
and reliable coordinated motion.

Gazi and Passino [14] describe a theoretical continuous-time model for swarm
aggregation in n-dimensional space which is used as the fundamental for the
2-dimensional model in our application. They have shown that a cohesive
swarm is formed by individuals in a finite time. Additionally, only depending
on the parameters of the swarm, they obtain an explicit bound on the swarm

6

2.1 Swarm Intelligence

size with their model. This paper [14] provides most of the theoretical basics
for our application and is, therefore, explained further in detail here.

Considering a swarm of M individuals in n-dimensional Euclidean space
they, model the individuals in the swarm as points and ignore their dimen-
sions. Therefore, the position of a member i of the swarm is described as an
n-dimensional vector xi ∈ IRn. Assuming no time delays and synchronous
motion, the motion dynamics evolve in continuous time and the according
equation of motion for an individual i = 1, ...,M is given by them as:

ẋi =
M∑

j=1,j 6=i

g(xi − xj) (2.1)

where g(·) is a function of attraction and repulsion for the distance between
two individuals. It represents an artificial social potential function to describe
individual interactions.

The issues of potential functions for swarm scenarios are the topic of further
research. In fact, Gazi and Passino consider those issues in [13] and specify a
general class of attraction/repulsion functions. There they define the general
potential function for y = xi − xj as:

g(y) = −y[ga(‖y‖)− gr(‖y‖)] (2.2)

where ga represents an attraction term and, likewise, gr a repulsion term. The
equation of motion denotes how to calculate the derivative of the position of
each individual i which is the velocity in classical mechanics. This means the
velocity, which is equivalent to the specification of direction and magnitude of
motion of each member is calculated as the sum of the attraction and repulsion
between this member and all other members of the swarm.

The considered attraction and repulsion function to consider is:

g(y) = −y(a− b · e−
‖y‖2

c) (2.3)

7

2 Background

−4 −2 0 2 4

−1

0

1

y

g
(y

)

Figure 2.1: Attraction/repulsion function g(·) with a = 0.25, b = 5 and c = 0.2

The given conditions here are a, b, and c are positive constants, b > a and
‖ · ‖ represents the Euclidean norm.

The function is evidently repulsive for small distances because the influence of
the repulsion term gr = b · e−

‖y‖2
c grows exponentially with smaller distances

due to the natural exponential function. For large distances, this function is
attractive as repulsion diminishes and the attraction term ga = a grows lin-
early with the distance between individuals. This is generally consistent with
aggregation behavior that can be observed in biological swarms [18] and the
rules of attraction and repulsion defined by the swarm model in [37]. But the
function is inconsistent with biological inspirations at large distances between
individuals because attraction is not bounded to a maximum distance where
animals are only attracted when they can sense each other which is bound to
a finite range. Additionally, infinitesimally small ranges are inconsistent as g
is not unbounded and approaches zero there.

By equating y(a−be−
‖y‖2

c) = 0 the set points of this function can be calculated
and are y = 0 and ‖y‖ = δ =

√
c ln(b

a
). This distance δ is called comfortable

distance and when individuals are at these distances they stop moving towards
or away from each other, because the attraction and repulsion force between
them reach a balance.

Individuals in a swarm will form a hyperball when they attract and repel
themselves until they reach a comfortable distance towards all other individ-
uals, where each member has the same distance to the center of the swarm.

8

2.1 Swarm Intelligence

The center of the swarm x̄ can be computed as the average of the sum over
the position x of each individual i:

x̄ =
1

M

M∑
i=1

xi (2.4)

Gazi and Passino [14] prove that the center of the swarm is stationary because
of the symmetry of g(·) with respect to the origin. In other words, "member
i moves toward every other member j exactly the same amount as j moves
toward i" [15]. In fact, this holds true when individuals are only attracted and
repelled by other individuals and not influenced by other sources. As swarms
are generally located inside a certain environment, they are additionally influ-
enced by their surroundings. This leads to the effect that the center of the
swarm is not stationary anymore and will move in the environment. The fol-
lowing chapter will cover more about environmental influence and the resulting
swarm movement.

2.1.2 Swarm Movement

An interesting aspect of swarm behavior is the coordinated movement because
in a real-world scenario the individuals should not only aggregate but perform
a coordinated task. Therefore, we look further at swarm movement as an
important behavior for coordinated control in this section. After the static
aggregation is done, resulting in convergence, where each individual does not
change its position anymore due to the balance of potential forces, there are
two approaches to model the movement of swarms: an environmental profile
and a leader-follower-principle.

A swarm model that takes attractants and repellents from the environment
into consideration is introduced in [16]. An environmental profile σ called the
"σ-profile" is addressed which affects all members of the swarm. The environ-
mental profile is inspired by nature from chemical attractants and repellents
where animals react to varying factors in the environment. This means indi-
viduals are influenced by other individuals through a local sensed potential and
their surrounding environment, which can be understood as a constant acting
force on them. The profile represents an artificial potential function that mod-
els the environment containing targets to be moved towards and obstacles or
threats to be avoided in the context of a real-world scenario.

9

2 Background

The according equation of motion of each individual results as an extension of
Equation (2.1) by an additional attractant/repellent term as:

ẋi = −∇xiσ(xi) +
M∑

j=1,j 6=i

g(xi − xj), i = 1, ...,M (2.5)

The −∇xiσ(xi) term represents the gradient of the profile and respectively the
motion of the individuals according to the environmental profile of their envi-
ronment. Individuals will move away from repellents and towards regions with
higher attractant concentration additional to their distance-based attraction
and repulsion towards other individuals of the swarm.

Until now we only considered the swarm to consist of homogeneous individuals
but the question arises how the swarm would behave when some individuals
were different from the rest. In case that the different individuals are not
aggregating with the rest of the swarm anymore then this scenario can be seen
as a type of leader-follower principle. The leader-follower principle specifies one
or several leaders and several followers, where the classic approach is to have
only one leader that has critical information for a task to perform. This could
be a formation to build, where the leader specifies the reference trajectory [25]
or the path to a target area [41]. The leader can be seen as an individual
that only has an environmental profile without attraction or repulsion to other
members of the swarm. The leader will move on a given path defined by the
environment, ignore other individuals and the rest of the swarm will try to
aggregate around him and lag behind his movement. As the leader usually
performs a computationally expensive task, in our case the navigation in an
environment, the followers implement a simple low-cost following approach and
the swarm overall emerges a swarm movement behavior without implementing
and performing the costly task for all individuals.

2.2 Swarm Robotics

Swarm robotics has emerged as the application of swarm intelligence to multi-
robot systems [7]. It is a novel approach for the coordination of large numbers
of robots to tackle a task that a single individual would be unable to accom-
plish [6]. A swarm of robots consists of a large number of redundant robots,

10

2.2 Swarm Robotics

which act autonomously and show collective behavior due to interactions be-
tween robots and interactions of robots with the environment.

Compared to multi-agent systems, swarm intelligence systems are character-
ized by increased robustness, flexibility and scalability. Each of these charac-
teristics is briefly discussed below:

Robustness With a homogeneous swarm that consists of a huge amount of
redundant robots any loss or malfunction of an individual can be com-
pensated by another one. Removing robots does not impact the overall
performance of the swarm significantly [47]. The system should con-
tinuously operate and be prevented from performing the specified task
even when a part of the system is destroyed, which is achieved by the
decentralized coordination of simple individuals. Therefore, in a swarm
robotic system individuals are simpler compared to a single complex sys-
tem that could perform the same task, making the overall system less
prone to failures [6].

Flexibility The overall task performed by the swarm is achieved by coordina-
tion of robots that are homogeneous and not essentially personalized to
a given task [23]. Swarm robotic systems can offer solutions to different
tasks by utilizing different coordination strategies, have the ability to
generate modularized solutions to different tasks and can respond to the
changes in the environment as there is no central coordination and no
specialization of robots for certain tasks [47].

Scalability Interaction in a swarm is local which means actions from individ-
uals do not affect the whole swarm. The swarm can deal with changes in
the size of the population through reallocation of tasks [47] and is, there-
fore, able to operate under a wide range of group sizes. This is a useful
and necessary property as with many robots in a swarm the chance that
a robot will crash is significantly high and the group size will shrink over
a certain period of time.

While swarm robotics offer great advantages, many challenges arise when work-
ing with a large number of robots at the same time. In swarm intelligence
theory, individuals are usually considered in a simplified view and assumed to
show flawless behavior. In practice, however, individuals and their behaviors
are more complex, which leads to the following challenges for swarm robotics.

11

2 Background

Locality Robots are limited in their area of perception since sensors only
have specific ranges of detection. Furthermore, communication is also
restricted and only possible over certain ranges. In other terms, robots
can only operate in their local vicinity and everything outside their sensor
and communication range is not perceived by them.

Communication The transmission of information takes time and energy.
While in theory, individuals exchange information immediately, in prac-
tice, communication has a limited range and messages are received with
a delay. Wireless technology is typically used to bridge long distances.
However, wireless communication is subject to interference and can be
obstructed by the environment.

Localization Swarm robots make decisions based on their knowledge about
their own position. Therefore, the localization problem arises from the
need for robots to determine their own position. Information about their
own position and heading can be gathered through external or relative
localization. Relative localization uses the robot’s sensors to perform
dead reckoning. Dead reckoning is prone to accumulating errors over
time and requires precise and frequent sensor measurements. External
localization requires an external system to estimate the pose of the robot.
This method is usually time and location independent but is unable to
keep track of the robot for short distances [17].

Aggregation For most behaviors in swarm robotics robots must be in some
proximity of each other [45]. Aggregation is the precondition for many
types of collective behavior and needs to be addressed according to the
particular characteristics of the robotic system and of the environment
in which it must take place [49].

Movement Control Robots need to move precisely to perform tasks effec-
tively. But inaccuracies in robot movements are unavoidable and occur
due to joint errors, kinematic errors, non-kinematic errors and sensor
imperfections. Specific control systems are, therefore, required to com-
pensate for the inaccuracy of the robot.

12

2.2 Swarm Robotics

2.2.1 Robot Swarm Applications

There are many potential applications for swarm robotics. We present three
approaches that are similar to our application as they tackle swarming and
swarm formation.

Nouyan et al. [32] present a chain and a vector field based control mechanisms
for distributed robot swarm path formation. They study how to control a
swarm of robots to form a path between two locations, the nest and the pray,
in a bounded arena, use a behavior-based architecture for their controller and
the s-bot [30] as their robot platform.

In the chain-based approach a robot performs random walk until it finds a
nest and from there on follows an existing chain, joins at the end of it or
starts a new one. Robots at the end of the chain can leave it again to explore
the environment and to form new chains in unexplored parts. When a chain
member perceives the prey, it stays in the chain to stabilize it.

In the vector field-based approach, the robots have to search for the nest again.
The first robot to find the nest activates a LED color pattern pointing towards
the nest. Other robots that perceive this pattern will move away from the nest
indicated by the direction of the pattern. Robots that sense only one LED-
activated robot will join the structure and point towards the other robot. This
resulting structure forms a vector field that globally leads to the nest. At each
time step, a robot at the border of the vector field can leave it with a certain
probability. Joining and leaving the vector field leads to an exploration of the
environment similar to the chain approach. Moreover, robots perceiving the
prey stay in the vector field to establish a stable path.

The work of Nouyan et al. [32] shows a similar swarm approach as each robot
acts based on other robots in their environment and adjusts accordingly to
build a formation. It is different from our application as they use another robot
platform and different formation, where the nest is connected to prey while we
aggregate only based on the position and alignment of other individuals in the
swarm.

A well-known robot swarm that sparked public attention is the Intel Shooting
Star drone [21] as they starred in the Superbowl halftime show in 2017 and
2019 and the PyeongChang Winter Olympics 2018. The Intel Shooting Star
is a quadcopter with encased propellers, a soft frame made of flexible plastics
and foam, built-in LED lights and weighs less than 330 grams.

13

2 Background

They are mainly used for light shows for entertainment, where they fly in
predefined formation. Intel offers specific software and animation interfaces
to create such a light show in a matter of weeks. Their algorithms automate
the animation process of an image by determining drone locations, the paths
for each drone to fly and calculating the number of drones needed as well.
Therefore, the drones are preprogrammed and only communicate wirelessly
with a central computer and not with each other. The computer checks the
GPS signal strength and battery level of each drone, assigns roles accordingly
and tells each drone how to execute its flight routine. They utilize the Trinity
Autopilot which is their commercial autopilot to navigate the drones in the air
and to ensure they do not crash. Additionally, they implemented a "two layer
geofence in the software [to] ensure that the drones are always in the bounding
box implemented in [the] system." [5]

Compared to the Spheros the Shooting Star drones are able to build formations
in 3-dimensional space. It is a more difficult task to solve than a hyperball
aggregation and can be additionally seen as an extension to the next dimension
as we are only considering 2-dimensional space in our application. Even though
Intel’s light shows consist of large numbers of redundant robots, the central
computer calculates each path beforehand. In this way, the drones fly by
themselves with autopilot and do not communicate or interact with each other.
Therefore, they are classified more as a swarm of autonomous flying robots
than a classical robot swarm.

Another application for a swarm of tiny drones is presented in [29], where a
swarm of Crazyflie 2.0 [2] can explore unknown environments completely by
themselves. This is especially useful in search-and-rescue scenarios, where it
is too dangerous for humans to explore the environment. The main challenges
for the drones here are flight navigation such as controlling the velocity and
avoiding obstacles, detection of obstacles and collision avoidance with each
other and obstacles. Each drone carries a wireless communication chip and
then uses the signal strength between these chips to sense other drones in the
environment.

McGuire et al. [29] proposed a navigation method that is a novel type of bug
algorithm [26] where multiple robots fly of in different direction and deal with
obstacles and each other on the fly instead of mapping the environment. After
exploration for a certain amount of time when the batteries are running low,
the robots fly back to a wireless beacon at the base station where they started.

14

2.2 Swarm Robotics

This work shows the advantages of swarm robotics as a suitable approach for
real-world tasks. In theory, a detailed map would be very advantageous as it
would allow a robot to precisely navigate in the environment along an optimal
path but the costs of making such a map are prohibitive. In practice, the
proposed bug algorithm [29] is able to explore the environment even when this
leads to less efficient paths. Furthermore, it can be implemented on tiny robots
with very limited sensing and computation capabilities which reduces the cost
significantly compared to a detailed map.

2.2.2 Swarm Robots

The introduction chapter already mentioned the Spheros as our robot plat-
form and compared it to the Kilobot to justify them as suitable for this swarm
application. In this chapter, we present achievements in the field of swarm
robotics with Kilobots that tackle similar tasks to ours and their proposed
swarm algorithms. Additionally, the Sphero robot, its capabilities and char-
acteristics are described in detail in their respective section to provide more
insight into our robot platform.

2.2.3 Kilobots

The Kilobot is one of the most well-known robot platform in the field of swarm
robotics and the name of the robots refers to the platform being the first robot
swarm to reach scale 1024 in size. The robot platform is widely used in research
as it allows swarm algorithms to be tested on a large scale of real robots.

Rubenstein et al. [40] report a system that demonstrates programmable flexi-
ble, large-scale self-assembly of complex two-dimensional shapes with a Kilo-
bot swarm. This means that the robots can cooperatively assemble into any
1-connected shape, specified by the user under some restrictions. Each robot
has an image of the specific target shape and size and runs the fixed self-
assembly algorithm. Robots only have access to the distance information to
nearby neighbors but they can use this to collectively construct a coherent
coordinate system. Using a distributed implementation of trilateration, robots
locate themselves in the coordinate system and can become reference points
for other robots.

15

2 Background

Figure 2.2: Image of the Kilobot as described in [39]

Four user placed seed robots mark the position and orientation of the target
shape in the environment and are the source of a gradient formation that
propagates through the initial group. As robots can determine whether they
are on an outer edge through comparison of gradient values between them and
their neighbors, robots on the outer edge will follow these until they reach
their seed. Through localization, edge-following and the given desired shape, a
Kilobot determine whether it is already inside the specific target shape and if
not it can follow the partially formed assemblies edge until it enters the shape.
Continuing edge-following until inside the shape, robots stop when they are
next to a stationary robot with the same gradient value or when they are about
to exit the shape. The shape will be continuously filled as robots move and
join the assembly.

Oh et al. [33] present self-organized collective formation tracking using Kilo-
bots. The overall objectives are following and tracking a target, as well as
maintaining the swarm formation. Due to Kilobot limitations in locomo-
tion and communication, missing self-localization capabilities and directional
sensing, new control algorithms are introduced. These algorithms obtain the
movement direction indirectly through an objective function which is based on
morphogen diffusion and network connectivity preservation to achieve collec-
tive object tracking and herding.

A distance-based attraction/repulsion controller gets the Kilobots to follow
their neighbors based on their morphogen concentration and the corresponding

16

2.2 Swarm Robotics

concentration values of the neighbors to stay in formation. This is combined
with light source tracking as the robots have to move towards the target.
They achieve this behavior only with local communication of the distance and
morphogen gradient between robots.

2.2.4 Spheros

The Sphero SPRK+ robot was developed by the Sphero, Inc. (formerly Or-
botix) and was released in 2016. The company produces consumer robotics
and toys for educational use and started with the original Sphero 1.0 in 2011.
However, previous work with the Spheros that was published focuses mainly on
educational aspects [22], human-robot interaction [9] or augmented-reality ap-
plications [35]. Noteworthy is the work of Nistad [31] for presenting a camera-
based navigation and control platform for the Sphero.

Figure 2.3: Sphero SPRK+ [46]

The SPRK+ has a clear, scratch-resistant, UV-coated, polycarbonate shell.
The shell protects the internal mechanics from hard collisions and drops. Ad-
ditionally, the robot is waterproof because the shell is sealed too. Inside the
Sphero are three LEDs, two located at the center to light up the robot in a
customizable color and the third one is located at the downside to indicate
the current rotation of the ball. Additional weight is situated at the bottom
to hold the core in a horizontal position to stabilize the Sphero. There are

17

2 Background

two wheels inside of the Sphero shell that are differential driven by the motors
which enable a max speed of 2m/s. To prevent erroneous behavior, there are
two additional wheels inside which strengthen the bond of the motor-controlled
wheels to the inner surface and to prevent the core from falling over. The robot
can move only forward or rotate to a set angle relative to the start orientation
and communicate wireless over Bluetooth Low Energy (BLE) at a maximum
range of 30m. [46]

The Sphero has a Lithium Polymer battery that lasts for 1 hour. The robot
can be charged on an inductive charging base with a USB charging cable. The
robot has a height and width of 73mm and weighs 181g. Due to its size, the
Sphero cannot overcome obstacles easily unless these are very small. But it
can drive indoors or outdoors, on hard floors or low carpets. Moreover, it can
drive through dirt, water, and paint.

Both a speed and a heading are required via command for the Sphero to roll
along the provided heading with the given speed. The speed is capped at the
maximum physically possible speed for the robot of 2 m/s. The heading follows
the 360 degrees convention on a circle where 0 degrees is straight ahead, 90
degrees is to the right, 180 degrees is back and 270 degrees is to the left.

To be able to estimate the robot’s condition and internal state, the Sphero
is equipped with internal sensors. There are motor encoders to enable the
generation of odometry data over time and an inertial measurement unit (IMU)
that combines an accelerometer and a gyroscope. The Sphero has several
built-in features, one of them is collision detection where each robot contains
a collision detection algorithm. Using the high fidelity IMU data, the robot
will send a message each time it detects a collision which can be used to
ease navigation problems such as getting stuck or hitting a wall. Another
feature is the so-called locator that provides real-time 2D position and velocity
information about the robot via an implemented streaming protocol.

As already mentioned, the Sphero is a spherical mobile robot that is
differential-driven. A differential drive robot consists of two wheels placed
on a common axis powered by separate motors [8], where each wheel can inde-
pendently be driven forward or backward. To perform a rolling motion, we can
change the velocity of each wheel but the robot will rotate about the Instan-
taneous Center of Curvature (ICC). The ICC lies along the common axis of
the left and right wheel. Varying relative velocities of the two wheels, changes
the position of the ICC which leads to different vehicle trajectories. Because

18

2.2 Swarm Robotics

the rate of rotation ω about the ICC must be the same for both wheels, the
equation for the cross-radial speed is given by:

ω(R + l/2) = vr, ω(R− l/2) = vl (2.6)

where ω is the rotation rate, R the signed distance from the ICC to the mid-
point between the wheels, l the distance between the centers of the wheels and
vl and vr are the respective left and right velocities of the wheels along the
ground .

Figure 2.4: Differential Drive kinematics [8]

Solving for R and ω results in:

R =
l

2

(vl + vr)

(vr − vl)
, ω =

vr − vl
l

(2.7)

If vl = vr, then R becomes infinite, there is effectively no rotation as −ω is
zero and the robot moves forward, resulting in a linear motion in a straight
line. When vl = −vr, then R = 0 and the robot rotates about the midpoint of
the wheel axis which is in place rotation. For other values of vl and vr, we do
not have movement in a straight line but rather a curved trajectory rotating
about the ICC at distance R. One advantage of differential driven robots is the
ability to rotate in place as this allows it to navigate in a narrow environment.

19

2 Background

But they are also very sensitive to the relative velocity of the wheels. Since
different velocities will not just slow down or speed up the robot but result in
a different trajectory.

Our robot is not an ideal differential drive robot. The additional wheels that
strengthen the bond of the motor-controlled wheels to the inner surface will not
prevent errors while the robot drives. Moreover, those additional wheels add
weight to balance and stabilize the robot while driving but do not compensate
for the totter motion that occurs due to the robot’s spherical shape. As our
robot rolls with its shell on the surface and the wheels inside drive the shell via
contact, the robot will slip heavily on the surface it moves on. This results in
the effect that the robots own odometry, which estimates the traveled distance
by measuring how much the wheels have turned, and the locator will not be
accurate for long time periods. The unavoidable error in the position estimate
will add up over time and become to complex to eliminate as there is no
reference to the external world. These problems have to be considered when
working with the Sphero as this can be categorized as the localization problem
mentioned in Chapter 2.2.

2.2.5 Conclusion and Comparison

The robots presented in the previous section show all similarities with the
Sphero in terms of their movement model, their swarm mechanism or their
application, see Table 2.1 for comparison. Besides, all robots have certain
advantages over the Sphero in various aspects. The purpose of this chapter is
to summarize the key conclusions about these robotic platforms in a manner
that explains the decision to choose the Sphero as our robotic platform.

The Kilobot was already described in detail in its own section. To summarize,
the robot is designed to enable programming and experimenting with collective
behaviors. The main disadvantage of the Kilobot, however, lies in its physical
capabilities. Due to its small size and slip-stick based locomotion, the Kilobot
is limited to flat surfaces and can only move at a percentage of the possible
maximum speed of the Sphero.

The s-bot is physically very similar to the Sphero as both are differential-driven
and are approximately the same size. The robot is even equipped with more
sensors and features than the Sphero. But due to the fact that the s-bot is

20

2.2 Swarm Robotics

custom-built and not commercially available, we would have to build all robots
for the swarm ourselves.

As already mentioned before, the Intel Shooting Star drones are more a swarm
of autonomous flying robots than a classical robot swarm. It remains unknown
whether they are suitable for swarm robotics tasks at all, since they are con-
trolled by an autopilot, do not communicate with each other and are also not
available for purchase.

The Crazyflie, on the other hand, is commercially available and suitable for
swarm robotics tasks. But the drone has no external monitoring options, no
geofence support and the propellers are unsecured. For this reason, the drone
is unsuitable for a tech demo since the audience would be at risk if the drones
performed unsecured.

This shows that other robots also have considerable disadvantages that must
be taken into account. The Sphero is a robust, durable robot that can be
purchased was, therefore, chosen as the robotic platform for this application.

21

2
B

ackground

Sphero Kilobot s-bot Shooting Star Crazyflie
movement model differential holonomic differential holonomic holonomic
swarm mechanism aggregation aggregation aggregation none cooperative mapping

application self-assembly self-assembly path formation display search

Table 2.1: Comparison of presented robot platforms

22

2.3 Software

2.3 Software

In order to address the challenges in swarm robotics presented in Chapter 2.2
a set of different software libraries are used in our application. The following
sections cover the most important communication, control and localization
frameworks.

2.3.1 ROS

The Robot Operating System (ROS) is a flexible open-source framework for
writing robot software. It provides libraries, tools and conventions to create ro-
bust and complex robot behaviors [38]. Moreover, ROS "provides a structured
communications layer above the host operating systems of a heterogeneous
compute cluster" [36].

ROS is designed to support the creation of robot applications and adds value
to most robotics projects. As ROS supports the reuse of code and organizes
software in packages, which can be easily shared and distributed, there is no
necessity to implement everything from scratch but rather choose which parts
are useful to reuse and which parts need to be implemented or extended by
oneself. The core base does not take much space and resources which allows the
use of embedded computers and other platforms with less computing power.
It is possible to control multiple robots with ROS, where each robot runs its
own ROS system and communication between each other is still possible.

From the perspective of swarm robotics, ROS provides many independent con-
trol programs, because nodes can run independently, which form a virtually
software swarm as a result where the overall program continues to run even
when a single node crashes. The mentioned advantages of ROS for robotics
projects, specifically swarm robotic applications, are the reason we chose ROS
as our robot software framework.

The fundamental concepts of ROS communication are nodes, messages and
topics. A Node is an executable file that uses ROS to communicate with other
nodes. Nodes are processes that perform computation and a robot control
system will usually consist of many nodes. These Nodes register to the ROS
Master Node which is a central node providing naming and registration services
to all other nodes in the ROS system. It manages the topic subscription and
makes them reachable and available for other Nodes. The major advantages

23

2 Background

are that crashes are isolated to individual nodes and compared to monolithic
systems the code complexity is reduced.

Nodes communicate with each other by transmitting messages. A message is a
strictly typed data structure described by a simple, language-neutral interface
definition language (IDL). The IDL uses short text files to describe fields of
each message and can include arbitrarily nested structures and arrays. The
IDL specifies only the syntax used to define the data types and interfaces.

Topics are named buses over which nodes exchange messages. A node sends a
message by publishing it to a given topic. In general, nodes are not aware of
with whom they are communicating. Nodes can subscribe to relevant topics
to get data or publish to relevant topics to share data. A node that subscribes
to a topic is called subscriber and a node that publishes to a topic is called
publisher. There can be multiple publishers and subscribers to a topic and a
node can publish and subscribe at the same time.

Topic
publish subscribe

NodeNode

Figure 2.5: Basic structure of communication between nodes in ROS

Melonee Wise created the Sphero ROS package [50] which is a set of drivers,
nodes, and description files for using the Sphero with ROS. As these drivers
were written for a previous version of the robot that used Bluetooth, we had to
revise the implementation to be compatible with the Sphero Sprk+ that com-
municates over Bluetooth Low Energy. Additionally, adaptions were necessary
to integrate our robot localization framework [20] into our ROS environment.
The integration of all parts is further explained in Chapter 3.

2.3.2 Navigation

The ability to navigate in an environment is essential for any robotic system
especially when multiple robots are used at the same time. As we want to
realize the swarm aggregation of robots in our application every robot must
be able to move towards a given point in the environment. ROS provides
the navigation package containing a 2D navigation stack that takes sensor
information and the position of a goal to output safe velocity commands to
reach the given goal [28].

24

2.3 Software

The navigation requires information about established coordinate systems us-
ing the ROS tf package [48]. The tf package maintains relationships between
coordinate frames and a transform tree defines all offsets between different
frames in a tree structure. The offset defines the relationships between coor-
dinate frames in terms of both translation and rotation. Different coordinate
frames can be the map of the environment, the base of the robot or a sen-
sor on top of a robot. In swarm robotics, multiple robots are operating at
the same time and each of them has its own coordinate system which has to
be taken care of with specific transformation from the point of reference to
the respective coordinate frame. Additional configuration is necessary as the
shape and general dynamics of the robot are taken into consideration by the
navigation stack as well. For this reason, the implemented path planners, that
try to accomplish the navigation task, have a set of parameters which strongly
influence the performance. Further information on tuning the navigation can
be found in [51].

The navigation stack is only meant for differential-driven or holonomic wheeled
robots that can process ROS messages of type Twist. A Twist message ex-
presses velocity in free space broken into a three-dimensional linear and three-
dimensional angular vector. However, due to the fact that the navigation
stack does two-dimensional path planning, only the x- and y-linear velocity
and z-angular velocity are used. For nonholonomic robots, the y-linear ve-
locity is omitted and always set to 0 as those robots cannot move sideways.
Furthermore, a static map is required in order for a robot to be navigated, as
this map enables self-localization in the environment and path planning to a
specific location within the map.

A sensor is generally required to estimate the distance of a robot to its envi-
ronment but the Sphero is not equipped with such a sensor. Due to the fact
that the Spheros are moving in a known environment, it is sufficient enough
to provide the known map of the environment to the navigation beforehand.
Along with a valid transformation from the map coordinate frame to the co-
ordinate frame of our robot, the navigation stack can be used to navigate the
Spheros. Details about the calculation of the transformation between those
two coordinate frames are covered in Chapter 3.2.

25

2 Background

2.3.3 Camera Tracking

Since we simultaneously run multiple robots in our application, we need to be
able to identify each of them separately. In addition, we need to be able to
track the position of each Sphero in our environment over time. By observing
the internal parameters in the odometry and using the locator, we could keep
track of the Spheros position as a dead reckoning approach. But due to the
fact that this approach has no external reference, it will end up with complex
errors over time. Moreover, it is necessary to know the initial orientation of
each robot in the environment because every Sphero has its own coordinate
system which always starts with a heading of zero after the boot process.

For this reason, we use the robot localization framework introduced by Hoyer,
Steup and Mostaghim [20] to realize identification, position tracking and ori-
entation detection of multiple robots. The framework [20] uses convolutional
neural networks (CNN) for localization and instance identification in a two-
stage approach. Different robot types and multiple instances of a robot type
can be tracked. In our case, the Sphero is a robot that the network is already
trained on.

Image Scale Object Detection

Bounding Box

Robot Type

Crop

Identification CNN

Orientation CNN

ID

Orientation

First Stage

Second Stage

Figure 2.6: Architecture of the robot localization framework [20]

An external camera image of the environment is used as an input to the frame-
work where the image is processed in two stages. In the first stage, the net-
work does object detection on the downscaled image and outputs the according
bounding boxes and robot types that were identified. Later, these are used by
the second stage to determine the identifier and orientation of each detected
robot. Depending on the estimated bounding boxes, the original camera im-
age is cropped and fed into an orientation estimation and a single instance
identification CNN. As each robot has different features for identification and
orientation, corresponding neural networks are selected for the second stage.
The merged output of both stages which contains bounding box, the robot

26

2.3 Software

type, the instance identification, and the orientation of each robot are put out
by the framework in the end.

The presented framework is convenient for our swarm robot application due
to the fact that multiple robots of the same type can be tracked at the same
time, where a constant stream of images is sufficient enough as an input.
Furthermore, the framework reaches exceptionally low processing time with
20 ms on a GPU, because lightweight CNNs and a multi-resolution approach
are used to provide fast inference speed.

The localization framework is mainly limited in its tracking capabilities by
the first stage that uses a Single Shot Detector (SSD) [24] approach based
on the MobileNetV2 [42]. The Single Shot Detector scales the camera image
down to save computational power but Spheros only cover 25× 25 pixel in the
1600× 1200 camera image. Therefore, a single Sphero will merely be detected
by one pixel in the downscaled image, resulting in poor accuracy. Furthermore,
when multiple Spheros are too close to each other, the first stage is unable to
create fitting bounding boxes, because they are not distinguishable anymore
in the downscaled images and the robot LEDs will outshine each other.

27

3 Implementation

In this chapter, the implementation of our proposed swarm application is pre-
sented. First, the theoretical concept and swarm model are introduced and
discussed. Secondly, the general architecture of our application and the ROS-
nodes with their functionality are described. Finally, the integration and in-
teraction of all components are summarized.

3.1 Concept

We model our swarm of M Sphero robots accordingly to the swarm model
introduced in Chapter 2.1.1 but in two-dimensional space. We consider a
simple arena as our environment and, therefore, there is no environmental
profile for the members of the swarm. Individuals behave according to the
rules of attraction, repulsion and alignment from Chapter 2.1. Consequently,
the position of each Sphero i at time t is described as xi(t) ∈ IR2 and the
resulting equation of position updates is:

xi(t+ 1) = xi(t) +
M∑

j=1,j 6=i

g(xi(t)− xj(t)) (3.1)

In theory, position updates happen instantly and individuals move from their
current position to their target position without any intermediate state. In
practice, an immediate change of position is not possible. For this reason,
only the target position can be updated and xi(t + 1) is considered as the
desired position for the next time step. The current position of individuals
changes through their movement which is based on the navigation. Target
position updates should not come as fast as possible because robots need a
certain amount of time to reach their goal and the navigation has to calculate

29

3 Implementation

a new path for each goal. Because of that, too frequent position updates would
only disrupt the movement of robots and slow down the aggregation process
of the swarm.

We assume dynamic time updates for the swarm which means that time t
does not represent the real-time but serves more as an update counter for
different position states which we call robot time. There is a dynamic period
of time between states in robot time and t + 1 only indicates the next state
after state t and not how much time passed between those states. There exists
no connection between the robot time and the real-time due to the dynamic
update steps in robot time. This discrete dynamic time model defines the
position xi of an individual i at any time t+ 1 based on the current positions
of all swarm members at time t. That is to say, the position of an individual
at any time t+ 2 can not be determined by applying the equation of position
updates twice at time t. Since individuals will change their current position
when going from state t to t + 1, the position of an individual can only be
determined for the next state but not for the following states after that. Each
new target position is calculated based on the current position of all members
of the swarm which are tracked by the robot localization framework. Therefore,
we do not aggregate any offset error that could be caused by delays between
the real and the desired position of any robot. The target position is only
relevant for the robot navigation system because a robot will move towards its
target position.

We consider the already introduced attraction/repulsion function in Equation
(2.3) and set a = 0.25, b = 5 and c = 0.2. The resulting comfortable distance
between individuals is δ = 0.774. The distance should not extend the size of
our arena and leave enough space for the Spheros to move without getting too
close where they would no longer be tracked by the localization framework.
According to our model and position update equation, the swarm should show
an aggregation behavior where a circle formation of the robots emerges over
time. As proven by Gazi et al. [14] the center of the swarm is stationary
which is the reason why all robots stop moving once they reach a comfortable
distance to all other robots and do not have to change their position anymore.

This behavior is consistent with the rules of attraction and repulsion of the
basic swarming model introduced in Chapter 2.1. To realize alignment for
our swarm, we introduce the average heading of the swarm θ as the average
heading θ of each member i of the swarm.

30

3.1 Concept

θ(t) =
1

M

M∑
i=1

θi(t) (3.2)

Accordingly to the position we define that each individual should align towards
the average heading of the swarm, that is:

θi(t+ 1) = θ(t) (3.3)

The heading of each individual is only a desired orientation that each robot
should reach, because of the already mentioned delays in the real-world move-
ment. At each time step, every individual of the swarm receives a position
to reach, based on attraction and repulsion, and the desired heading to align
with the swarm. This will lead the swarm to aggregate in an aligned circle of
robots over time.

To enhance dynamic in the swarm we addressed the necessity to expand our
scenario with an environmental profile or a leader-follower principle. As al-
ready mentioned in Chapter 2.1.2, the leader can be seen as an individual
that only has an environmental profile without attraction or repulsion to other
members of the swarm. Therefore, we extend our application by implementing
a leader-follower principle that will indirectly use an environmental profile to
guide the leader.

After the swarm aggregation, a leader is selected to drive a predetermined
route indicated by the environment. Once the leader starts moving, all other
members start to follow him as they are no longer in comfortable distance and
try to aggregate around the leader. The leader is determined by a leadership
selection which for our application is a trivial random selection. The leader
selection can be replaced by any other selection mechanism such as dynamically
changing the leader during movement. In case a leader robot fails, a new one is
selected from the swarm because the swarm consists of redundant homogeneous
individuals running the same algorithm. The overall aggregation behavior of
the swarm is stable and not influenced by the failure of a single individual.

For the individual xL that is selected as a leader, indicated with index L, the
resulting equation of position updates is as follows:

31

3 Implementation

xL(t+ 1) = xL(t)−∇xLσ(xL) (3.4)

where −∇xLσ(xL) represents the gradient of the environmental profile. This
gradient will always point towards the next point on the predetermined route
in our implementation.

Different aspects of our application are working together to overcome the
swarm robotic challenges presented in Chapter 2.2. Communication is han-
dled via Bluetooth Low Energy and the command and control protocol of the
Sphero. The size of the environment does not exceed the communication range
of the Sphero and the navigation stack is responsible for the robot’s movement
control. A combination of relative and external localization is used to ad-
dress the localization problem. The internal sensors of the Sphero perform
dead reckoning while the robot localization framework serves as an external
reference. The introduced attraction and repulsion function in Equation (2.3)
causes the swarm to show an aggregation behavior.

3.2 Node Architecture

A variety of nodes run on a single robot to handle communication, tracking,
sensor input, transformation of coordinate frames, navigation and message
flow. The most important nodes running on each robot and for the whole
swarm are shown with their respective connections in Figure 3.1. Note that
this is not the exact ROS node graph but just an abstract figure that links
all relevant parts of the software implementation together and shows their
relations with each other condensed to the core. Therefore, communication
concepts from ROS like topics and messages are omitted for the sake of clarity
and intelligibility. Instead, specific nodes that serve a common purpose in our
application are presented and explained in the following.

The NN_Tracking node references the localization framework described in
Chapter 2.3.3 and provides the positions and headings of all tracked Spheros
in the camera image. The Map_Server provides map data for the navigation
stack. Both are the only nodes that run externally in our application and the
data published by them is accessible for all robots. The other nodes run on
each Sphero and can be categorized into three groups: hardware, navigation

32

3.2 Node Architecture

Swarm

Navigation

Hardware

NN_Tracking

Sphero_Driver

Sphero_Node

Sphero_Stay_Awake

Move_base

Sphero_TF_Pub

Sphero_Trapezoid

Sphero_Swarm_Mind Sphero_Leader

Sphero_Swarm_Mind

Map_Server

Figure 3.1: Graph of main ROS nodes

and swarm. The following subsections describe the grouped nodes per robot
in detail.

3.2.1 Hardware

The hardware nodes mainly handle the communication with the Sphero robot.
As the Sphero communicates via Bluetooth, the robot expects messages in a
specific byte format. The byte format, commands and communication protocol
are defined in the communication API [34]. Commands that are sent via ROS
messages to control the robot have to be transformed accordingly. Additionally,
the Sphero sends a variety of messages back to the device with which it is
connected, e.g. a sensor stream or collision message. These messages need to
be converted to ROS messages to publish them and make them available for
other nodes to use.

Sphero_Driver provides a Python-based driver for interfacing with the
Sphero via Bluetooth. The driver only needs the MAC address of a Sphero to
connect and enable communication with it. All incoming messages from the
connected device are handled and collected in a data list for further use. For

33

3 Implementation

all defined control commands in [34], the driver builds and sends suiting mes-
sages in the specified byte format. All low-level functionalities will be accessed
by the Sphero Node to interact with the Sphero.

Sphero_Node provides a straightforward ROS wrapper for the
Sphero_Driver. The data stored in the data list by the driver is parsed into
a ROS-compliant structure and published to be accessible for other nodes.
Most of the data comes from the sensors and is used to check the robot’s
internal state. A starting routine is implemented that combines multiple
commands for configuration, e.g. enabling data streaming and stabilization.
By executing the starting routine the robot is connected and made ready for
use.

Sphero_Stay_Awake sends a color command to the Sphero every 20 sec-
onds when no other commands are sent, e.g. when each robot has reached
comfortable distance. This prevents the Sphero from entering sleep mode
which would shut down the robot and disconnect it from our application.

3.2.2 Navigation

As already mentioned in Chapter 2.2.4, in order to move the Sphero re-
quires speed as a 1-dimensional linear velocity vector and heading as an angle
in integer degree. The navigation stack outputs commands containing a 1-
dimensional linear velocity and a 1-dimensional angular velocity. The nodes
categorized as navigation handle the necessary message flow in ROS to convert
the velocity commands from the navigation stack into roll commands for the
Sphero. Additionally, the information provided by the localization framework
and the sensor data are combined to calculate the position and the heading of
the Sphero.

Sphero_TF_Pub calculates the necessary transformation of coordinate
frames for the navigation package introduced in Chapter 2.3.2 and publishes
the pose of the robot in the map. The transformation is an offset in terms
of both translation and rotation between the map coordinate frame, called
map, and the coordinate frame of our robot, called base_link. In general,
the base_link provides an obvious point of reference and will be different for
every hardware platform but for our small circular robot, we define it as the
center of the Sphero. The translation offset is provided by the NN_Tracking
that outputs the position of each Sphero in the environment. As the camera

34

3.2 Node Architecture

image has a different coordinate system and origin than the map, we adjust
the coordinate positions from the camera tracking by inverting the x-axis. For
further information about the environment and coordinate systems see Section
4.3. The rotation offset is acquired by combining the provided heading by the
NN_Tracking and the current heading provided by the IMU of the Sphero.
Both offsets are combined to a single transformation from map to base_link
and published to enable navigation for the Sphero. These offsets are further-
more used to publish the position and heading of the robot in the map for
other nodes to access.

Move_base represents the ROS interface for interactions with the navigation
stack. Path planning and navigation for the robot is accomplished by linking
together a local and global planner [27]. The node takes in the published
transformations from Sphero_TF_Pub, the published map from Map_Server,
a target position from the swarm nodes and outputs velocity commands for
the robot.

Sphero_Trapezoid combines the rotation offset from the Sphero_TF_Pub
and the velocity commands from the Move_base to convert the angular ve-
locity into a set angle for the Sphero by applying the trapezoidal rule. The
trapezoidal rule is used to approximate the definite integral of the angular
velocity over time. This integral represents the angle that the Sphero should
be facing at a given time. The approximated angle in combination with the
linear velocity from the original velocity command is send to the Sphero via
Sphero_Node.

3.2.3 Swarm

The swarm nodes implement the swarm behavior, potential function and
leader-follower principle and represent the core of our application. They access
the current position of swarm members, calculate the position update accord-
ingly and publish the desired position for an individual to the navigation.

Sphero_Swarm_Mind takes in all Sphero positions and headings provided
by each Sphero_Trapezoid, based on this and with the use of the potential
function from Equation (2.3), calculates the next position at which the robot
should move. In the same way, the orientation for the robot to align with the
swarm is calculated but with the alignment Equation (3.2). The new position
and orientation are combined to a goal that is published as the current goal

35

3 Implementation

to the Move_base. A new goal is computed every time the position of any
Sphero is published. As positions are published at very high frequency, the
node would constantly publish new goals. This would only interfere with
smooth navigation because for each goal the navigation would calculate a new
path to reach a similar goal and discard the old path that the Sphero was
already following. Therefore, only goals that are significantly distinct from the
previous goal are set as the current goal for the robot. The node implements
two different states which indicate whether swarm aggregation is active or
not. In case an individual is selected as a leader, the node will deactivate
aggregation and stop publishing new goals.

Sphero_Leader randomly selects a member of the swarm, designates him as
the leader and deactivates its swarm aggregation by changing the state of the
Sphero_Swarm_Mind. The node loads the predetermined route for the leader
as a list of points that define the route. Successively the next point to reach is
published as a new goal once the leader has reached the previous goal. In case
the selected leader robot fails, position updates will no longer be published
by the Sphero_Trapezoid. The node then directly selects a new leader for the
swarm.

3.3 Integration

Due to the fact that we have no access to the microcontroller of the Sphero
and, therefore, cannot run software on the robots itself, it is necessary to do
the computation on remote machines for all individuals at the same time.

The localization framework and robot sensors serve as an information source
to consistently estimate the state of a Sphero. By combining global external
localization and robot sensors we get the position and orientation of each
individual of the swarm at any time as they update frequently. This allows us
to compute the next position, where each individual should move according
to the attraction/repulsion function. With our navigation architecture, each
robot will drive to its given next position, building the swarm formation over
time. The interface between ROS and the Sphero allows precise control of each
individual to assure the robots move in our real-world environment according
to the planned path by the navigation.

Overall, each Sphero reacts on a position change of all swarm members, in-
cluding itself, as a new goal is computed every time the localization framework

36

3.3 Integration

outputs the position of any robot. In case that a robot fails, it will not be
tracked and, therefore, not considered for the swarm aggregation anymore by
the swarm. All other individuals would act accordingly to adjust their posi-
tions and the swarm would continue to operate. Once a leader is selected, it
moves on a given path and ignores all other robots in the swarm. While the
other Spheros are influenced by the leader and try to aggregate around him.
This leads to the effect that the whole swarm moves on the predetermined
path because all individuals try to stay in comfortable distance to the leader
on their path.

In general, the camera tracking and sensors provide necessary information for
our swarm behavior but the localization approach in use is flexible for our
application. It is possible to exchange the camera tracking for any other in-
formation source that outputs the current position of each Sphero. It is even
possible to only use the local sensor information of the robot. However, the
missing reference point for the dead reckoning approach and the unknown ini-
tial rotation in the environment pose problems that would need to be addressed
accordingly. The same holds for the navigation nodes where any other navi-
gation implementation or path planner could be used to navigate each robot
to their goal.

The swarm would behave in the same way, even when certain groups of nodes
were implemented differently but would produce the overall same abstract
behavior relative to the other groups of nodes. Essentially, the swarm be-
havior nodes can be changed, because they are integrated in the hardware
and navigation nodes, which can operate with any node that provides a goal
for a robot. Another behavior could simply be implemented by replacing the
Sphero_Swarm_Mind with a node that takes in the position of each mem-
ber and outputs positions to reach in the environment. One example of a
different behavior could be a foraging behavior for robots [4] where a swarm
of robots has to collect resources that are scattered in the environment and
bring them to the nest. Additionally, extensions to an already implemented
behavior are possible as shown by our leader extension. With this extension,
the static swarm aggregation behavior is changed to allow swarm movement
without altering the base application.

37

4 Evaluation

This chapter discusses the applied metrics to evaluate swarm behavior and de-
scribes the experimental setup and experiment scenarios. A set of experiments
is conducted to determine whether the swarm exhibits aggregation behavior.
The effects of scaling up the number of individuals and the resulting impact on
the overall performance of the swarm are examined. In addition, the leader-
follower extension is tested and evaluated. The results of the experiments are
then discussed in conclusion.

4.1 Metrics

The local interactions of the members of our swarm produce an observable
behavior on a macro-level. The applied rules of attraction, repulsion and
alignment result in the emergent behavior of aggregation where a circle is
formed by the Spheros.

Emergent behaviors are non-obvious side effects that show up when differ-
ent capabilities of individuals are combined. Emergence can be seen as self-
organized order and evidently, the swarm can then be viewed as a self-organized
system with the aim of creating order. We need a quantitative approach to
characterize the degree of emergence to evaluate the level of order in the swarm.
It has been shown that entropy can be used to evaluate the self-organizing
properties of swarm intelligence algorithms [10]. Therefore, to characterize
this degree of emergence we use entropy as a quantitative approach.

The concept of entropy in information theory was introduced by Shannon [44]
in 1948. The entropy H of a discrete random variable X with n possible values
is defined as

H(X) = −
n∑

i=1

pi log2(pi) (4.1)

39

4 Evaluation

where pi is the probability of the value xi ∈ X. The maximum value of entropy
is log2 n when all probabilities pi are equal.

Entropy is a metric of order where generally lower entropy represents a higher
level of order and vice versa. But the definition of order and disorder depends
on the observation model. An observation model determines the attributes
to be observed and their quantization. The observation model, together with
the observed parameters, has a major influence on entropy since each model
weighs the observed parameters differently.

To measure the aggregation behavior of the swarm, we have to measure
whether all individuals are in comfortable distance towards each other. The
individuals form a circle when they are in comfortable distance towards each
other and, therefore, the circle formation of the swarm has to be measured.

To measure this geometric shape, a position observation model is used, where
the positions of the individuals are the observed attribute. By definition, a
circle is characterized as a shape consisting of equidistant points relative to
the center of the circle. The center of the swarm is set as the center of the
circle. The distance di from the position of each individual xi ∈ IR2 to the
center of the swarm x̄ is then measured as follows:

di = ‖xi − x̄‖ (4.2)

where ‖ · ‖ represents the Euclidean norm.

The experimental determination of the entropy H relies on approximating
the probabilities pi. Relative frequencies are an approach to determine the
probabilities from observed values [43]. These probabilities are normalized
and measure the relative importance of a value compared to all other values.
Hence, the probability pi of an observed individual i is calculated as the relative
distance of its own position to the center of the swarm:

pi =
di∑M
j=1 dj

(4.3)

The computed entropy is based on the distribution of the relative distances of
individuals towards each other and has its maximum value when all relative
distances are equal which is the case when a circle is formed.

40

4.2 Scenario

The previous observation only takes the positions of individuals into account,
which is consistent for the rules of attraction and repulsion of the basic swarm
model introduced in Chapter 2.1. But a different observation model is nec-
essary to measure alignment. The observation model for alignment considers
the orientation of the robots as the observed attribute. To evaluate whether
the swarm aligns, only the orientation θi of each member of the swarm i needs
to be considered.

The orientation is not measured as the absolute difference between the ori-
entation of the individual and the average orientation of the swarm. In case
two individuals have the same absolute difference but one has a positive differ-
ence and the other a negative one, they steer in different directions. But the
absolute differences and also the probabilities are equally distributed in that
case, which results in maximum entropy when the individuals are clearly not
aligned. For this reason, only the individual’s orientation is measured and the
probability pi of an observed individual i is calculated as the relative heading
of this individual:

pi =
θi∑M
j=1 θj

(4.4)

Again the highest entropy is achieved when all probabilities are equal, which
is the case when all robots in the swarm are aligned.

4.2 Scenario

Due to the limitation of simultaneous connections for a Bluetooth dongle, only
five Spheros can connect at the same time. This significantly limits the possible
number of active individuals in the swarm. Two or fewer robots are unreason-
able because one robot does not represent a swarm and two individuals are
always in the same distance from their center of the swarm. For this reason,
we only consider scenarios with three, four and five Spheros.

Individuals are distributed randomly in the environment at the beginning of
each experiment to ensure that the level of order is low. The respective swarm
node, described in Chapter 3.2.3, is started for each robot as soon as all robots

41

4 Evaluation

are in position. Each experiment lasts 10 minutes, in which the entropy is
recorded at a rate of 1 Hz.

The first series of experiments determine whether the swarm is able to exhibit
aggregation behavior and which influence the size of the swarm has on this
behavior. For this reason, three experiments are carried out, one for each
possible swarm size, in which the robots are put into the arena, with the
Sphero_Swarm_Mind running on all members of the swarm. In case that
the individuals reach maximum entropy for a period of time, a random move
command is sent to disperse them. The idea behind this is to test whether the
aggregation behavior is robust and not prone to disruptions.

The second series of experiments evaluate the implemented leader-
follower principle with four Spheros. Again, all robots start with the
Sphero_Swarm_Mind. The Sphero_Leader node is then used to select a leader
to drive a given predetermined route for the rest of the experiment. This is
done for a rectangular and an ellipsoid route.

4.3 Environment

The experiments are conducted in an arena consisting of one continuous, 3
meters wide and 4 meters long closed off area as shown in Figure 4.1. This
arena represents the known environment for the swarm. The camera, which is
located in the ceiling above the arena, outputs a 1600 × 1200 pixel image of
the arena and the space around it.

Figure 4.1: Camera view of the arena

42

4.3 Environment

As described in Chapter 2.3.3, the robot localization framework outputs the
coordinates of each robot in the camera image. Note that the framework uses
a heavily darkened image and not the one shown in Figure 4.1 to reduce the
features of an image and increase the visibility of the robot’s LEDs.

In ROS, the environment is represented as a map that is provided by the
Map_Server. This map is a grayscale image of the same size as the camera
image, in which black pixels are occupied, white pixels are free and pixels in
between are unknown. We represent the space outside of the arena as occupied
and the arena itself as free space. This results in the map shown in Figure 4.2.

Figure 4.2: Resulting map that represents the arena

The camera image and the map do not have the same coordinate system. The
camera has its origin in the top left and uses a left-handed coordinate system,
while the map follows the ROS coordinate conventions and has a right-handed
coordinate system. This results in a mirrored x-axis between the camera image
and the map of the environment. Due to the slight oblique position of the
camera, the map does not match the real arena perfectly, but this can be
compensated for by applying a homography. Since this error is comparatively
small, we use a small scaling instead, when transforming from the camera to
ROS coordinates to compensate for this.

The robot must be navigated in this given environment, represented by the
arena. We are using the navigation software introduced in Chapter 2.3.2 for
this task. As with any navigation planner, however, the navigation stack re-
quires suiting parameters to enable the precise movement of the robot. These
parameters are always dependent on the respective environment, the consid-

43

4 Evaluation

ered robots and the task. The configuration of the navigation stack for the
experiments with the Spheros is given in the following parameter table:

parameter value
base_global_planner NavfnROS
base_local_planner TrajectoryPlannerROS
controller_frequency 2.0

recovery_behavior_enabled false
clearing_rotation_allowed false

allow_unknown false
default_tolerance 0.1

acc_lim_x 2.5
acc_lim_theta 3.2
max_vel_x 0.2
min_vel_x 0.1

max_vel_theta 0.7
min_vel_theta -0.7

min_in_place_vel_theta 0.3
escape_vel 0.0

holonomic_robot false
yaw_goal_tolerance 0.4
xy_goal_tolerance 0.2

latch_xy_goal_tolerance true
sim_time 1.0

sim_granularity 0.025
angular_sim_granularity 0.025

vx_samples 3
vtheta_samples 20
meter_scoring true
pdist_scale 0.6
gdist_scale 0.8
occdist_scale 0.01

heading_lookahead 0.325
heading_scoring false

heading_scoring_timestep 0.8

Table 4.1: Parameters for the ROS navigation package

44

4.4 Results

4.4 Results

In this section, the observations of the different scenarios are evaluated. Re-
sults are then normalized and put into perspective to make the effects of scaling
up the number of individuals in the swarm more visible. In addition, the ob-
servations from the second series of experiments are compared to the previous
results.

100 200 300 400 500

1

1.2

1.4

1.6

time (s)

en
tr
op

y

(a) Positions

100 200 300 400 500

1

1.2

1.4

1.6

time (s)

en
tr
op

y

(b) Orientations

Figure 4.3: Observations on the aggregation behavior with three individuals.

The initial experiment of the first series with three Spheros already shows
that the swarm is able to exhibit aggregation behavior. As shown in Figure
4.3 for the position observation model, the position entropy is not constantly
increasing but the robots always try to get to a comfortable distance towards
each other.

For this reason, entropy continues to increase even after breakdowns and peaks
to the maximum value in certain periods of time. The acting forces of attrac-
tion and repulsion increase the entropy over time, while errors in the naviga-
tion and movement of the robot cause a spontaneous decrease in the entropy.
Therefore, entropy fluctuates, which is a swarm that is constantly responding
to malfunctions.

The orientation entropy fluctuates significantly more than the position en-
tropy. Furthermore, the orientation entropy values show larger deviations in
comparison. As the robots move around, they constantly change direction,

45

4 Evaluation

100 200 300 400 500

1.4

1.6

1.8

2

time (s)

en
tr
op

y

(a) Positions

100 200 300 400 500

1.4

1.6

1.8

2

time (s)

en
tr
op

y

(b) Orientations

Figure 4.4: Observations on the aggregation behavior with four individuals.

which leads to extensive disturbances in the average orientation of the swarm.
Alignment cannot compensate for this over long periods of time, because the
system is dynamic and constantly moving.

100 200 300 400 500

1.8

2

2.2

2.4

time (s)

en
tr
op

y

(a) Positions

100 200 300 400 500

1.8

2

2.2

2.4

time (s)

en
tr
op

y

(b) Orientations

Figure 4.5: Observations on the aggregation behavior with five individuals.

Increasing the size of the swarm to four individuals causes the swarm to behave
similarly to the previous experiment. As can be seen in Figure 4.4, the swarm
reaches the maximum entropy more often in this scenario than in the previous

46

4.4 Results

one. The position and orientation entropy are still fluctuating but no longer as
frequent as with the previous swarm size. Even after a significant collapse, the
swarm gets into formation, which is indicated by an increase in the position
entropy over time. Compared to the previous experiment, the orientation
entropy does not fluctuate as often but still shows an immense deviation.

The last experiment of the first series, which is carried out with five Spheros,
shows the same scaling effect on the entropy of position and orientation as
the previous observations. Compared to the other swarm sizes, the position
entropy for five individuals more often reaches its maximum value and the
entire entropy fluctuation subsides.

100 200 300 400 500

1.4

1.6

1.8

2

time (s)

en
tr
op

y

(a) Positions

100 200 300 400 500

1.4

1.6

1.8

2

time (s)

en
tr
op

y

(b) Orientations

Figure 4.6: Observations on the leader-follower scenario with a rectangular
route.

The results of the leader-follower scenario, in which one individual is con-
stantly moving on a rectangular route, are shown in Figure 4.6. Accordingly,
the observations for the ellipsoid route are shown in Figure 4.7. Despite the
aggravation of a leader who ignores all other members of the swarm and is con-
stantly moving on a predetermined route, individuals continue to aggregate.

The aggregation behavior of the swarm is not stopped by the leader-follower
extension. The visible impact on the swarm’s performance is that individuals
lag behind the leader trying to reach into comfortable distance towards him.
For this reason, the swarm does not reach the maximum entropy as often as
in the previous scenarios.

47

4 Evaluation

100 200 300 400 500

1.4

1.6

1.8

2

time (s)

en
tr
op

y

(a) Positions

100 200 300 400 500

1.4

1.6

1.8

2

time (s)

en
tr
op

y

(b) Orientations

Figure 4.7: Observations on the leader-follower scenario with an ellipsoid route.

While robot swarms are generally robust and the failure of a single individual
does not affect the overall performance of the swarm, observation models are
not. During one run of the leader-follower experiment, a robot started rotating
in place uncontrollably. The robot had to be reset to avoid damage and reduce
the volume level, because the continuous rotation caused loud noise, so the
experiment had to be stopped.

100 200 300 400 500

1.4

1.6

1.8

2

time (s)

en
tr
op

y

(a) Positions

100 200 300 400 500

1.4

1.6

1.8

2

time (s)

en
tr
op

y

(b) Orientations

Figure 4.8: Observations on the leader-follower scenario with a robot failure.

48

4.4 Results

Since the robot was still active and connected, the measured orientation of
the robot would be indeterminable and would cause the rotation entropy to
collapse. The swarm is unable to compensate for an individual that rotates in
place uncontrollably. This misconduct occurred due to internal errors in the
robot IMU. This problem was not previously addressed, because it is a specific
internal error in the Sphero’s own movement control that cannot be corrected,
because there is no access to the microcontroller of the robot.

100 200 300 400 500

0.7

0.8

0.9

1

time (s)

en
tr
op

y

three
four

(a) Three and four individuals

100 200 300 400 500

0.7

0.8

0.9

1

time (s)

en
tr
op

y

four
five

(b) Four and five individuals

Figure 4.9: Comparison of the normalized position entropy for the aggregation
behavior with different swarm sizes.

To put the results of the first experiment series into perspective, the entropies
were normalized for different swarm sizes to make them more comparable. This
is done by dividing each entropy by the respective maximum entropy. The
resulting normalized entropies for the first series of experiments are shown in
Figure 4.9. Two graphs were used for comparison for the sake of clarity and
legibility. As already described above, with an increasing number of individuals
in the swarm, the entropy fluctuation diminishes and the range of deviation
decreases. Therefore, the overall performance of the swarm increases with the
number of individuals in it.

49

4 Evaluation

4.5 Discussion

The task of getting three robots to form a circle and align is expected to be
easier than the same task with four or five robots since fewer robots would
have to be arranged. Therefore, the swarm of five people could be expected
to perform worse on this task. However, the results of the experiments show
that this does not apply to the aggregation behavior of the swarm shown in
our experiments. As the number of robots increases, the swarm becomes less
susceptible to small deviations and individual robots no longer have such a
strong impact on the overall performance. Even with incomplete localization
due to the inaccuracy of the robot sensor and the inaccuracy of the external
localization, the Spheros continued to aggregate. In addition, disrupting the
swarm with a selected leader following a given route and dragging the other
individuals around does not prevent the swarm from displaying complex be-
havior that is only be implemented with simple rules. The disturbance that
the leader can represent in terms of static aggregation only enables the swarm
to dynamically aggregate on its path. Here, an individual invokes a new com-
plex behavior in the swarm, without implicitly telling other individuals how
to do so. The other members just continue aggregating based on the position
and orientation update rule.

Despite all listed adversities, the swarm shows a stable aggregation behavior
that requires the robot swarm to be robust, scalable and flexible. Therefore, it
is possible to transfer the theoretical concepts of swarm aggregation to practice
with a swarm of Sphero robots.

However, the results must be viewed critically and seen in terms of the overall
setup of the application. The swarm behavior is stable in the sense that the
swarm is able to converge to the maximum entropy value and form a circle.
But with the physical limitations of the arena, the robots could not drift too
far from the center of the swarm. The bounding box problem of the robot
localization framework prevents the robots to get to close to each other because
the robots are no longer tracked when they get to close to one another. The
bounding box problem of the robot localization framework prevents the robots
from getting too close to each other because the robots are no longer tracked in
that case. The observation can then no longer correctly observe their positions.
The unbound attraction and repulsion function is then physically bound by
the environmental and localization constraints that prevent the robots from
moving too close or too far apart.

50

4.5 Discussion

The attraction and repulsion function requires an infinitely large environment,
which is why robots get stuck at the boundary of the arena at times. This
happens when the attraction and repulsion function calculates a point outside
the arena as the next desired position. A robot with a goal outside of the
arena continues to drive into the walls of the arena until it is attracted to the
free arena space again.

The navigation is a critical part of the implementation because path planning
tends to navigate robots in a way that reduces entropy during movement.
Because Spheros are differential-driven robots, moving them to a destination
means they have to turn, reducing the orientation entropy in the worst case.
To increase the position entropy, the orientation entropy must, therefore, be
reduced. Only when a stable position is reached, the robot can rotate in place
to increase the entropy of orientation. For this reason, orientation entropy
in the experiments collapses, because the robots are navigated towards a new
goal that is not in their current direction. An alternative would be an easier
navigation system since there are no obstacles in the arena and collisions are
not a problem due to the robust casing of the Sphero. In addition, easier
navigation would be more consistent with swarm intelligence theory, where
particles only receive a direction to their destination. However, planners are
often used in practice. By showing that complex navigation works, easier
navigation always remains an option when the performance is affected too
much.

Robot failures are currently a serious problem because they are unpredictable.
In the event of uncontrolled in place rotation, the robot must be reset, although
the swarm could continue to work. The noise level is not acceptable for a
tech demo. The reason for this behavior is most likely the Sphero device’s
internal reference heading, which becomes inaccurate after a few minutes of
driving. This means that the offset between the Sphero’s reference heading and
its calibrated reference heading will add up over time until the robot can no
longer handle and eliminate it. This then requires recalibration of the reference
heading which can be done by resetting the robot.

The size of the swarm is strictly limited by the robot localization framework.
The color of the Sphero’s LEDs serves as an identification marker but the
framework is limited in the number of colors it can distinguish in an image.
Overall, the camera tracking is very sensitive to noise in the camera image
and ambient light. Bluetooth is another limiting factor for the swarm size, as

51

4 Evaluation

an additional Bluetooth dongle is required for every five additional Spheros.
In addition, bandwidth is an aspect that must be taken into account when
increasing the number of communicating robots. Because of these limitations,
experiments could only evaluate scalability for small-sized swarms.

52

5 Conclusion

In this thesis, an application of swarm intelligence algorithms to a robot swarm
was designed. This application enables the creation of a dynamic tech demo
to demonstrate swarm robotics concepts. To implement the application, we
first introduced basic concepts for swarm intelligence, including three rules for
modeling a swarm and a system based on attraction and repulsion that leads
individuals to aggregate. In addition, a concept was presented to extend the
application by a leader-follower principle. Pivotal challenges and advantages
of swarm robotics were discussed in connection with the change from theory to
practice, from swarm intelligence to swarm robotics. We put the robots under
consideration for this application into perspective with other swarm robotic
platforms and gave an overview of current research in this area. Then, the
concept of implementation was outlined and the respective implementation
was presented.

Several experiments were carried out to determine whether the swarm shows
the theoretical behavior in practice and to assess the possible scalability of
the swarm and its influence on the performance. The results suggest that it
is possible to apply the theoretical concepts of swarm aggregation to a swarm
of Sphero robots, but with limitations. In addition, it was found that the
swarm can be scaled up to the current limit of robots, which is possible in our
setup. The overall performance of the swarm in terms of aggregation behavior
increases with the number of individuals. Together with the proposed im-
plementation, the robots represent the required tech demo that demonstrates
swarm dynamics. The required increased movement is evoked in the swarm,
which is indicated by the fluctuation in entropy. The individuals never aggre-
gate statically but are always in motion.

The configuration and control of a single robot for the precise execution of
a specific task are already very complex. Therefore, the effort to enable a
swarm of robots to exhibit a certain behavior seems immense. Due to the
fact that swarm control architectures are based on self-organization and local

53

5 Conclusion

interaction, the coordination mechanisms are scalable. This enables the design
of behaviors for a swarm of robots without configuring and controlling every
robot to behave in a specific way. This enables behaviors to be designed
for a swarm of robots without having to configure and control each robot to
execute a specific task. These advantages are shown in our application since
several robots can be controlled simultaneously with the same swarm behavior
implementation. The main effort then, however, is to overcome the challenges
of swarm robotics to increase the size of the swarm, which means that more
and more robots have to be located and controlled at the same time.

To conclude, while the performance of the swarm increases with the number of
individuals, typical swarm robotic challenges aggravate with the swarm size.
Therefore, the results show that theoretical concepts of swarm intelligence can
be applied to robot swarm. However, the extent of this application is based
on the respective handling of occurring swarm robotic challenges. Although
our application solves the problem definition, there are still many possible im-
provements. We would like to suggest topics for future research and share some
ideas for extending our application. The number of simultaneously connected
Spheros can be increased up by using multiple Bluetooth dongles. This would
require further research to determine the maximum usable bandwidth and the
impact of interference on message throughput. The number of learned iden-
tification markers limits the localization framework in the number of robots
it can differentiate. In addition, swarm behavior is negatively affected when
robots are not recognized in certain situations. The task of object detection
and identification for several small objects in one image remains an open topic
in research. One approach that is more invariant to object size would be Faster
R-CNN. This would require a comparison with the MobileNetV2 architecture
currently in use. In future work, any misconduct of the Sphero could be reme-
died by sending a reset command to the robot. This would make manual
intervention unnecessary and allow the swarm to continue its behavior.

54

Bibliography

[1] F. Alkhateeb, E. A. Maghayreh, and S. Aljawarneh. A multi agent-based
system for securing university campus: Design and architecture. In 2010
International Conference on Intelligent Systems, Modelling and Simula-
tion, pages 75–79, Jan 2010.

[2] Bitcraze. Crazyflie 2.0.

[3] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence:
From Natural to Artificial Systems. Oxford University Press, New York,
1999.

[4] Alexandre Campo and Marco Dorigo. Efficient multi-foraging in swarm
robotics. In Advances in Artificial Life, pages 696–705. Springer Berlin
Heidelberg, 2007.

[5] Natalie Cheung. Technology behind the intel drone light shows. Robotics
Tomorrow, 09 2017.

[6] Erol Şahin. Swarm robotics: From sources of inspiration to domains
of application. Technical report, Department of ComputerEngineering,
Middle East Technical University Ankara, 2005.

[7] Şahin E., Girgin S., Bayindir L., and Turgut A.E. Swarm robotics. In
Blum C. and Merkle D., editors, Swarm Intelligence. Natural Computing
Series., pages 87–100. Springer, Berlin, Heidelberg, 2008.

[8] Gregory Dudek and Michael Jenkin. Computational Principles of Mobile
Robotics. Cambridge University Press, 2 edition, 2010.

[9] M. Faria, A. Costigliola, P. Alves-Oliveira, and A. Paiva. Follow me:
Communicating intentions with a spherical robot. In 2016 25th IEEE In-
ternational Symposium on Robot and Human Interactive Communication
(RO-MAN), pages 664–669, Aug 2016.

55

Bibliography

[10] Gianluigi Folino and Agostino Forestiero. Using entropy for evaluating
swarm intelligence algorithms. In Nature Inspired Cooperative Strategies
for Optimization (NICSO 2010), volume 284, pages 331–343, Berlin, Hei-
delberg, 01 2010. Springer Berlin Heidelberg.

[11] Beni G. and Wang J. Swarm intelligence in cellular robotic systems. In
Dario P. and Sandini G.and Aebischer P., editors, Robots and Biologi-
cal Systems: Towards a New Bionics?, volume 102 of NATO ASI Series
(Series F: Computer and Systems Sciences). Springer, Berlin, Heidelberg,
1993.

[12] Simon Garnier, Jacques Gautrais, and Guy Theraulaz. The biological
principles of swarm intelligence. Swarm Intelligence, 1:3–31, 10 2007.

[13] V. Gazi and K. M. Passino. A class of attraction/repulsion functions for
stable swarm aggregations. In Proceedings of the 41st IEEE Conference
on Decision and Control, 2002., volume 3, pages 2842–2847 vol.3, Dec
2002.

[14] Veysel Gazi and Kevin Passino. Stability analysis of swarms. IEEE Trans-
actions on Automatic Control, 48:692 – 697, 05 2003.

[15] Veysel Gazi and Kevin Passino. Stability analysis of swarms. IEEE Trans-
actions on Automatic Control, 48:694, 2003.

[16] Veysel Gazi and Kevin Passino. Stability analysis of social foraging
swarms. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 34:539 – 557, 03 2004.

[17] P. Goel, S. I. Roumeliotis, and G. S. Sukhatme. Robust localization using
relative and absolute position estimates. In Proceedings 1999 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Human and
Environment Friendly Robots with High Intelligence and Emotional Quo-
tients (Cat. No.99CH36289), volume 2, pages 1134–1140, 1999.

[18] Deborah M. Gordon, Richard E. Paul, and Karen Thorpe. What is
the function of encounter patterns in ant colonies? Animal Behaviour,
45(6):1083 – 1100, 1993.

[19] Self-Organizing Systems Research Group. Kilobots.

[20] Lukas Hoyer, Christoph Steup, and Sanaz Mostaghim. A robot localiza-
tion framework using cnns for object detection and pose estimation. 2018

56

Bibliography

IEEE Symposium Series on Computational Intelligence (SSCI), pages
1388–1395, 2018.

[21] Intel Corporation. Intel Shooting Star Drones Light Up the Sky, 6 2019.
Rev. 3.

[22] M. Ioannou and T. Bratitsis. Teaching the notion of speed in kindergarten
using the sphero sprk robot. In 2017 IEEE 17th International Conference
on Advanced Learning Technologies (ICALT), pages 311–312, July 2017.

[23] Belkacem Khaldi and Cherif Foudil. An overview of swarm robotics:
Swarm intelligence applied to multi-robotics. International Journal of
Computer Applications, 126:31–37, 09 2015.

[24] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox
detector. In Computer Vision – ECCV 2016, pages 21–37, Cham, 2016.
Springer International Publishing.

[25] A. Loria, J. Dasdemir, and N. Alvarez Jarquin. Leader–follower formation
and tracking control of mobile robots along straight paths. IEEE Trans-
actions on Control Systems Technology, 24(2):727–732, March 2016.

[26] Vladimir Lumelsky and Alexander Stepanov. Path-planning strategies for
a point mobile automaton moving amidst unknown obstacles of arbitrary
shape. Algorithmica, 2:403–430, 1987.

[27] Eitan Marder-Eppstein. move_base - ros wiki.

[28] Eitan Marder-Eppstein. navigation - ros wiki.

[29] K. N. McGuire, C. De Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E.
de Croon. Minimal navigation solution for a swarm of tiny flying robots
to explore an unknown environment. Science Robotics, 4(35), 2019.

[30] Francesco Mondada, Giovanni C. Pettinaro, Andre Guignard, Ivo W.
Kwee, Dario Floreano, Jean-Louis Deneubourg, Stefano Nolfi, Luca Maria
Gambardella, and Marco Dorigo. Swarm-bot: A new distributed robotic
concept. Autonomous Robots, 17:193–221, 09 2004.

[31] Simon Andreas Engstrøm Nistad. Sphero nav - robotic navigation and
control platform. Master’s thesis, The Arctic University of Norway, 6
2014.

57

Bibliography

[32] Shervin Nouyan, Alexandre Campo, and Marco Dorigo. Path formation
in a robot swarm. Swarm Intelligence, 2, 03 2007.

[33] Hyondong Oh, Ataollah R. Shiraz, and Yaochu Jin. Morphogen diffu-
sion algorithms for tracking and herding using a swarm of kilobots. Soft
Computing, 22:1833 – 1844, 03 2018.

[34] Orbotix Inc. Orbotix Communication API, 8 2013. revision 1.50.

[35] Marian-Nicolae Pinzariu and Adrian Iftene. Sphero - multiplayer aug-
mented game (smaug). In RoCHI, 2016.

[36] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source
robot operating system. In ICRA Workshop on Open Source Software,
2009.

[37] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In Proceedings of the 14th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’87, page 25–34, New York,
NY, USA, 1987. Association for Computing Machinery.

[38] Open Robotics. About ros.

[39] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A
low cost scalable robot system for collective behaviors. Proceedings of
2012 IEEE International Conference on Robotics and Automation (IRCA
2012), pages 3293–3298, May 2012.

[40] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Pro-
grammable self-assembly in a thousand-robot swarm. Science,
345(6198):795–799, 2014.

[41] D. Sakai, H. Fukushima, and F. Matsuno. Leader–follower navigation in
obstacle environments while preserving connectivity without data trans-
mission. IEEE Transactions on Control Systems Technology, 26(4):1233–
1248, July 2018.

[42] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4510–
4520, 2018.

58

Bibliography

[43] Randall Schumacker and Sara Tomek. Probability, pages 11–41. Springer
New York, New York, NY, 2013.

[44] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3):379–423, 1948.

[45] Onur Soysal and Erol Şahin. Probabilistic aggregation strategies in swarm
robotic systems. Technical report, Department of ComputerEngineering,
Middle East Technical University Ankara, 2005.

[46] Sphero SPRK+. Sphero.

[47] Ying Tan and Zhong-yang Zheng. Research advance in swarm robotics.
Defence Technology, 239, 03 2013.

[48] Eitan Marder-Eppstein Tully Foote and Wim Meeussen. tf - ros wiki.

[49] Trianni V. and Campo A. Fundamental collective behaviors in swarm
robotics. In Kacprzyk J. and Pedrycz W., editors, Springer Handbook
of Computational Intelligence, pages 1377–1394. Springer, Berlin, Heidel-
berg, 2015.

[50] Melonee Wise. Sphero ros - sphero_ros 0.1 documentation.

[51] Kaiyu Zheng. ROS navigation tuning guide. CoRR, abs/1706.09068, 2017.

59

Declaration of Authorship

I hereby declare that this thesis was created by me and me alone using only
the stated sources and tools.

Christian Wustrau Magdeburg,

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Outline

	Background
	Swarm Intelligence
	Swarm Stability
	Swarm Movement

	Swarm Robotics
	Robot Swarm Applications
	Swarm Robots
	Kilobots
	Spheros
	Conclusion and Comparison

	Software
	ROS
	Navigation
	Camera Tracking

	Implementation
	Concept
	Node Architecture
	Hardware
	Navigation
	Swarm

	Integration

	Evaluation
	Metrics
	Scenario
	Environment
	Results
	Discussion

	Conclusion
	Bibliography

