
Hans-Martin Wulfmeyer

Genetic Programming for
Automotive Modeling
Applications





Intelligent Cooperative Systems
Computational Intelligence

Genetic Programming for Automotive Modeling

Applications

Bachelor Thesis

Hans-Martin Wulfmeyer

July 17, 2019

Supervisor: Prof. Dr.-Ing. habil. Sanaz Mostaghim

Advisor: Heiner Zille, M.Sc.

Advisor: Dr.-Ing. Markus Schori, IAV



Hans-Martin Wulfmeyer:
Genetic Programming for Automotive Modeling Applications
Otto-von-Guericke Universität
Intelligent Cooperative Systems
Computational Intelligence
Magdeburg, 2019.



Abstract

Genetic Programming (GP) is introduced as a symbolic regression technique
for usage in automotive modeling applications. One use case is the modeling
of the exhaust temperature in vehicles, of which two representative synthetic
functions were obtained to examine and evaluate the capabilities of Symbolic
Regression Genetic Programming.
The current state-of-the-art in GP was extensively examined and from these
findings, suitable state-of-the-art techniques are used for an implementation of
GP. The GP implementation created is then further used to conduct experi-
ments for the two synthetic problems.
The results of GP compared to well established regression methods seem
promising but also noticeably worse than for methods such as Gaussian Process
Regression. While the results are noticeably worse than the methods compared
to, GP produces an interpretable analytical function by using a quasi model-
less method, which none of the methods compared to GP do. These can also
give an insight into the general structure of the data used.
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1 Introduction and Motivation

Vehicle emissions and more efficient fuel consumption have been an ongoing
issue and research topic in recent years with laws requiring lower levels of
pollutants [1–3]. Heat transfer is directly related to engine efficiency and emis-
sion levels, which is why a focus is given to the exhaust temperature [1]. The
high dependency on the exhaust temperature for these factors is also widely
recognized and a simple but accurate model is crucial for improvement [3, 4].
Numerous engine, air system and injection system parameters, such as air flow,
fuel injection quantity, engine speed, and rail pressure, affect the exhaust tem-
perature [2, 3]. The relationship of these variables to the exhaust temperature
is very often modeled with regression methods, for example by the Gaussian
Process Regression Algorithm in the Bosch ECU software [2].
When using conventional regression methods a certain model is assumed be-
forehand, such as in linear, polynomial, and logistic regression, which try to
fit their model to the data. The assumption is that the data is similar to the
model used and if this is not the case there will not be an optimal solution.
The luxury of having this a priori knowledge is often also not available so that
deciding on a fitting model to our data proves to be difficult.
Most advanced supervised learning techniques, such as Artificial Neural Net-
works (ANN) or Support Vector Machines (SVM), also produce overly complex
structures or even uninterpretable black boxes as solutions. Because of the na-
ture of these black boxes, they are undesirable models for the regression task
in this thesis, namely, exhaust temperature modeling. In this task the learned
model is used as a predictor and having an interpretable solution is a highly
desired property.
GP is one method among many in the field of Evolutionary Algorithms (EA)
that employ the basic evolutionary rules of natural selection discovered by

1



1 Introduction and Motivation

Charles R. Darwin [5]. GP enjoys wide usage in the field of regression where
it is employed as a method for symbolic regression known as Genetic Pro-
gramming Symbolic Regression (GPSR). GPSR is a form of GP to “find a
function, in symbolic form, that fits a given finite sampling of data points” [5].
It has been applied to and did comparatively well on many real-world problems
including forecasting energy consumption from historical load electricity and
weather information, forecasting the global mean temperature, modeling the
Boston housing prices, predicting propylene concentration for chemical distil-
lation towers and predicting soil water retention curves [6–9].
The approach in GP strays away from the mentioned regression methods in
that it does not assume a model structure beforehand and that the solutions
of the regression task are interpretable analytical functions [10]. In the light of
these advantageous properties, it is being considered for exhaust temperature
modeling in this thesis.

1.1 Goals

This thesis aims to answer what use GPSR has in the field of exhaust tempera-
ture modeling in automotive engineering. In cooperation with IAV Powertrain
Mechatronics Research two synthetic regression problems respectively named
f1 and f2 are provided, which are inspired by real-world data in the above
mentioned field. In respect to these two problems this thesis aims to answer
the following questions:

• What is the current state-of-the-art in GP?

• What parameter configurations for GP produce the best results?

• How does GP perform as a regression technique?

• How well does GP perform against established regressions methods?

To accurately measure the performance of GP several state-of-the-art ap-
proaches will be used, next to the standard GP implementation, for learning
the models of synthetic regression problems. Models from conventional and
advanced regression methods, such as Polynomial Regression, Multilayer Per-
ceptron, and Gaussian Process Regression, will be used as a benchmark for

2



1.2 Structure of Thesis

comparison. Additionally, a hyperparameter search for selected parameters
will be conducted to determine optimal configurations for GP.

1.2 Structure of Thesis

In Chapter 2, GP will be first introduced by explaining the fundamental knowl-
edge necessary for this thesis, before giving an extensive overview of the cur-
rent state-of-the-art in Chapter 3. Chapter 4 will explain the generation of
the training data used and also give an overview of the implementation of GP
used in this thesis. In the end, the chapter shortly focuses on different regres-
sion methods, which GP is compared to at the end of the following chapter.
The results and the evaluation of the experiments are presented in Chapter 5,
followed by Chapter 6, which contains the conclusion and future work to this
thesis.
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2 Fundamentals of Genetic
Programming

GP is part of the larger class of EA, which are metaheuristics for numerical and
combinatorial optimization problems for which no efficient solution algorithm
is known. Kruse et al. define optimization problems as follows in [11].

Definition 2.1 (Optimization problem). An optimization problem consists
of the tuple (Ω, f) where Ω is the search space of potential solutions to the
problem and f : Ω → R is a function that assigns a quality assessment f(ω)

to each solution ω ∈ Ω.
An element ω ∈ Ω is an exact solution for (Ω, f) if it is a global optimum.
An element ω ∈ Ω is a global optimum of f if: f(ω′) � f(ω)1 ∀ω′ ∈ Ω

EA do not guarantee optimal solutions and usually only provide approximate
solutions to these problems as they merely constitute a guided random search.
They are inspired by real-world biological evolution, that is Darwinian evo-
lution. The basic assumption of EA is that the solutions ω will get better
i.e. will have a better fitness, w.r.t f over time by mimicking the evolution
process that is observed in the real-world. EA simulate this evolution process
by creating a population and then selecting the solutions with the best fitness
from the population. Genetic operators are applied to the selected solutions
to create descendants, which form the new population, the next generation of
solutions [11].
The basic algorithm underlying GP, which is very similar to EA, is shown in
Figure 2.1. The GP algorithm depicted as pseudocode is displayed in Algo-
rithm 2.1. The difference between EA and GP in the basic algorithm is that in

1f(z) � f(x) ⇔ x has a fitness better than or equal to z

5



2 Fundamentals of Genetic Programming

Initialize Population

Stop Condition = True

Evaluate

End

Selection

Genetic Operator 

Figure 2.1: The basic GP process

the latter we only choose one genetic operator to be applied for every selected
solution while in the former all genetic operators are applied one after another,
mainly crossover and mutation, to each selected solution [5, 11, 12].
The solutions created by EA have a representation or alternatively called en-
coding, which determines how and in what way a solution is expressed inter-
nally. The representation is chosen specific to the problem at hand and is
usually fixed in length [11]. It can be anything from a list of integers numbers
to a simple bit array or more complex variants. If the representation of the so-
lutions is of variable length, which aim to solve a specific task, it is called GP.
Additionally, the solutions in GP consist of functions and terminals, which may
include arithmetic operations, standard programming operations like loops and
conditionals, mathematical functions, boolean functions, domain-specific func-
tions, or variables and constants. The solutions in GP are usually also referred
to as programs [5, 12].
In this thesis the specific task of the programs is to find the exact relationship
between certain (real) numerical inputs to certain (real) numerical outputs by
using symbolic regression, which is then called GPSR. In GPSR the goal is
to find a model that describes that relationship as a function in an analytical
form given a finite sampling of data points, the training data. An example
of an analytical function is shown in Figure 2.2a. GPSR is also tasked with
finding both the coefficients and the form of the function itself, in contrast
to methods such as linear regression or polynomial regression where only the
coefficients need to be found [10, 12].
For EA, including GP, it is imperative to define the building blocks the algo-
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2.1 Representation

Algorithm 2.1 StandardGP
Input: n = population size
Output: Population
1: population ← init-population(n)
2: evaluate(population)
3: while stopcondition 6= True do
4: new_pop ← ∅
5: for n do
6: parent ← selection(population)
7: donor ← selection(population)
8: operator ← choose_genetic_operator
9: child ← operator(parent, donor)
10: new_pop.append(child)
11: population ← new_pop
12: evaluate(population)
13: return population

rithm is composed of. In the following sections it is explained how solutions
are represented in GP, how the initial population in the beginning can be cre-
ated, how suitable solutions are evaluated and selected from the population
and how and which genetic operators are applied to the selected solutions. It
will also introduce all the necessary terminology needed and in particular this
chapter and all the following chapters will have a focus on GPSR.

2.1 Representation

The representation of solutions, also called encoding, is an important issue
because GPSR directly modifies the representation and it defines the set of all
possible solutions to the problem, the search space. It also defines what kind
of inputs are accepted, how they transform the inputs and produce an output.
With that in mind, the representation directly impacts if GPSR is able to find
a good solution or a useful solution at all [5, 11, 13].
One aspect of the representation in GPSR is the “physical” representation of
the programs, i.e. how the computer displays the programs internally. Fig-
ure 2.2b shows the commonly used syntax tree. Another common variant is
the prefix notation that directly corresponds to the syntax tree. It can be
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2 Fundamentals of Genetic Programming

incorporated into a list data type as shown in Figure 2.2c. Compared to a
complex tree data structure a list data type is more computationally efficient
and in most programming languages lists are also natively supported.
Because the prefix notation is simply another way of displaying a syntax tree,
they can be used interchangeably in most cases, for example, when using ini-
tialization techniques or genetic operators [10, 12].

f(x0, x1) = cos (x0 + x0) + sin (x1 + x1 + x1)

(a) analytical expression

add

cos

add

X0X0

sin

add

add

X1X1

X1

(b) Syntax Tree

+

cos

+

x0
x0
sin

+

+

x1
x1
x1

(c) List

Figure 2.2: Representations of analytical expressions

Because EA are inspired by biological evolution the representation is also called
the “chromosome”, which consists of “genes”. A gene is one logical unit of a
solution, which only partially determines a characteristic of an individual. The
genes are usually the least minimal part of a representation, which are changed
by the genetic operators [11].
In tree-based GPSR the ”genes“ are the elements in the function set F =

{f1, ..., fn} and the terminal set T = {t1, ..., tn} with which the programs are
build. The terminals represent the inputs into the program, which includes
variables (x1, ..., xn) and constant numbers. Usually, it also covers functions
that take no inputs themselves, for example, a function that returns a ran-
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2.2 Initialization

dom number, which are called ephemeral constants. In contrast, all members
of the function set take a specific number of arguments as input, which is
called the arity. For GPSR the function set may consist of arithmetic op-
erations (+,−, ∗,÷), mathematical elementary functions (sin, log, ex, ...) and
more elaborate functions (max,min, abs, ...) [5, 11].
The function set is not only limited to the mentioned functions but is able
to accept all that satisfy the closure property. This property asserts that all
members of the function set are able to take the terminal set and all possible
outputs of all members of the function set as input. Some examples where
this is not the case is the division by or logarithm of zero and the square root
or logarithm of a negative number because they are undefined operations or
produce results that are not real numbers. The closure property is usually
satisfied by defining protected versions, which handle the undesired behaviour
and otherwise calculate the same as the original [5, 11, 13].
The terminal and function set need to satisfy another property, that is called
completeness or sufficiency, which requires that it is possible to express a so-
lution to the problem with the defined sets. In most cases the sets are over-
sufficient, meaning that they contain more members than necessary because
finding the smallest set necessary is usually an NP-hard problem [5, 11].

2.2 Initialization

In GP we randomly generate the individuals in the first generation of the pop-
ulation, like it is usually done in all other EA [12].
John R. Koza proposes two basic methods of generating the programs for GP,
which are called “grow” and “full” [5]. They randomly create programs that do
not exceed a declared maximum (syntax) tree depth, which is defined as the
“longest nonbacktracking path from the root to an endpoint”. Both methods
generate the programs recursively beginning with the root node by selecting
randomly from the terminal or function set.
The “full” method limits the selection to the function set until the specified
depth is reached and then to the terminal set. This generates programs in
which all paths from the root to the leaves have the maximum depth.
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2 Fundamentals of Genetic Programming

In contrast, the “grow” method does not limit the selection at all until reach-
ing the maximum depth, which results in programs with variable depths and
shapes, whereas the “full” method creates trees that are symmetric (if the arity
of all functions were the same).
At last these two methods are incorporated in the “ramped half and half”
method which creates half of the trees with the “grow” and the other half with
the “full” method. Additionally, a minimum depth is defined and iteratively,
for each depth between the minimum and maximum, an equal amount of trees
is generated. This iterative process with increasing depth is referred to as
“ramping”. For example, if the minimum depth is 2 and the maximum depth
is 6 the method will generate trees with the maximum depths 2, 3, 4, 5, 6
and for each depth, one half will be generated with the “full” and the “grow”
method. This results in a great variety of sizes and shapes and thus a better
initial population [5].

2.3 Fitness and Selection

The goal of the selection process is that individuals, which have a better fitness,
are probabilistically more likely to be selected and with that more likely of
producing more descendants [11]. For this, an appropriate fitness and selection
mechanism has to be defined.

2.3.1 Fitness

The training data is the data set with which a model in supervised learning,
which includes GPSR, is trained. It is made up of data points with one or more
independent variables, the input, and usually only one dependent variable, the
output. The fitness is always based on the error, which is calculated from
input-output examples of the training data. It is determined by calculating
the distance between the (scalar) output value yi and the prediction of the
output value ŷi by the learned model from the input values ~xi. Usually, the
fitness is then calculated by accumulating all distances for all data points
from the training data. The fitness may also be standardized, normalized or
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2.3 Fitness and Selection

adjusted [5].
Two widely used fitness or model performance metrics for regression are the
root mean squared error (RMSE) and the mean absolute error (MAE), which
are displayed in Equations 2.1 and 2.2 respectively [14].

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.1)

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.2)

The key difference between both is that the RMSE takes the squares and the
MAE the absolute values of the errors. Both measures then sum the errors
for all data points and calculate the mean value of the sum. Additionally, the
RMSE takes the square root of the mean value. If the square root is missing
it is just called mean squared error (MSE), if the square root and mean are
omitted it is the squared error (SE).
Calculating the square of the errors results in the RMSE giving larger error val-
ues relatively more weight, in effect punishing variance in the error distribution
and being more sensitive to outliers. The MAE, on the other hand, gives the
same weight to all errors and would inadequately reflect larger errors, because
of the influence of a large number of average errors. With these properties, the
RMSE is superior at revealing differences in model performances and is more
fitting for the use case in this thesis [14].
Another useful measure regularly used in regression is the coefficient of deter-
mination, denoted by R2.

R2 = 1−

∑
(yi − ŷi)2∑
(yi − ȳ)2

(2.3)

The R2 is calculated by dividing the summed square errors of the evaluated
model by the summed square errors of the “naive” model, the median ȳ of the
data. It is interpreted as the proportion of the variance in the data, which
can be explained by the evaluated model. The value of R2 usually ranges
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2 Fundamentals of Genetic Programming

from 1 to 0 with larger values denoting a better performance. It can also
take negative values if the evaluated model has a worse performance than the
“naive” model [15].
The R2 and the RMSE are closely related to each other because they both
utilize the SE. However, the SE is largely affected by the range of the y
values in the data. The consequence is that depending on the data set a “low”
or “high” RMSE does not necessarily relate to the exact performance of the
model. Essentially the R2 can be described as a relative-SE from which it is
directly apparent how good a model is. This feature makes the R2 useful for
comparing regression results across different data sets or when dealing with
data sets that contain noise.

2.3.2 Selection

When deciding on a selection mechanism the selection pressure property plays
a decisive role, which describes how strong better fit individuals are preferred
over the weaker ones [11, 12]. Selection pressure should be weak enough so
that extraordinarily good programs can not completely dominate one genera-
tion and the diversity in the population is kept high. If there is very low to
no selection pressure the selection is essentially random which is undesirable
as well because the goal is to search for good fit individuals [11].
In GP any standard EA selection mechanism may be used, because the fit-
ness definition is universally the same across most algorithms inspired by EA.
However, the most commonly used methods in GP are tournament selection
and Roulette-wheel selection [12].
In tournament selection k individuals are chosen at random from the popula-
tion, which then partake in a tournament, where the one with the best fitness
wins and gets to have a descendant in the next population. The size k of
the tournament is chosen by the user beforehand and the k individuals that
have been chosen are not excluded from the following tournaments. Because
it produces only one winner per tournament at least n tournaments, for a new
population of n individuals, have to be conducted [12]. The selection pressure
on the population remains constant. All individuals have the same probabil-
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2.4 Genetic Operators

ity to be chosen from the population and the fitness is essentially taken for a
“ranking” of the individuals and the actual difference in fitness does not play
any role at all [12].
In fitness proportionate selection methods, e.g. roulette-wheel selection, the
fitness difference directly determines the likelihood of an individual to be se-
lected. In roulette-wheel selection, the relative fitness is calculated for all
individuals by dividing the fitness with the sum of the fitnesses of all individ-
uals. The relative fitness is then taken as the probability for the individual to
be selected. The fitness directly determines how likely it is for an individual
to be selected, which results in a very high selection pressure and very good
individuals to be able to completely dominate. This can lead to crowding, the
population focusing only on a few regions in the search space, and then to
premature convergence of the algorithm [11].
Oftentimes it can not be guaranteed that the best individual is selected at all
or if selected will survive unchanged into the next generation. This is because
the selection mechanism and the genetic operators, which are described in fur-
ther detail in the following section, work with randomness. For that reason,
elitism is often used, which copies the best or the best j individuals into the
next population and guarantees that good solutions are not lost completely
from detrimental random decisions [11].

2.4 Genetic Operators

Genetic operators are the means by which the algorithm navigates (locally)
through the search space and advances the initial population, which has usually
a very low fitness. The three primary operators used in GPSR are reproduc-
tion, crossover, and mutation and are applied based on assigned probabili-
ties [13]. Only one genetic operator is applied to each selected solution, which
means that the probabilities of all genetic operators have to sum up to 1.0.
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2 Fundamentals of Genetic Programming

Reproduction

Reproduction is the process of copying a selected individual into the next
generation, which is done to prevent the algorithm from discarding good solu-
tions [5].

Crossover

The (subtree) crossover operator takes two parents and combines them to form
a child individual. This requires the selection mechanism to be performed twice
to obtain the two parents.
The crossover operator randomly splits both parents into two separate trees
by selecting a crossover point (node) in each, as displayed in Figure 2.3.

Figure 2.3: A crossover example in tree-based GP [12]

The subtree at the crossover point in the first parent is then replaced by
the subtree at the crossover point in the second parent. This is essentially a
restricted two-point crossover if the individual is represented in prefix nota-
tion, for which two fully working sub-expressions are exchanged. A subtree
at the crossover point in subtree crossover is also always a fully working sub-
expression. The crossover operator usually returns two children in EAs, which
would also be achievable here, but which is not commonly done in GP [12].
One distinct advantage of returning one child instead of two is that it lends
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itself better for parallelization because it removes the necessity of dynamically
dealing with more than one individual being added.

Mutation

One goal of the mutation operator is to increase diversity in the population
with the introduction of new genetic information into the population by per-
forming random changes in individuals [11].
The mutation operators in GP can be distinguished as macro and micro muta-
tion, which are used concurrently. While micro mutation only changes one gene
(for tree-based GP terminals or functions) or even only a part of a gene from
the program, a macro mutation operator changes entire sequences of genes at
once [16]. The mutation operators commonly used for that are subtree muta-
tion and point mutation [12].
Subtree mutation randomly selects a mutation point (node) in the selected
parent and replaces the subtree at the mutation point with a randomly gen-
erated subtree, which is similar to the way it is done in crossover [13]. This is
displayed in Figure 2.4.

Figure 2.4: A subtree mutation example in tree-based GP [12]

Subtree mutation can be achieved by performing subtree crossover with a ran-
domly generated individual from the initialization techniques explained in Sec-
tion 2.2. This is referred to as the “headless chicken” crossover [17].
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Point mutation, also called standard mutation, is a generalization of bit(-flip)
mutation. In point mutation each node in an individual has the same probabil-
ity, defined by the user beforehand, to be mutated i.e. replaced by a randomly
generated node. That is this results in multiple points being mutated sepa-
rately [11, 12]. To prevent the generation of useless individuals, point mutation
replaces terminals with random terminals and functions with random functions
of the same arity [12].

2.5 Bloat

One of the greater issues that GP faces in practice is that solutions can grow ar-
bitrarily large without gaining a significant amount of fitness, which is referred
to as bloat [12]. Bloat has several disadvantages which include overfitting and
performance issues in memory and computation [18]. The solutions can even
grow to a size for which it gets impossible to evaluate them.
Bloat is partly caused by introns, which are non-effective parts of a solu-
tion [11]. Non-effective means that they do not have any effect on the fitness
of the solution. The multiplication by or division by 1 is a simple example of
an intron in GPSR.
Two widely used basic bloat prevention methods are limiting the tree depth or
tree length to a certain size and the parsimony pressure method [12]. The par-
simony pressure method multiplies the size of the solution with the parsimony
coefficient, usually a constant, and then adds the resulting value to the fitness.
The fitness of the individuals are penalized for the size. Larger programs will
have a greater penalized value, which leads to the effect that smaller programs
are preferred over larger programs with a similar raw fitness in the selection
process. More advanced methods are, for example, to use multi-objective op-
timization with the fitness and the size of the solutions or to introduce genetic
operators that replace subtrees in an individual with smaller subtrees, similar
to subtree crossover. Methods to reduce or prevent bloat are more extensively
discussed in Chapter 3.
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In this chapter current findings and algorithms in GP will be introduced.
Most techniques from EA take a modular approach to the components in
the algorithm, such as selection methods or genetic operators, and GP is no
different in that regard [5, 11].
Especially selection methods are highly modular as they are mostly based
only on the fitness and are indifferent to, for example, the encoding. However
genetic operators and the initialization of solutions are highly customized to
the encoding, for example, the subtree crossover described in Section 2.4,
that works exclusively on tree-structures or representations derived from
tree-structures [12].
This becomes an issue when the goal is to utilize these methods for different
representations than they were originally invented for, if even possible. One
solution can be to translate these methods for usage on other encodings.
It might even be feasible to transform solutions temporarily into another
encoding to make genetic operators or initialization methods usable.
This is why each new representation tends to have their own version of
crossover and mutation, as will be evident from Section 3.1 where different
GP representations are explained.

3.1 Representation

Over the years different representations for GP have been proposed in scientific
literature and research. One motivation behind using different representations
is that they open up certain problem domains that might be more suitable
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than others [16].
In 2012 a survey was conducted by D. R. White et al. in the Genetic Pro-
gramming research community [19]. Among other questions, the authors asked
the participants what type of GP they use and which one they use the most.
The results concluded that standard GP (i.e. tree-based GP) is still the most
widely used type of GP followed by Grammatical GP and then “Standard GP
with strong typing or other modifications”.
Strong typing refers to the practice to define “rules” for the terminal and func-
tion nodes determining which connections they are allowed to create with
other nodes. One application is for the usage of more than one data type in
the function and terminal set e.g. booleans and floats. With certain rules,
strong typing guarantees that the closure property is adhered to [12].
Other types of GP in the survey question include Stack-based, Linear and
Cartesian GP, which are briefly explained in the following sections.

3.1.1 Linear

In their book on LGP Brameier and Banzhaf concentrate extensively on the
fundamental aspects of linear program representation [16].
Figure 3.1 is a simple example of an LGP program, which calculates the same
analytical function displayed in Figure 2.2a.

double x[2];
double r[8];
// r[7] = r[0] - 59;
r[4] = x[0] + x[0];
// r[2] = r[5] / r[4];
r[6] = x[1];
r[7] = r[6] * 3;
// r[5] = x[1] + 15;
r[0] = sin(r[7]);
r[5] = cos(r[4]);
r[0] = r[0] + r[5];

Figure 3.1: Example LGP program in the C-programming language calculating
cos (x0 + x0) + sin (x1 ∗ 3)
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Linear does not refer to the program’s ability to only solve linear problems
but “to the structure of the program representation” [16]. LGP is inspired
by machine language instructions, which use registers to operate on and save
results.
One principle in LGP is that registers can arbitrarily often be reused for in-
structions or as storage. This causes that certain instructions will be struc-
tural introns, which are distinguished from semantic introns. Introns are non-
effective parts of an individual.
Structural introns do not cause any manipulations of the end result whereas
semantic introns are structurally effective but are still non-effective regarding
the fitness. Structural introns occur either because the result register is over-
written by another instruction, it is not used at all or it is not used for further
instructions that lead to manipulations of the end result.
Semantic introns also occur in tree-based GPSR, while structural introns are
non-existent because of the nature of syntax trees in which all parts necessarily
affect the end result in some way. However, if booleans and the corresponding
functions are included in the function and terminal set, which are usually not
included in GPSR, structural introns can occur as well.
Structural introns can easily be identified and removed in LGP, which is only
done for the evaluation because introns are viewed as an integral part.
The example in Figure 3.1 only contains structural introns, which are com-
mented out. Denoted by r are the calculation registers that are freely usable
by the program and whose size has to be defined beforehand by the user. In
addition to that, there are write-protected registers denoted by x, which hold
the program inputs. The standard output or result register is r[0]. The inter-
nal representation of an individual is usually not in C code but is translated
into C code, or any other high-level programming language, for the purpose
of executing the programs. For the genetic operators each instruction, that is

6 9 4 5 2 7 8

3 4 6 8 1 0 5
−→ 6 9 4 5 6 8 1 8

Figure 3.2: Example of two-point crossover, the numbers 2,7 are replaced with
6,8,1 from the other individual.
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each line in the example in Figure 3.1, is interpreted as one gene in the indi-
vidual. The mutation operators then either insert or delete a single instruction
or treat the instructions as atomic and merely change a single component of
an instruction [16].
One crossover technique utilized in LGP is similar to the traditional two-point
crossover, which in its adapted version replaces a randomly chosen continu-
ous sequence of instructions from another individual with one in the chosen
individual. In Figure 3.2 an example of the adapted two-point crossover with
integer numbers is displayed. The motivation for using LGP is that tree-based
GP requires an interpreter that translates the individuals, usually represented
in a tree-shape or prefix-notation, into executable code. In contrast, LGP
uses machine code, which provides some speed-up because it is directly exe-
cutable [12].
Markus F. Brameier and Wolfgang Banzhaf also argue that because of its
weaker constraints LGP has a smaller variation step size, that it produces
more compact solutions, which may also be executed more efficiently than
tree-based GP [16].

3.1.2 Stack-based

One of the defining works regarding stack-based GP is the Push programming
language and the resulting genetic programming system PushGP by Spector
and Robinson [20].
The fundamental of stack-based GP is the usage of global data stacks. A stack
is a type of data container that follows the LIFO (last-in first-out) principle
and uses the two operators push to insert and pop to remove elements at the
top of the stack. The stacks are filled with arguments, which are then passed
to instructions. The results from the instructions are then again pushed onto
the stack. This leads to the usage of the postfix syntax for the representation
of individuals. In the postfix syntax, the arguments are located before the in-
structions by which they are used. The concept is similar to the representation
of individuals in prefix notation for the usage in list data types, for example in
Figure 2.2c. In prefix notation, the list in Figure 2.2c is evaluated in a recur-

20



3.1 Representation

sive manner from top to bottom, while in stack-based GP the postfix notation
it is evaluated from bottom to top without the need of recursion.
Figure 3.3 is a simple example of the representation of (2+4)*3 in postfix
notation. It is read from left to right.

3 2 4 + *

Figure 3.3: Example of (2+4)*3 in postfix notation

In stack-based GP the three numbers (3,2,4) in Figure 3.3 are first pushed
onto the empty stack and then the + instruction is executed by taking (pop-
ping) the top two numbers (2,4) from the stack. The resulting value of 6 is
then pushed onto the stack and the * instruction pops the top two numbers
(3,6) from the stack. In the end, the stack only contains the number 18 and
no instructions are left, which means the evaluation is done and the value left
is the result.
The evaluation process also causes that the same calculation can be expressed
in multiple ways. For example Figure 3.4 results in the same calculation as
the example in Figure 3.3.

2 4 + 3 *

Figure 3.4: Another example of (2+4)*3 in postfix notation

In PushGP it is also possible to use multiple data types in which case each
data type is provided with a separate stack. The instructions then take the
arguments from whichever stack they are needed from.
Stack-based GP, in particular, the push programming language, also imple-
ments list and code-manipulation instructions, which among others includes
instruction for the copying of entire sub-expression. These instructions allow
for recursions, loops and self-modifying programs to be generated. For the
usage of variables the two instructions GET and SET are provided.
If an instruction is executed that can not be provided with sufficient arguments
from the stack it is simply ignored and discarded. This is why the genetic oper-
ators in stack-based GP do not have to be restricted to only generate offspring
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that would be valid programs or expressions themselves, in contrast to tree-
based GP. Because of this, the genetic operators act without restrictions on
the postfix expression of the programs and traditional crossover and mutation
operators can be applied.
One interesting development regarding PushGP is the addition of epigenetic in-
formation into the individual [21]. Each individual has a corresponding boolean
vector of the same length, which is referred to as the epigenome, that defines
if an element is active. If an element is inactive it is ignored when the program
is executed.

3.1.3 Grammatical

Grammatical GP is a method to enforce user specified structures on the solu-
tions by defining building rules similar to strong typing. This is realized by
defining a generative grammar, which the individuals have to adhere to [22].
An example for such a grammar in Backus Naur Form (BNF) notation is
displayed in Equation 3.1 [12].

tree ::= E × sin(E × E) (3.1)

E ::= var | (E op E)

op ::= + | − | × | ÷

var ::= x | y | z

Each line in a BNF grammar is a production rule, which define the general
structure of the programs. On the left-hand-side are the non-terminal symbols
while all non-rewriteable symbols (x, y, z,+,−,×,÷), which only appear on
the right-hand-side of the equation, are terminal symbols. The production
rules are then used recursively to build individuals, beginning with the start
rule tree [12, 22].
In Equation 3.2 an example individual was build by randomly evaluating the
production rules from Equation 3.1 from top to bottom. Each production
rule was iteratively evaluated until no non-terminal symbols of the specific
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production rule were left.

tree ::= E × sin(E × E) (3.2)

tree ::= var× sin((E op E)× var)

tree ::= var× sin((var op (E op E))× var)

tree ::= var× sin((var op (var op var))× var)

tree ::= var× sin((var− (var÷ var))× var)

tree ::= x× sin((z − (y ÷ x))× y)

The concept of using grammars for the generative building of individuals for
GP is used in Grammatical Evolution (GE) by O’Neill and Ryan [22]. The
individuals in GE are represented as binary strings of variable length (multiples
of 8) and a consecutive group of 8 bits is read from the individual and converted
to an integer. This results in an individual of several integers.
Beginning with the start rule the building process in GE works in a similar way
as in Equation 3.2. But, instead of making a random choice for the production
rules, like done above in Equation 3.2, the integer numbers are mapped to one
of the options of a production rule with the mapping function in Equation 3.3.

option = n MOD m (3.3)

n = integer number

m = number of options for production rule

For example, the rule E in Equation 3.1 has two possible options, which would
have the assigned numbers 0 and 1.
The building process begins anew from the left side at each step of the eval-
uation, that is after mapping a rule the first non-terminal symbol beginning
from the left side is being evaluated next.
There is the possibility that the number of integers runs out in which case the
individual is wrapped from the end to the start and we reuse the already used
integers. With wrapping an individual could always apply the same option
repeatedly resulting in an endless loop, which is why there is a wrapping limit.
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By reaching the wrapping limit an individual is checked for validness and if
flagged as invalid is assigned the lowest possible fitness.
One major advantage of Grammatical GP is that domain knowledge can eas-
ily be expressed by creating certain production rules. Additionally, the binary
string representation in GE allows the easy application of several various ge-
netic operators commonly used in EA [23].

3.1.4 Cartesian

Tree-structures are special types of graphs, which is why several researchers
have looked into using other graph types for the development of individuals
in GP [12]. One such method is CGP, which uses directed acyclic graphs
(DAG) to represent the individuals [24]. As they are used in GP the nodes in
a DAG can have none, one or more parent nodes while in a tree each node
has exactly one parent.
In CGP the internal representation is a list of integers or the corresponding
string of bits. The integers are then used in a mapping function to implement
the individuals as two-dimensional grids of computational nodes with rows
and columns, which is why it is called Cartesian. One example of an indi-
vidual in CGP with the integer and graph representation is shown in Figure 3.5.

+x0

x1 3

cos +

sin

y
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-

×

2

3

4

5

6

7

8

9

0

1

100 610 521 213 045 452 147 375 8

Figure 3.5: Example CGP graph calculating cos (x0 + x0) + sin (x1 ∗ 3) with
the corresponding integer representation using the function set
(−0,+1,×2,÷3, sin4, cos5, rand6)
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The mapping function treats a three consecutive integers as one node with
the first number determining what the type of the node is by using a function
look-up table. The other numbers represent the addresses of nodes or program
inputs. These numbers define where the current node gets its inputs from and
it is assumed that each function takes as many inputs as the function with the
maximum arity. Not needed inputs are then simply ignored. The graphs in
CGP are directed and feed-forward, i.e. the nodes are only able to get their
inputs from any of the previous columns of nodes.
Depending on how many outputs an individual needs there are output nodes
with corresponding integers in the internal representation, which determine
the addresses of the nodes where the outputs are from.
The graphs in CGP have maximum sizes for the columns and rows, which are
determined by the user. Additionally, there is a user defined parameter that
takes the positive natural numbers. The value of this parameter determines
the number of directly preceding columns from which a node can take the out-
puts as inputs, in addition to the program inputs themselves. This is referred
to as the connectivity of the graph.
Besides a simple point mutation for any of the integers in the representation,
crossover is not used much in the original CGP because it has shown to be
disruptive and negatively affecting the convergence rate, while not improving
the general performance. A new method for crossover from Clegg, Walker, and
Miller has shown to not be disruptive and generate a faster convergence in the
evolutionary process [25].
For this new crossover operator the individuals are internally represented with
floating point numbers in the range of [0,1] instead of integers, however, the
floating point representation is still transformed into the integer-based repre-
sentation. The transformation is done with the mapping function in Equa-
tion 3.4.

floor(f ∗ k) (3.4)

f = floating point number

k = total number of functions or numinputs + numcurrentnode
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Depending on if a mapping to the available functions is needed or for the in-
puts of a node, k is chosen to be either the total number of functions available
or the sum of the total number of inputs and the index number of the current
node.
An offspring between two parents p1, p2 in floating point representation is then
generated pointwise with Equation 3.5, where r denotes a per offspring uni-
formly generated random number.

offspring = (1− r) ∗ p1 + r ∗ p2 (3.5)

Another recent development is self-modifying CGP (SMCGP), which builds
on top of the original CGP and includes similar self-modification functions
found in LGP, such as adding, copying and deletion of graph nodes. The
modifications are not applied immediately but are build as functions into the
graph representation of the program. Each time the graph is evaluated with
input data the reached self-modifying functions are added to a list of pending
manipulations and applied between runs [26].
One advantage of using graphs is that it allows the implicit reusing of partial
results of an individual. On top of that the graphs in CGP can have an
arbitrary number of outputs [24].

3.2 Semantic Crossover and Mutation

As has already been stated in Section 2.4, genetic operators are the search
operators for the development of better individuals in the population. The
genetic operators have a strong influence on the success of GP, which is why
one particular research focus is on improving the genetic operators [5, 13, 27,
28].
One interesting development is the utilization of the program semantics in the
genetic operators named semantically driven crossover and mutation [29, 30].
The semantic is the meaning or the behavior caused by a GP program, i.e. the
output values. The syntax is the representation of the program.
Both operators have been applied to boolean GP programs. This was done

26



3.2 Semantic Crossover and Mutation

by utilizing Reduced Ordered Binary Decision Diagrams (ROBDD), which are
boolean functions transformed into directed acyclic graphs [31]. If the offspring
created by crossover or mutation produces the same ROBDD as the parents
they are declared semantically equivalent and discarded. Instead of adding
the offspring the original parents are then added to the next generation. Both
crossover and mutation create offspring that are semantically different to their
parents.
Semantically driven crossover tries to improve the general fitness performance
and the efficiency regarding bloat of the original crossover [29]. Semantically
driven mutation aims to just improve the performance of the mutation [30].
Semantically driven crossover and mutation are based on trial and error and
do not give any insight into the relationship of the syntax and the semantic of
the parents and offspring. Instead of being directly able to search the semantic
space produced by the programs they rely on pure coincidence. This is why
Moraglio, Krawiec, and Johnson created geometric semantic operators, which
directly search the semantic space by creating offspring, which have a certain
semantic distance to the parents [32].
For the purpose of this thesis only the implementations for real analytic pro-
grams are being considered, which are given in Definition 3.1 and 3.2.

Definition 3.1 (Geometric Semantic Crossover). For the two parents T1, T2 :

Rn → R, the crossover operator builds the offspring
TC = (T1 × TR) + (T2 × (1 − TR)) where TR is either a random value in [0, 1]

or a random program with codomain [0, 1].

Definition 3.2 (Geometric Semantic Mutation). For the parent T : Rn → R,
the mutation operator builds the offspring
TM = T +ms× (TR1− TR2) where TR1 and TR2 are random programs and ms
is the mutation step, a real valued parameter in [0, 1].

The operators create a new individual by manually inserting already existing
individuals into the given form. For example, when using syntax trees as rep-
resentation the resulting individual will be a syntax tree as well, which will
contain the calculation from the definition in syntax tree form with the parents
inserted as sub-trees.
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Both operators are utilizable for all program representations that permit the
creation of new individuals with the processes in Definition 3.1 and 3.2.
One drawback of the geometric semantic operators is the significant growth
in the offspring because they are created by including both parents, when ap-
plying crossover, or two random functions when considering mutation. This
problem was addressed by utilizing function simplifiers in the GP implementa-
tion of Moraglio, Krawiec, and Johnson. These could also be used without any
repercussions because the program syntax does not matter for the operators.
However, function simplifiers require additional computational performance.
Additionally to the function simplifiers, to keep the growth even lower, the
crossover operator was implemented using random real values instead of ran-
dom programs.
In their experiments, it was shown that geometric semantic crossover and mu-
tation produce considerably better symbolic regression results than the tradi-
tional operators on several random polynomial functions ranging from degree
3 to 10 [32].

3.3 Selection

The following sections will introduce the ε-Lexicase (EPLEX) selection mech-
anism, multi-objective selection in general as well as one multi-objective se-
lection mechanism named ParetoGP. Furthermore, a short introduction into
complexity measures for the programs in GP will be given.

3.3.1 ε-Lexicase Selection

EPLEX is a parent selection mechanism based on lexicase selection by Lee
Spector [33]. Lexicase selection treats each data point as a separate fitness
case on which the solutions can perform on. A parent is then selected by fil-
tering the pool of parents also called candidates based on how they perform on
each data point separately. The filtering is done with a pass condition, which
automatically filters all candidates from the pool that do not meet the re-
quired criterion. The algorithm described by Lee Spector is one of the simpler
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variants of lexicase selection named “global pool, uniform random sequence,
elitist lexicase selection” or just short lexicase selection [33]. The algorithm is
displayed in Algorithm 3.2 as pseudocode.

Algorithm 3.2 lexicase selection algorithm
1: procedure lexicase(population, data)
2: ppool ← population
3: data ← random_order(data)
4: while size(ppool) 6= 1 ∧ data 6= ∅ do
5: date ← pop(data) . pop returns and removes the first point
6: ppool ← Filter(ppool, date) . Filtering by applying the pass condition p

7: return random_choice(ppool)

The pool of potential candidates is constructed as the entire population. For
every parent selection scenario, the data points are ordered uniformly at ran-
dom and applied by the candidates in that order. For each data point only
the candidates that perform as well as the best candidate are retained in the
pool, which is given as a pass condition in Equation 3.6, which is then used in
a filter mechanism.

pti = IF[f ti ≤ f t∗] (3.6)

The pool of candidates is filtered on the data points until there is only one
candidate left or no other data points are left. If there are no data points left
and there is more than one candidate left a random candidate from the pool
is returned.
Because the data points are randomized at each selection step the resulting
parents are pressured to perform well on unique combinations of data points
leading to an increased diversity [34].
Variants of lexicase selection can be created by altering how the pool of poten-
tial parents is created, how these are then filtered and lastly how the different
data points are applied [33].
The basic Lexicase selection Algorithm shown in Algorithm 3.2 works well
on training data with discrete errors but does not do well in continues-valued
problems. In these problem domains, individuals are unlikely to have the same
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fitness, which would result in all individuals being filtered at once. This is why
La Cava, Spector, and Danai proposed an addition to the algorithm resulting
in the derivative Epsilon-Lexicase selection [8].
In Epsilon-Lexicase selection, filtering is applied, which is less strict by intro-
ducing an epsilon value as an absolute threshold in which the candidates are
not being filtered. Two variants of the pass condition pt are denoted as follows:

pti = IF[f ti < f t∗ + ε] (3.7)

pti = IF[f ti < ε)] (3.8)

In Equation 3.7 an individual or candidate i does pass on a specific data point
t if its fitness f ti on the data point is less than the sum of the best fitness f t∗
of all candidates on the data point and ε. Equation 3.8 is similar but the best
fitness f t∗ is omitted. The pass condition returns true for passing the respective
data point and the result is utilized by a filter, which removes the respective
candidates that do not pass from the pool.
The pass conditions in Equations 3.7 and 3.8 have the disadvantage that ε
has to be defined by the user, that the optimal ε value varies greatly for
different problems and a static ε value does not provide a continuing selection
pressure. These disadvantages are largely overcome by the dynamic variants in
Equations 3.8 and 3.10, which include the median absolute deviation (MAD)
of f t (the median of the absolute deviations from the median of the fitnesses
of all candidates on data point t) [8].

ε(f t) = MAD(f t) = median(|f t −median(f t)|) (3.9)

pti = IF[f ti < f t∗ + ε(f t)] (3.10)

pti = IF[f ti < ε(f t)] (3.11)

The pass conditions in Equations 3.7 and 3.10 define the passing in relation
to the best fitness while the pass conditions in Equations 3.8 and 3.11 do not,
which results in the effect that for the latter no parents might survive at all.
La Cava et al. differentiate between three different versions namely static,
semi-dynamic and dynamic ε-lexicase selection, which all use Equation 3.10.
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Static ε-Lexicase determines the best fitness f t∗ and ε(f t) once per generation,
in essence, it ignores the pool of remaining candidates. In contrast to that
semi-dynamic determines f t∗ from the remaining candidates that were not yet
filtered. Dynamic ε-Lexicase selection determines both f ∗t and ε(f t) from the
remaining candidates. In their experiments semi-dynamic and dynamic ε-
Lexicase performed best and La Cava et al. suggest to use the semi-dynamic
variant because its results show the lowest mean test ranking and the median
number of data points used per selection is higher than in the purely dynamic
version [35].

3.3.2 Multi-objective Selection

As explained in Section 2.5 bloat is an issue that needs to be controlled. Instead
of using the parsimony pressure method, which is a linear relationship between
the complexity of the solution and the fitness, this issue may be redefined as
a multi-objective problem. If the complexity measure is defined as the second
objective criterion, which is then minimized concurrently with the fitness of
the solutions, it can be solved as a multi-objective problem. This approach
removes the necessity to define the parsimony coefficient and it provides a more
efficient search for feasible solutions while simultaneously reducing bloat.
Multi-objective selection is usually by means of Pareto-dominance, which is
based on Pareto-optimality as defined in Definition 3.3 [11].

Definition 3.3 (Pareto-optimality). An element s is called Pareto-optimal
w.r.t. the objective functions fi, i = 1, ..., k if there does not exist any element
s′ in the search space Ω for which the following two properties hold:

fi(s
′) � fi(s) ∀i 1 ≤ i ≤ k (3.12)

fi(s
′) ≺ fi(s) ∃i 1 ≤ i ≤ k (3.13)

f(z) � f(x) ⇔ x has a fitness better than or equal to z

While Pareto-optimality is defined over the whole search space, Pareto-
dominance only considers the currently known solutions i.e. the population
in EA. An element s is then considered non-dominated if there does not exist
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any other element s′ in the current population for which the Equations 3.12
and 3.13 hold.
There are some theoretical and practical problems with traditional multi-
objective optimization regarding the usage in GP. One issue is that individ-
uals with the same objective properties are treated as non-dominated. This
results in identical or even just very similar individuals all being declared non-
dominated, which causes a severe lack of diversity in the population. Another
issue is the assumption that the two objectives, fitness and complexity, are
considered equal regarding the goodness of the solution when the actual goal
is to create individuals with better fitness. This generally causes a shift to
smaller individuals while neglecting the fitness because a small size is easier
and faster to achieve than a better fitness [36].
These issues were also encountered by Kommenda et al. when they employed
the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) in GPSR. With-
out any adaptions, the NSGA-II algorithm resulted in the GP population made
up entirely of individuals with only one node and GP not being able to evolve
larger more complex individuals with a better fitness [37].
Strength Pareto Evolutionary Algorithm 2 (SPEA-2), an evolutionary multi-
objective optimization algorithm, faced similar issues and has been used in GP
by making adaptions to the base algorithm [38].
One general adaption to multi-objective optimization for complexity reduction
in GP should be diversity control. One way to achieve this is by treating indi-
viduals with the same objective properties as dominated and to only keep one
of them [36]. To facilitate this effect even further Kommenda et al. discretized
the fitness values in GPSR by rounding to a fixed number of decimal places.
This causes that individuals that only differ in a very small neglectable amount
are still interpreted as equal regarding the fitness [37].

ParetoGP

ParetoGP is a multi-objective optimization algorithm for GP to reduce the
complexity of individuals by utilizing the non-dominated individuals of the
population of programs [39].
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In ParetoGP the non-dominated programs are saved in a cross-generational
archive, which is updated after each evolutionary iteration in GP. The con-
ventional population is created by choosing parents from the archive and the
previous generation’s population. The parents from the archive are chosen at
random because they are all considered equally as good. Another parent is only
necessary in the case of crossover, which is then chosen from the conventional
population with traditional selection mechanisms, e.g. tournament selection
based on fitness. Between the selected parents’, the traditional crossover is
then performed. From the newly created population and the current archive,
all non-dominated solutions are selected and saved as the new archive.
The basic ParetoGP algorithm is outlined in Algorithm 3.3 as pseudocode and
only differs from the StandardGP algorithm in Algorithm 2.1 in Lines 3, 7, 14
and 15. Lines 3 and 14 are newly added, while in line 7 instead of selecting
from the population we randomly select from the archive and in line 15 the
archive is returned instead of the population.

Algorithm 3.3 ParetoGP
Input: n = population size
Output: Archive
1: population ← init-population(n)
2: evaluate(population)
3: archive ← return-non-dominated(population)
4: while stopcondition 6= True do
5: new_pop ← ∅
6: for n do
7: parent ← random_selection(archive)
8: donor ← selection(population) . only based on fitness
9: operator ← choose_genetic_operator . Crossover / Mutation
10: child ← operator(parent, donor)
11: new_pop ← new_pop ∪ child
12: population ← new_pop
13: evaluate(population)
14: archive ← return-non-dominated(archive ∪ population)
15: return archive
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Complexity Measures

In Section 2.3.1 fitness measures were extensively talked about but deciding
on a fitting complexity measure for the multi-objective approach is more prob-
lematic. For example, complexity may be defined from the features of the
programs, such as tree-height, length, tree-depth. The issue is that these only
consider the form of the programs, i.e. the representation of the individuals
and not the mathematical complexity of the solution. Two different programs
with one only containing additions while the other only uses multiplications
can have the same amount of nodes, tree-height or length. But they would be
very dissimilar in their actual mathematical complexity. This problem high-
lights that it might be beneficial to take the mathematical complexity of the
solutions into account to determine which programs are more complex.
Vladislavleva, Smits, and den Hertog applied ParetoGP with the addition of
the novel complexity measure “Order of Nonlinearity”, which accounts for the
non-linearity of the solutions presented [40]. The “Order of Nonlinearity” recur-
sively defines the complexity by accumulating the complexity of all sub-trees.
The degree of a minimal Chebyshev approximation is included in several steps
as well.
Chebyshev approximations are polynomials that follow certain properties and
are called approximations if they reproduce the behavior of a given function
to a certain precision in a defined interval or set of input values. A Chebyshev
approximation is then declared “minimal” if it has the smallest polynomial de-
gree possible [40, 41].
Finding a minimal Chebyshev approximation includes the computation of the
approximation error for several Chebyshev polynomials of certain degrees. For
each individual, this is also repeated numerous times because they are needed
for several sub-expressions. This is why Kommenda et al. derived a new com-
plexity measure from the “Order of Nonlinearity” without using Chebyshev
approximations, which results in lower computational cost and still captures
the complexity sufficiently well [37]. This complexity measure is presented in
Definition 3.4.
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Definition 3.4 (Kommenda Complexity). For a node n with
op ∈ (terminals, functions) and the possible child nodes n1, n2, the
complexity comp(n) is determined by the class of op:

op = constant → 1

op = variable → 2

op ∈ (+,−) → comp(n1) + comp(n2)

op ∈ (×,÷) → (comp(n1) + 1)× (comp(n2) + 1)

op ∈ (x2) → comp(n1)
2

op ∈ ( 2
√
x) → comp(n1)

3

op ∈ (sin, cos, tan, exp, log) → 2comp(n1)

3.4 Further Related Works

Some other works in GP worth mentioning include Age-Fitness Pareto Op-
timization, Multiple Regression GP, Multi-Gene GP, and the Evolutionary
Demes Despeciation Algorithm.
Age-Fitness Pareto Optimization is inspired by the Age Layered Population
Structure Algorithm (ALPS) and tries to combat premature convergence by
introducing “age” of the individuals, the number of generations an individual
has persisted in the population. The age is increased every generation or inher-
ited by crossover and is used as a second objective criterion in a multi-objective
optimization method [42].
Multi-Gene GP adds another level to the representation in GP by represent-
ing individuals as the weighted linear combination of several individual pro-
grams [43]. A similar approach is used in Multiple Regression GP in which
each program is separated into its sub-expression, which are then recombined
with a weighted linear combination using multiple regression [44].
The Evolutionary Demes Despeciation Algorithm (EDDA) is an initialization
technique originally invented for the Geometric Semantic Operators introduced
in Section 3.2 [45]. In this approach, the programs are initialized by taking the
best individuals from a number of sub-populations, which have been evolved
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independently by separate GP runs for several generations. By a certain per-
centage, these sub-populations are created using geometric semantic operators
while the remaining populations use normal genetic operators.
An advancement to EDDA is the addition of using random sub-samples of the
training data set for the creation of each separate sub-population [46].
The importance of the initialized population, or rather the randomness of the
evolutionary process, has also been recognized in EA by using island popu-
lation models, which are also used to run EA more efficiently in parallel. In
these several separate sub-populations are evolved concurrently, which then
transfer individuals between each other from time to time [11].
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One of the goals outlined in Section 1.1 is the comparison of the performance
of GP against common regression methods. Some common regression meth-
ods include Polynomial Regression, Gradient Boosting, Neural Networks and
Gaussian process regression. As a baseline model Linear regression is utilized.
Comparing against Gaussian Process Regression is especially interesting as it
is also currently used in the automotive industry in the Bosch ECU software,
which is able to produce a model for the exhaust gas temperature [2].
Standard GP and two techniques described in Chapter 3, EPLEX and Pare-
toGP with the length and the Kommenda complexity of the programs as the
second objective, are compared against the other regression methods.
The following chapter will explain the sources and the procedure to generate
the training data and describe in detail how GP was implemented and give a
short overview of the employed regression methods.

4.1 Training Data

As mentioned in Section 1.1 two synthetic functions named f1 and f2 are used,
which are displayed in Equations 4.1 and 4.2 respectively. Both functions
have been supplied by IAV Powertrain Mechatronics Research and while they
are synthetic in nature they are inspired by real-world data from automotive
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applications.

f1 = f1a · f1b + f1c (4.1)

f1a = 0.5 + 0.2 · x0 + 0.3 · x1 − 0.2 · (x0 · x1)

f1b = 1− 0.3 · x2 − 0.1 · x22
f1c = 0.1− 0.1 · (x3 − 0.5)2

f2 = cos(2 · x0) + sin(3 · x1) (4.2)

Function f1 has four input variables (x0, x1, x2, x3) while function f2 has two
input variables (x0, x1). All input variables are in the domain [0, 1] and all
functions have one output variable y.
Since function f1 has more than three dimensions it can not be displayed
in a simple plot without omitting important information, which is why its
components f1a, f1b, f1c and a histogram of 2000 output values of f1 have been
plotted instead in Figure 4.1.
While f2 does contain the trigonometric functions sine and cosine the function
f1 does not and uses only the basic math operators in addition to the power
of two.
A practical problem encountered with the function f2 is that it is too simple
and GP exactly learns the function in most cases or comes very close to it.
One explanation is the syntax of the function, which is comparatively short
and not very complex. The absence of any real numbers in f2 also causes that
the function can be displayed without including multiplications and constants,
e.g. 2 · x0 can be written as x0 + x0.
Because the results end up very similar in most cases it makes it difficult
to compare different parameter settings. For that reason, another function
named f3 is used instead, which is an alternate version of f2 with some added
complexity. The function f3 is displayed in Equation 4.3.

f3 = 0.9 · cos(2.1 · x0) + 1.1 · sin(3.1 · x1) (4.3)

38



4.1 Training Data

(a) Plot of f1a (b) Plot of f1b

(c) Plot of f1c (d) Histogram plot of the output values of
f1 with a kernel density estimate

Figure 4.1: Plots showing the different components of f1, including a density
plot of f1 from 2000 output values

The Figure 4.2 shows both f2 and f3 with their respective contour plots. The
plots highlight that both functions are still very similar to each other with al-
most no visible differences existing. While both are still similar to each other
the added complexity in f3 should make it harder for GP to learn the func-
tion. Unfortunately, real-world data often contains noise from inaccuracies of
the sensors and sometimes also contains errors because of wrongly handled
data [47]. Therefore, GP should not only be able to learn the introduced
synthetic functions but also provide robustness against noise in the data. Syn-
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(a) Function f2 (b) Function f3

Figure 4.2: Plots of f2 and f3

thetic functions do not contain any noise or errors and to replicate the noise
found in real-world data Equation 4.4 is employed.

fσkn = fk +N (0,
σ

100
) (4.4)

The noise is generated by adding random values from a normal Gaussian dis-
tribution with the mean at 0 to the output values. The specific noise versions
are f 1

kn and f 5
kn of the functions f1 and f2. That is there are four additional

functions f 1
1n, f 5

1n, f 1
2n, f 5

2n.
Since the noise adds sufficient complexity to the data, function f2 was used
instead of the alternate version f3.

For each of the functions (f1, f 1
1n, f 5

1n, f2, f3, f 1
2n, f 5

2n) a data set with 2000
instances is created, with the input values in the range [0, 1]. The data sets
were generated in Python and saved in a CSV file with all values rounded to
the 18th decimal.
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4.2 GP Implementation

4.2 GP Implementation

An existing implementation of a GP framework is used to save time on the
implementation. That framework is then adapted to the needs outlined in
this thesis, i.e. an implementation of ParetoGP, EPLEX and the Kommenda
complexity.
Some of the existing frameworks that were looked into are ellenGP1, Dis-
tributed Evolutionary Algorithms in Python (DEAP)2 and gplearn3.
The framework employed in this thesis is gplearn because it is a relatively
simple and easy to understand implementation of GP, compared to ellenGP
and DEAP, which are rather complex. EllenGP is written in C++ and DEAP
is a framework for evolutionary algorithms in general and not only for GP.
Gplearn is written in Python3 and also extends the scikit-learn machine learn-
ing library.
The implementation of GP in gplearn is mainly oriented by A Field Guide to
Genetic Programming [12], that is standard GP with a tree-based representa-
tion as it was also introduced in Chapter 2. It also implements the initialization
methods “grow”, “full” and “half and half” as well as the basic genetic operators
subtree crossover, subtree mutation, and point mutation.
Subtree mutation was implemented using the headless chicken method, i.e.
subtree crossover with a randomly generated syntax-tree. In subtree crossover
the crossover point is not chosen at uniform, instead, the terminals (leaves)
in the tree have a 10% chance of being chosen while functions have a 90%
chance. This is done to prevent the swapping of just leaves and to facilitate
the swapping of more genetic material [5]. In this way, it is also done almost
universally in the field of GP [48].
Gplearn uses a syntax tree-based representation, which is internally saved in
prefix notation in a list datatype. Each function and terminal is one element
in the list.
As the selection method tournament selection is employed and the fitness can
be calculated with the MSE or the RMSE. For bloat prevention, the parsi-

1https://epistasislab.github.io/ellyn/
2https://deap.readthedocs.io
3https://gplearn.readthedocs.io
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4 Implementation

mony pressure method together with the length of individuals is implemented.
The length is defined as the number of nodes in the syntax tree, or equivalent
the number of elements in the prefix notation i.e. the list datatype.
The terminal set also contains ephemeral constants, which is another term for
a random number generator for real numbers.
All math operators for the function set are implemented using the NumPy
package for scientific computing in Python, which among others provides ar-
ray objects and the possibility to perform calculations on entire arrays in one
line of code [49]. By using the NumPy package all math operators in the
gplearn implementation work with arrays as inputs as well as with just scalar
values. This is an important functionality because the training data contains
columns for each of the different input variables, which can be passed as arrays.

Of the implemented math functions (+, −, ×, ÷, 2
√
x, log, −x, 1

x
, |x|, max,

min, sin, cos, tan) the operators division, square root, logarithm and inverse
have to be defined with protected versions (see Section 2.1).
The protected square root takes the square root of the absolute of a given value
and the protected inverse uses the protected division operator to perform the
calculation.
The protected division implemented in gplearn is the one recommended by
Koza [5]. However, it is imprecise and does not reflect the behavior of divi-
sion at the extremes very well. The implemented protected division returns
1 whenever the denominator is lower than 0.001, when the unprotected di-
vision operator would actually return higher values for lower denominators.
The protected division was changed accordingly to perform the unprotected
division until the absolute of the denominator is smaller than a specific ε-value
(in this case ε =1e-10). If it is smaller the ε-value is added to the absolute
of the denominator and the division is performed. The resulting value is then
multiplied with -1 if the original denominator is negative to reverse taking the
absolute of the denominator.
The protected logarithm was defined similarly to the protected division.
In Listing 4.1 the protected logarithm, the original and the new version of the
protected division are displayed as pseudocode.
The Kommenda complexity from Definition 3.4 in Section 3.3.2 has exponen-
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Listing 4.1: Protected Versions of Division and Log
1 EPS = 1e-10
2

3 old_protected_division(x1, x2):
4 if abs(x2) > 0.001: return x1/x2
5 else: return 1.0
6

7 new_protected_division(x1, x2):
8 abs_x2 = abs(x2)
9 if abs(x2) > EPS: return x1/x2

10 else: return sign(x2) * x1/(abs_x2 + EPS)
11

12 protected_log(x1):
13 abs_x1 = abs(x1)
14 if abs_x1 > EPS: return log(abs_x1)
15 else: return log(abs_x1 + EPS)

tial growth of the complexity value with the usage of the functions 2
√
x, sin,

cos, tan, exp, log (x2 is not used in gplearn). The practice has shown that the
growth frequently causes overflow errors (being in excess of 1e+308), resulting
in complexities that are declared as infinity in Python. For example, with
the original Kommenda complexity an individual calculating 9 (= dlog2 308e)
times the sine of a number larger than 5 would suffice to cause an overflow.
This undesired behavior is prevented by adjusting the Kommenda complexity
for the mentioned functions in a way that lessens the growth. The complexity
for 2
√
x is redefined as comp(n1)

1.15 while sin, cos, tan, exp, log are redefined
as comp(n1)

1.25.
EPLEX and ParetoGP are implemented as described in Section 3.3. The
EPLEX version implemented is semi-dynamic EPLEX, because it is the one
recommended by the authors of EPLEX.
One aspect of multi-objective optimization in GP is diversity control, which
is mentioned briefly in Section 3.3. Kommenda et al. added to the diversity
control by rounding the fitness of the individuals after a certain amount of
decimals (essentially discretizing the fitness), which causes that very similar
individuals are treated as equal [37]. This works well for the Pearson’s R2

employed by Kommenda et al., because it is in the range of [0,1] and the best
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value is 1.0, i.e. the values are getting larger.
However, for fitness measures like the RMSE zero is the best value, i.e. the
values will get smaller and have more leading zeros as decimals. This results
in the ignored differences between individuals increasing, leading to a growing
selection pressure until the rounding causes all individuals to have the same
fitness of zero. Instead, the fitness values are rounded to the four significant
digits. This is done by transforming the fitness values into the scientific nota-
tion (a float multiplied by a power of 10) and cutting off after three decimals.
For example, the number 0, 0987654 is equivalent to 9, 87654 ∗ 10−2 and will
then result in the value 9, 876 ∗ 10−2 = 0, 09876. This method has similarities
to binning.
Parsimony pressure is turned off for ParetoGP, which leaves the size control
solely in the responsibility of the ParetoGP algorithm. This only works to
some extent because ParetoGP does not prevent very large programs but aims
to build less complex versions. Moreover, it may lead to overfitting. Hence,
another addition to ParetoGP is hard limits on the length of the programs for
the ParetoGP archive [39]. There is also a limit on the minimum length to
exclude very simple programs that have an extremely bad performance, which
is detrimental to the evolutionary process, especially in the earlier generations.

4.3 Regression Methods

For a ready to use implementation of the regression methods the free software
machine learning library Scikit-learn for the python programming language is
employed [50].

Linear Multiple Regression

Linear Multiple Regression minimize the residual sum of squares of the errors
(the least squares method) between the linear relationship of one or more
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predictors variables (x1,...,xk) and one target variable y.
The general additive multiple regression model equation is [15]:

Y = β0 + β1x1 + ...+ βkxk + ε (4.5)

Polynomial Regression

The polynomial regression employed is a special case of linear regression, which
uses polynomial features of the variables on which the linear regression is then
performed.

[x1, x2]order≡2 → [x1, x2, x1 · x2, x21, x22] (4.6)

In Equation 4.6 an example is displayed, in which the two input features
x1, x2 are transformed into the second-order polynomials. The square brackets
denote the set of features used for the linear regression. Instead of using the
simple input features on the left side of the arrow the set on the right side is
used. By doing this simple linear regression is extended to solve polynomial
problems. For Polynomial Regression the input features can be transformed
to polynomials of an arbitrarily chosen n-order.
In the experiments, the fourth-order polynomials are constructed for each data
set.

Gradient Tree Boosting Regression

Gradient Tree Boosting is an ensemble method, which combines several weak
learners (regression decision trees) into a strong learner. Weak learners are
additively introduced to improve the model by using gradient descent on the
error of a loss function [51].
In the experiments, the algorithm uses 400 estimators with a maximum depth
of the trees set to 3.
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Gaussian Process Regression

A Gaussian process describes a distribution over functions and is defined by
a mean function and a covariance function, also called the kernel. In the
regression process, the model is defined in a probabilistic way from a joint
(multivariate) Gaussian distribution over a finite number of variables by maxi-
mizing the log-marginal-likelihood of the kernel parameters. From that model,
a posterior predictive distribution can then be computed [52].
In the experiments, the kernel 1.0 ·RBF(1.0) is used where RBF is the Radial
Basis Function kernel. The optimizer used is the L-BFGS-B, the limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm with the extension to
handle box constraints.

Multi-layer Perceptron

A multi-layer perceptron consists of an input layer, representing the input
features, several hidden layers, and an output layer. Each hidden layer
consists of neurons that are fully connected with the previous layer. In each
neuron, the values from the previous layer are transformed into an output by
using a weighted linear summation and a non-linear activation function, such
as a rectifier or a hyperbolic function [11].
In Multi-layer Perceptron Regression (MLPR) a neural network is trained
using backpropagation and no activation function is used in the output
layer [50].
An optimal number of layers and number of neurons at each layer were
tested beforehand. The MLP finally used in the experiments contains
four hidden layers with 200 neurons each, as the activation function a
rectified linear unit is employed and the solver used is the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm. The MLP was
learned with a maximum of 200 iterations with a tolerance at 1e-8 (training
automatically stops when no improvement is shown in this range).
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This chapter outlines and presents the experimental evaluation of the GP
implementation introduced in Chapter 4. The central goal of the experiments
is to answer the questions regarding the performance of GP, which are stated
in Section 1.1:

• What parameter configurations for GP produce the best results?

• How does GP perform as a regression technique?

• How well does GP perform against established regressions methods?

The performance of GP is evaluated based on the result of the learning regard-
ing the training data generated by the synthetic functions f1 and f3 introduced
in Section 4.1. The result of the learning is then finally evaluated with the
RMSE on the test data. In the evaluation the GP algorithms ParetoGP (PGP)
with the length complexity, PGP with the kommenda complexity, EplexGP
and StandardGP are used.
It is first evaluated what parameter settings produce the best results for the GP
algorithms. In Section 5.2 experiments are first run to find the best parameter
for the parsimony coefficient and in Section 5.3 the experiments are conducted
and evaluated regarding the parameter of the crossover probability. The algo-
rithms are compared against each other on the best parameter settings in more
detail in Section 5.4. In Section 5.5 GP is also evaluated regarding its han-
dling of noise in the training and test data (f 1

1n, f 5
1n,f 1

2n, f 5
2n). Since the noise

adds sufficient complexity to the data, the function f2 was used instead of the
alternate version f3. In the following Section, it is evaluated how the results
of GP regression compare to the results of the established regression methods
(Linear, Polynomial, Gradient Tree Boosting, Gaussian Process, Multi-layer
Perceptron) introduced in Section 4.3.
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5.1 Experimental Setup

All possible parameter settings that are relevant for the GP Algorithm are
shown in Table 5.1.

Table 5.1: GP Algorithm with possible parameter settings and the values they
are set on. The last column contains a question mark if the value is
not fixed and depends on the experiment being run.

Parameter Value
Generations 500 | 1250
Population Size 800
ParetoGP lengths Determined in Section 5.2
Selection EPLEX | Tournament
Tournament Size 11
Elitism Size 1
Constants Range (1e-10, 2)
Initialization Method ramped half and half
Initialization Depths (3, 6)
Function Set f1 , f

1
1n, f

5
1n={+, −, ×, ÷}

f3 , f
1
2n, f

5
2n = {+, −, ×, ÷ sin, cos}

Parsimony Coefficient Determined in Section 5.2
P(C=Crossover) Determined in Section 5.3
P(Subtree Mutation) (1 - P(C)) / 2
P(Point Mutation) (1 - P(C)) / 2
P(Point Replace) 0.05

The parameter ParetoGP lengths determines the minimum and maximum
lengths of the programs that are allowed to be in the ParetoGP archive. The
selection mechanism is determined by Selection, which is always used to draw
programs from the population. That means Pareto optimization can also be
used together with EPLEX, but is not used to together to evaluate them
separately. Constants Range determines the range in which the ephemeral
constants (random real numbers) are generated when being chosen from the
terminal set. Initialization Depth is the minimum and maximum depth of the
programs for the initialization method. The last four parameters are probabil-

48



5.1 Experimental Setup

ities for the different genetic operators. P(Point Replace) is for point mutation
only and is the probability that any given node of a program is mutated.
The condition P (Crossover)+P (Subtree Mutation)+P (Point Mutation) ≤ 1.0

has to be satisfied. If the probabilities sum up to less than 1.0 the remaining
probability (to reach a sum of 1.0) is used for a simple reproduction i.e. copy-
ing a program as is into the next population. However, in the experiments,
this reproduction is avoided and to ensure the survival of the best program
elitism is used instead. That is also why Elitism Size is set to 1, instead of a
larger size.

Fixed parameter values were in part determined from small isolated experi-
ments to be in an acceptable value range for good results.
Koza recommends a minimum population size of 500 and setting it as high
as the GP system used can handle adequately [5]. The GP implementation
in this thesis is limited by its usage of the main memory, which depends on
the population size, the length of the programs and the number of jobs run
in parallel. On a machine with 8 GB of RAM, a population size of 100,000
with one job in parallel could be run comfortably, although very slow in execu-
tion time. Academic literature regarding GP frequently uses population sizes
arouind 1, 000, which is why the population size is set to 800 for the experi-
ments [8, 34, 53].
An approximate good Tournament Size can be determined statistically be-
forehand. The probability of the best individual to have at least i descendants
in the new population is equal to the probability of the best individual to be
chosen because it always wins the tournament. That probability is described
by the binomial distribution, with which it is possible to derive an indication
for how large the size k of the tournament has to be to adequately represent
the best individual in the new population. Generally, it is advisable to have
the diversity in the population not affected negatively, i.e. have a low selec-
tion pressure [11]. For example, with a tournament size of 30, the expected
number for the best individuals descendants is 18 (2.25% of a population of
800). However, a tournament size of 30 has the negative effect of converging
after a few generations. The same is observed with a tournament size of 20. In
decremental steps of 3 smaller tournament sizes were tested and a tournament
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size of 11 has shown to produce a low convergence rate.
The Initialization Depths are commonly set to (2, 6) [5]. From the depths,
it is possible to calculate the lengths (amount of nodes) of the programs to
determine acceptable values. If it is hypothetically assumed that there are no
unary functions in the function set all syntax trees of the programs are binary
trees. The number of nodes in a binary tree with depth j is 2j − 1.
Programs with depth 2 have a length of 3 and programs with depth 6 the length
63. The synthetic functions f1 and f3 have the lengths 40 and 13, which means
that syntax trees with a length of 3 do very poorly. An additional effect of
choosing a higher minimum length is the introduction of more genetic material
because the average amount of nodes per tree is higher. Larger programs also
work better with the crossover operator, because there are more nodes beside
the root and the leaves available as crossover points.
The minimum initialization depth is therefore set to 3 instead of 2, producing
syntax trees with the minimum length of 7. A depth of 4 (length of 15) pro-
duces trees already too large.
The Function Set is adjusted depending on which synthetic function is cur-
rently used. For f1 the function set (+, −, ×, ÷) is used and f3 also includes
the functions (sin, cos). f 1

1n and f 5
1n use the same function set as f1 and f 1

2n

and f 5
2n use the same function set as f3 . In a normal experiment setting with-

out a priori knowledge about the synthetic functions that produce the training
data experiments can be run to determine fitting function sets.

Before beginning to compare the different GP algorithms the best Parsimony
Coefficient and the probabilities for the genetic operators are determined from
experiments described in the following sections. In all experiments, each pa-
rameter setting or algorithm evaluated is run 31 times with different random
seeds. Each run produces an RMSE from the best GP program on a training
and test data set. Each data set contains 2000 instances, which are split 50:50
into a training and test data set. The training set is used for GP to learn,
while the test data set is only used afterward for evaluation purposes. Of the
31 runs, the median is determined by the RMSE on the test data, which will
then be taken to be compared to other parameter settings. Each run also
records the length and Kommenda value of the best GP program produced.
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The Mann–Whitney U test is used to determine if the differences in the re-
sults are significant. All tests are conducted pair-wise using the result with the
best RMSE and are afterward corrected with the Holm-Bonferroni method for
multiple comparisons. If the differences are significant a p-value smaller than
0.01 is produced.
The experiments for the parsimony parameter and the genetic operators are
run for 500 generations, while the experiments to determine the best GP al-
gorithm are run for 1250 generations.
The parameters for P(Subtree Mutation) and P(Point Mutation) are set to
have the same value at all times, which is why they can be calculated auto-
matically from the crossover parameter: (1 − P (C))/2. The rationale is that
the experiments for the crossover are conducted to find differences between
the crossover and mutation operators and not between the mutation opera-
tors. Another benefit is that the experiments do not have to be run for three
different parameter configurations.
The parsimony coefficient and the probabilities for the genetic operators are
not adapted for the synthetic functions with noise f 1

1n, f 5
1n, f 1

2n, f 5
2n to compare

how GP handles noise with the settings for the noiseless versions. Adapting
the parameters might also introduce a bias towards the noise. Additionally, it
is unfeasible to also run the experiments for the noise versions because of the
limited computational resources.

5.2 Parsimony Parameter

Table 5.2 shows the median and IQR of the RMSE on the test data and
length for all examined parsimony coefficient values of the synthetic functions
f1 and f3. The experiments were run by using StandardGP with length as
complexity and tournament as selection; however, the parsimony coefficient
is also used in EplexGP. The parameters for the genetic operators were left
at the default values. StandardGP and EplexGP use the same parsimony
coefficient to make the results more comparable to each other, the parsimony
method is not used in ParetoGP. The parsimony coefficient is also heavily
dependent on the problem GP is trying to learn, although the algorithm used
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and other parameters that influence the length have an effect as well.
That the best parsimony coefficient is dependent on the kind of problem is
reflected in the results in Table 5.2, in which f3 has shown to produce the
best results with a significantly lower parsimony coefficient than f1.

Table 5.2: Median and IQR of the RMSE on the test data and Length for
functions f1 and f3 using different parsimony values. RMSE and
Length values marked with an asterisk are significantly different
from the row in bold, which indicates the best RMSE, i.e. the
lowest value.

f3 f1

Parsimony
RMSE Length RMSE Length

Median IQR Median IQR Median IQR Median IQR

7e-02 .3800 * .0000 3 * 0.0 .0979 * .0000 1 * 0.0
4e-02 .3800 * .0000 3 * 0.0 .0979 * .0000 1 * 0.0
1e-02 .0819 * .2968 9 * 5.0 .0979 * .0000 1 * 0.0
7e-03 .0621 * .0842 13 * 5.5 .0979 * .0000 1 * 0.0
4e-03 .0465 * .0312 16 * 13.0 .0979 * .0299 1 * 4.0
1e-03 .0372 .0268 41 * 19.0 .0381 * .0742 13 * 19.0
7e-04 .0418 .0162 49 * 19.5 .0337 * .0532 15 * 24.0
4e-04 .0310 .0253 64 * 21.5 .0255 * .0575 27 * 36.0
1e-04 .0281 .0212 99 54.5 .0172 * .0079 55 * 38.0
7e-05 .0259 .0240 118 55.5 .0168 .0066 63 * 43.0
4e-05 .0264 .0238 160 116.5 .0153 .0085 107 * 81.0
1e-05 .0287 .0250 238 * 155.0 .0127 .0095 163 * 107.0
7e-06 .0344 .0369 289 * 117.0 .0129 .0116 187 118.0
4e-06 .0389 .0264 395 * 224.5 .0106 .0101 259 152.0
1e-06 .0293 .0299 594 * 295.5 .0111 .0111 503 * 370.0

The results of the parsimony coefficients are further checked for significant
differences using the Mann–Whitney U test with Holm–Bonferroni correction.
The tests are conducted pair-wise with the best RMSE (see Table 5.2) for the
values of the RMSE on the test data set and the length values. If a p-value
smaller than 0.01 is produced the differences are significant.
Significant different values in Table 5.2 are marked with an asterisk. There are
insignificant differences in the parsimony coefficient range of 1e-03 to 1e-06.
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However, the test results on the length are significantly different outside of
the range 1e-04 to 4e-05. Higher parsimony coefficient values automatically
produce smaller programs, because they penalize larger programs more. The
parsimony value 1e-03 is selected as the best value because it produces smaller
programs while having an insignificant difference in the quality of the result
(to the parsimony of 7e-05). The median length for 1e-03 is almost three times
smaller than it is for 7e-05.
The test results for f1 on the RMSE show insignificant differences in the range
7e-05 to 1e-05. Following the same argumentation as for f3 the value 7e-05 is
determined the best. The median length is four times smaller for 7e-05 com-
pared to 4e-06, which is a more prominent difference than it is for the chosen
parsimony for f3.
Lower parsimony coefficients than 1e-06 (e.g. 7e-07) are not included in the
experiments because values that low produce programs that have lengths in
excess of 900. Programs of very large lengths frequently cause stack overflows
in the parser of the GP implementation for some output values, such as the
Kommenda complexity. Programs that large are also ineffective and too large
programs are prone to overfitting, which is important to prevent especially for
data in which noise is included.
The experiments for the parsimony coefficient also give an indication for the
ParetoGP lengths parameter. An upper limit for the minimum length in Pare-
toGP lengths can be derived from the length of the synthetic functions used
for the training of GP. Function f1 has a length of 40 and f3 a length of 13.
However, programs that represent good sub-solutions should be accepted as
well and usually, a priori knowledge about the perfect solution length is not
available. It could be observed that programs with lengths smaller than 5 have
a performance of very low value and can be discarded without repercussions.
To produce smaller programs the parsimony coefficients for f1 and f3 were
chosen at the highest value that still resulted in non-significant values to the
best median RMSE, while the idea in ParetoGP is that through Pareto opti-
mization programs are automatically produced smaller. That reasoning is also
why the maximum length can be chosen the same for f3 as it is for f1. The
maximum length is generally maintained as a safety, to ensure the fast and
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errorless execution of GP and to prevent overfitting [39].
The maximum should be set to something higher than what the chosen parsi-
mony for f1 (7e-05) produced as median length and can be set lower than the
parsimony, which resulted in the best RMSE. The median length produced
by the parsimony value between the best and the chosen parsimony for f1 is
selected as the maximum length allowed in the archive. The median length
was rounded down, which results in 160.

5.3 Crossover and Mutation Parameters

From the experiments for the parsimony parameter, it is concluded that the
best parsimony coefficient values are 7e-05 for f1 and 1e-03 for f3, which are
subsequently used to conduct the experiments for the crossover and mutation
parameters.
Table 5.3 shows the median and IQR of the RMSE on the test data and the
median length for the crossover probabilities from 1.0 to 0.0 in steps of 0.1
for functions f1 and f3. The RMSE values for f1 are generally better than
for f3, the RMSE is however not suitable for comparisons across different
test problems. For comparisons across test problems, the R2 introduced
in Section 2.3.1 is usually employed. A performance comparison is not the
intention of this experiment.
The best crossover value seems to differ substantially across both test prob-
lems and the different GP algorithm combinations. The experiments’ results
are tested for significant differences using the Mann–Whitney U test with
Holm–Bonferroni correction. This is done pair-wise for the RMSE on the test
data set and the Length values using the values from the row with the best
result, which is marked in bold. If a p-value smaller than 0.01 is produced
the differences are significant. Significant different values in Table 5.3 are
marked with an asterisk.The test results for f1 in Table 5.3 surprisingly shows
significant differences only in the lower and upper end of the crossover value
spectrum.
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Table 5.3: Median and IQR of the RMSE on the test data and Length for functions f1 and f3 using different crossover probabilities. RMSE and Length
values marked with an asterisk are significantly different from the row in bold, which indicates the best RMSE, i.e. the lowest value. The last
two rows only compare the crossover values 1.0 and 0.0 against each other.

PGP Length PGP Kommenda StandardGP EplexGP

Crossover
RMSE Length RMSE Length RMSE Length RMSE Length

Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR

function f1
1.0 .0390 * .0490 67 122.0 .0534 * .0710 31 84.0 .0374 * .0709 31 60.0 .0489 * .0707 51 * 59.0
0.9 .0132 .0119 119 101.0 .0132 .0203 105 106.0 .0177 .0301 57 68.0 .0099 .0017 93 45.0
0.8 .0198 .0199 81 98.0 .0123 .0182 113 88.0 .0166 .0169 63 43.0 .0093 .0022 77 49.0
0.7 .0151 .0154 75 94.0 .0139 .0125 67 108.0 .0179 .0143 65 43.0 .0091 .0014 75 20.0
0.6 .0217 .0147 97 114.0 .0187 .0214 97 92.0 .0190 .0147 57 28.0 .0098 .0020 75 31.0
0.5 .0144 .0111 75 88.0 .0118 .0087 97 96.0 .0169 .0112 63 36.0 .0089 .0017 83 46.0
0.4 .0165 .0205 47 64.0 .0147 .0121 83 84.0 .0182 .0107 51 41.0 .0095 .0017 69 35.0
0.3 .0208 .0103 37 63.0 .0147 .0133 43 68.0 .0159 .0134 51 28.0 .0097 .0021 65 28.0
0.2 .0211 .0120 37 * 38.0 .0184 .0123 27 * 46.0 .0180 .0061 39 33.0 .0102 .0022 67 33.0
0.1 .0213 * .0081 23 * 25.0 .0182 * .0185 27 * 31.0 .0189 .0122 33 22.0 .0107 * .0018 57 * 35.0
0.0 .0267 .0162 21 * 10.0 .0205 * .0119 21 * 15.0 .0199 .0117 25 * 12.0 .0126 * .0043 43 * 22.0
1.0 .0390 * .0490 67 122.0 .0534 * .0710 31 84.0 .0374 * .0709 31 60.0 .0489 * .0707 51 59.0
0.0 .0267 .0162 21 10.0 .0205 .0119 21 15.0 .0199 .0117 25 12.0 .0126 .0043 43 22.0

function f3
1.0 .0485 * .0472 95 * 115.5 .0276 .0300 131 61.0 .0451 * .0257 52 * 24.0 .0349 .0164 46 26.0
0.9 .0352 .0305 44 110.0 .0263 .0168 104 110.5 .0356 .0312 41 24.5 .0294 .0195 40 23.0
0.8 .0296 .0142 35 61.5 .0351 .0175 38 79.0 .0372 .0268 41 19.0 .0298 .0176 41 22.5
0.7 .0299 .0159 25 46.0 .0291 .0163 31 51.0 .0352 .0256 45 31.0 .0273 .0136 43 24.5
0.6 .0333 .0201 15 41.0 .0338 .0227 26 44.0 .0351 .0230 37 24.5 .0292 .0105 41 15.0
0.5 .0308 .0162 19 37.5 .0351 .0168 22 * 38.5 .0281 .0148 32 27.5 .0300 .0165 34 23.5
0.4 .0267 .0159 24 29.5 .0351 .0145 18 * 24.0 .0351 .0234 31 16.5 .0253 .0136 32 11.0
0.3 .0347 .0121 14 11.0 .0351 .0146 18 * 25.5 .0302 .0230 27 16.0 .0304 .0156 34 11.0
0.2 .0220 .0158 20 20.5 .0295 .0178 32 42.5 .0369 .0222 30 21.0 .0274 .0173 35 19.0
0.1 .0282 .0153 19 17.0 .0351 .0141 15 * 11.5 .0351 .0175 26 17.0 .0301 .0239 33 15.0
0.0 .0333 .0114 17 16.5 .0303 .0181 19 * 19.0 .0350 .0167 26 15.5 .0337 .0179 27 13.0
1.0 .0485 * .0472 95 * 115.5 .0276 .0300 131 * 61.0 .0451 .0257 52 * 24.0 .0349 .0164 46 * 26.0
0.0 .0333 .0114 17 16.5 .0303 .0181 19 19.0 .0350 .0167 26 15.5 .0337 .0179 27 13.0
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The tests for PGP Length and StandardGP even show insignificant differences
for the crossover value 0.0 for the RMSE, although PGP Length shows
significant differences for 0.1.
Nevertheless, the results of the test for PGP Kommenda and EplexGP show
significant difference even for crossover with 0.0 and 0.1.
In general, the crossover value 0.0 produces better results than the crossover
value 1.0. These results may convey that the mutation operators are more
powerful and are more relevant for a successful GP run.
Across all tests results for f3 in Table 5.3 there are only significant differences
in the RMSE using PGP Length and StandardGP for crossover with 1.0.
Similar to the results for f1 this can also be interpreted as the mutation
operators being more powerful.
The length values for f3 on PGP Kommenda are significantly different in some
cases, while they are in none for PGP Length besides for crossover 1.0. This
can be explained by the fact that the significance test for PGP Kommenda
was produced with the length value of the crossover with 0.9, which produces
programs of larger length compared to the crossover with 0.2 in PGP Length.
Examining the hypothesis that either genetic operator is more powerful the
crossover values 0.0 and 0.1 are tested for significant differences using the
Mann–Whitney U test. The results are displayed in Table 5.3 in the last two
rows for each function f1 and f3. For f1 the difference between 0.0 and 1.0
are significant, while f3 generally shows insignificant differences (excluding
PGP Length). While it can be argued from the results, that the mutation
operators are more powerful for f1, the addition of the crossover operator has
shown to produce significantly better results in some cases. The same can not
be stated in case of function f3, for which the results are ambiguous for both
significance tests between crossover 1.0 and 0.0 and all crossover values.
An interesting result from the significance tests is that the differences in the
lengths for f1 are insignificant and for f3 they are all significantly different.
From Figure 5.1a it can be observed that for f1 a higher crossover probability
together with the mutation operators also produces larger programs. For f3
the lengths differ less than they do for f1. Surprisingly, the behavior of the
crossover with 1.0 differs strongly between f1 and f3. Crossover with 1.0

56



5.3 Crossover and Mutation Parameters

produces smaller programs for f1 than for crossover with 0.9 or 0.8, while for
f3 the crossover with 1.0 produces larger programs than for crossover with 0.9
or 0.8. This is especially the case for both PGP Length and PGP Kommenda.
Subtree crossover causes growth in a program if the subtree it replaces is

(a) Lengths for f1 (b) Lengths for f3

Figure 5.1: Median lengths produced by different P(Crossover)

smaller than the one being inserted. However, subtree mutation works in the
same way by choosing a crossover point. The difference is that the subtrees
for subtree mutation are created randomly according to the parameter
Initialization Depths and Initialization Method. That means on average the
subtrees inserted by subtree mutation have the same length while the size
of the subtrees inserted by subtree crossover depends on the size of the
programs with the best performance. The best programs for f1 tend to be
larger programs than for f3, which means the growth introduced by subtree
crossover is larger as well. Additionally, subtree crossover only introduces
growth into the population if these larger programs produce a better fitness.
For f1 the programs may be smaller with a crossover at 1.0 because the
crossover does not create better and larger programs, which is different for
crossover with 0.9 in which new genetic material is introduced from the
mutation operators, which can be utilized more effectively for the crossover to
produce larger programs.
For f3 the crossover with 1.0 produces larger programs because the effect
of the mutation operators may be missing, which generally tend to produce
programs of smaller size even if the crossover is included.
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The effect of behaving differently using only crossover could also be caused
by the fact that the perfect solutions are of different length, function f1 has a
length of 40 and f3 a length of 13.
The crossover probability 0.5 is selected as the best for every algorithm and
function combination, which is also a value frequently used in GP [12]. The
value is chosen the same for each algorithm to make them more comparable
against each other. This can also be done because the crossover value 0.5 does
not show a significant difference for any algorithm. The value 0.5 produces
the best results for f1 using PGP Kommenda and EplexGP. The best value
for f1 using PGP Length is 0.9 and 0.5 does not produce significantly different
results. The same is true using StandardGP, which has 0.3 as the best value.
For f3 only StandardGP produces the best results using a crossover probability
of 0.5. However, PGP Length, PGP Kommenda, and EplexGP do not produce
significantly different results when using crossover with 0.5. PGP Kommenda
even produces significantly smaller results using a crossover probability of 0.5,
compared to 0.9.

5.4 Best GP Algorithm

From the experiments for the parsimony and the crossover parameter, it is
concluded that the best parsimony coefficient values are 7e-05 for f1 and
1e-03 for f3 and the best crossover parameter is 0.5, which are the values
subsequently used to conduct the experiments for the best algorithm. The
values used for the ParetoGP lengths parameter are (5, 160).
Varying from the previous experiments for the parsimony and crossover
parameter the experiments for the best algorithm are run for 1250 generations
each, instead of 500.
Figures 5.2a and 5.2b show boxplots of the RMSE on the test data for
functions f1 and f3. The horizontal line inside each box is the median of the
data, while the box represents the interquartile range (between the lowest
25% and the highest 75%). The whiskers at each end respectively depict 1.5
times the lower and upper quartile and every data point outside that range is
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an outlier, which is plotted as a diamond shape.
For function f1 EplexGP seems to be the clear winner and also is the algorithm
with the lowest interquartile range, which means that it provides the best
consistency. From all algorithms EplexGP also is the only one producing
outliers outside the lower quartile, while all other algorithms only produce
outliers outside the upper quartile. The interquartile ranges of the boxplots
overlap only slightly, which displays how varied the results of the different
algorithms are.

(a) for f1 (b) for f3

Figure 5.2: The results of the best algorithm experiment displayed as boxplots
with the RMSE for the test data.

For function f3 PGP Kommenda produces the best median RMSE on the test
data. Generally, the interquartile ranges of the results overlap considerable
and all algorithms seem to be producing results in the same intermediate
range. The algorithms employing the parsimony method (EplexGP and
Standard GP) do worse on function f3 and also are the only ones producing
outliers outside the upper quartile. The results could be connected to the
fact that f3 is considerable smaller than f1, and thus harder to control with
the parsimony method. Another explanation could be that the parsimony
coefficient is not chosen optimally for f3. ParetoGP seems to be able to
adequately exploit its advantage of using the Pareto optimization principle
by producing better results, instead on relying on the parsimony method.
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ParetoGP Kommenda produces better results than ParetoGP Length for both
functions.
In Table 5.4 the results of the experiment are displayed with the R2 (coefficient
of determination) instead of the RMSE making it possible to compare the
results for the functions f1 and f3 against each other. The table displays the
same results shown in the Figures 5.2a and 5.2b, but with the R2 instead
of the RMSE and the table also lists the median lengths produced by the
algorithms and the IQR of the R2 and the length.
To evaluate if the differences are significant, the results are tested for
significant differences using the Mann–Whitney U test. This is done pair-wise
for the R2 and the Length with the values from the row containing the best
R2 on the test data set, which is marked in bold. If a p-value smaller than
0.01 is produced the differences are significant. Significant different values in
Table 5.4 are marked with an asterisk.

Table 5.4: Median and IQR of the R2 on the test data and Length for func-
tions f1 and f3. R2 and Length values marked with an asterisk are
significantly different from the row in bold, which indicates the best
R2, i.e. the highest value.

f1 f3

Algorithm
R2 Length R2 Length

Median IQR Median IQR Median IQR Median IQR

EplexGP .9921 .0030 75 51.0 .9977 .0031 37 21.5
StandardGP .9735 * .0274 61 30.0 .9974 .0032 21 26.5
PGP Kom. .9858 .0173 125 68.0 .9989 .0030 28 55.0

PGP Length .9827 * .0198 113 64.0 .9981 .0030 23 26.0

For f1 the only algorithm producing insignificant results compared to EplexGP
is PGP Kommenda. The experiment for PGP Kommenda results in a median
length almost double compared to the median length of EplexGP. However,
which is not a significant difference according to the significance test.
For f3 none of the algorithms produce significantly different results either for
the R2 or the length. With an R2 in the range of 0.998 the GP algorithms
also perform better for f3 than for f1. From Figures 5.2a and 5.2b it appears
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that the interquartile ranges for f3 are generally larger than for f1, because
the RMSE is used which is not suited for comparisons across different data
sets. Table 5.4 shows that the interquartile ranges for f3 are actually smaller
than they are for f1. Better results and a smaller interquartile range might
convey that it is easier for GP to learn f3 than f1, which is something that
seems reasonable since function f3 is smaller in length and less complex than
f1. That also means that f1 being the harder function to learn is the better
suited function to evaluate how well the GP algorithms perform.
The results for f3 in Table 5.4 are also rather inconclusive in regard to what
algorithm produces the better results, since all results have insignificant dif-
ferences.
Something that is of interest in Evolutionary Algorithms is the convergence
behavior of the algorithms. The runs producing the median RMSE on the test
data are plotted over time (i.e. the generations) in Figures 5.3a and 5.3b to
compare the convergence.
From Figure 5.3a it can be concluded that StandardGP and EplexGP con-
verge rather early for f1. For both algorithms this seems to be the case after
about 100 to 200 generations with only minor improvements afterwards. The
same can be said for f3 in Figure 5.3b. For f3 StandardGP and EplexGP
also show oscillation in the performance in the later generations, which seems
to occur because there is an “equilibrium” between the fitness and the length
together with the parsimony coefficient. This results in individuals with a
shorter length but a worse fitness being chosen over individuals with a longer
length but a better fitness and vice versa, due to the penalty added by the
parsimony method. This would support the earlier suspicion in the beginning
of this section that the parsimony coefficient value for f3 is not optimal or the
parsimony method not being very suitable for small individuals.
PGP Length and PGP Kommenda create fitness plateaus for f1, which only
last for some generations and displaying major improvements in generations
as late as 700 and 1100. For f3 this is only true for PGP Kommenda, while
PGP Length converges after about 400 generations. ParetoGP Length uses the
length as the second optimization criterion and because it has a small discrete
integer value range it allows for a lesser number of individuals in the archive
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(a) for f1

(b) for f3

Figure 5.3: The runs producing the median RMSE plotted for each generation.
The values plotted are the RMSE on the training data produced
by the best individual from the current generation.

than PGP Kommenda does. Since f3 generally requires shorter individuals,
the number of individuals in the archive in PGP Length is automatically even
smaller than for PGP Kommenda. For example, that means if the best indi-
vidual has the length 20, all other individuals in the non-dominated archive
of the ParetoGP algorithm have to have a worse fitness and a smaller length.
In the example, the non-dominated archive would automatically be limited
to a maximum number of 20 individuals since the lengths are always integers
numbers. A new individual would then always have to beat an already exist-
ing individual in the archive to be included. This effect can also be observed
in Figures 5.4a and 5.4b, in which the non-dominated archives of the Pare-
toGP algorithm from different generations of f1 and f3 are plotted. In both
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(a) for f1 (b) for f3

Figure 5.4: Non-dominated archives of the ParetoGP algorithm for different
generations for PGP Length.

Figures, a clustering behavior can be observed with each length in the upper
limits represented each by one individual. This is especially apparent from
Figure 5.4a in which the non-dominated archive in generation 1249 looks sim-
ilar to a line plot. This behavior seems to be reduced when using a complexity
measure such as Kommenda, which allows for greater diversity in the values
it produces. This can be observed from the plotted non-dominated archives
in Figures 5.5a and 5.5b. Another desirable effect from using the Kommenda

(a) for f1 (b) for f3

Figure 5.5: Non-dominated archives of the ParetoGP algorithm for different
generations for PGP Kommenda.
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complexity seems that instead of only producing individuals with a better fit-
ness (see generation 800 and 1249 in Figure 5.4a), it is more likely to also
produce individuals with a lower complexity (see generation 800 and 1249 in
Figure 5.5a). The non-dominated archives in Figure 5.4a move only to the left,
while in Figure 5.5a they move to the left and down.
For PGP Kommmenda the archives also overlap slightly, because some indi-
viduals are not replaced by better or shorter individuals, which is different
from PGP Length, where there is almost no overlap between the archives.

5.5 Noise Robustness

The algorithms are run for the functions f 1
1n, f 5

1n, f 1
2n, f 5

2n to evaluate how
robust they are towards noise in the data. The noise versions use the same
settings as the noiseless versions of the functions.
From the experiments for the parsimony and the crossover parameter, it is con-
cluded that the best parsimony coefficient values are 7e-05 for f1 and 1e-03 for
f3 and the best crossover parameter is 0.5, which are the values subsequently
used to conduct the experiments for the noise robustness. The values used for
the ParetoGP lengths parameter are (5, 160).
Table 5.5 shows the median and IQR of the R2 on the test and training data
and the median length for the functions f 1

1n, f 5
1n. Table 5.6 shows the same

for functions f 1
2n, f 5

2n. The experiments’ results are also tested for significant
differences using the Mann–Whitney U test.
In general, the algorithms are able to handle the function f 1

1n very well. Com-
paring the results on the training and test data set, the results are better on
the test data set, which signifies that no overfitting seems to occur.
This changes when using f 5

1n for which the results are noticeable worse than
for f 1

1n. The results on the test data set are also worse than on the training
data set, which might indicate that the algorithms do overfit on the training
data.
Comparing the median lengths of the results to the results for the noiseless
functions in Table 5.4, the algorithms do not seem to compensate the noise
with longer individuals.

64



5.5 Noise Robustness

Table 5.5: Median and IQR of the R2 on the test and training data and length
for functions f 1

1n, f 5
1n. R2 and Length values marked with an asterisk

are significantly different from the row in bold, which indicates the
best R2, i.e. the highest value.

Algorithm
R2 on train R2 on test Length

Median IQR Median IQR Median IQR

f 1
1n

EplexGP .9813 .0033 .9812 .0041 55 * 25.0
StandardGP .9556 * .0503 .9593 * .0416 55 * 30.0
PGP Kom. .9818 .0157 .9834 .0138 105 77.0

PGP Length .9781 .0207 .9792 .0244 107 57.0
f 5
1n

EplexGP .7874 .0038 .7829 * .0058 33 * 10.0
StandardGP .7789 * .0192 .7627 .0354 45 * 27.0
PGP Kom. .7939 .0165 .7777 * .0276 113 98.0

PGP Length .7945 .0225 .7568 .1130 113 55.0

Table 5.6: Median and IQR of the R2 on the test and training data and length
for functions f 1

2n, f 5
2n. R2 and Length values marked with an asterisk

are significantly different from the row in bold, which indicates the
best R2, i.e. the highest value.

Algorithm
R2 on train R2 on test Length

Median IQR Median IQR Median IQR

f 1
2n

EplexGP .9994 .0032 .9995 .0031 23 21.5
StandardGP .9963 * .0128 .9963 .0121 24 20.0
PGP Kom. .9996 .0054 .9996 .0050 14 11.0

PGP Length .9994 .0060 .9995 .0057 15 27.5
f 5
2n

EplexGP .9900 .0027 .9907 .0028 17 13.5
StandardGP .9880 * .0097 .9888 .0106 18 15.5
PGP Kom. .9906 .0024 .9911 .0030 29 49.5

PGP Length .9905 .0017 .9911 .0026 15 42.0
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5 Evaluation

The same can be said for the results of the functions f 1
2n, f 5

2n in Table 5.6.
However, some differences in the IQR of the lengths are noticeable.
The results on the functions f 1

2n, f 5
2n are very surprising. They show no over-

fitting for either noise versions and the performance is very remarkable. As
stated previously this is likely due to the fact that f2 has a very low complexity,
even with added noise.

5.6 GP vs. non-GP

Finally, the performance of GP is compared to the performance of well
established regression methods. The general experiment settings for the
non-GP methods are the same as for GP. That is, they are run 31 times
with the same training and test data (a 50:50 split) with each separate run
of the 31 runs done with a different random seed. Linear Regression and
Polynomial Regression can not be run with a random seed. For Gaussian
Process Regression the seed is used for the initialization of the centers. The
RMSE results on the test data are displayed in Table 5.7 and also tested for
significant differences. The significance tests are done pair-wise for the RMSE
with the row containing the best RMSE, which is marked in bold. If a p-value
smaller than 0.01 is produced the differences are significant. Significant
different values in Table 5.7 are marked with an asterisk.
For f1 and f2 GP does noticeable worse than the best result. The Polynomial
Regression method is even able to exactly learn the function with an error
that can be considered zero. The function f1 is a polynomial function with
degree 4 and the Polynomial Regression method uses fourth-order polynomial
features of the input values. Due to this, it is not very surprising that it
is able to exactly learn the function. This is different for f3 which is not a
polynomial but uses sine and cosine functions.
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5.6 GP vs. non-GP

Table 5.7: Median and IQR of the RMSE on the test data for functions f1,
f3 from different machine learning methods. RMSE values marked
with an asterisk are significantly different from the row in bold,
which indicates the best RMSE, i.e. the lowest value.

Method
RMSE for f1 RMSE for f3

Median IQR Median IQR

Linear 1.81e-02 * 0.00e+00 3.41e-01 * 0.00e+00
GradientTrees 6.99e-03 * 6.21e-06 2.78e-02 * 5.66e-05

MLP 1.66e-03 * 1.76e-04 5.29e-03 * 2.20e-03
Polynomial 9.15e-16 0.00e+00 4.94e-04 * 0.00e+00

GaussProcess 1.23e-06 * 0.00e+00 8.67e-07 0.00e+00
EplexGP 8.71e-03 * 1.51e-03 2.59e-02 * 1.76e-02

PGP Kommenda 1.17e-02 * 7.75e-03 1.78e-02 * 2.02e-02

For both functions, Gaussian Process Regression produces a very accurate
model, which explains why it is currently used as the regression method in the
Bosch ECU software [2].
The results of GP can still be regarded as good despite the worse performance
when it is considered that GP produces interpretable analytical functions,
which can give an insight into the general structure of the data used. This
insight can then even be further used for other machine learning algorithms.
The models of GP might also perform faster than the models of the other
methods because they are more complex. GP also has the advantage that
it automatically performs feature selection and might perform comparatively
better to the other methods for data with higher dimensionality.
The Polynomial Regression method shares similar properties with GP because
it also produces analytical functions. However, the Polynomial Regression
method is bound to its model, the n-order polynomials created to learn the
data and their linear relationship, which is why it does worse on function f3
than on f1. A problem in the Polynomial Regression method is also the num-
ber of polynomial features created, which scale exponentially with the degree.
A too high degree can cause overfitting and also might make it suffer from the
curse of dimensionality.
The best result on f1 (RMSE ≈ 0.0029), which was produced by PGP Kom-
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5 Evaluation

menda, is displayed as an example individual in a simplified version in Equa-
tion 5.1.

f̂1 = 0.0336 · x0 · x1 · x2 − 0.1831 · x0 · x1 − 0.0592 · x0 · x2 + 0.1938

· x0 − 0.0825 · x1 · x2 + 0.2908 · x1 − 0.0560 · x22 − 0.0112 · x2
· x3 − 0.1583 · x2 − 0.0224 · x33 − 0.0560 · x23 + 0.0780 · x3 + 0.5844

(5.1)

The simplified version was generated by using SymPy1, which is a Python
library for symbolic mathematics. Additionally, the numbers are cut off after
the fourth decimal to make the function easier to display and more readable.
Surprisingly, cutting off the numbers did make the error on the data set better,
instead of worse. This is a singular instance and could have the opposite effect
on different individuals.

1https://www.sympy.org
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6 Conclusion and Future Work

In this thesis, GP is introduced as a symbolic regression technique for usage
in automotive modeling applications. One use case is the modeling of the ex-
haust temperature in vehicles, of which two representative synthetic functions
were obtained to examine and evaluate the capabilities of Symbolic Regression
Genetic Programming.
The current state-of-the-art in GP was extensively examined in Chapter 3.
From these findings, suitable state-of-the-art techniques were used for an im-
plementation of GP. The GP implementation created for this thesis was then
further used to conduct experiments for the two synthetic problems.
The experiments indicate that the optimal value of the parsimony parameter
is dependent on the problem used, which is likely related to the complexity
and the size of the perfect solution for the problem.
The experiments for the crossover probability have shown that most settings
for the probability of Crossover and Mutation do not produce significantly
different results. However, a missing of either operator from GP will produce
significantly worse results. Mutation produced better results than Crossover
when evaluated separately without the other, which indicates that Mutation
is more powerful. A higher probability for the Mutation Operator will also
more likely result in shorter individuals. An equal division of the probabilities
between both Operators was concluded as a good trade-off and deemed the
best setting for GP.
EplexGP and PGP Kommenda produced the best results for the synthetic
functions provided. EplexGP and StandardGP have shown to converge early,
while PGP Kommenda and PGP Length displayed their superiority in using
the Pareto optimization principle by not converging early. Using a more di-
verse complexity like Kommenda for ParetoGP produced better results.
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6 Conclusion and Future Work

While GP seems to be robust to a low noise level, higher amounts of noise in
the data produce considerably worse results.
The results of GP compared to well established regression methods seem
promising but also noticeably worse than for methods such as Gaussian Process
Regression. While the results are noticeably worse than the methods compared
to, GP produces an interpretable analytical function by using a quasi model-
less method, which none of the methods compared to GP offer.
This thesis did not focus on producing the very best GP results possible but
aimed at producing good and representative regression results for GP by using
state-of-the-art methods. The potential of GP does not seem to be exhausted
from the experiments in this thesis and it is within reason to conclude, that
GP can produce better results than observed.

Future Work

Some parameter settings for GP were left at default or chosen from settings
found in literature and not chosen experimentally to be the best setting pos-
sible. These include the Population Size, Elitism Size, Constants Range and
the P (Point Replace) probability for the Point Mutation operator.
The experiments also did not examine the differences between Subtree Muta-
tion and Point Mutation.
The GP representations introduced in Section 3.1 may produce different and
better results than the syntax-tree-representation employed.
Several of the presented methods mentioned in the State-of-the-Art Chapter,
which could improve the results of the symbolic regression process in GP even
further, are not used and evaluated in this thesis due to time constraints or
constraints regarding the computational resources.
This includes the Geometric Semantic Genetic Operators presented in Sec-
tion 3.2, which have shown to produce better results on some polynomial
functions and may produce better results.
The Evolutionary Demes Despeciation Algorithm (EDDA) mentioned in Sec-
tion 3.4 is a technique originally developed for the Geometric Semantic Genetic
Operators, but a similar approach would also prove useful for GP algorithms
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that do not use the operators. The starting population in the GP implemen-
tation is created with the ramped half-and-half method and the individuals
are generally of low quality. EDDA can improve the results in GP by creating
a starting population with a high diversity and a high average fitness, which
may also improve the large differences in fitness noticeable in separate runs of
GP.
Island Population, also mentioned in Section 3.4, would help to maintain a
high diversity in the population and prevent premature convergence in GP. It
can also be used to run several different island population concurrently with
different GP settings, which would render it unnecessary to decide on one
exact good setting. Techniques to prevent premature convergence should be
employed in GP in general.
As evident from the experiments in Chapter 5, Multi-Objective Selection in
GP seems to be a very promising subject and should be a major focus of fur-
ther research.
For the Polynomial Regression in the experiment, the fourth-order polynomial
features of the input values are created to extend Linear Regression. This step
can also be used as a pre-processing step for GP, which would remove the
necessity for GP of creating them manually through the evolutionary process.
Using this could make GP achieve similar or even better results than Polyno-
mial Regression. This was not done due to time restrictions and to evaluate
how GP performs without any kind of pre-processing of the data.
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