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Abstract

This work presents a new Navigation Wind PSO (NW-PSO) algorithm as an energy e�cient

search mechanism in unknown dynamic environments. The environment is simulated by

vector �elds and represents natural environments as for example wind �ows. Inspired by the

nature, the vector �eld in�uences the particles movement and causes higher energy usage if

particles move in the contrary direction of the �ow. The goal of NW-PSO is to �nd an optimal

solution and simultaneously save energy during the search process. The concept of NW-PSO

is based on Particle Swarm Optimization (PSO) but takes the energy consumption into con-

sideration. In contrast to PSO, the new approach pursues two goals, energy e�ciency and

qualifying search results. Therefore, a multi-criteria decision making process is used for the

movement calculation in order to generate a compromise for both goals. The new approach

is compared with two other search mechanisms in di�erent environments and search prob-

lems. The �rst one is Compensative PSO (C-PSO) which works like standard PSO but includes

energy computations. The other approach Compensative Wind PSO (CW-PSO) is a modi�ed

version of Vector Field Map PSO (VFM-PSO) [BGM17]. Nevertheless, both of them do not con-

sider the energy consumption. The results show that NW-PSO is able to reduce the energy

consumption compared with C-PSO and CW-PSO for the considered �tness landscapes and

vector �elds. The quality of the search and energy results depends on the �tness landscape

and the vector �eld. The obtained results for the proposed model prove that NW-PSO is a

suitable search mechanism for energy reduction in dynamic environments.

The proposed approach NW-PSO works as follows: an optimizer swarm and an explorer

swarm work together as a multi-swarm. The optimizer swarm searches for optimal solu-

tions in the �tness landscape, whereas the explorer swarm collects the information about the

vector �eld and stores its values into the Information Map. The optimizers needs to make en-

ergy e�cient movements in order to reduce the energy usage. Therefore, it uses the collected

data from the Explorers saved in the Information Map to generate a set of target points. Sub-

sequent, the particle chooses one of the target points and moves there. The decision is based

on the energy costs for the movement towards the target point and the improvement of the

search. As both objectives need to be optimized, the multi-criteria decision making method

Weighted Sum Method is applied.
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1. Introduction

Swarm Robotics (SR) is "a new approach to the coordination of multi-robot systems" [SW08].

The main idea is that swarms of robots are able to solve complex tasks by local interaction

[BL08]. Typical applications are unmanned aerial vehicle (UAV), cooperative transportation

and geological survey. The advantages of swarm robotics compared to single robotics are par-

allelization, scalability, stability, economical and energy-e�ciency [TZ13]. A swarm is able to

work in parallel on multiple targets which is time saving. Additionally, it is scalable because

the approach is adaptable to di�erent sizes of swarms. Moreover, it guarantees stability be-

cause the swarm still executes its task if one robot quits performing. In contrast to a complex

single robot, a multi swarm is also cheaper because it consists of multiple simple and small

robots. As a consequence, they also consume less energy which is an important factor for

mobile robotic systems [TZ13]. Often the robotic systems consist of small and simple mobile

robots which cost less in order to The energy results for Rosenbrock function and Ackley

function are approximately the same as for Sphere function. Thus, they will not be explained

again make large populations a�ordable[TZ13]. Depending on the type of problem, these

robots can either be grounded or aerial. Though, mobile robots have the great disadvantage

of a limited battery capacity. Therefore, a good energy management is essential [RZF08]. An-

other challenge for aerial robots are environmental in�uences like wind gust disturbances.

Therefore, this work focuses on an energy saving search mechanism based on Particle Swarm

Optimization (PSO) for unknown dynamic environments. The main idea is that robots reduce

their energy usage during the search process by adjusting their movement to the environment.

1.1. State of the Art

Environmental in�uence on robotic systems is an important topic in recent literature. Espe-

cially navigation for UAVs gains in importance as described by Roberge et al. [RTL13]. The

authors introduce an automatic path planning algorithm which applies PSO and a genetic al-

gorithm to avoid obstacles and determine optimal trajectories. Another algorithm is presented

by Sadiq and Hasan [SH17] which uses the D* algorithm instead of genetic algorithms. Raja

and Pugazhenthi [RP09] explain an approach which is able to deal with obstacles with di�er-

ent shapes and varying velocities of the robots. Besides, autonomous underwater vehicles in

unknown, whirling environments have been surveyed by Zeng et al. [Zen+12] and Garau et

al. [GAO06]. In the year 2005, Zheng et al. [Zhe+05] developed an evolutionary path planner

for unmanned air vehicles to deal with unforeseeable environmental changes. Another fully

1
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autonomic approach for aerial systems is presented by Sanchez et al. [SPC17]. It includes the

A* search mechanism and generates a collision-free path in challenging environments with

dynamic obstacles. In 2007, Jatmiko et al. [JSF07] introduced a modi�ed PSO (MPSO) which

allows a swarm of robots to detect environmental changes and trace an odour. The aim is to

�nd the source of the odour. One year later, MPSO is extended so that the robots are able to

determine the direction of the odours �ow and navigate in the opposite direction of the stream

to locate the source [Jat+08]. In 2017, Shen et al. [She+17] introduced a bio-inspired method

for the control of small unmanned air vehicles. These are able to cope with wind gust distur-

bances [She+17]. In addition to environments, energy awareness for robots has been brought

into focus in latest literature. Moreover, Mei et al. [Mei+04] considered the motion planning

of mobile robots. To save energy, di�erent routes and their velocities were compared. An-

other energy-e�cient path planning method was introduced by Ganganath et al. [GCT15]. In

contrast, the path planning was made for uneven terrain with the help of a heuristic search

mechanism. The energy management of indoor hovering robots which search a prede�ned

target was developed by Roberts et al. [RZF08]. Compared to ground-based robots, the �ying

robots need more energy. A ceiling attachment was used to be able to use the birds-eye view

to improve the search results. Additionally, in 2010 another indoor search algorithm for �y-

ing robots was introduced by Stirling et al. [SWF10]. The energy consumption is reduced by

local sensing and low-bandwidth communication. Moreover, the total swarm �ight time was

reduced and energy saved by launching one robot at a time. However, the solving of complex

environments or problems can become di�cult. Furthermore, Zhou and Kinny [ZK13] o�ered

a bio-inspired energy management for a swarm of robots. Standard PSO is extended so that

energy is taken into account in the task selection and motion planning. The main idea is di-

vision of labour so that a task which needs a high amount of energy is performed by a robot

which also has a high energy level. As a consequence, the energy homogeneity across the

swarm can be improved. Although, the energy usage as well as the environmental in�uences

have been important topics in robotics there is no research about energy reduction in relation

to the environment.

1.2. Research Goals and Specific Objectives

The goal of this work is to develop a preferably energy e�cient search mechanism for dynamic

environments. Therefore, vector �elds represent the dynamic environments. The proposed

model is a modi�ed version of PSO including multi criteria decision making methods in order

to choose energy and search e�cient movements. The approaches applicability is judged by

comparison to other approaches which do not take the energy e�ort into consideration.

2
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Goal
To develop an energy e�cient search mechanism for dynamic

environments.

For reaching this goal, the main structure of this thesis can be summarized as the following.

First, a model for the particles movement needs to be implemented. This includes a dynamic

environment which a�ects the particles movement. The dynamic environment is represented

by a vector �eld.

Objective 1
To implement a model for the general particles movement in

dynamic environments.

Afterwards, an energy consumption model is developed. Therefore, a selection of param-

eters is estimated which shall be measured. This represents the basis for comparison with

existing models. However, a model is only a simpli�cation and does not take into account all

parameters which would be important for a real world scenario.

Objective 2
To generate a simpli�ed energy consumption model.

The third objective includes the modi�cation of the standard PSO equation in order to generate

an energy saving algorithm. Compared to standard PSO the new approach needs to ful�l two

goals. The �rst one is gaining satisfactory search results. The second goal is the reduction of

the energy consumption during the search process. As a result, the approach needs to include

a decision making method in order to distinguish the best solution which is a compromise

between both goals.

Objective 3
To create a new approach based on PSO which reduces the energy

consumption without negligence of the search results quality.

Subsequently, the fourth objective regards the implementation of the di�erent approaches

with regard to the created energy model. This includes standard PSO, Vector Field Map PSO

(VFM-PSO) and the newly developed approach Navigation Wind PSO (NW-PSO). Further-

more, the approaches are tested in di�erent environments and for di�erent objective func-

tions. The results o�er feedback about the type of problem for which each approach is appro-

priate or not.

Objective 4
To implement the new energy model on other approaches based on

PSO and run simulations for all approaches in varying environments.
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The last objective considers the comparison of the approaches results. Therefore, the energy

consumption and quality of the search results are observed. A conclusion about the applica-

bility of the new designed approach is drawn predicated on the evaluation.

Objective 5
To evaluate the new approach by comparing the simulation results

between the di�erent approaches.

1.3. Structural Overview

The following section gives a review of the thesis structure. First, a general background about

the main topics of the thesis and later used approaches is introduced in Chapter 2. Afterwards,

Chapter 3 presents the proposed model which includes the composition for the following ex-

periments and detailed information about the di�erent approaches that will be compared.

Accordingly, the implementation of the fundamental functions is provided by Chapter 4. The

experimental setup and parameter settings are described in Chapter 5. This chapter also in-

cludes the evaluation of the experimental results. In the end, a conclusion is drawn in Chapter

6. Furthermore, suggestions for future works are given.
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This chapter presents the background information for the later proposed model and the fol-

lowing experiments. Fundamental information about Particle Swarm Optimization will be

provided in Section 2.1. Additionally, Vector Field Map PSO will be explained in Section 2.2

which will be part of the proposed model and the following experiments. Besides, Multi-

Criteria Decision Making will be introduced in Section 2.3. Afterwards, the Weighted Sum

Method will be explained in Section 2.4. At the end, di�erent boundary handling techniques

are introduced in Section 2.5.

2.1. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was �rst introduced by Kennedy and Eber-

hart [EK95], [KE95] 1995. They developed an optimization process which is inspired by bi-

ological structures like ant colonies or swarms of birds. In these populations the individuals

interact with each other and share information. As a result, a collective intelligence and a

self-organized swarm develops which is able to search for the optima for example in consid-

eration to the food quality. The PSO approach exactly executes this swarm behaviour and

optimizes the search results in regard to an objective function [Eng07]. Therefore, a swarm

consists of N particles. The basic PSO iteration provides that each particle i is allocated to a

position ®xi(t + 1) at time step t + 1. The particle movement is calculated by the velocity vector

®vi(t + 1) which is added to the current position:

®vi(t + 1) = w ®vi(t) +C1 ®σ1
(
®Pbest − ®xi(t)

)
+C2 ®σ2

(
®xд(t) − ®xi(t)

)
(2.1)

®xi(t + 1) = ®xi(t) + ®vi(t + 1) (2.2)

The velocity vector is the main factor of the optimization process. It calculates the next move-

ment depending on the cognitive and social component. The cognitive component, denoted

as ®Pbest , is the best found solution of the particle. Whereas the social component represents

the best found solution of the whole swarm and is described as ®xд(t). The in�uence of each

component is determined by the positive constants C1 and C2 which are called acceleration

coe�cients. The vectors ®σ1 and ®σ2 are two random vectors ϵ[0, 1]n. The old velocity vector

®vi(t) is weighted by the inertia factor w > 0.
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2. Background

2.2. Vector Field Map PSO

The Vector Field Map PSO approach (VFM-PSO) is a modi�ed version of standard PSO (Section

2.1). It is developed for aerial micro-robots in order to perform in unknown environments with

uncertain dynamics. The environment is modelled by a two-dimensional vector �eld which

a�ects the particles movement. As a result, the standard PSO search process is disturbed.

VFM-PSO presents a solution to deal with the vector �eld dynamics based on a multi-swarm

[BB04]. This includes an optimizer swarm and an explorer swarm. While the optimizer swarm

tries to �nd the global optimum, the explorer swarm discovers the search space and saves

information about the vector �eld. As the environment is based on a Cartesian Grid, a vector

−→
VF (x1,x2) for each each point p = (x1,x2) can be calculated by interpolation as described in

the following:

−→
VF (x1,x2) = (1 − u2)(1 − u1)

−→
VF 0,0 + (1 − u2)u1

−→
VF 1,0 + u2(1 − u1)

−→
VF 0,1 + u1u2

−→
VF 1,1 (2.3)

The collected information can be used by the optimizer swarm to calculate movements which

counteract the vector �eld. This movements are generated by a modi�ed PSO equation given

below:

®xi(t + 1) = ®xi(t) + ®vi(t + 1) +
K∑
k=0

−→
VF (pk) (2.4)

As a result, VFM-PSO gains better search results than VF-PSO which applies standard PSO in

dynamic environments without corrections [BGM17].

2.3. Multi-Criteria Decision Making

Multi-Criteria Decision Making (MCDM) is a general class for models which are designed

for decision problems including multiple criteria. In many cases multiple objective functions

need to be optimized. This kind of problem is called Multi-Objective Optimization (MOO)

Problem. The main di�culties of their solving is based in the con�icts between the di�erent

functions. For example an objective function for the parameter costs and an objective function

for bene�t are often in con�ict with each other. This is due to the trade between pro�t and

costs. The pro�t should be maximized while the costs shall be minimized at the same time.

As a result, there is no unique optimal solution as in mono objective decision making. Instead

a set of equally important optima called Pareto Front exists. A point is called optimum "if no

criterion can improve the solution without worsening at least one criterion" [LS17]. As shown

in Figure 2.1 the Pareto Front consists of a set of non-dominated solutions. They are called

non-dominated because they are better than all other solutions and therefore dominate them.

Consequently, the other solutions form the dominated set.
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f1

f2

Pareto Front

Non-Dominated

Dominated

Figure 2.1.: Pareto Front

The objective functions which needs to be optimized are de�ned as the following.

f1(®x) for i = 1, ...m and ®xϵS (2.5)

In a minimization problem, a vector ®x is said to be Pareto Optimal if its value is lower than the

value of all other vectors ®xϵS for all objective functions fi for i = 1, ...,m. The set of Pareto

Optimal solutions is called Pareto Front [Pur+14].

A solving technique to determine a solution out of the Pareto Front is called Aggregation

Function Method. Thereby, the multi-objective optimization problem is transformed into a

single-objective optimization problem. These problems can be easily solved by estimation

of a minimum. One of the used methods is the ϵ-constraint method. However, this method

has high computational costs and therefore is not suitable for this thesis. Additionally, the

estimation of a good ϵ is di�cult because its possible that no solution is found if the selection

was unsuitable. Another solving method is goal programming which de�nes a target value

for each objective function and measures the distance of each solution towards this value.

Nevertheless, the estimation of a target point is di�cult. The most commonly method is the

Weighted Sum Method which will be explained in the following Section 2.4 [LS17].

2.4. Weighted Sum Method

The Weighted Sum Method (WSM) is a widely spread method for transforming a multi-dimen-

sional problem into a single-dimensional problem. Thereby, the decision maker is able to

display preferences for speci�c objective functions by a weight vector wi which is applied in

the calculation. WSM is de�ned as followed:

min f (x) =
m∑
i=1

wi fi(x), wi >= 0,

m∑
i=1

wi = 1 (2.6)

7



2. Background

where m is the number of objective functions and fi(x) the corresponding function value of

x [LS17]. Usually, WSM is used for single-dimensional problems. This is due to the fact,

that di�erent dimensions of the objective functions cannot be summed up. However, multi-

dimensional problems can be solved by normalizing the objective functions value. Therefore,

the min-max method can be used. The main advantages of WSM are the simplicity and fast

computation. Nevertheless, it is not suitable for concave Pareto Fronts [GR06].

2.5. Reflected Bound Handling

Bound handling is an important topic in PSO because it has great in�uence on the search

results especially if the optimum is near the bound. In general, optimization problems have

a bounded search space. However, the particles are able to leaf the feasible space. Therefore,

it is important to apply bound handling techniques for guaranteeing that the particles stay

inside the bound. Otherwise they would not be able to �nd the optimal solution. One of

the techniques is Re�ected Bound Handling "where the infeasible solution is re�ected in the

feasible space" [HBM13] as shown in Figure 2.2.

xt

xt+1x′t+1

Figure 2.2.: Re�ected Bound Handling

The calculation of the particles new position is given below. The boundaries of the search

space are denoted as xmin and xmax .

i f xt+1 > xmax , then x′t+1 = xmax − (xt+1 − xmax ) (2.7)

i f xt+1 < xmin, then x′t+1 = xmin + (xmin − xt+1) (2.8)
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This chapter describes the model for the following experiment. It includes three di�erent

optimization swarms using modi�ed versions of PSO which will be explained in Section 3.3.

Apart from the optimization swarms a concept of a swarm called Explorers (Section 3.3.1)

is introduced. Its main task is the improvement of the search results of the Compensative

Wind PSO (CW-PSO) (Section 3.3.3) and Navigation Wind PSO (NW-PSO) (Section 3.3.4) by

collecting information about the vector �eld. Furthermore assumptions and constraints are

settled in Section 3.1. Afterwards the energy calculation is presented in Section 3.2.

3.1. Assumptions and Constraints

First, the assumption is made that the individuals have an alignment and can only move for-

ward. If they want to move left they �rst have to change their arrangement by twisting and

secondly move forwards. Additionally they can only move by a limited velocity vMax . If

their velocity vector gets larger than this threshold it is set to vMax . The focus of the energy

calculation is laid on the individuals movement actions. Besides the model provides that each

individual uses a battery which is set to a prede�ned start value at the beginning and dis-

charges by moving and turning. If the battery is entirely empty, the individual cannot move

or turn any more and is de�ned as dead. Moreover, particles still use energy if they do not

show movements. This is due to the fact that they need to compensate the vector �eld in

order to stay at one position. If the particles would not apply any energy they could not stay

at this position and would be blown away like the Explorers. Furthermore, all weights which

are used for the decision making process in Section 3.3.4 are constant for the whole model

and derived by experiments. They can be found in Table A.1. To sum up, the assumption is

made that the particles of all swarms except the CW-PSO swarm, can estimate the vector of

the vector �eld at its local position.

3.2. Energy Calculation

The energy consumption is measured for each individual i inside a population p and for the

population itself. It is based on two parameters: moving and turning. The parameters are

illustrated by the following Figures.

9



3. Proposed Model

−→
VF

(
®xi(t)

)
−→v i(t
+
1
)

eMovei(t)−−→
CV (
®xi (t) )®xi(t)

®xi(t + 1)

Figure 3.1.: Energy Calculation eMovei(t)

−→
VF

(
®xi(t)

)
−→v i(t
+
1
)

eTurni(t)

®vi(t)
®xi(t)

®xi(t + 1)

Figure 3.2.: Energy Calculation eTurni(t)

At the beginning, each individual i has an equal amount of energy which is de�ned by an

initial value einit > 0. The battery for each individual is set to this initial value. Afterwards,

the battery valuebatteryi(t+1) for the time step t+1 is de�ned by the battery valuebatteryi(t)
and the spend energy eTotali(t) at the current time step t :

batteryi(t + 1) = batteryi(t) − eTotali(t) (3.1)

The total energy eTotali(t) represents the energy consumed by one individual during one time

step t for moving and turning. It is calculated as the following:

eTotali(t) = eMovei(t) + eTurni(t) (3.2)

eMovei(t) = |
−−→
CV

(
®xi(t)

)
| + anдlei(t) · |

−−→
CV

(
®xi(t)

)
|, −2 < anдlei(t) < 2 (3.3)

anдlei(t) =

(
arccos

(
®VF(®xi (t))· ®vi (t+1)
| ®VF(®xi (t))· ®vi (t+1)|

))
− 90

45

(3.4)
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eTurni(t) = arccos

(
®vi(t) · ®vi(t + 1)
| ®vi(t)| · | ®vi(t + 1)|

)
(3.5)

The �rst summand eMovei(t) is the energy for moving, which is de�ned by the correction

vector

−−→
CV (xi(t)) which will be explained in the following Section and the angle between the

velocity vector ®vi(t) and the vector of the vector �eld

−→
VF (®xi(t)). The calculation of anдlei(t)

provides the possibility of energy reduction if the individual moves in the same direction as

the vector of the vector �eld. In contrast, the individual needs more energy if it moves in the

contrary direction. Thus, the compensation of the vector �eld and therefore spent energy is

estimated. The second summand eTurni(t) is the energy e�ort for turning which is set by the

angle between the old velocity vector ®vi(t) and the new velocity vector ®vi(t + 1). Therefore,

the individuals rotation during one time step is calculated. At the end of each time step t , the

energy for the whole population p is calculated as the following:

ep(t) =
N∑
i=0

batteryi(t) (3.6)

Where N is the number of individuals inside the population p and batteryi is the battery

value of the respective individual i . Admittedly, energy calculations are only made for the

optimization swarms because the Explorers do not spend any energy for moving. Due to

the fact, that they are driven by the vectors of the vector �eld and therefore do only passive

movements.

3.3. Swarm Operation Methods

The model contains four kinds of swarms. These are Explorers, Compensative PSO (C-PSO),

Compensative Wind PSO (CW-PSO) and Navigation Wind PSO (NW-PSO) which will be ex-

plained in the following sections. The particle velocity of each population is in�uenced by

the vector �eld which is explained in Section 2.2. The Explorer swarm is the only one which

is not doing any optimization. Its main task is to improve the search results of the CW-PSO

(Section 3.3.3) and NW-PSO (Section 3.3.4) by collecting information about the vector �eld.

The other swarms apply PSO (Section 2.1) in order to discover the search space and �nd the

optimal solution. As the vector �eld in�uences the particles position and movement in each

swarm, the introduced PSO velocity equation (Equation 2.1) is modi�ed as given below:

®vi(t + 1) =
−−→
DV

(
®xi(t)

)
+
−→
VF

(
®xi(t)

)
(3.7)

−−→
DV

(
®xi(t)

)
=
−−−→
PSO

(
®xi(t)

)
+
−−→
CV

(
®xi(t)

)
(3.8)
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−−−→
PSO

(
®xi(t)

)
= w ®vi(t) +C1σ1

(
®Pbest − ®xi(t)

)
+ c2σ2

(
®xд(t) − ®xi(t)

)
(3.9)

The example of calculation is illustrated for the Compensative PSO in Figure 3.3. The velocity

is computed by the summing up of a direction vector

−−→
DV

(
®xi(t)

)
which determines the parti-

cles intended movement and the vector of the vector �eld

−→
VF

(
®xi(t)

)
at the particles position.

The value for

−→
VF

(
®xi(t)

)
is determined by interpolation explained in Section 2.2. The direc-

tion vector

−−→
DV

(
®xi(t)

)
is estimated by the sum of

−−−→
PSO

(
®xi(t)

)
known as the old PSO velocity

equation (Equation 2.1) and a correction vector

−−→
CV

(
®xi(t)

)
. This correction vector is generated

di�erently for each optimization swarm and will be explained below. It is the main di�erence

between the swarms algorithms and the divergent performances.

−→
VF

(
®xi(t)

)
−−−→
PS
O
( ®x i(t)) =

−→v i(t
+
1
)

−−→
CV

(
®xi(t)

)

−−→
DV

( ®xi(t))®xi(t)

®xi(t + 1)

Figure 3.3.: C-PSO Correction Vector Estimation

3.3.1. Explorers

Since the simulation takes place in an unknown environment, the swarms have no informa-

tion about the vector �eld. Therefore, the task of the Explorer Swarm is to investigate the

surrounding area. For this purpose, the Explorers move by the vectors of the vector �eld

described by the following equation.

®xi(t + 1) = ®xi(t) +
−→
VF

(
®xi(t)

)
|−→VF

(
®xi(t)

)
|

(3.10)

Where

−→
VF

(
®xi(t)

)
is the vector of the vector �eld at position ®xi(t). The vector fo the vector

�eld is normalized by its magnitude |−→VF
(
®xi(t)

)
| so that the particles cannot move further than

one step at each iteration. This generates a continuous movement and a better exploration at

the end. Given that each particle of the Explorer Swarm can measure the vector at its own

position, the swarm simply saves this information in a matrix called Information Map. The

collected data is used for the CW-PSO (Section 3.3.3) and NW-PSO (Section 3.3.4) for better

performances.
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3.3.2. C-PSO

The idea of the Compensative PSO (C-PSO) population is, that particles move directly towards

the current optimum without any distraction by the vector �eld (Figure 3.3). This results in a

good convergence, however the energy consumption is neglected. The movement is realized

by a correction vector which deals with the interference of the vector �eld:

−−→
CV

(
®xi(t)

)
= −−→VF

(
®xi(t)

)
(3.11)

3.3.3. CW-PSO

The main concept of the Compensative Wind PSO (CW-PSO) is reaching the global optimum

by taking advantage of the Information Map. The approach is explained in Section 2.2. Since

the particles of the CW-PSO swarm cannot generate the value of the vector �eld at their local

position, they are to a greater or lesser extend depending on the Information Map. Therefore,

the CW-PSO algorithm distinguishes two cases for calculating the correction vector. The �rst

case occurs if the vector at the current position is saved in the Information Map. In this case,

the swarm behaves the same as the C-PSO swarm (Section 3.3.2). The correction vector is

calculated by the following equation.

Case1 :
−−→
CV

(
®xi(t)

)
= −−→VF

(
®xi(t)

)
(3.12)

In the other case, the vector at the particles position is not stored in the Information Map. As

a result the correction vector cannot be calculated by the negative value of the vector �eld so

that the correction vector is set to zero:

Case2 :
−−→
CV

(
®xi(t)

)
= 0 (3.13)

As a consequence, the particles velocity is highly in�uenced by the unknown value of the

vector �eld. The particle will probably be redirected (Figure 3.4).

−→
VF

(
®xi(t)

) −→v i(t
+
1
)

−−→
DV

( ®xi(t)) =−−−→PSO ( ®xi(t))®xi(t)

®xi(t + 1)

Figure 3.4.: CWPSO Correction Vector Estimation Case 2
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3.3.4. NW-PSO

This section is about Navigation Wind PSO (NW-PSO) which is as well a search mechanism

based on PSO (Section 2.1). Its focus lies on the energy consumption during the search in

unknown vector �elds. The goal is to spend as little energy as possible for �nding the opti-

mal solution. This is realized by forming a multi-swarm [BB04] with an Explorer Population

(Section 3.3.1). The NW-PSO swarm can use the information collected by the Explorer swarm

to improve the navigation in the vector �eld and reduce the energy usage. The main aspects

of the algorithm are listed in Figure 3.5 and will be explained exemplary for one particle of

the NW-PSO population.

1. Near Global Optimum?

2a. Target Point Estimation

2b. C-PSO

3. Su�cient Exploration?

4a. Two Dimensional Pareto Front 4b. Three Dimenionsal Pareto Front

5. Correction Vector Calculation

No

Yes

No Yes

Figure 3.5.: NW-PSO Algorithm

First, the distance towards the global optimum is calculated. If it is smaller than the prede�ned

search radius, the particle moves directly towards this optimum by calculating a correction

vector explained in Section 3.3.2. As a result, the particles are able to converge at the optimum.

In the other case, the particles need to navigate towards the global optimum. Therefore the

basic concept of the mechanism is to �nd an energy e�cient target point
−→
tp

(
®xi(t)

)
at each

time step t . Energy e�cient means the movement towards this point consumes only small

energy. Additionally, it is expected that the next movement starting at this target point will

also be energy e�cient. Another important factor for the selection of the target point is the

quality in reference to the search. The target point must also lead to satisfying search results.
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At �rst a collection of possible target points must be extracted and evaluated. The selection

of the target points is illustrated in Figure 3.6.

−→
VF

(
®xi(t)

)

r
(
®xi(t)

)

tp
(
®xi(t)

)
aRanдe

α

®xi(t)

Figure 3.6.: NW-PSO Target Points Estimation

Given that each particle can only move with a limited velocity (Section 3.1) the target points

should not be further than this restriction. Therefore the search radius r
(
®xi(t)

)
(Figure 3.6)

is set to the maximum velocity vMax . Following the de�nition of the search radius, a vec-

tor similar to the vector

−→
VF

(
®xi(t)

)
of the vector �eld at the particles position ®xi(t) is gen-

erated. Its length is set to the prede�ned search radius. This vector is stepwise rotated an-

ticlockwise and clockwise by a given angle α . This angle is calculated by the division of a

pre-set angle range aRanдe and precision prec . The angle range determines in which range

the vector will be rotated. Besides, it de�nes how similar the later movement ®vi(t + 1) will

be to the vector

−→
VF

(
®xi(t)

)
. This similarity is a crucial factor for the energy consume (Sec-

tion 3.2). A smaller range means a higher a�nity and less energy usage. The precision de-

�nes how many vectors are calculated within the angle range. The smaller its value, the

more vectors are calculated and the more precise the results will be. If the computational

costs become too high, this parameter can be set higher for lowering the precision. The set

TP = {−→tp1
(
®xi(t)

)
,
−→
tp2

(
®xi(t)

)
, ...,
−→
tpn

(
®xi(t)

)
} of n target points is placed at the end of each cal-

culated vector.

The second task is the identi�cation of the best target point out of this set. Therefore the

target points are arranged in a Pareto Front (Section 2.3) and evaluated by appliance of WSM

(Section 2.3). Certainly the parameter selection for the Pareto Front is divided into two cases

depending on the Information Map (Section 3.3.1). The decision between the cases is gener-

ated with the help of the target points. As already mentioned, the Information Map includes

collected data about the vector �eld but only the vectors of these positions are added where
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3. Proposed Model

the particles of the Explorer Swarm came across. As a result, the information is incomplete

and not all vectors of all positions are saved in the map. The position of each target point is

checked in the Information Map and whether it contains a value or not. If the vector of half

of the target points or more is known, the �rst case occurs. This means that there are enough

explored �elds and saved in the map. As a result, the values of the map can improve the par-

ticles navigation. Otherwise the second case occurs which means that not enough vectors are

known and the results might be misleading. Both will be explained in detail in the following.

The �rst case o�ers more decision parameters due to the fact that the vector at most of the

target points is known. Thus the Pareto Front will be three-dimensional.

The �rst parameter is the angle between the vector

−→
VF

(
®xi(t)

)
of the vector �eld at the parti-

cle position ®xi(t) and the vector towards the target point
−→
tp

(
®xi(t)

)
(Figure 3.7). The other two

parameters require the vector

−→
VF

(−→
tp

(
®xi(t)

) )
from the Information Map. The second param-

eter is de�ned by the distance between the vector

−→
VF

(−→
tp

(
®xi(t)

) )
of the vector �eld and the

position of the global best Pbest (t) (Figure 3.7). The last parameter set by the angle between

−→
VF

(−→
tp

(
®xi(t)

) )
and the vector from the target point towards the global best (Figure 3.7). Alto-

gether the parameters o�er a good decision making and navigation for the particle, because

the vector at the target position is considered. This in�uences the decision making at the next

time step.

−→
VF

(
®xi(t)

)
−→
VF (tp)

®Pbest (t)

Parameter 2

Parameter 3

Parameter 1

®xi(t)

®tp
(
®xi(t)

)

Figure 3.7.: NWPSO Parameter Estimation Case 1

In the second case, there are not enough known vectors at the target points. As a result there is

less information used for the decision making process. A two-dimensional Pareto Front is gen-

erated. The �rst parameter is generated by the same calculation as for the three-dimensional

Pareto Front mentioned before. Though, the second vector is the distance between the posi-

tion of the target point
−→
tp

(
®xi(t)

)
and the position of the global best ®Pbest (t) as shown in Figure
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3. Proposed Model

3.8. In contrast to the other case, this one results in worse navigation results, because the

vector �eld at the target point cannot be observed. Nevertheless it is energy-saving.

−→
VF

(
®xi(t)

)
®Pbest (t)

P
a
ra

m
e
te

r
2

Parameter 1

®xi(t)

®tp
(
®xi(t)

)

Figure 3.8.: NWPSO Parameter Estimation Case 2

In the end, the correction vector

−−→
CV (xi(t)) is calculated by the following equation:

®P
(
®xi(t)

)
= ®tp

(
®xi(t)

)
− ®xi(t) (3.14)

−−→
CV

(
®xi(t)

)
= −−−−→PSO

(
®xit(t)

)
− −→VF

(
®xi(t)

)
+ ®P

(
®xi(t))

)
(3.15)
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4. Implementation

This chapter explains the simulation of the proposed model in Chapter 3. For comparison of

the three approaches, a simulation environment was compiled using MATLAB 2016a. The aim

of the simulation is to run comparable experiments for di�erent objective functions and vector

�elds. The environment is shown exemplary in Figure 4.1 which illustrates the simulation of

Sphere function for vector �eld Rotation at iteration 30. The results of the simulation will be

evaluated in Chapter 5.

Figure 4.1.: Simulation of Sphere Function for Vector Field Rotation at iteration 30

As the simulation includes stochastical parameters, it is executed for 100 times. In the follow-

ing, the four main algorithms of the simulation are proposed. First, the general simulation

function will be explained. Afterwards, the Explorers calculation will be presented. Section

4.3 deals with the realisation of the optimizer swarms. At the end, the concrete implementa-

tion of the NW-PSO approach is described.

4.1. Simulation

The whole simulation is started by running Algorithm 1 which is explained below. The num-

ber of runs for the simulations and iterations can be set by the associated variables. Whereby,

each simulation consists of a prede�ned number of iterations and presents one passage. The
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4. Implementation

function initialise uses the pre-set parameters to generate the con�guration. This includes the

generation of the swarms and the search space. The particles are randomly placed whereby

their positions are identical for each swarm. Additionally, the con�guration includes infor-

mation about the selected vector �eld and objective function. Subsequently, the performance

of the swarms is de�ned. The optimizer swarm movement is calculated by the function move
which is explained in Section 4.3. As the Explorer swarm di�ers from the other its movement

is generated by the function explore which will be explained in the following section.

Algorithm 1: Run Simulation

Result: Calculates the simulation

1 for j < simulations do
2 con�g← initialise( parameters );

3 for i < iterations do
4 cpso← move( cpso );

5 cwpso← move( cwpso );

6 nwpso← move( nwpso );

7 informationMap← explore( informationMap );

8 end
9 end

4.2. Explorers

The Explorers movement and behaviour is implemented by Algorithm 2 which is illustrated

at the end of the section. At each iteration each particle of the explorer swarm updates the

Information Map. This is realized by the function updateMap which saves the vector of the

vector �eld at the particle position in the map. Afterwards, the particle movement is generated

by the scaled velocity of the vector �eld as explained in Section 3.3.1. At the end, the particle

position is updated using Re�ected Bound Handling (Section 2.5).

Algorithm 2: Explore

Result: Calculates the movement of the Explorers and their exploration

1 for i < swarmSize do
2 e = explorers( i );

3
−→
VF ← getVectorField(e.position);

4 informationMap← updateMap(

−→
VF );

5 newVelocity← scale(

−→
VF );

6 e.position← boundaryHandling( e.position, newVelocity );

7 end
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4. Implementation

4.3. Optimization Swarms

The performance of the optimizer swarms is realized by Algorithm 3 which is shown below.

The input of the algorithm is the swarm for which it generates the particles movement and

energy consumptions. First, the algorithm proofs whether the particle is dead or not. This

is due to the fact that no more movement is possible if the particles have no energy left. If

the particle is alive the new velocity is calculated as described in Chapter 3. Depending on

the kind of swarm di�erent correction vectors are used. If the new velocity is larger than

the maximum velocity, it is reduced to the value of the maximum velocity. The functions

getMoveEnergy and getTurnEnergy calculate the energy consumption for the new velocity

as described in Section 3.2. Subsequent, the battery value and live status of the particle are

updated. The function boundaryHandling calculates the new position according to Re�ected

Bound Handling (Section 2.5). At the end, the global best found solution is updated for PSO.

Algorithm 3: Move

Result: Calculates new position and energy usage for each particle and updates global best.

1 for i < swarmSize do
2 p = swarm.particle(i);

3 if p.isAlive then
4

−−−→
PSO ← getPso(p);

5
−→
VF ← getVectorField(p.position);

6
−−→
CV ← getCorrection(p, swarm,

−→
VF ,

−−−→
PSO);

7 oldVelocity = p.velocity;

8 newVelocity =

−−−→
PSO +

−−→
CV +

−→
VF ;

9 if newVelocity > vMax then
10 newVelocity = vMax;

11 end
12 p.velocity = newVelocity;

13 eMove ← getMoveEnergy(

−→
VF , newVelocity );

14 eTurn← getTurnEnergy( oldVelocity, newVelocity );

15 eTotal = eMove + eTurn;

16 p.battery = p.battery - eTotal ;
17 if p.battery <= 0 then
18 p.isAlive = false;

19 end
20 p.position← boundaryHandling( p.position, newVelocity );

21 p.value← getFunctionValue( p.position );

22 if p.value <= swarm.best then
23 swarm.best← updateBest (p.value, p.position);

24 end
25 swarm.particle(i) = p;

26 end
27 end
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4.4. NW-PSO

The following algorithm 4 at the end of the section describes the calculation of the correction

vector for the NW-PSO particles. At �rst, the distance from the particle position towards

the global optimum is determined. If it is smaller than the maximum velocity, the correction

vector is set to the vector of the vector �eld. As a result, the particle can converge to the

global optimum. In the second case, the particle is too far away from the global optimum

and needs to navigate to reach it. Therefore, the best target point inside a search radius is

de�ned as explained in Section 3.3.4. At the beginning, the search radius is generated by the

normalization of the vector of the vector �eld. Afterwards, the target points are estimated

with the help of a rotation vector. The function decisionMakingNWPSO generates the best

target point. Its functionality is explained in Algorithm 5 given in this section. Finally, the

correction vector is calculated by the selected target point.

Algorithm 4: Get Correction Vector NW-PSO

Result: Calculates correction vector for NW-PSO algorithm

Output: Correction vector for NW-PSO

1 distanceToGlobalBest← normalize( localPosition - globalBestPosition );

2 if distanceToGlobalBest < VMax then
3

−−→
CV = −−→VF ;

4 end
5 else
6 radius← normalize(

−→
VF );

7 if radius > maxVelocity then
8 radius = maxVelocity;

9 end

10 rotationVector = radius * (

−→
VF / normalize(

−→
VF ) );

11 targetPoints← getTargetPoints( rotationVector );

12 targetPointVectors←getTargetVectors( targetPoints, localPosition );

13 bestTargetPoint← decisionMakingNWPSO( targetPoints );

14
−−→
CV = bestTargetPoint - localPosition;

15 end

The decision making process is performed by Algorithm 5. Therefore, WSM from Section 2.4 is

implemented. First, the parameters of the target points as described in Section 3.3.4 are given

as input variables f1, f2, and f3. The array f1 includes the �rst parameter values for each target

point, f2 includes the second parameter values and f3 the third parameter values. Depending

on the number of known wind the decision process contains two or three variables. At the

beginning, each array is normalized by using the min-max method. Subsequent, a Pareto

Front (Section 2.3) is generated by estimating the non-dominated set. Afterwards, a value

is generated for each target point of this set. This is made by application of the prede�ned

weights from Table A.1. At the end, the target point with the best value is chosen.
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4. Implementation

Algorithm 5: Decision Making NW-PSO

Result: Selects best target point in pareto front

Output: index of best target point

1 if number of known wind >= minimum number of known wind then
2 f1Utop, f1Nadir← getMinimumAndMaximum( f1 ); f2Utop, f2Nadir←

getMinimumAndMaximum( f2 ); f3Utop, f3Nadir← getMinimumAndMaximum( f3 );

3 for i < size do
4 f1( i ) = ( f1( i ) - f1Utop ) / ( f1Nadir - f1Utop );

5 f2( i ) = ( f2( i ) - f2Utop ) / ( f2Nadir - f2Utop );

6 f3( i ) = ( f3( i ) - f3Utop ) / ( f3Nadir - f3Utop );

7 end
8 bestValue = inf;

9 bestIndex = 0; for i < size do
10 isDominated = false;

11 for j< size do
12 if j!=i AND f1(j) < f1(i) AND f2(j) < f2(i) AND f3(j) < f3(i) then
13 isDominated = true;

14 end
15 end
16 if !isDominated then
17 value = wf1 * f1(i) + wf2 * f2(i) + wf3 * f3(i);

18 if value < bestValue then
19 bestValue = value;

20 bestIndex = i;

21 end
22 end
23 end
24 else
25 f1Utop, f1Nadir← getMinimumAndMaximum( f1 ); f2Utop, f2Nadir←

getMinimumAndMaximum( f2 );

26 for i < size do
27 f1( i ) = ( f1( i ) - f1Utop ) / ( f1Nadir - f1Utop );

28 f2( i ) = ( f2( i ) - f2Utop ) / ( f2Nadir - f2Utop );

29 end
30 bestValue = inf;

31 bestIndex = 0; for i < size do
32 isDominated = false;

33 for j< size do
34 if j!=i AND f1(j) < f1(i) AND f2(j) < f2(i) then
35 isDominated = true;

36 end
37 end
38 if !isDominated then
39 value = wf1 * f1(i) + wf2 * f2(i);

40 if value < bestValue then
41 bestValue = value;

42 bestIndex = i;

43 end
44 end
45 end
46 end
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5. Evaluation

The proposed model (Section 3.3) includes three di�erent approaches for the search behaviour

of swarms in an unknown environment under uncertain dynamic in�uences. Their applica-

bility is evaluated in consideration of the success rate, convergence and energy consumption

during the search process. Therefore, the goal is to determine which one of the approaches

is suitable for the selected environment. First, the experimental setup will be introduced in

Section 5.1. Subsequent, in Section 5.2 the results of the experiments will be analyzed. At the

end, a summary of the results for each approach is provided.

5.1. Experiments

This section deals with the experimental environment which o�ers the framework for the

simulations. At the beginning, all particles are randomly placed in the two-dimensional search

space. The applied parameters are given in Table 5.1.

Table 5.1.: Parameter Setting

Description Parameter Value

Search Area

Search space d 2

Grid width X [−15, 15]
Grid length Y [−15, 15]
Optimum p 0 ± 0.01
Optimum position

−→
opt [−10, 10]

PSO Parameters

Population size N 30

Inertia weight w 0.6

Acceleration coe�cients C1,C2 1.0

Iterations I 100

Swarm Parameters

Maximum velocity vMax 2

Number of Explorers M 20

Initial battery batteryinit 100

Angle range aRanдe 90

Precision prec 2
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All approaches are tested on three di�erent objective functions for 100 simulations, each con-

sisting of 100 iterations. At the beginning of each simulation the particles are rearranged

randomly in the search space and have no information the position of the optimum. The

global optimum of each function is zero. The optimal position is set to [−10, 10] for better

analysis. The �rst function is Sphere which is the simplest of all due to the fact that there are

no local minima except the global optimum. The Sphere function is de�ned as:

f (x) =
|X |∑
i=1

(xi)2, x ∈ X (5.1)

The second function is Rosenbrock, which possesses a narrow, parabolic valley in which the

optimum needs to be found. The equation is as follows:

f (x) =
|X |−1∑
i=1

[100(xi+1 − x2i )2 + (xi − 1)2], x ∈ X (5.2)

The last function is Ackley, which provides a lot of local minima which might be misleading

the swarms. The equation is described in the following:

f (x) = −20 exp
©«−0.2

√√√
1

|X |

d∑
i=1

x2i − exp
(
1

d

d∑
i=1

cos(1
2

πxi)
)ª®®¬ + a + e, x ∈ X (5.3)

Since the experiment provides results in dynamic environments, each of the objective func-

tions is tested in nine di�erent vector �elds (Appendix B.1). The corresponding functions are

described in Table 5.2.

Table 5.2.: Vector Field Functions

Description Title Function

"Cross" VF1

−→
VF 1(x1,x2) = (x2,x1)

"Rotation" VF2

−→
VF 2(x1,x2) = (−x2,x1)

"Sheared" VF3

−→
VF 3(x1,x2) = (x1 + x2,x2)

"Wave" VF4

−→
VF 4(x1,x2) = (− sin(x2)) , cos(x1 · x2 − x21)

"Tornado" VF5

−→
VF 5(x1,x2) = (−x1 − x2,x1)

"Bi-Directional" VF6

−→
VF 6(x1,x2) = (−0.7 · x2, 0)

"Random" VF7

−→
VF 7(x1,x2) = (rand[−1, 1], rand[−1, 1])

"Multi-Rotation" VF8

−→
VF 8(x1,x2) =

(
sin

(
4

30

)
· 2πx2, sin

(
4

30

)
· 2πx1

)
"Vortex" VF9

−→
VF 9(x1,x2) =

(
cos

(
4

30

)
· (x1 + 2x2), sin

(
4

30

)
(x1 − 2x2)

)
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5.2. Results

This section is about the analysis of the experimental results. For this purpose, the conver-

gence of each swarm is analyzed. Afterwards, the energy consumption is examined. Addi-

tionally, the success rates are regarded in order to determine the chances of success for each

swarm. In the end, the results of the analysis are summarized in Section 5.3.

5.2.1. Convergence Analysis

This section deals with the convergence analysis for the three optimization swarms men-

tioned in Chapter 3. For this purpose, the convergence plots are proposed. They illustrate

the convergence rate for each optimization swarm. The convergence rate displays the value

of the average best found solution of the swarm at each iteration. Additionally, the aware-

ness rate for NW-PSO and CW-PSO is shown. The awareness rate for NW-PSO illustrates

how many particles percentile inside one iteration used the Information Map and calculated a

three-dimensional Pareto Front. The awareness rate for CW-PSO displays how many particles

calculated a correction vector during each iteration and thereby used the Information Map.

Besides, the alive plots are analyzed in order to �nd correlations between the convergence rate

and the alive rate. As C-PSO calculates a correction vector which negates the in�uence of the

vector �eld, the convergence results for C-PSO are the same for each vector �eld. Thus, they

are not analyzed separately in each vector �eld. In Sphere function, C-PSO reaches the opti-

mum at iteration eight and fast converges (Figure B.11). In Rosenbrock and Ackley function,

the swarm reaches similar results. However, the optimum in Ackley function is �rst found at

iteration 15 (Figure B.29).

Vector Field Cross

The �rst vector �eld Cross (B.1) leads the Explorers to move towards the bottom left-hand

corner and top right-hand corner. Therefore, the exploration of the search space in the top

left-hand corner and bottom right-hand corner is sparely. However, the information about

the top left-hand area is important for the swarms because the optimum is arranged in this

sector. CW-PSO is not able to �nd the optimum in most of the simulations in Sphere function

(Figure B.11). The awareness rate rises linearly until the 15th iteration were it drops until the

end of the simulation because parallel the particles are dying (Figure B.39). The particles do

not have enough information about the vector �eld to reach the optimum. Consequently, they

use a lot of energy because they constantly move in the opposite direction of the vectors of

the �eld. The awareness rates for Rosenbrock and Ackley are slightly better with at maximum

50 percent (Figure B.48 and Figure B.57). But the particles still run out of energy easily. Due

to the vector �eld and the insu�cient exploration, CW-PSO is not able to converge in most

cases for all functions.
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The convergence rate for NW-PSO in Sphere function shows that it is not able to converge in

most cases (Figure B.11). Nevertheless, the swarm uses less energy because nearly no particle

dies during the simulation as shown in Figure B.39. The awareness rate of NW-PSO rises

slower than for CW-PSO and reaches its maximum at iteration 8 with a value of 15 percent.

This is due to the fact that most of the particles are fast blown to the borders. Consequently,

they can only use the data from the Information Map in the �rst 20 iterations. However, they

are not able to reach the optimum once they are blown to the corners because the vector �elds

in�uence is too strong. The convergence rate shows how di�cult it is to �nd the optimum.

Only those particles who start in the left-hand corner can even search for the optimum because

the other particles do not reach this area due to the vector �eld. The Rosenbrock and Ackley

function show similar results as the swarm cannot even �nd the optimum in the simplest

�tness landscape (Figure B.20 and Figure B.29).

Vector Field Rotation

The second vector �eld Rotation (Figure B.2) causes a rotation around the centre of the search

space. In this case, the Explorers are blown in a rotary movement around this centre being

slightly drifted to the borders of the space. As a result, the exploration increases linearly.

Since the Explorers collect more information at each iteration, the CW-PSO swarm can also

trigger more information. Thus, the awareness rate increases, until the 45th iteration where

it rapidly drops (Figure B.12). At this point, the CW-PSO particles run out of energy and start

dying (Figure B.40). Thereby, the awareness rate starts shrinking because less particles use the

data from the Information Map. The convergence rate shows an exponential decrease until

the 40th iteration where it reaches the optimum. At this iteration the particles strongly try to

converge at the optimum. However, the exploration is insu�cient and the particles spend a

lot of energy because they move in the opposite direction of the vector �eld. Consequently,

the particles start dying as shown in Figure B.40. The alive rate in Ackley function is identical

to the rate in Sphere function but the convergence rate shows that the swarm needs more

time to �nd the optimum (Figure B.30). This is due to the fact that Ackley function provides

multiple local minima which are misleading the swarm at �rst. In Rosenbrock function the

swarm also needed more time to converge (Figure B.21). Furthermore, the alive rate illustrates

that the particles run out of energy faster than in Sphere function (Figure B.49).

The NW-PSO convergence rate for Sphere function shows a fast decrease at the beginning

and stagnates at the optimum at iteration 12 (Figure B.12). This early convergence is due

to the fact that the NW-PSO approach is suitable in the vector �eld because the particles are

blown towards the optimum independent of their start position. As shown in Table A.2 a high

amount of particles is able to converge at the optimum. This is due to the good exploration.

The awareness rises linearly until the 60th iteration and reaches at maximum 94 percent.

Afterwards, the rate decrease because the particles start dying (Figure B.40). The particles
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run out of energy because they have to compensate the vector �eld in order to stay at the

position of the optimum. The results for Rosenbrock (Figure B.21) and Ackley function (Figure

B.30) are similar but the swarm needs more time to �nd the optimum. In Rosenbrock function

the particles start dying earlier because they still search for the global optimum when they

concentrate at the best found solution (Figure B.49).

Vector Field Sheared

The third vector �eld Sheared (Figure B.3) is a �ow from the centre of the search space towards

the corners. As a result, the Explorers are quickly drifted towards the borders and corners and

stop exploring. This leads to worse awareness rates than in the previous vector �eld (Figure

B.13). Nevertheless, the awareness rate for CW-PSO rises until the 30th iteration where it sta-

bilizes until the 45th iteration. Thenceforward, the rate falls parallel to the alive rate (Figure

B.41). At the end, less than 20 percent of the population is still alive. This behaviour is owed

to the bad exploration. As a result, the particles cannot reach the optimum. However, they are

continuously trying and spent a lot of energy on their movements. The convergence rates for

the CW-PSO swarm show a fast drop for all objective functions. However, the average rate

stagnates and does not reach the optimum (Figure B.13). Because of the bad exploration, the

CW-PSO particles have less occasions to use the data from the Information Map and correct

their movements according to the vector �eld. As a result, they struggle to reach the optimum

because their movement is massively distributed by the vector �eld. The results for Rosen-

brock function and Ackley function are even worse as the swarm is not even able to reach the

optimum in Sphere function (Figure B.22 and Figure B.31).

Although, the awareness rate reaches less than 10 percent at its maximum, the NW-PSO con-

vergence rate in Sphere function shows a fast stabilization at the optimum at iteration 15

(Figure B.13). Compared to the CW-PSO swarm, the NW-PSO swarm reaches the optimum

because it even navigates if there is not enough information about the vector �eld. The parti-

cles which start in the middle or left-hand corner are able to reach the optimum because they

are blown towards it. Additionally, they correct their movements in order to not be disturbed

by the vector �eld. NW-PSO is also able to �nd the optimum in most of the cases in Ackley

function. Nevertheless, the average convergence rate shows that the particles do not reach

the optimum which illustrates the varying search results depending on the particles start po-

sition (Figure B.31). Moreover, NW-PSO is in most of the simulations in Rosenbrock function

unsuccessful (Figure B.22). This is due to the fact, only a small number of particles converges

at the optimum as shown in Table A.2. This complicates the search process especially for

Rosenbrock function.
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Vector Field Wave

The forth vector �eld Wave (Figure B.4) lets the Explorer particles slowly �y to the bottom

of the search space. As a result, there is a lot of exploration because the particles which start

at the top are blown through almost the whole search space vertically. The alive rates in the

forth vector �eld display that in each swarm and each function no particle runs out of energy

and dies (Figure B.42). In Sphere function, CW-PSO reaches the optimal solution as fast as

C-PSO (Figure B.14). The awareness rate rises at the beginning until the 20th iteration where

it stabilizes at 40 percent. The in�uence of this vector �eld is not as strong as other vector

�elds which is shown by the alive rate. Although, only 40 percent of the swarm use data from

the Information Map it is able to reach the optimal solution as fast as C-PSO. Nevertheless,

the exploration is not high enough for the swarm to concentrate at the optimum and stop

moving. Instead it is constantly moving in the area of the optimum. In Ackley function, the

swarm also �nds the optimum in most of the simulations (Figure B.32). The particles are not

mislead by local optima and do not search for better solutions because they are not able to

concentrate at a speci�c position and therefore continue investigating the �tness landscape.

The convergence rate for Rosenbrock function increases similar to Sphere function and the

optimum is found in most of the simulations (Figure B.23).

The convergence rate for NW-PSO in Sphere function drops slower than the rate for CW-PSO

and C-PSO. The optimum is found in the 35th iteration (Figure B.14). This is due to the �ow of

the vector �eld. Some particles move horizontally in the same direction as the �ow but slowly.

Therefore, they need more time to reach the area of the optimum and to improve the search

results. As the �ow of the vector �eld is going from the top towards the bottom, nearly no

particle is blown towards the optimal area. Only those who start in the top area of the vector

�eld are able to reach the optimum. The others are blown to the bottom or the borders. The

awareness rate is increasing fast at the beginning because the swarm tries to follow the �ow of

the vector �eld. Therefore, they are driven to the same places as the Explorer. The awareness

rate rises until 45 percent of the swarm uses the data from the Information Map but decreases

at iteration 50. This is due to the fact, that a lot of particles now reached the borders and quit

the search process. Given, that the number of particles starting in the upper area is low, the

search for the optimal solution is di�cult especially for Rosenbrock and Ackley function. As

a consequence, the average convergence rate shows that the swarm is in most cases not able

to �nd the optimum in those functions (Figure B.23 and Figure B.32).

Vector Field Tornado

The �fth vector �eld Tornado (Figure B.5) causes a strong rotational �ow from the corners and

borders towards the centre of the search space. Thus, the Explorers are blown proportionally

fast towards the middle where they start concentrating after some iterations. As the vector

�eld is intense, the exploration is di�cult because the particles are blown towards the center
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of the space. Nevertheless, the awareness rate for CW-PSO in Sphere function rises until the

20th iteration to 65 percent and falls at the 50th iteration parallel to the alive rate (Figure B.43).

The awareness rate drops because the particles are dying. At the end, almost no particle of the

start population is still alive. The convergence rate for CW-PSO shows a fast decline in the

beginning and reaches the optimum at the 30th iteration (Figure B.15). Nevertheless, the par-

ticle start dying because in most simulations the exploration is insu�cient and the swarm is

not able to concentrate at the optimum. Consequently, it is continuously moving and spends

more energy and dies earlier than C-PSO. In Rosenbrock function, the swarm did not �nd the

optimum in most of the simulations (Figure B.24). A reason for that is that the particles ran out

of energy even faster than in Sphere function (Figure B.52). Only 11 percent of the population

is left in the end. However, it is di�cult to �nd the optimum with a small number of parti-

cles. Additionally, the particles have a higher chance of success in Rosenbrock function if the

particles converge to one point. The results in Ackley function are similar to those in Sphere

function (Figure B.61). However, the average convergence rate shows that the swarm did not

�nd the optimum (Figure B.33). This happens for the same reason as in Rosenbrock function.

The convergence rate for NW-PSO in Sphere function is similar to the convergence rate of

C-PSO (Figure B.15). The optimum is found in the 10th iteration. Additionally, only 21 per-

cent of the particles die in this vector �eld as shown in Figure B.43. The awareness rate is

linearly increasing until the 40th iteration where it stabilizes at 80 percent. At this iteration

it slightly falls because the particles are dying. The rate is high because a lot of particles are

blown towards the center like the Explorer particle. As a consequence, the center is explored

and the particles use the collected data from the Information Map. The convergence rate in

Rosenbrock function shows that NW-PSO is not able to �nd the optimum in most of the cases

(Figure B.24). As already mentioned, only a small number of particles converges at the best

found solution and the others are blown towards the center. As a result, it is di�cult to �nd

better solutions if the number of searching particles is small. Furthermore, in Ackley function,

the average convergence rate also shows that the optimum is not found (Figure B.33).

Vector Field Bi-Directional

The sixth vector �eld Bi-Directional (Figure B.6) is a bi-directional �ow. In the upper half, the

particles are blown towards the left border and in the lower half towards the right border. The

Explorer particles move in a parallel line to the horizon towards one of the borders depending

on their start position. Thus, only the line segments of the particles start position towards the

border are explored and stored in the Information Map. In contrast to C-PSO, the alive rate for

CW-PSO in Sphere function begins declining at the 60th iteration and reaches 85 percent at

the end of the simulations (Figure B.44). The convergence rate is similar to C-PSO as shown

in Figure B.16. The awareness rate is linearly increasing until the 30th iteration where it

stagnates until the 60th iteration at which the particles start dying. The rate rests at 60 percent
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at the end. The CW-PSO particles are able to converge at one position because of the high

awareness rate. As a consequence, the search results are better than in the previous vector

�eld. The alive rate in Rosenbrock function falls until 75 percent of the population remains

which are 10 percent more than in Sphere function (Figure B.53 and Figure B.44). As already

explained, the particles need more energy to converge at the optimum because they longer

move and try to �nd better solutions. The alive rate and awareness rate in Ackley function

are the same as in Sphere function (Figure B.62 and Figure B.44). Nevertheless, the swarm

is in most cases not able to �nd the optimum (Figure B.34). This is due to the local minima.

If the swarm has not enough information about the vector �eld it cannot concentrate at the

optimums position and slowly improve its search results as it is needed in Ackley function.

Therefore, the search results are highly varying and the average value is not at the optimum.

The NW-PSO swarm moves energy e�cient in Sphere function which causes that none of

the particles dies (Figure B.44). The awareness rate rises until the 30th iteration where it

reaches its maximum of 23 percent. The convergence rate is identical to CW-PSO (Figure

B.16). Approximately, 28 percent of the particles reach the optimum as the other ones are

blown towards the borders (Table A.2). Those who are blown to the borders do not use the

data from the Information Map because the particles are stuck at the border. NW-PSO can

easily converge because it is blown towards the optimal solution by the vector �eld. Thus,

the energy usage is also low as shown in the alive rate. Nevertheless, Rosenbrock function is

slightly more challenging as �ve percent of the population dies and the energy consumption is

higher (Figure B.53). Although, the vector �eld is pro�table for the swarm, they did not reach

the optimal solution in Rosenbrock function (Figure B.25). A reason for that might be, that all

particles are blown from the right border towards the optimum and converge at the �rst best

found solution. Consequently, they are not able to visit more places which are positioned

on the left side of the best found solution. Moreover, the small number of particles which

converges makes it di�cult to search for better solutions. In Ackley function, the results are

similar to these in Sphere function (Figure B.34 and Figure B.16). However, the swarm needs

more time to �nd the optimal solution at iteration 20.

Vector Field Random

The seventh vector �eld Random (Figure B.7) consists of randomly positioned vectors with

varying magnitudes. Thereby, the Explorers are blown in random directions. Most of them

are stuck at their position and cannot further explore the search space. This circumstance

e�ects the awareness rates of the other swarms as less data is collected about the vector �eld.

The alive rate in Sphere function shows that each swarm still has an alive rate of 100 percent

at the end of the simulation in all �tness landscapes (Figure B.45). It indicates that the energy

usage is relatively low if no particle dies. The convergence rate of CW-PSO in Sphere function

is identical to the convergence rate of C-PSO (Figure B.17). Although, the awareness rate is
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relatively low, as it reaches its maximum of 28 percent at the 15th iteration, the swarm can

easily �nd the optimum. This is due to the fact, that the vector �eld provides random vectors.

Consequently, there does not arise a continuous �ow which leads the particles in a speci�c

direction. As a result, the particles are less disturbed by the vector �eld even if the awareness

is low. This is underlined by the results in Rosenbrock function and Ackley function (Figure

B.26 and Figure B.35). Although, the �tness landscape is more challenging to investigate, the

swarm �nds the optimum as fast as C-PSO.

In contrast to the other swarms, NW-PSO needs a lot more time to �nd the optimal solution

at iteration 10 (Figure B.17). Although, the awareness rate rises directly at the beginning to

50 percent the swarm has more di�culties to �nd the optimum. A reason is that the swarm

always tries to move in the same direction as the vector �eld in order to reduce the energy

consumption. Though, the Random vector �eld does not provide a directed �ow. Instead the

particles are mislead by the random vectors of the vector �eld. Consequently, they need more

time to concentrate at one position and �nd the optimum. This provides especially in Rosen-

brock function and Ackley function a higher impact. The convergence rate in Rosenbrock

function shows that it is di�cult for the swarm to converge as it does not �nd the optimum in

most cases (Figure B.26). In Ackley function, the swarm is able to �nd the optimum in most

cases but the convergence rate shows that the search results are highly varying as the average

results is not the optimum (Figure B.35).

Vector Field Multi-Rotation

The eighth vector �eld Multi-Rotation (Figure B.8) is a multi-rotational �ow, by which the

Explorers are drifted towards the borders. In comparison to the other vector �elds, this one

provides a lot of rotations and a continuous �ow which makes it possible that the Explorer

visit more positions and collect more information but also get stuck easily. Likewise the previ-

ous vector �eld, none particle of the swarms dies in any �tness landscape because the vector

�eld is not as strong as others. In Sphere function, the awareness rate of CW-PSO is con-

stantly rising at the beginning until the 30th iteration where it stagnates at 60 percent (Figure

B.18). Moreover, the swarm �nds the optimal solution as fast as C-PSO. This is due to the

fact that the vector �eld does not have an high impact on the particles movement due to

the good exploration of the vector �eld. As there are a lot of local tornado, the Explorer are

drifted towards their center and can explore them. Consequently, the CW-PSO particles are

not drifted towards these center because they can correct their movement using the data from

the Information Map. However, �nding the optimum in Rosenbrock function is slightly more

challenging because the particles have to slowly converge to better solutions once they have

concentrated at one position (Figure B.27). As the awareness rate shows, not all places are

investigated by the Explorers. If the vector at the optimums position is not known, the swarm

has di�culties to move to this position which worsens the search results. In Ackley function
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the swarm has even more di�culties than in Rosenbrock function as it needs more time to

�nd the optimal solution (Figure B.36).

In Sphere function, the awareness rate for NW-PSO rises rapidly at the beginning until the

10th iteration where it stagnates and starts growing at the 70th iteration (Figure B.18). The

awareness rate �rst rises because the particles start at the same positions as the explorers

and therefore move across the same points which the Explorer visited and stored informa-

tion about in the Information Map. Afterwards, the awareness rate �rst stagnates and subse-

quently rises again because the particles converge try to reach the optimal solution and there-

fore use the data from the Information Map. In contrast to CW-PSO, the NW-PSO swarm tries

to follow the �ow of the vector �eld like the Explorer. Therefore, more particles move to the

same places as the Explorers. As a consequence, a lot of particles are stuck in local tornado

because the �ow drifted them towards this position. The NW-PSO swarm needs more time to

converge compared to the other swarms because the particles need more time to concentrate

at one position. As the particles try to reduce the energy, they do not use the shortest path

to reach the best found solution but move in the same direction as the �ow. In Rosenbrock

function, the swarm is not able to �nd the optimum in most of the cases which is due to the

amount of particles at the position of the best found solution (Figure B.27). When all CW-PSO

particles converged at the optimum, only 26 percent of the NW-PSO population concentrated

at the best found solution (Table A.2). The other particles where blown towards the center

of the tornado and are not able to reach the optimum. However, especially for Rosenbrock

function the number of searching particles is highly a�ecting the search results. In Ackley

function, the swarm also had more di�culties than in Sphere function which is shown by the

average convergence rate (Figure B.36).

Vector Field Vortex

In the ninth vector �eld Vortex (Figure B.9), the Explorer particles are either blown to the

borders or stuck in the middle of local tornadoes inside the vector �eld. As a result, the

exploration of the vector �eld is insu�cient. The alive rates in this vector �eld provide the

same results as in the previous vector �elds (Figure B.47). The convergence rate shows a

drastic decline at the beginning until the optimum is found in the 40th iteration (Figure B.19).

Though, the awareness rate only reaches 28 percent at the 15th iteration where it remains

until the end of the simulation. Due to the bad exploration in the area of the optimum, the

swarm is not able to converge at a speci�c position. Therefore, it needs more time to �nd the

optimum compared to C-PSO. In Rosenbrock function it cannot �nd the optimum in most of

the simulations due to the distraction by the vector �eld (Figure B.28). The results in Ackley

function are more likewise the results in Sphere function (Figure B.37).

The awareness rate for NW-PSO in Sphere function is rising to 50 percent until the 40th

iteration and stabilizes until the end of the simulation (Figure B.19). This is due to the fact,
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that most of the particles get stuck in local tornado likewise the Explorers. As a consequence,

they use the information collected by the Explorers as their positions are fully explored. The

NW-PSO average convergence rate shows for each �tness landscape that the swarm in most

simulations is not able to �nd the optimum. This is reasoned by the number of particles which

are even searching for the optimal solution as most of the particles are blown away. These are

for example the particles in the left-hand corner and sometime particles of the top right-hand

corner. As they are only a few particles which start in this area, the search process becomes

complicated. Even in Sphere function there are not enough searching particles to �nd the

optimal solution. Consequently, the results for Rosenbrock function are even worse as shown

in Figure B.28. Though, the results for Ackley function also show that the swarm is not able

to �nd the optimum (Figure B.37). The results are highly depending on the start positions of

the particles. If the start position of many particles is bene�cial, the swarm is able to �nd the

optimal solution.

5.2.2. Energy Analysis

This section is about the energy analysis for the three optimization swarms. Therefore, the

energy plots are surveyed. The total swarm energy at each iteration is shown so that a con-

clusion about the energy consumption can be drawn. In addition, alive plots and convergence

plots from the previous section are considered in order to explain the energy development.

Vector Field Cross

In the �rst vector �eld Cross (Figure B.1), the energy rate for C-PSO in Sphere function shows

a fast decrease until the 15th iteration where it continues falling shallowed (Figure B.67). The

energy rate reaches the value zero at iteration 80. At the beginning, the energy rate decreases

faster because nearly all particles need to move in the contrary direction of the vector �eld

to get to the optimum as it is placed in the top left-hand corner. When the particles reach the

optimum, they need less energy because they only have to compensate the vector �eld and

do not move any more. Therefore, the energy falls less at the 15th iteration. At this time all

particles reach the optimum. In Rosenbrock function the energy rate presents similar results

(Figure B.76). Although, in contrast to Sphere function, the particles do not instantly �nd the

optimum. When they concentrate at the best found solution they still improve the results and

use energy to move to a better solution which was found. As a consequence, the energy usage

is higher from iteration 15 to iteration 80 than for Sphere function.

In Sphere function, CW-PSO generates a drastically falling energy rate which is zero at the

end of the simulation (Figure B.67). As a consequence, all particles are dead. In contrast to C-

PSO, CW-PSO has no information about the vector �eld except the data from the Information

Map. Nevertheless, the data is insu�cient because the particles are not able to reach the

optimum and concentrate at its position. Instead, they are searching for the optimal solution
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and continuously move in the contrary direction of the vector of the �eld. This causes high

energy usages as shown in Figure B.67.

The NW-PSO swarm spends essentially less energy in Sphere function (Figure B.67). The rest

energy almost stagnates and nearly no energy is used. This is due to the fact, that most of the

particles �y in the same direction as the vectors of the vector �eld. Nevertheless, they cannot

�nd the optimum in most cases because they are driven to the corners. Only those particles

which concentrated at the best found solution use energy for compensation of the vector �eld.

Their alive rate underlines the low energy usage because almost no particle dies (Figure B.39).

Whereas, the whole population of C-PSO and CW-PSO is dead at the end of the simulation.

Vector Field Rotation

In the second vector �eld Rotation (Figure B.2), the energy rate for C-PSO in Sphere function

displays a linear decrease until iteration 40 at which it �attens slightly (Figure B.68). In con-

trast to the previous vector �eld, the amount of energy at the beginning is not higher than

during the whole simulation. This is caused by the rotational �ow of the vector �eld. There-

fore, some particles use less energy to converge at the optimum if their position is bene�cial

according to the �ow. At iteration 40, the particles start dying and therefore the energy rate

�attens until all particles are dead at iteration 70. The particles run out of energy because

of the compensation of the vector �eld. The results in Ackley and Rosenbrock function are

nearly the same as in Sphere function with the di�erence that the particles are dying earlier

in Rosenbrock function (Figure B.77).

In Sphere function, the energy rate for CW-PSO displays a fall parallel to the C-PSO Swarm

(Figure B.68). Whereby, the rate for CW-PSO is slightly better than for C-PSO until iteration

30. Subsequently, the C-PSO swarm o�ers a better energy rate. Nevertheless, the energy is

zero at the end of all iterations because the particles concentrate at the best optimum and in-

vestigated energy in order to stay at their position. As a consequence, all particles die (Figure

B.40). The CW-PSO swarm �rst uses less energy because the optimum is not found. When

it is found at iteration 25 (Figure B.12), the whole swarm tries to converge at this position

and uses a lot of energy. In Rosenbrock function, the CW-PSO swarm again uses less energy

but at iteration 25 it uses exactly the same energy as C-PSO (Figure B.77). This is due to the

fact, that both swarms converge and afterwards slowly improve their search results by little

movements. The results in Ackley function are more alike the results for Sphere function,

although the swarm needs more time to �nd the optimum and therefore shows better results

than C-PSO until the 45th iteration (Figure B.86).

In contrast, the NW-PSO swarm uses less energy in Sphere function because the particles

move in the same direction as the vector �eld and therefore need less energy (Figure B.68).

Though, 92 percent of the population dies because nearly all particles converge at the opti-

mum and spend energy on staying at this position (Figure B.40). At the beginning, the energy
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rate is falling slowly until the 20th iteration. At this time, the optimum is found and parti-

cles start compensating the vector �eld. From iteration 60 until the end of the simulation,

the energy rate �attens due to the dying of the particles. But in the end, there is still energy

left compared to the other swarms. The results in Ackley function are the same as in Sphere

function (Figure B.86). The development of the energy rate in Rosenbrock function relates to

this energy rate (Figure B.77). The energy rate likewise declines faster when the particles con-

verge but less particles converge and therefore less particles need to compensate the vector

�eld and increase their energy usage.

Vector Field Sheared

In the third vector �eld Sheared (Figure B.3), the energy rate for C-PSO in Sphere function

shows a drastic linear decrease until the end of the simulation (Figure B.69). At the beginning,

the energy e�ort is minimal higher than in the rest of the simulation due to the intense vector

�eld which causes a �ow to the borders. The particles are concentrating at one position and

therefore also move in the contrary direction of the vector �eld and need more energy. When

the �rst particle reaches the optimum at iteration seven (Figure B.13), the energy is drop-

ping less because the particles only spend energy for compensation of the vector �eld and do

less movements. Admittedly, the swarm reaches worse results than CW-PSO. The results in

Rosenbrock and Ackley function are almost the same (Figure B.78).

In Sphere function, the energy rate for CW-PSO shows a fall which ends at 20 percent re-

maining energy. The particles are fast blown to the borders due to the �ow of the vector �eld.

The exploration of the vector �eld is bad as shown in the awareness rate (Figure B.41). As a

consequence, the swarm struggles to reach the optimum because it cannot make correction in

order to compensate the vector �eld. The particles are consistently blown back to the borders

if they move towards the best found solution. This means they use a lot of energy because they

move in the contrary direction of the vectors of the �eld. The energy rate �attens at iteration

40 because the particles start dying. The CW-PSO reaches the same results in Rosenbrock and

Ackley function (Figure B.78).

The NW-PSO energy rate in Sphere function is a lot better than the rates of the other ap-

proaches (Figure B.69). It shows a parallel development as the energy rate of C-PSO. However,

the fall is smaller because the amount of particles which converge at the optimum is smaller.

Consequently, the number of particles which need to investigate energy to stay at their po-

sition is also smaller. Less particles converge because most of the particles follow the �ow of

the vector �eld. As a consequence, only a few particles are even in the area of the optimum to

reach it. At the end, 75 percent of the start energy is left. This also applies to Ackley function

(Figure B.87). In Rosenbrock function, NW-PSO also uses more energy like C-PSO (Figure

B.78). The reason is that the swarm still moves if the particles concentrate at the best found

solution because it �nds better solutions. However, this shows a high energy usage because
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the particles need to compensate the vector �eld in their movements.

Vector Field Wave

In the fourth vector �eld Wave (Figure B.4), the energy rate for C-PSO is decreasing rapidly

at the beginning and �attens at the 10th iteration (Figure B.70). Due to the fast convergence,

the particles early stop moving and only invest energy on compensation. Nevertheless, at the

end 85 percent of the start energy is left. In relation to the other vector �eld, this vector �eld

is less strong which causes less energy usage as shown in Figure B.70. In Rosenbrock and

Ackley function, the energy rate decreases as in Sphere function (Figure B.79).

CW-PSO also early reaches the optimum in Sphere function (Figure B.14). Consequently, it

starts compensating at the 10th iteration. As shown in Figure B.70, the energy rate drops fast

until the 10th iteration. Afterwards, it �attens slightly and continues declining. Neverthe-

less, CW-PSO needs less energy than C-PSO because the particles start compensating earlier.

The energy rate for Ackley function is the same as in Sphere function (Figure B.88). Thus, in

Rosenbrock function, the swarm needs more energy towards the end of the simulation (Figure

B.79). Therefore, it reaches the same energy value as C-PSO.

The NW-PSO swarm has a better energy rate in Sphere function as it stays at 97 percent

left energy at the end (Figure B.70). The reason is that most particles are blown towards the

borders and only a little number reaches the optimum (Table A.2). Thus, only those who

concentrate at the optimum need to use energy in order to stay at this position and compen-

sate the vector �eld. At the beginning, the energy consumption is a little higher because the

particles �rst have to converge. Subsequently, they do not move any more. In Rosenbrock

function, the energy rate is slightly worse which is caused by the improvement of the search

result when the particles concentrate at the best found solution (Figure B.79).

Vector Field Tornado

In the �fth vector �eld Tornado (Figure B.5) the energy rate for the C-PSO swarm presents a

faster decrease until the 10th iteration where it �attens (Figure B.71). When the swarm �nds

the optimum in the 10th iteration, all particles try to converge and therefore used a lot of

energy. Afterwards, the energy usage is reduced because no more movement is needed. The

only energy is spend on the compensation of the vector �eld. At the end, no energy is left.

Whereas, the energy rate in Ackley function is the same as in Sphere function (Figure B.89),

the energy rate is faster declining in Rosenbrock function (Figure B.80). The reason is already

mentioned in the previous vector �elds. As the particles improve their search result by the

time and spend energy on little movements. As a result, all particles are already dead at iter-

ation 87 (Figure B.52).

The energy rate for CW-PSO in Sphere function shows a linear decrease until the 60th itera-

tion (Figure B.71). Subsequently, the rate continues falling slower because the particles start
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dying (Figure B.43). There energy usage remains almost the same during the simulation be-

cause the particles are constantly moving. Due to the bad exploration, they are not able to

converge at the optimum. As a consequence, the energy usage is higher than for the C-PSO

swarm which is able to converge. The energy rate in Rosenbrock function falls further than

in Sphere function (Figure B.80). Ackley function o�ers the same results as Sphere function

(Figure B.89).

The energy rate for NW-PSO slightly falls at the beginning and than �attens like C-PSO (Fig-

ure B.71). Only a few particles are even able to reach the optimum because of the location

of their start position. As most of the particles are blown towards the center, only a small

number needs to investigate energy to converge at the optimum. The energy rate in Ackley

function is slightly worse (Figure B.89). This is due to the fact that the particles �nd better

solutions when they converge and slowly improve their search result. Therefore, the energy

usage rises because often the movement is in the contrary direction of the vectors of the �eld.

In Rosenbrock function, the swarm uses the least energy (Figure B.80).

Vector Field Bi-Directional

In the sixth vector �eld Bi-Directional (Figure B.6), the energy rate for C-PSO in Sphere func-

tions presents a linear drop until the end of the simulation. As well as in the previous vector

�elds, the swarm �nds the optimum after the �rst ten iteration. Thus, all particles try to con-

verge and slightly increase the energy usage by their movement. When the particles reach the

optimum, they do not need any more movement and the energy usage is reduced. Whereas,

C-PSO saves more energy than CW-PSO in Sphere function, the swarm uses more energy than

CW-PSO in the other �tness landscapes. The results in Rosenbrock function show a higher

decrease because the particles need slightly more time to �nd the optimal solution and to con-

verge (Figure B.81). The swarm needs even more time to �nd the optimum in Ackley function

as shown in Figure B.34. Thus, the particle later stop moving and the energy consumption is

higher (Figure B.90).

The energy rate for CW-PSO falls parallel to the energy rate of C-PSO as both swarms con-

verge (Figure B.72). This vector �elds provides a bi-directional �ow by what the Explorers are

drifted straight to one side of the vector �eld. In most cases, the Explorer visit the position of

the global optimum. Therefore, the CW-PSO swarm is able to converge at its position. CW-

PSO provides almost the same results for each �tness landscape (Figure B.81).

Most of the NW-PSO particles are also drifted to the borders where they are not able to reach

the optimum anymore. But those who reach it use less energy than the other swarms as

shown in Figure B.72. This is due to the fact that the particle movement is determined by the

�ow of the vector �eld. Only those who have a bene�cial start position are blown towards

the optimum and therefore are able to converge. The other particles are blown to the borders.

Consequently, a small number of particles continues spending energy. The energy usage in
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Rosenbrock function is smaller than in Sphere function (Figure B.81) because the particles

stop moving earlier. In contrast to Sphere function, it is more challenging to �nd the opti-

mum in Rosenbrock function and the particles are easily mislead by local minima. In Ackley

function, the energy rate is higher than in Sphere function because the particles slowly im-

prove their search results compared to Rosenbrock function and therefore spend more energy

(Figure B.90).

Vector Field Random

In the seventh vector �eld Random (Figure B.7), the energy rate for C-PSO shows a rapid

decrease at the beginning until the 10th iteration (Figure B.73). Henceforward, the rate con-

tinues falling more slowly. At the beginning, the swarm uses a lot of energy to converge at

the best found solution and easily �nds the optimum at the seventh iteration (Figure B.17).

Afterwards, the energy consumption is reduced to the compensation of the vector �eld. At

the end of the simulation, the remaining energy is 86 percent of the start energy. In Rosen-

brock function, the swarm needs more time to converge and �nd the optimal solution. As a

result, the energy usage at the beginning is slightly higher (Figure B.82). However, in Ackley

function, the swarm �nds the optimal solution faster and uses a little less energy (Figure B.91).

The CW-PSO swarm is able to �nd the optimum even with a low awareness rate because the

vector �eld does not provide a directed �ow (Figure B.17). Thus, the CW-PSO particles are

less distributed and can early reach the optimum. As a consequence, the energy usage at the

beginning is higher and decreases at iteration 10 (Figure B.73). Due to the bad exploration,

the swarm is not able to converge to a speci�c point as the particles are shallowly distributed

by the vector �eld. Nevertheless, the energy usage is not signi�cantly higher than for C-PSO

because some particles move in the same direction as the vectors of the vector �eld and there-

fore reduce their energy consume. Additionally, the C-PSO particles all need to compensate

the vector �eld. However, in Rosenbrock function the di�erence between C-PSO and CW-PSO

becomes more apparent (Figure B.82). CW-PSO still has 87 percent of the energy left at the

end of the simulation which is three percent more than C-PSO. In Ackley function, the swarm

reaches the same results as in Sphere function (Figure B.91).

NW-PSO is able to drastically reduce the energy consumption in all �tness landscapes. In

Sphere function, the energy rate is linearly falling but in contrast to the other swarms, NW-

PSO does not use more energy at the beginning (Figure B.82). Even when the particles have

found the optimal solution, the energy usage remains the same. Most of the particles follow

the random �ow of the vector �eld. As a result, the energy usage is relatively low. Only

those particles which are in the area of the optimum correct their movements according to

the vector �eld and converge. The results for all functions are almost the same (Figure B.82).
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Vector Field Multi-Rotation

In the eight vector �eld Multi-Rotation (Figure B.8), the results for the energy rates of C-PSO

in Sphere function are related to the rates in vector �eld Tornado. Though, the rates show a

high energy consumption at the beginning until the 10th iteration due to the convergence at

the best found solution (Figure B.74). As the swarm converges fast in each �tness landscape,

the energy rates are the same for all (Figure B.83).

As well as in vector �eld Tornado, the CW-PSO swarm �rst o�ers a better energy rate than

C-PSO (Figure B.74). However, down iteration 55 the energy rate becomes marginal lower

than the C-PSO rate. The exploration of the vector �eld is as di�cult as in Tornado. Thus, the

swarm is often not able to converge which cause a higher energy usage than for C-PSO. The

results are the same in Rosenbrock and Ackley function because the swarm still is not able to

converge (Figure B.83 and Figure B.92).

Similar to the vector �eld Tornado, some particles of the NW-PSO swarm are not able to reach

the global optimum. As the vector �eld provides multiple local tornado, a lot of particles are

drifted towards them and get stuck. Only a few particles are able to converge at the best

found solution. As most of the particles do follow the �ow, the energy rate is signi�cantly

high and the swarm remains 98 percent of the start energy in Sphere function (Figure B.74).

The results for Rosenbrock and Ackley function are the same because the number of particles

which reach the optimum is also the same (Figure B.83).

Vector Field Vortex

In the ninth vector �eld Vortex (Figure B.9), the energy rate for C-PSO in Sphere function

also falls drastically at the beginning until the optimum is found at iteration 10 (Figure B.75).

Henceforward, the swarm uses energy for staying at its position and compensating the vector

�eld. The energy rates in Rosenbrock and Ackley function are the same (Figure B.84). Though,

the optimum in Ackley function is �rst found at iteration 15 (Figure B.37). The results for C-

PSO are similar but the swarm uses more energy during the simulation (Figure B.75).

Likewise the previous vector �elds, the exploration is insu�cient because the Explorers eas-

ily get stuck. As a consequence, the CW-PSO particles have di�culties to converge at the

optimum. Instead, they are constantly trying to move to its position but are disturbed by the

vector �eld. As the movement costs more energy than staying at the best solution, the energy

rate drops further than the one of C-PSO. But at the end, still 83 percent of the energy remains

in Sphere function. The energy rate in Ackley function is identical to the one in Sphere func-

tion (Figure B.93). However, in Rosenbrock function the energy rate decreases slightly more

(Figure B.84).

The energy rate for NW-PSO shows a linear decrease in all �tness landscapes (Figure B.75). At

the end, more than 98 percent of the energy remains because most of the particles are blown

to the border or got stuck in local tornado like the Explorers. Only a small number of particles
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reach the optimum and spend energy for compensation.

5.2.3. Success Rate Analysis

After the convergence and energy plots have been analyzed before, the following section sur-

veys the success rate for each swarm. Therefore, a plot is analyzed for each objective function

including the di�erent success rates for each swarm. The plot illustrates the percentage of

successful simulations. A simulation is appointed to be successful, if the swarm was able to

�nd the optimum. The equation is given below:

s(x) =

1 ,min ®xд(t) 6 p f or t = 1, ..., I

0 , else
(5.4)

f (x) = 1

M
·

M∑
i=0

s(x) (5.5)

Where s(x) indicates whether a simulation was successful or not. Therefore the global best

solution ®xд(t) at iteration t is compared to the optimum p. Whereby the optimum includes a

threshold as de�ned in Table 5.1. Subsequently, f (x) in Equation 5.5 determines the percent-

age of successful simulations where M denotes the number of simulations. First, the Sphere

function will be analyzed, following the Rosenbrock function and in the end the Ackley func-

tion.

Sphere Function

Sphere function provides the best success rates in comparison to the other objective functions

as shown in Figure 5.1. This is due to the fact that the function does not supply multiple min-

ima and lightens the swarms search process. The C-PSO swarm gains 99 percent of successful

simulations in each vector �eld. The reason is that the swarm does not allow any disturbance

by the vector �eld. As a consequence, the results are as good as for search spaces without

vector �elds. Nevertheless, this negligence shows a signi�cant drawback for the energy rates

as explained in Section 5.2.2.

The results for CW-PSO are the worst in vector �eld Cross. The swarm is only successful in

40 percent of the simulations because the swarm is depending on the information collected

by the Explorers. However, this vector �eld is due to the �ow very di�cult to discover. The

Explorer particles are quickly blown to the borders. Consequently, the CW-PSO particles

have di�culties to reach the optimum. The success is highly addicted to the Explorers start
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positions. NW-PSO o�ers a slightly better success rate in Cross than C-PSO because the par-

ticles can navigate even if the exploration is insu�cient. However, the swarm also struggles

to reach the optimum because only six percent of the particles reach the best found solution

due to the �ow of the vector �eld (Tab A.2). This means that only one or two particles of the

population search for the optimum. Those particles start in the left-hand top corner and are

able to reach the optimum by following the �ow of the vector �eld.

In the second vector �eld Rotation, the success rate is maximal for both swarms. The CW-PSO

swarm is able to reach the optimum because the �ow of the vector �eld is suitable for the Ex-

plorers. These are blown to almost each place in the vector �eld. As a result, the exploration

is high and the CW-PSO particles can use the collected information in order to get to the op-

timum. The NW-PSO swarm performs also good in this vector �eld because the particles are

just like the Explorers blown to nearly every position of the search space. As a consequence,

they are also blown to the optimum. Table A.2 shows, that nearly all particles converge at the

optimum because each particle independent of its start position is driven towards the opti-

mum by the �ow of the vector �eld.

In vector �eld Sheared (Figure B.3) the success rate for CW-PSO is low. This is due to the

di�cult exploration. The �ow of the vector �eld blows the Explorers particles quickly to the

borders of the search space. As a consequence, the CW-PSO particles have unsatisfactory

information about the vector �eld and are not able to correct their movement to get towards

the optimum. The swarm is only successful, if the Explorers randomly reach the place of the

optimum when they are blown to the borders. In contrast, the NW-PSO swarm gains a suc-

cess rate of 100 percent. The particles are also blown to the borders but they are able to do

corrections in their movement. As a result, they are able to navigate towards the optimum

when they drift to the borders.

The results in the fourth vector �eld Wave (Figure B.4) provide the maximum success for CW-

PSO. As this vector �eld causes a top to the bottom �ow of the Explorers, nearly the whole

search space is discovered. Thus, the CW-PSO particles can take advantage of the Information

Map and correct their movement to get towards the optimum. Additionally, the vector �eld is

less strong as the previous vector �elds and therefore the movements of the particle are less

disturbed. The results for NW-PSO are equally high. The reason is that those particles which

start in the top area of the �tness landscape are able to reach the optimum.

In the �fth vector �eld Tornado (Figure B.5) CW-PSO gains a success rate of 86 percent. The

swarm is successful because the Explorers are blown from the corners to the centre. In this

process they collect information about the vector �eld which can help the CW-PSO swarm to

reach the optimum. Even if the vector at the speci�c position of the global optimum is not

known, the CW-PSO swarm is able to move around the area of the optimum as the swarm can-

not converge. The results for NW-PSO are even better than for CW-PSO because the swarm

is able to navigate even if the Explorers did not came across the optimum. The particles are

likewise blown to the center but within this movement they navigate and are able to reach
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the optimum.

The results in the sixth vector �eld Bi-Directional (Figure B.6) are similar to the previous vec-

tor �eld. However, the results for CW-PSO are slightly better. This is due to the fact that the

Explorers more often come across the global optimum and therefore store necessary informa-

tion about the vector �eld. Consequently, the CW-PSO swarm can make corrections and is

more often able to concentrate at the position of global optimum. The NW-PSO swarm gains

a high success rate again. The approach is suitable for this vector �elds as the particles are

directly blown towards the optimum by following the �ow.

The plot illustrates maximal percentages in the seventh vector �eld Random (Figure B.7) for

all CW-PSO. The vector �eld does not disturb the particles movement of the CW-PSO swarm

because there is no continuous �ow in a speci�c direction. As a result, the particles randomly

move in the same direction as the vector �eld and are not mislead. The NW-PSO swarm also

gains little worse results than in vector �eld Tornado because the particles try to follow the

�ow in the vector �eld. However, this vector �eld does not provide such a directed �ow. Con-

sequently, the particles move more or less randomly. Only some particles which by accident

get nearer to the best found solution are able to converge.

The results in the eighth vector �eld Multi-Rotation (Figure B.8) are analogical success rates

to the previous vector �eld. The CW-PSO swarm is always able to reach the optimum because

its movement towards the optimum is not highly disturbed. The multi-rotational vector �eld

only provides local �ows which a�ects the CW-PSO swarm less and the vector �eld is less

strong than the others. However, the swarm has di�culties to land at the optimums position

because of the bad exploration. As a consequence, the particles can only move around the

optimum because they cannot calculate a concrete correction vector to land at the optimum.

The NW-PSO swarm again uses its navigation ability to be blown by the local �ows towards

the optimum.

The results in the ninth vector �eld Vortex (Figure B.9) are likewise the previous ones for

CW-PSO. This is due to the fact, that the in�uence of the vector �eld is not strong enough to

highly disturb the particles movement. Consequently, the swarm is able to �nd the optimum

although it cannot land at it due to the insu�cient exploration. The success rate for NW-PSO

is nearly 30 percent because, as well as in Cross, only six percent of the population reaches

the best found solution and improves the search results.
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Figure 5.1.: Success Rate Sphere Function

Rosenbrock Function

The success rates for Rosenbrock function are illustrated in Figure 5.2. It o�ers worse results

than Sphere function due to the deeply curved valley in which the global optimum is posi-

tioned. This complicates the search process. Although, the success rates for C-PSO are still

high, the results in some vector �elds are worse than in Sphere function. Thus, the results for

C-PSO underline the di�culties for the swarms to �nd the optimum as C-PSO not takes into

account the vector �eld.

The results in the �rst vector �eld Cross (Figure B.1) are bad for CW-PSO and NW-PSO. Both

success rates do not rise above 10 percent. A reason is the complicated search. The Explorers

are quickly drifted away and the discovery is inadequate. As a consequence, there is a huge

lack in the Information Map. Especially for objective functions with a plateau of optimal solu-

tions, the exploration needs to be satisfying. Otherwise, the CW-PSO is not able to converge

because it is disturbed by the vector �eld. As a consequence, it cannot move to its pursued

position and is easily moved to di�erent places. The results for NW-PSO are even worse than

for CW-PSO because in this case only a small number of particles is even able to reach the

optimum. These particles are the ones starting in the upper left-hand corner. As important

as the Information Map for CW-PSO is the number of particles starting at the appropriate

position. Particularly for functions with multiple minima, there need to be as many search

particles as possible. The more particles the higher is the chance that they not get stuck at a

good solution and are able to �nd the global optimum. In the case of NW-PSO there are not

enough particles which would be able to reach the optimum. Those particles which start at

a good position, quit their search too early because they do not �nd a better solution. As a

result, the success rate is very low.

The results in the second vector �eld Rotation (Figure B.2) are better. CW-PSO reaches a suc-
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cess rate of 76 percent. As already mentioned, this vector �eld provides a good discovery by

the Explorers. Consequently, the CW-PSO particles are able to use the information and con-

verge at the optimum. The NW-PSO swarm is more successful with 81 percent because they

can navigate towards the optimum even if there is not enough information collected by the

Explorer. Compared to Sphere function, �nding the optimum is more complicated because of

the curved valley in which the global optimum is placed. In some simulations, the particles

get stuck at the �rst best found solution and do not �nd the global optimum.

In the third vector �eld Sheared (Figure B.3) both swarms gain worse results. Whereby NW-

PSO gains slightly better results than CW-PSO. As already explained for Sphere function, the

CW-PSO swarm has di�culties to reach the optimum due to a bad exploration by the Explor-

ers. The results for Rosenbrock function are even worse than for Sphere function because

the particles are not able to reach better solutions inside the plateau. The NW-PSO swarm

as well has a low chance of success. Due to the vector �eld, the particles are easily blown to

the borders. Consequently, still a small number of particles reaches the best found solution.

Therefore, the search process is hindered.

In the fourth vector �eld Wave (Figure B.4) CW-PSO presents more satisfying results. The

success rate scores 64 percent. As already explained for Sphere function, the particles have a

high chance to reach the optimum because of the good exploration and the low in�uence of

the vector �eld. Considering that all particles converge at the best found solution, the swarm

is able to �nd the global optimum in most of the simulations. In contrast, the NW-PSO swarm

gains a success rate of 34 percent. The particles get stuck easily at a good solution but not at

the global optimum and �nish their search process too early. This is caused by the smaller

number of particles which concentrate at the best found solution compared to CW-PSO.

The results in the �fth vector �eld Tornado (Figure B.5) are almost the same results for both

approaches (Figure 5.2). However, the NW-PSO swarm obtains mildly better results. Never-

theless, both swarms do not �nd the optimal solution in most of the simulations. The �nding

of the minimum depends on the exploration of the search space. If the Explorer particles start

at bene�ting positions, the CW-PSO particles have a higher chance to converge and slowly

improve the search results with good correction vectors. The NW-PSO swarm can also navi-

gate without information of the Explorers but again only some particles converge at one point.

Most of the particles are driven to the center of the tornado like the Explorers. As a result, the

chance of success diminishes because less particles have a lower chance to slowly improve

the search results.

In the sixth vector �eld Bi-Directional (Figure B.6), CW-PSO reaches a better success rate with

a value of 80 percent. In contrast, NW-PSO only reaches 36 percent successful simulations.

The reason is, that a lot particles of the NW-PSO swarm are blown to the borders. As in the

previous vector �eld, this complicates the search and the swarm is less successful. CW-PSO

is more often successful because all particles are in the area of the global optimum. Often the

exploration is even suitable so that the particles are able to concentrate exactly at the opti-
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mums position and improve the search results.

In the seventh vector �eld Random (Figure B.7), the results show the same proportion between

CW-PSO and NW-PSO. CW-PSO has a high success rate although the particles are not able to

concentrate at the target position due to the bad exploration. However, CW-PSO is suitable

for this vector �eld because when the particles move around their current target there is a

high chance to �nd a better solution inside the plateau of good solutions. The particles for

NW-PSO are slightly less successful because of the smaller amount of particles in the area of

the optimum. As the particles try to move in the same direction as the vectors of the �eld,

they are often moving in random directions and only those particles which start in the nearer

distance to the global optimum are able to search for the best solution.

The results in the eighth vector �eld Multi-Rotation (Figure B.8) are similar results as in the

vector �eld Random. It shows a likewise convergence of the particles for CW-PSO. As well as

in the vector �eld Bi-Directional, the Explorers are able to store the vector at the position of

the global optimum. Consequently, the CW-PSO particles can move to exactly this position

and can better improve their search results than without this possibility. Nevertheless, the in-

�uence of the vector �eld is relatively low. As a result, the CW-PSO swarm is less distributed

by the vector �eld and able to get close to the optimum. NW-PSO reaches almost the same

success rate as in Bi-Directional because not more than 35 percent of the particles converges

at the optimum (Table A.2). Most of the particles are stuck at the center of local tornado or at

the borders.

In the ninth vector �eld Vortex (Figure B.9), both approaches o�er bad results as both of them

fail in most of the cases. However, the results for NW-PSO are signi�cantly bad. Already in

Sphere function the swarm had di�culties to �nd the optimum. Due to the �ow of the vector

�eld, only 13 percent of the particles are able to converge at the best found solution (Tab A.2).

Although the number of particles is higher than in Sphere function, the swarm still does not

�nd the global optimum because the �tness landscape is misleading the swarm. The CW-PSO

swarm reaches a higher success score which is due to the fact that the particles at least con-

centrate in one area. However, the exploration is in most cases too bad to converge exactly at

the optimums position. Nevertheless, the higher amount of particles moving around the area

of the optimum is able to �nd it.
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Figure 5.2.: Success Rates Rosenbrock Function

Ackley Function

The third objective function is Ackley function. In contrast to Rosenbrock function it con-

sists of a lot of local minima. The plots are illustrated in Figure 5.3. The results in the �rst

vector �eld Cross (Figure B.1) are similar as for Sphere function although the results are less

successful. NW-PSO has a higher chance to reach the optimum because it can navigate in any

case and therefore slowly improve its solution at each iteration. The CW-PSO swarm cannot

slowly improve its solution if the exploration is insu�cient like it is the case in this vector

�eld. As a consequence, CW-PSO gains worse results than NW-PSO.

In the second vector �eld Rotation (Figure B.2), both approaches present high success rates.

The good exploration by the Explorer a�ords a good search for CW-PSO and NW-PSO. How-

ever, NW-PSO reaches a higher success rate because the CW-PSO start dying and therefore

cannot �nd better solutions.

The results in vector �eld Sheared (Figure B.3) are high again for NW-PSO but drastically

dropped for CW-PSO. As already explained before, CW-PSO has nearly no chance to reach

the optimum because the data of the Information Map is unsatisfactory especially for objec-

tive functions with multiple optima. However, NW-PSO gains a high success rate because the

particles are able to navigate and can converge when they are blown in the direction of the

borders as they come across the global optimum.

In vector �eld Wave (Figure B.4), CW-PSO o�ers worse results than in Rosenbrock function.

The reason is the sometimes bad exploration because the particles are not able to converge

at one single position. Consequently, it is di�cult to �nd the optimum in Ackley function.

NW-PSO gains a lot better results because it is easier to converge for Ackley function and

therefore gets better results than for Rosenbrock function. Although the number of particles

which converge at the optimum is the same, the particles can more easily improve the search
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results for Ackley function.

In the vector �eld Tornado (Figure B.5), NW-PSO has a high chance of success whereas CW-

PSO is unsuccessful in most simulations. In contrast to the Rosenbrock function, this function

o�ers better possibilities for NW-PSO because the particles can slowly converge if they have

found a good solution. CW-PSO has more di�culties in this objective function because the

particles can hardly concentrate at one position. Nevertheless, Ackley function requires the

particles convergence at one point and a slowly improvement of the results by little move-

ments.

The results in the sixth vector �eld Bi-Directional (Figure B.6) are satisfying for both ap-

proaches. However, the results for NW-PSO are a lot better than for Rosenbrock function.

This is due to the fact that the particles are directly blown towards the optimum and are able

to converge at the global optimum by little movements. In contrast, in Rosenbrock function

the particles got more easily stuck at a good solution which was not the global optimum. The

results for CW-PSO are slightly worse in Ackley function because sometimes the exploration

is insu�cient. As a consequence, the particles are not able to converge.

The results in the seventh vector �eld Random (Figure B.7) are good for NW-PSO but CW-PSO

only reaches a success rate of 31 percent. By comparison, Rosenbrock function was more ben-

e�ting because of the layout of the �tness landscape. The particles are not able to concentrate

at one position and therefore cannot do little movements. However, these are necessary for

a good convergence for Ackley function. The NW-PSO is able to do so and therefore reaches

good results.

In the eighth vector �eld Multi-Rotation (Figure B.8), NW-PSO gains similar results as in vec-

tor �eld Random due to the same reason as already mentioned. Nevertheless, the results for

CW-PSO are better than before. This is caused by the Explorers as they can o�er informa-

tion so that the CW-PSO particles can converge at one position. In vector �eld Random the

explorers are moved randomly but in vector �eld Multi-Rotation there is a general �ow. As

a consequence, the chance that the Explorers cross the optimal position increases. Conse-

quently, the search results for CW-PSO improve as well.

In the ninth vector �eld Vortex (Figure B.9), the success rate for both swarms is bad. As already

explained in Sphere function, only a small number of the NW-PSO population searches for

the optimal solution. However, the search in this �tness landscape is even more challenging

than in Sphere function. Consequently, the results are also worse. Nevertheless, CW-PSO

gains minimal better results which is due the fact that the whole swarm moves around the

optimum because the vector �eld is not strong.
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Figure 5.3.: Success Rates Ackley Function

5.3. Summary

The following section summarizes the results of the analysis. First, the new NW-PSO ap-

proach was applied on Sphere function. Because of the functions simplicity, the correctness

of the proposed model in sense of optimisation could be approved. Nevertheless, NW-PSO

was developed for the solving of complex search problems. Thus, it was tested on Rosenbrock

function and Ackley function which provided di�erent challenging problems. The challenge

for the NW-PSO swarm was, that it is not mislead by minima in order to �nd the global opti-

mum. In regard to the convergence analysis, the swarm was able to converge in most of the

vector �elds for Sphere function. However, it did not converge in most of the simulations in

the vector �elds Cross and Vortex due to the �ow of each vector �eld. Both vector �elds have

in common, that the results for NW-PSO are highly depending on the particles start positions.

A well-directed choice of the start area would probably improve the convergence results. In

contrast, the convergence rate in the vector �elds Rotation, Sheared and Tornado stagnated

even faster at the optimum than the rate of CW-PSO. The search in the Rosenbrock function

and Ackley function is more challenging for NW-PSO which a�ects the results for the con-

vergence rates. Nevertheless, the rates reach the optimum in the vector �elds Rotation and

Bi-Directional. The vector �elds have in common that NW-PSO is suitable for them because

the environment emphasizes the search process. The particles are able to reach the optimum

by moving in the same direction as the �ow of the vector �elds. Although the exploration of

the vector �eld Random is sparely, NW-PSO gains good results because the particles are able

to navigate even if there is little information about the environment. Besides, the success rates

are of interest. In Sphere function, NW-PSO reaches satisfying success rates which are not

falling below 96 percent in all vector �elds except [Cross] and Vortex. The results in Rosen-

brock function show, that NW-PSO is successful in most of the simulations in the vector �eld
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Rotation. In most of the other vector �elds, it reaches approximately 35 percent. The di�culty

for the swarm is that the particles try to move in the same direction as the �ow. This property

causes, that they are distributed over the whole �tness landscape. Consequently, only a few

particles are able to search in the area of the optimal solution. This hinders the improvement

of the search results as particles get stuck at local optima more easily. Especially in Rosen-

brock function the number of searching particles has a high impact on the search results.

Nevertheless, NW-PSO o�ers almost as good success rates for Ackley function as for Sphere

function. Compared to Sphere function, NW-PSO is still not able to �nd most of the optima

in the vector �elds Cross and Vortex. But in the other vector �elds the swarm is able to �nd

the optimum in more than 85 percent of the simulations. The results are always better than

for CW-PSO. The new approach NW-PSO is designed to gain good search results in di�cult

landscapes but also saves energy during the search process. Thus, the energy consumption

was also analyzed. The signi�cantly worst energy rate is generated in the vector �eld Rota-
tion. This is due to the reason, that nearly the whole swarm reaches the optimum and needs

to compensate the vector �eld. However, even the worst result is still better than the result

of C-PSO and NW-PSO. The alive rate shows that in this vector �eld still 15 percent of the

population stays alive whereas all particles of the other approaches already run out of energy

at iteration 75. The results of the other vector �elds are even better so that NW-PSO is able

to strongly reduce the energy usage for each objective function in each vector �eld. In con-

sideration of the search quality and the energy results, NW-PSO is able to reduce the energy

consumption in Rosenbrock function. However, the success rate is decreased to one-third.

In Sphere and Ackley function, the NW-PSO approach is able to o�er good search results in

most of the vector �elds while simultaneously reducing the energy consumption.
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In this chapter, the results of this thesis are summarized and suggestions for future work are

o�ered. First, in Section 6.1 the goal of this work is mentioned as well as the tasks which

were performed to reach it. Afterwards, a conclusion based on the evaluation of NW-PSO

is presented regarding the previous mentioned goal. In the end, topics for future work are

proposed.

6.1. Conclusion

The aim of this work was to develop a preferably energy e�cient search mechanism for dy-

namic environments. To reach this goal, the following steps were performed. First, a model

for the simulation of varying dynamic environments was created by using vector �elds. This

simulated a �ow comparable to wind in real world scenarios. Additionally, the particles move-

ment equation was modi�ed so that the vector �eld in�uenced their movement. Afterwards,

an energy consumption model was created including two parameters. The �rst one was eTurn

which represented the energy for rotational movements of the particles to change their di-

rection. The second parameter was eMove which measured the used energy for the particles

movement in regard to the vector �eld. The combination of both parameters o�ered the total

energy usage for a particles movement. Subsequently, a new approach called NW-PSO was

developed. The goal of this thesis was to provide good search results and simultaneously be

energy e�cient. This goal was ful�lled by the new developed approach. As it was based on

PSO, the standard PSO movement equation was modi�ed with respect to the energy consump-

tion. Furthermore, a correction vector was calculated considering possible target points for

the particles movement. Each of these target points was evaluated in matters of its improve-

ment of the search results and energy usage to move towards its position. This evaluation

represented a multi-objective optimization problem which was solved by the WSM. The fol-

lowing simulation included two more approaches in order to compare their results with these

of NW-PSO. One of the other approaches was standard PSO whereby the known PSO equa-

tion was modi�ed so that the environment in�uenced the particles movement. The approach

was called C-PSO. The other one was based on VFM-PSO which is known as CW-PSO in this

thesis. It was already used in dynamic environments but without consideration of energy

usages. The simulation was run in nine di�erent vector �elds and each of them was tested

in three di�erent objective functions. The �rst function was Sphere which was the easiest

objective function. It was chosen in order to prove the approaches ability of optimization.
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The second function was Rosenbrock which was chosen because of its challenge to �nd the

optimum inside a narrow, parabolic valley. The third function was Ackley which provided

multiple local optima which can mislead the search. In the following, the evaluation results

of NW-PSO are presented with regard to the goal of this work to develop an energy e�cient

search mechanism without negligence of the search results quality.

The new NW-PSO approach was �rst tested in Sphere function to prove its correctness with

regard to optimisation. As shown in Section 5.2.3, it successfully found the optimal solution

in almost each vector �eld. Moreover, the convergence rate for vector �eld Rotation (Figure

B.12), Sheared (Figure B.13) and Tornado (Figure B.5) shows that the swarm converged even

faster at the optimum than CW-PSO. Another challenging function was Rosenbrock function

because the optimum is placed inside a narrow, parabolic valley. Finding the valley is easy

but converging to the global optimum is di�cult. Nevertheless, NW-PSO reached desirable

results in the vector �eld Rotation as in 80 of the simulations the optimum was found. In most

of the other functions it was still successful in one-third of the simulations. The success rate

for Ackley function is similar to the rate of Sphere function as the optimum is found in all

vector �elds except vector �eld Cross and Vortex in more than 85 percent of the simulations.

In addition to the quality of search, the energy reduction was analyzed. The new approach

is able to save energy for each objective function in each vector �eld. Even the worst energy

rate of NW-PSO in the vector �eld Rotation are still better than the energy rates of CW-PSO

and C-PSO. The results have shown that the new NW-PSO approach in all vector �elds suc-

cessfully reduces the energy usage during the search process. Therefore, in Sphere function

without detriment of the search quality in most of the vector �elds. Although the search re-

sults for Rosenbrock function are slightly worse, the approach gains very good results for

Ackley function while simultaneously saving energy. The start position of the particles has a

large impact on the quality of the search results. Thus, the approach is suitable in vector �elds

which allow the particles from any start position to move towards the optimum by following

the �ow as, for example, in rotational �ows. This also increases the number of particles at the

position of the optimum and therefore improves the search results especially in Rosenbrock

function.

6.2. Outlook

First, the energy calculation in this thesis was abstracted. More speci�c energy measurements

de�ected by real world scenarios could be applied. For example energy measurements of a

real micro-robot could be implemented in order to make it possible to test the approach with

real robots. Secondly, not all energy parameters were regarded as for example landing and

launching. Additionally, the implementation could be modi�ed so that the particles quit their

work if they have not changed their position for a prede�ned amount of iterations. In most

cases the particles will not �nd better solutions or even have already found the global optimum

if they do not move any longer. However, the results in matters of energy usage will be
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interesting especially if C-PSO, CW-PSO and NW-PSO are compared with each other. Another

research topic are di�erent vector �elds and objective functions. As mentioned, the success of

NW-PSO is highly depending on the objective function and the applied vector �eld. Therefore,

further vector �elds and objective functions can be tested to develop a sample in which cases

NW-PSO is more successful. Moreover, the results presented in A.2 show that often only a

small percentage of the NW-PSO population stays stable at the best found solution. As a

consequence, the chance that the swarm is mislead in challenging �tness landscapes is high.

Additionally, �nding the global optimum inside a plateau is also challenging. A new approach

would be that this percentage is taken into consideration in the decision making process of

the particles. An opportunity would be that the particles decision is stronger driven to the

improvement of the search than to the reduction of the energy usage if only a small number

of particles has converged. Additionally, angle range for the search of possible target points

could be increased. As a result, the quality of the search results could be improved.
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A. Tables

A.1. NW-PSOWeights

Table A.1.: WSM Weights

2D Pareto 3D Pareto

w1 w2 w1 w2 w3

Cross 0.3 0.7 0.1 0.6 0.3

Rotation 0.7 0.3 0.2 0.3 0.5

Sheared 0.7 0.3 0.3 0.4 0.3

Wave 0.3 0.7 0.2 0.5 0.2

Tornado 0.2 0.8 0.2 0.6 0.2

Bi-Directional 0.3 0.7 0.6 0.3 0.1

Random 0.9 0.1 0.8 0.1 0.1

Multi-Rotation 0.9 0.1 0.8 0.1 0.1

Vortex 0.8 0.2 0.8 0.1 0.1

A.2. NW-PSO Particles at Global Best Solution

Table A.2.: NW-PSO Particles at Global Best Solution

Sphere Rosenbrock Ackley

Cross 6% 6% 6%

Rotation 94% 88% 94%

Sheared 27% 25% 28%

Wave 22% 22% 22%

Tornado 30% 26% 30%

Bi-Directional 28% 27% 27%

Random 25% 23% 24%

Multi-Rotation 33% 29% 35%

Vortex 6% 13% 8%
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B. Plots

B.1. Vector Fields

Figure B.1.: Cross Figure B.2.: Rotation

Figure B.3.: Sheared Figure B.4.: Wave
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B. Plots

Figure B.5.: Tornado Figure B.6.: Bi-Directional

Figure B.7.: Random Figure B.8.: Multi-Rotation

Figure B.9.: Vortex
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B. Plots

B.2. Convergence Plots

Figure B.10.: Legend Convergence Plots

B.2.1. Sphere Function

Figure B.11.: Convergence

Sphere Cross

Figure B.12.: Convergence

Sphere Rotation

Figure B.13.: Convergence

Sphere Sheared

Figure B.14.: Convergence

Sphere Wave
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B. Plots

Figure B.15.: Convergence

Sphere Tornado

Figure B.16.: Convergence

Sphere Bi-Directional

Figure B.17.: Convergence

Sphere Random

Figure B.18.: Convergence

Sphere Multi-Rotation

Figure B.19.: Convergence Sphere Vortex
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B. Plots

B.2.2. Rosenbrock Function

Figure B.20.: Convergence

Rosenbrock Cross

Figure B.21.: Convergence

Rosenbrock Rotation

Figure B.22.: Convergence

Rosenbrock Sheared

Figure B.23.: Convergence

Rosenbrock Wave
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B. Plots

Figure B.24.: Convergence

Rosenbrock Tornado

Figure B.25.: Convergence

Rosenbrock Bi-Directional

Figure B.26.: Convergence

Rosenbrock Random

Figure B.27.: Convergence

Rosenbrock Multi-Rotation

Figure B.28.: Convergence

Rosenbrock Vortex
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B. Plots

B.2.3. Ackley Function

Figure B.29.: Convergence

Ackley Cross

Figure B.30.: Convergence

Ackley Rotation

Figure B.31.: Convergence

Ackley Sheared

Figure B.32.: Convergence

Ackley Wave

61



B. Plots

Figure B.33.: Convergence

Ackley Tornado

Figure B.34.: Convergence

Ackley Bi-Directional

Figure B.35.: Convergence

Ackley Random

Figure B.36.: Convergence

Ackley Multi-Rotation

Figure B.37.: Convergence

Ackley Vortex
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B. Plots

B.3. Alive Plots

Figure B.38.: Legend Alive Plots

B.3.1. Sphere Function

Figure B.39.: Alive

Sphere Cross

Figure B.40.: Alive

Sphere Rotation

Figure B.41.: Alive

Sphere Sheared

Figure B.42.: Alive

Sphere Wave
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B. Plots

Figure B.43.: Alive

Sphere Tornado

Figure B.44.: Alive

Sphere Bi-Directional

Figure B.45.: Alive

Sphere Random

Figure B.46.: Alive

Sphere Multi-Rotation

Figure B.47.: Alive

Sphere Vortex
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B. Plots

B.3.2. Rosenbrock Function

Figure B.48.: Alive

Rosenbrock Cross

Figure B.49.: Alive

Rosenbrock Rotation

Figure B.50.: Alive

Rosenbrock Sheared

Figure B.51.: Alive

Rosenbrock Wave
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B. Plots

Figure B.52.: Alive

Rosenbrock Tornado

Figure B.53.: Alive

Rosenbrock Bi-Directional

Figure B.54.: Alive

Rosenbrock Random

Figure B.55.: Alive

Rosenbrock Multi-Rotation

Figure B.56.: Alive

Rosenbrock Vortex
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B. Plots

B.3.3. Ackley Function

Figure B.57.: Alive

Ackley Cross

Figure B.58.: Alive

Ackley Rotation

Figure B.59.: Alive

Ackley Sheared

Figure B.60.: Alive

Ackley Wave
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B. Plots

Figure B.61.: Alive

Ackley Tornado

Figure B.62.: Alive

Ackley Bi-Directional

Figure B.63.: Alive

Ackley Random

Figure B.64.: Alive

Ackley Multi-Rotation

Figure B.65.: Alive

Ackley Vortex
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B. Plots

B.4. Energy Plots

Figure B.66.: Legend Energy Plots

B.4.1. Sphere Function

Figure B.67.: Energy

Sphere Cross

Figure B.68.: Energy

Sphere Rotation

Figure B.69.: Energy

Sphere Sheared

Figure B.70.: Energy

Sphere Wave
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B. Plots

Figure B.71.: Energy

Sphere Tornado

Figure B.72.: Energy

Sphere Bi-Directional

Figure B.73.: Energy

Sphere Random

Figure B.74.: Energy

Sphere Multi-Rotation

Figure B.75.: Energy

Sphere Vortex
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B. Plots

B.4.2. Rosenbrock Function

Figure B.76.: Energy

Rosenbrock Cross

Figure B.77.: Energy

Rosenbrock Rotation

Figure B.78.: Energy

Rosenbrock Sheared

Figure B.79.: Energy

Rosenbrock Wave
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B. Plots

Figure B.80.: Energy

Rosenbrock Tornado

Figure B.81.: Energy

Rosenbrock Bi-Directional

Figure B.82.: Energy

Rosenbrock Random

Figure B.83.: Energy

Rosenbrock Multi-Rotation

Figure B.84.: Energy

Rosenbrock Vortex
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B. Plots

B.4.3. Ackley Function

Figure B.85.: Energy

Ackley Cross

Figure B.86.: Energy

Ackley Rotation

Figure B.87.: Energy

Ackley Sheared

Figure B.88.: Energy

Ackley Wave
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B. Plots

Figure B.89.: Energy

Ackley Tornado

Figure B.90.: Energy

Ackley Bi-Directional

Figure B.91.: Energy

Ackley Random

Figure B.92.: Energy

Ackley Multi-Rotation

Figure B.93.: Energy

Ackley Vortex
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