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Abstract

Evolutionary Algorithms (EA) and Fuzzy Systems are introduced to solve a
Task-Allocation Problem. One use case is the planning of tours in a company
that provides maintenance services for different industrial machines. The used
problem which is based on the vehicle routing problem (VRP) differs from
the state-of-the-art where capacity, distance, and time window constraints are
optimized. In the proposed problem the assignment of employees to different
routes has to be optimized that the requirements at the different stations are
met.

Both approaches are used to solve the given problem through the creation of a
prototype framework. The approaches were evaluated by different benchmark
instances of varying sizes.

The current state-of-the-art is examined. The implementation of the prototype
framework is explained extensively.

The results of the EA are promising. On the contrary, the used fuzzy approach
fell short on expectations.
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1 Introduction

1.1 Motivation

Companies have a high planning effort for scheduling field works. The re-
quirements of the tasks are mostly informal values described by words. This
description by words is not exact because each person interprets the require-
ments differently. Therefore these conditions are fuzzy. Also, it is hard to
determine crisp values for the different requirements of the task. Currently,
most of the research done optimized the route length of the different worker
routes or optimized the delivery of goods in a specific time frame per customer
on these routes. Based on, the search space of these problems is huge and
exact solving algorithms find the solutions. But with increasing complexity
the time needed increases exponentially [14, 3]. Metaheuristics are used to
find solutions. For optimization, we will use an evolutionary algorithm that
uses fuzzy logic to solve the assignment problem of the required conditions.
In mind that this approach is more intuitive and suitable to the problem a
comparison to an approach with crisp modeling is done.

1.2 Goals

The work aims to solve an assignment problem. The assignment problem is to
send employees on suitable routes so that all stations can be serviced. Each
station has certain requirements in various skills, these skills must be available
to the employee so that the station can be maintained. A good solution is
characterized by a minor violation of the requirements or even would not have
any violation if the circumstances of the problem allow it.
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1 Introduction

The work continues to make the following contributions:

On the one hand, a literature overview is given, which consists of similar
problems and points out the solution approaches.

On the other hand, the vehicle routing problem is extended by fuzzy systems,
so that the needs of the customers/stations can be represented imprecisely.

An evolutionary algorithm will be developed to solve the problem. Fuzzy
systems will be used to optimally cover the needs of the customers. The
algorithm is not limited to a single problem instance. It can solve the problem
formulation both for crisp values and with imprecise values.

Finally, an evaluation is carried out using benchmarks. Here, different prob-
lem instances are created and then checked with the help of benchmarks. First,
the assignment problem is solved as a real value problem. In the second test,
the benchmarks are applied to the fuzzified real values.

1.3 Structure of Thesis

First, the thesis clarifies fundamentals used later on. Furthermore, a literature
overview is given. In Chapter 4 the proposed approach is discussed. Here
the whole concept of the algorithm is described and modeling approaches are
explained. After that, an evaluation of the approach is done. Different bench-
marks are used to analyze the performance of different problem sizes. This
work is ended with a summary of its results and an overview of opportunities
for future work in Chapter 6.
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2 Fundamentals

2.1 Evolutionary Algorithms

Evolutionary algorithms are a metaheuristic which is used for numerical and
optimization problem where no exact solution algorithm exists or the exact
solution can simply not be achieved efficiently. A definition of optimization
problem is given by Kruse in[13].

Definiton 2.1 (Optimization problem) An optimization problem consists of a
pair (Ω, f) where Ω is the search space of all potential solutions for the problem
and f : Ω→ R the evaluation function which assigns a quality assessment f(ω)

to each solution ω ∈ Ω.
An element ω ∈ Ω is an exact solution if it is a global maximum of (Ω, f).
An element is a global maximum of f if f(ω′) ≤ f(ω)1, ∀ω′ ∈ Ω

The functionality of an evolutionary algorithm can be seen as a guided random
search over the search space. Furthermore, the algorithm approximates a good
solution by the fitness value. Hence it is assumed that better solutions result
in a higher value. The algorithm applies the concept of biological evolution
and is based on the insights of the Darwinian Evolution[13]. In the following
section, the procedure of an evolutionary algorithm is explained in detail.

1f(z) ≤ f(x) where x is a better solution than z

3



2 Fundamentals

2.1.1 Procedure of an EA

A basic understanding of how an evolutionary algorithm works will be given by
this section. Therefore the general procedure will be shortly explained. Later
in this chapter, the different components will be examined in further detail.

An evolutionary algorithm consists of different steps which are accumulated
to an update loop. An episode of that update loop is referred to as iteration.
Hereby, the whole process imitates evolution.

Before we can enter into the update loop the algorithm needs to be initialized.
Here all necessary components of the algorithm are setup.

After the initialization, the population has to be evaluated. As a result, each
individual gets it is own fitness value. The fitness value expresses the quality of
an individual corresponding to a fitness function which is the quality measure
of a given problem. A change in the fitness function also changes the different
fitness values of the individuals in the population.

Figure 2.1: The course of an evolutionary algorithm

The following steps are part of an update loop that runs continuously. Next,
the terminal condition is checked. This condition decides if the algorithm
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2.1 Evolutionary Algorithms

terminates. Most of the time this condition is a consolidation of two aspects.
On the one hand, we define a fitness threshold that, if it is reached by at least
one candidate of the current population, terminates the algorithm. To make
sure that the algorithm terminates, on the other hand, a maximum number
of iterations is given which ends the algorithm if the limit is reached. If the
first terminal condition is not reached because of the problem size the second
makes sure that the algorithm finishes.

If at least one of the termination criteria is satisfied the output is created and
printed by the algorithm. Otherwise, the update loop is executed for another
iteration.

The parental selection is the first step of the loop. In this step, we decide which
individuals should be used to reproduce our population. The probability of
each individual to engage in the reproduction depends on it is own fitness
value. The higher the fitness value the higher is the probability to engage
in the reproduction assuming the evolutionary algorithm is used to solve a
maximization problem.

When the individuals are selected we go on to the crossover. The genotypes
of two individuals get mixed by different operators. Individuals with mixed
genes are referred to as children. The genotypes of the children are based on
their parents.

Preceding new individuals were created based on the part which was chosen
by the parental selection. Out of these individuals, a given percentage or
number of the individuals will be altered after the reproduction by mutation.
This procedure simulates the influence of random genetic mutations or other
influences on the genetic material for example X-radiation.

Another evaluation is needed to assess the newly created individuals as prepa-
ration for the environment selection.

Currently, we exceeded the original population size, therefore, the size is ad-
justed in the environment selection. Based on the fitness values a new genera-
tion is taken out of the population by a selection operator. These individuals
are the basis for the next iteration.

Concluding the terminal condition is checked again and dependent on its out-
come the next iteration starts.

5



2 Fundamentals

2.1.2 Encoding

The representation of a problem also called encoding is an important part of
an optimization problem. Hereby, The encoding has two separate represen-
tations that correlate with each other. The two representations are genotype
and phenotype. The genotype describes the internal structure for the op-
timization problem. The phenotype is the representation of the candidate
in the search space. There are a few desirable properties that the encoding
should have. One property would be that similar phenotypes are represented
by similar genotypes that means if we have a slight difference between the two
phenotypes the corresponding genotypes should only differ by a small amount,
too. Similar candidates should have further similar fitness values because this
property builds the basis of the algorithm. Another aspect is that we have
to make sure that all possible solutions can be represented by the encoding.
Furthermore, we have to ensure that no invalid candidates can occur. That is
especially important for the different operators in the algorithm’s routine. If a
valid candidate is turned invalid by an operator the encoding should provide
repair functions to correct that issue or should punish the invalid candidates.
An invalid candidate is a solution outside of the solution space. The interrela-
tionship between the two types can be seen in Figure 2.2[16].

Figure 2.2: Correlation between genotype and phenotype exemplary for the
TSP

6



2.1 Evolutionary Algorithms

The genotype of the problem is an integer array of the size six. A round
tour between the cities is encoded by a permutation. The orange highlighted
connections correspond to the exemplary given permutation.

2.1.3 Fitness

The core of the algorithm is represented by the fitness function. It is the pivot
of the algorithm because the function assesses the different individuals. Here
it has a huge impact on which individuals are chosen in the selection process.
A change here causes also a change in the result. The fitness function assigns
each individual a value which corresponds to the quality of the solution to
the given problem [13]. A "good" fitness function fulfills a few requirements.
The function should be continuous. This property excludes poles and gaps in
the graph of the function which would have a negative influence on the opti-
mization. Additionally in Section 2.1.2 we mentioned that similar candidates
should have similar values. This property means that a "good" fitness function
avoids hamming cliffs. Assumed that the optimization problem in Figure 2.2
is a minimization problem the fitness function could be the sum of all the
distances between the cities on the route.

2.1.4 Selection

Therewith an optimization can be performed the algorithm needs to select indi-
viduals from the population. First, it has to select a part of the population for
reproduction, recombination, and mutation also known as parental selection.
Furthermore, with a selection operator, the next generation is chosen from the
population which is the environment selection. Two typical selection opera-
tors are the roulette wheel selection and the tournament selection. For the
selection itself, the selection pressure is the decisive factor which is influenced
by the fitness values. The selection pressure describes how likely it is that the
best individual is selected for the next generation. If the selection pressure is
high it is very likely that the best individual results in the next generation.
A low selection pressure results in an exploration of the solution space [13].
Here a tradeoff has to be done between the improvement of the solution and
the exploration. Another way to ensure that the quality of a generation keeps
a threshold is by elitism. Here a few of the best individuals are saved and
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2 Fundamentals

updated after each iteration. This process ensures that the algorithms keep a
base quality where it can improve from [13].

Figure 2.3: Roulette wheel selection and tournament selection of size 4

Independently which of the operators is chosen the fitness value created by
the fitness function decides which individuals are picked from the population.
The fitness function is modeled in a way that it creates a symbiosis with the
selection operator. It is difficult to use a fitness value which is maximized
in a selection operator which prefers the value of a minimization problem.
The graphic in Figure 2.3 shows two commonly operators the roulette wheel
selection and the tournament selection. In the roulette wheel selection, the
fields A(i) on the wheel are distributed by the relative fitness values of the
different individuals i. Let us assume that the optimization problem is a
maximization problem. Whereby greater fitness values results in a higher
relative fitness value and accordingly to higher relative fitness in a greater field
on the roulette wheel [13]. The relative fitness is calculated by (2.1).

fitnessrel(x) =
fitness(x)∑

s∈pop(t) fitness(s)
(2.1)
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2.1 Evolutionary Algorithms

The other common operator is the tournament selection. Here individuals
are randomly picked corresponding to the tournament size. These individuals
compete against each other in a tournament.

2.1.5 Genetic operators

The evolutionary algorithm needs genetic operators for the exploration of the
search space. Simultaneously, the fitness value is improved on the way of
the exploration. Furthermore, these operators make sure that the solutions
are diverse. They prevent the algorithm to get stuck in a local optimum.
Therefore different operators are used which have different benefits and tasks
for the algorithm. The three mainly used operators are reproduction, crossover,
and mutation[13].

Reproduction

The reproduction operator copies individuals of the current generation into
the next one hereby it ensures that the healthiest individuals have a higher
chance to get into it. Hence the quality of the population will improve step by
step through the iterations or in is stagnating in the worst case[13].

Crossover

The crossover operator is also known as recombination is one of the two big
factors in an EA which should diversify the solutions in the population. This
operator takes two individuals from the population and creates new individuals
from them. The generated individuals are also called children. There is a huge
amount of specific crossover operators. They can range from simple single-
point crossovers over uniform crossovers to individually setup operators that
are operating on a provided scheme. There is no "best" operator given because
the effects and results are changing from problem to problem [11, 13].

The execution of three different crossovers can be seen in Figure 2.4. The
first child is obtained by the use of single-point crossover. The cut point was
set between the fifth and sixth index so that the parents consists now of an
anterior half and rear half. The first half of the chromosome of the child
contains the data of the first parent. The other half (blue digits) is taken
from the second parent[11, 13]. With this simple crossover, the size of the
population is doubled. The population would now contain the two parents

9



2 Fundamentals

Figure 2.4: Different crossover operators

plus the two children created by the crossover. The two-point crossover uses
two cutting points which were set between the third and fourth index as well as
between the seventh end eighth. For the recombination, the inner part (orange
digits) between the cutting points were swapped between the two parents. A
scheme is needed to perform the uniform crossover. The scheme defines which
parts of the chromosome should be exchanged. Here the plus indicates the
genes (red digits) which are swapped between the parents. The crossover can
be created with the encoding in a way that it considered all conditions of the
problem[11, 13].

Mutation

The other factor which ensures that a degree of diversion is added to the
population is the mutation operator. Like in nature, which the EA is imitating,
sudden mutations can occur. Therefore after the recombination, a part of the
population will be mutated[13].

For the mutation, the child of the uniform crossover from Figure 2.4 where used
as a basis. In Figure 2.5 the results of two common mutation operators are
shown. The first mutation changed a single gene of the input individual (red
digit). Another commonly used mutation operator is to swap two genes with
each other. This operator was used for the second mutation (orange digits)[11,
13, 19]. New genetic material is added by this process to the evolutionary
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2.2 Vehicle Routing Problem

Figure 2.5: Different individuals resulting from mutation

algorithm which can be part of better solutions that were not possible to this
point because the necessary components were not present until now.

2.2 Vehicle Routing Problem

The vehicle routing problem (VRP) is an extension of the traveling salesman
problem (TSP), which are both graphical problems. These problems are often
used as a basis for the modeling of optimization problems where the traveled
distance has to be optimized. In the traveling salesman problem, each city
is represented by a node, and all cities are connected by edges. The goal is
to find an optimal route between cities which should be minimal. The only
constraint which is given is that each city can be visited only once. A detailed
definition can be found in [1]. A possible representation of the reality would
be a trip around the world where you start and end in the same country.

In the vehicle routing problem different TSP’s have to be solved, so that total
distance is minimized. Different tours have to be planned which all start and
end at a central depot. The number of tours is given. For example in reality it
is represented by the size of the carpool or staff size. This problem can grow in
complexity by adding different constraints. The vehicle routing problem was
originally introduced by Dantzig[8]. Two commonly researched fields are the
capacitated vehicle routing problem (CVRP) and the vehicle routing problem
with time windows (VRPTW). In the CVRP the vehicle got a capacity that
has to be regarded in the planning of the tours. A contempt of the constraint

11



2 Fundamentals

has negative consequences. The VRPTW includes a time constraint. Here
the nodes have to be served in a given time window. Also, a combination of
both versions is possible. The result would be the capacitated vehicle routing
problem with time windows (CVRPTW)[20, 6]. The VRP is the problem that
all delivery services like UPS, DHL, and DPD have to solve daily.

2.3 Task-Allocation Problem

The Task-Allocation Problem that is used in this thesis is based on the VRP.
A few points were modified so that the model represents the problem which
can be seen in Figure 4.1.

The nodes of the VRP have three values. Each value belongs to a skill so
that each of these values represents a skill level. The nodes can be combined
into different routes. These routes are served by employees as tours. Each
route is only served by one worker. The employees have like every node their
own sets of the three different skill levels. The skill levels on the side of the
nodes can be seen as a requirement which the employee of the tour has to
fulfill. This fulfillment is the optimization criteria so that the quality of every
solution can be expressed by the violation/fulfillment of the requirements on
the node side by the employee. Out of this reason, an optimization of the
distance as well as the encoding of the order in which the different stations are
served is not executed. It is assumed that the distance and the sequence of the
tour are both included in the allocation of the different tasks to the employees.
Section 4.1 goes into detail and explains all correlations. The goal is to find
an optimal allocation between stations and workers so that the requirements
of the stations are fulfilled. Hereby each worker is assigned to a route with
different stations.

12



2.4 Fuzzy Systems

2.4 Fuzzy Systems

2.4.1 Fuzzy Sets

In the set theory, a value can either be a member of the set or not be a
member. The idea behind fuzzy sets is that we do not separate between these
two values of membership. Instead, fuzzy sets have partial membership, so we
look at which degree or extent the value is a member of a fuzzy set [21].

Kruse[13] defines a fuzzy set as the following:

Definiton 2.2 (Fuzzy Set) A fuzzy subset or simply a fuzzy set µ of a set X
(the universe of discourse) is a mapping µ : X → [0, 1], which assigns to each
element x ∈ X a degree of membership µ(x) to the fuzzy (sub)set µ. The set
of all fuzzy (sub)sets of X is denoted F(X). A conventional set M ⊆ X can be
viewed as a special fuzzy set by identifying it with its characteristic function or
indicator function.

IM : X → {0, 1}, x 7→

{
1 if x ∈M
0 otherwise

Representation

A fuzzy set can be associated with linguistic expression. This expression can
describe an imprecise value or an imprecise interval. "around 3", "of middle
height", "very tall" are examples of these expressions. The sets which model
these expressions should be convex. That means that the set should mono-
tonically increase to a specific point and from there monotonically decrease
[13].

Fuzzy sets can be represented by different functions that model different basic
shapes. In praxis, only a few simple shapes are used. With this representa-
tion, each set can be uniquely specified by a few parameters. Commonly used
parametric fuzzy sets are triangular functions. [13]

The triangular functions can be specified like this:

ΛA,B,C : R→ [0, 1], x 7→


x−a
b−a if a ≤ x ≤ b
c−x
c−b if b ≤ x ≤ c

0 otherwise

13



2 Fundamentals

Membership vs Probability

The membership of a value towards a set should not be mistaken as a proba-
bility. These are two disparate concepts. To illustrate the difference between
the gradual membership and probability we take a look at different statements.
"This tree is old." This statement is fuzzy, because of the imprecise value "old"
a numerical evaluation is not possible because we cannot measure them. "The
banana comes probably from Ecuador." Here we have an uncertainty about
the statement from Ecuador. The last statement will be: "Red cars are very
big." It is a combination of uncertainty with a fuzzy value. big cannot be de-
fined in more detail. With the modificator very we can assume the grade of it
is bigness. Further a statistical assertion over the set of all cars is made. The
explanation is based on the example given by Bezdek[4, 17].

2.4.2 Fuzzification

A fuzzy set can consist of different fuzzy sets that describe the linguistic vari-
able. The different sets represent the different linguistic terms of which the
variable consists. For example, the linguistic variable would be the "pressure"
of the tire. This variable is segmented into different terms. These terms are
"low", "normal" and "high". This coherence is shown in Figure 2.6. Through
the segmentation, the vague expression is more precise as a single fuzzy set for
the linguistic variable with one term because now we differentiate between the
various degree of memberships for the terms within the linguistic variable.

Until now we have single values. We need to find operators like in the binary
or boolean logic which enable us to connect different variables. Therefore these
operators should fulfill different properties.

Let us assume the candidate of a truth function of the conjunction for fuzzy
propositions is the function t : [0, 1]2 → [0, 1]. The function needs to be
commutative and associative because the truth value of the conjunction does
not depend on the order of the propositions. That means

(T1) t(α, β) = t(β, α)

(T2) t(t(α, β), γ) = t(α, t(β, γ))

should hold for α, β and γ.

14



2.4 Fuzzy Systems

Figure 2.6: Relation between the fuzzy variable craftsmanship and its linguistic
terms

In additon if x has a lower thruth value then ψ the value of the conjunction
ϕ∧ψ should be less than the thruth value of the conjunction ϕ∧x. Therefore
a monotonicity criteria of t is needed:

(T3) From β ≤ γ follows t(α, β) ≤ t(α, γ),

for all α, β and γ. Based on the commutativity of the property (T1) and (T3)
concludes that t has to be nondecreasing for both arguments.

Furthermore, we need to make sure that the truth value of ϕ does not change
if we connect it with a true proposition of ψ. That means that the truth values
of the proposition ϕ is the same as ϕ ∧ ψ. For the truth function t this leads
to

(T4) t(α, 1) = α, for all α

Definiton 2.3 A function t : [0, 1]2 → [0, 1] is called t-norm (triangular
norm), if the axioms (T1)-(T4) are satisfied.

The truth values of the conjunction coincide with the values of the t-norm
which satisfies the axioms. Each t-norm can be used for the conjunction.
The axiom (T4) concludes that t(1,1) = 1 and t(0,1) = 0 for every t-norm
t. Furthermore using the commutativity of axiom (T1) we obtain t(1, 0) = 0.
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In addition the monotonic property of (T3) and t(0,1) = 0 result in t(0,0)
= 0. Concluding that the truth function t(α, β) = min(α, β), so that the
conjunction can be expressed by the minimum of α and β.

We can use the same approach to define criteria which the candidates for the
truth function for the disjunction have to satisfy. The properties (T1)-(T3)
apply to the disjunction as well. The fourth axiom (T4) has to be changed
that the truth function describes the disjunction and leads to

(T4′) s(α, 0) = α, for all α

which means that the truth value of the disjunction between the proposition
ϕ and the false proposition ψ is the same as the truth value of the proposition
ϕ.

Definiton 2.4 A function s : [0, 1]2 → [0, 1] is called t-conorm (triangular
conorm) if the axioms (T1)-(T3) and (T4’) are satisfied.

Using the dual concept between t-norm and t-conorm, a t-norm can be trans-
formed into a t-conorm and vise versa. Therefore we use the De Morgan’s
Law. The resulting formulas corresponding to the De Morgan’s Laws can be
seen in (2.2) and (2.3).

t(α, β) = 1− s(1− α, 1− β), (2.2)

s(α, β) = 1− t(1− α, 1− β), (2.3)

In the end, the corresponding t-conorm of the t-norm which is described by
the minimum is the maximum.
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2.4.3 Operation on Fuzzy Sets

Currently, we can derive fuzzy sets form crisp numbers. These fuzzy sets
are represented by their characteristic function. Operators have to be defined
which allows the interaction between the sets. These operations are inspired by
the classical set theory. Methods for the intersection, union, and complement
will be introduced. Therefore the classical set theory will be extended to fuzzy
sets.

Intersection
An element x belongs to the intersection of the sets M1 and M2, if and only
if it belongs to both sets. This affiliation of x towards the intersection does
not depend on the membership of any other value y 6= x but solely on the
membership of x to M1 and M2. This means,

x ∈M1 ∩M2 ⇐⇒ x ∈M1 ∧ x ∈M2 (2.4)

We assume that the degree of membership of an element x to the intersection
solely depends on the membership values of x to the fuzzy sets µ1andµ2. The
degree of membership µ(x) states to what degree x is an element of µ. If we
want to calculate the membership degree of an element x to the intersection
between the fuzzy sets µ1 and µ2 we can use equation (2.4) to do so. The
degree of membership is equal to the truth value of the conjunction "x is an
element µ1 AND x is an element of µ2". With the knowledge of Section 2.4.2
we know that the value of the conjunction of two fuzzy propositions can be
modeled by a t-norm. The intersection between two fuzzy sets µ1 and µ2 is
defined as the fuzzy set µ1 ∩t µ2 with (µ1 ∩t µ2)(x) = t(µ1(x), µ2(x))[13].

Union
Analogously the union of two fuzzy set can be defined with slight changes of
the equation (2.4) as x ∈ M1 ∪M2 ⇐⇒ x ∈ M1 ∨ x ∈ M2. Which leads to
(µ1 ∪s µ2)(x) = s(µ1(x), µ2(x)), as the union of µ1andµ2 with respect to the
t-conorm s[13].

Complement
The formula x ∈ M ⇐⇒ ¬(x ∈ M) the complement of a fuzzy set can be
derived. The fuzzy set µ1(x) = 1− µ(x) results of the assignment of the truth
function w¬(α) = 1− α to the negation[13].
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Figure 2.7: The different results of the fuzzy set operations. µ1 ∩t µ2 was per-
formed with the minimum and for the union µ1∪sµ2 the maximum
was used
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2.4.4 Inference

We know how we can transform a crisp value into a fuzzy set. But what do we
do if we have multiple input values which have to be combined to an output
value? Here comes a step called inference that comes into play. The concept
of the inference works with a rule base. This rule base includes different rules
which match the input values to output values. The rule base R consists of
if-then-rules R ∈ R which have the form

R : If x1 is µ(1)
R and . . . and xn is µ(n)

R then y is µR (2.5)

where x1, . . . , xn are input values and y is the output value. The fuzzy sets µ(i)
R

or µR are linguistic variables which could be "hot", "long distance" or "later"
[15, 13].

A single rule should not be seen as a logical implication. It is more a piecewise
definition of a function. If the rule base R consists of the rules R1, . . . , Rr, we
should understand it as a piecewise definition of a fuzzy function, that is

f(x1, . . . , xn) ≈


µR1 If x1 ≈ µ

(1)
R1

and . . . and xn ≈ µ
(n)
R1

...

µRr If x1 ≈ µ
(1)
Rr

and . . . and xn ≈ µ
(n)
Rr

(2.6)

The graph of the function is obtained by

graph(f) =
r⋃

i=1

(π̂1({x(1)i }) ∩ · · · ∩ π̂n({x(n)i }) ∩ π̂Y ({yi})) (2.7)

Using the minimum for the intersection and the maximum for the union re-
sults in a fuzzy set which represents the fuzzy graph of the function which is
described by the ruleset R

µR : X1 × · · · ×Xn × Y → [0, 1],
(x1, . . . , xn, y) 7→ maxi∈{1,...,r}{min{µ(1)

Ri
(x1), . . . , µ

(n)
Ri

(xn), µRi
(y)}}

in the case of a finite rule base R = {R1, . . . , Rr}. [13]
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2.4.5 Defuzzyfication

The transformation of a value into a fuzzy set was shown in the section before.
Now we need methods for the way back which transforms a fuzzy set back
to a value. There are different possibilities to solve this problem. Common
methods are the center of gravity, the center of area, or the mean of maxima.

Center of Gravity

The center of gravity is the normed mean of the fuzzy set. The result represents
the point were the fuzzy set is balanced. The center of gravity is calculated by
an integral seen in (2.8). The formula can be split into two separate ones. The
first one calculates the area of the fuzzy set (2.9) and the second formula uses
this result from (2.9) as a normalization factor which is applied to the integral
of the base points and the membership values (2.10).??

xCOG =

∫ x+

x− xµ(x)dx∫ x+

x− µ(x)dx
(2.8)

A =

∫ x+

x−
µ(x)dx (2.9)

xCOG =
1

A

∫ x+

x−
xµ(x)dx (2.10)

where xCOG is the center of gravity, A the resulting area, x the corresponding
crisp value, and µ(x) the grade of membership of x[17].
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Center of Area

This method is similar to the preceding one. The result represents the point,
where the two subareas, which are created by that point, are equal. Therefore
the area of the fuzzy set is calculated as in (2.9) and the border which creates
equal subareas has to be found (2.11).

∫ xm

x−
µ(x)dx =

∫ x+

xm

µ(x)dx (2.11)

where xm represents the center of area.

Mean of Maxima

The mean of maxima is also similar to the center of gravity. The calculation
stays the same only that we concentrate on the intervals of the maxima. In
most of the cases, the maxima of a fuzzy set are single points. If that is the
case the mean of maxima is the mean of all those points of maxima[13].
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3 Related Work

3.1 Fuzzy Optimization in VRP

Fuzzy-based methods were used by Brito et al. to solve the VRP where the
input variables are influenced by uncertainty. The underlying problem was
modeled as VRP and then transformed to a linear programming problem.
The uncertainty in the information was represented by the fuzzification of the
constraints. Different methods are discussed to model different information.
In the end a short simple example is given [6, 5].

Nasser reviewed the different approaches by the literature. Further, he gives a
summarization of the modeling approaches regarding the constraints [9].

A fuzzy chance-constrained program was developed by Cao et al. to solve the
open vehicle routing problem with fuzzy demands. The modeling is based on
fuzzy credibility theory which is then integrated into a differential evolution
algorithm and stochastic simulations. The hybrid algorithm was able to find a
good parameter setting to solve the problem. In the future, the authors want
to adopt the approach to other metaheuristic techniques [7].

3.2 EA Optimization in VRP

An evolutionary algorithm solution of the VRP is introduced by Baker et al.
the approach and setup of the genetic algorithm are explained. The results of
the hybrid genetic algorithm with neighborhood search methods were compet-
itive in terms of solution time and quality to the best-known results for bench-
mark VRPs which were obtained by tabu search and simulated annealing[2].
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4 Proposed Approach

In this chapter, the modeling of the algorithm will be described. First, a
formulation of the problem will be given and explained. Then we want to go
into the encoding which was used. Following we will picture how the whole
evolutionary algorithm works before the different components of the algorithm
are described in more detail afterward.

4.1 Formulation of the Problem

In Section 2.2 and Section 2.3 an introduction of the problem which has to
be solved was given. In the following section, we want to introduce important
terms which are later used in the formulas and also want to give a further
understanding of the problem.

The problem consists of different components that have different dependencies
with each other that are visualized in Figure 4.1. The first component is the
station which has to be served. Each station has its own unique skill set.
There are three different skills: craftsmanship (CS), technical understanding
(TU), and soft skills (SoSk). When the skills are mentioned corresponding to
a station they are referred to later on as requirements. Each skill has a value
in the range of [0:100].

The given circumstances can be expressed by the following mathematical an-
notations:

s ∈ S
sti(x) 7→ [0 : 100]

|S| = n

n ∈ N
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Figure 4.1: Overview of the whole procedure of the EA

where S is the set of all stations, s is a station of the set, |S| is the size of
the set, n is the number of stations which is provided by the user, x is an
individual, i is the index of a station within an individual and sti(x) is the
value of the requirements to the given skill t.

Another component is the worker also referred to as an employee. The workers
have the same properties as the stations. If skills are mentioned corresponding
to a worker they are referred to as capabilities later on. These conditions can
be expressed by mathematical expressions similar to the stations.

w ∈ W
wt

i(x) 7→ [0 : 100]

|W | = n

n ∈ N

where W is the set of all stations, w is a station of the set, |W | is the size
of the set, n is the number of stations which is provided by the user, x is an
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individual, i is the index of a station within an individual and wt
i(x) is the

value of the capability to the given skill t.

The third part of the problem is a task. A task is a part of the individual shown
in Figure 4.1. Furthermore, it is represented by a single index of the encoding
and shows the interaction between employees and stations. The interaction
between these components becomes important when the fitness values of the
individuals are calculated. This allocation of a worker to a station is referred
to as tasks.

An aggregation of the tasks of a single worker is a route and resembles a TSP
of the VRP. In Figure 4.1 the routes of the different workers corresponding to
the individual can be seen. The different routes are highlighted by the colors
blue, orange, and green.

The last component condenses all the other components in itself and is the
basis of the evolutionary algorithm, the encoding. The individual encodes
the representation of the VRP in Figure 4.1. Hereby the correlation between
the different routes and the representation in the encoding can be seen. The
individual is a single instance of a population of solutions so that the values
and layout of the VRP in Figure 4.1 are only explanatory. Section 4.2 goes
into detail on this topic.

4.2 Encoding

As encoding for the problem, an array of integers was chosen where the length
of the array is given by the number of the stations which have to be served.
At each index, in the array, the worker is encoded which is serving the station.

Station 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Worker 9 1 2 1 6 2 1 1 9 2 2 1 1 6 2 2

Table 4.1: Encoding of an individual

An example of the encoding of an individual could look like Section 4.2. The
worker with the id one is serving six stations, the worker with id two serves
also six stations, the worker with the ids six and nine are both serving two
stations.
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4.3 Procedure of the Algorithm

The algorithm which is used follows the procedure in Section 2.1.1. The cy-
cle which is used had been adjusted in a few aspects. The adjustments are
mentioned when they take place. Subsequently, the routine of the algorithm
is explained. An overview of the algorithm can be seen in Figure 4.2. Firstly
the population of the proposed algorithm is initialized randomly. The used
procedure for the initialization can be seen in Algorithm 1. Herefore each in-
dividual of the population is assigned with an array of different allocations.
These allocations are assignments of workers to stations. This array is ini-
tialized randomly. Therefore a worker is selected out of the worker pool and
assigned to the current station. The routine is repeated until each station has
a worker assigned to it.

Result: Initialization of the population
Population ← 0;
while i < numberOfIndividuals do

forall Tasks do
Assign worker of the staff to the task;

end
end
return Population

Algorithm 1: Initialization of the starting population

Then a first evaluation of the population is done. A detailed view is given
in Section 4.4. Here the composition of the different fitness values will be
explained. Following the evaluation, the terminal condition is checked. If the
condition is fulfilled the output will be generated otherwise we go deeper into
the evolutionary algorithm cycle.

To this point, each individual is initialized and got a fitness value assigned.
Next, parental selection chooses the individuals for reproduction, crossover,
and mutation form the population. The selection operator is a tournament
selection. From there on the algorithm differs from the general cycle shown
in Section 2.1.1. The used approach divides the chosen individuals into two
groups. The first group will only be mutated. This adaptation should provide
continuous input of genetic material. This is advantageous when the popula-
tion is almost converged to an optimum. Then the crossover cannot provide
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Figure 4.2: Overview of the whole procedure of the EA
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any diversion because most of the solutions are very similar. Also, only small
changes have to be made to find the optima. The second group pass through
the described way of crossover and mutation which are shown in Figure 4.2.
The used crossover and mutation operators are explained in more detail in
Section 4.6 and Section 4.7. On the second route, only a part of the popula-
tion is mutated. Then all newly created individuals are evaluated before the
next generation can be chosen by the environment selection. After the new
generation is selected the routine goes back to the start of the cycle where the
terminal condition was checked. The deviations from the general cycle were
made to increase diversity. Concluding that more genetic material enters the
population. These mechanisms should prevent that the algorithm gets locked
in a local optimum.

4.4 Fitness Function

For this step, different fitness functions are used. The fitness function is de-
signed in a modular way that consists of different parts which are aggregated
to a final value. The different partial results are saved in five variables. These
variables are the head of Table 4.2. The "crisp satisfaction" is the result of
the evaluation where crisp numbers were used. Contrary to the "crisp sat-
isfaction", the "fuzzy satisfaction" includes the value of the fuzzy solution.
"ConstraintWH" and "ConstraintCP" are punishment factors that can con-
tribute to the final fitness value. The constraints should represent different
conditions which should be fulfilled by the solutions. Section 4.4 goes into
more detail on both constraints and their calculation. The last variable, the
"completed tasks", aggregate the tasks which could be served and fulfilled by
the individual. The later is only used for testing purposes in the evaluation at
the end of the thesis and does not contribute to the different scores. There are
eight possible problem instances. For example, the problem should be solved
with crisp values regarding both constraints. The composition of this variant
is shown in Table 4.2 by row four. The variant "CrispBothConstraints" is
influenced by the crisp by the "crisp satisfaction" and both constraints. The
values are summed and generate the fitness value for this case. The parental
and environment selection operates with these final values.
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Crisp Satisfaction ConstraintWH ConstraintCP Fuzzy Satisfaction Completed Tasks
CrispNoConstraints X TP
CrispConstraintWH X X TP
CrispConstraintCP X X TP
CrsipBothConstraints X X X TP
FuzzyNoConstraints X TP
FuzzyConstraintWH X X TP
FuzzyConstraintCP X X TP
FuzzyBothConstraint X X X TP

Table 4.2: Composition of the different fitness values. Variable contributes to
the fitness value if the box is checked by an X. TP stands for testing
purpose in the evaluation.

Crisp Satisfaction
"Crisp Satisfaction" is the first partial result that contributes to the final fitness
value. This result is calculated with crisp values. These values are in the range
between zero and one. The different steps of the calculation can be seen in
Algorithm 2. The function iterates over the individual which describes which
worker is assigned to which station. At each index, the function looks up if
the requirements were met. Therefore the difference between the requirements
and the skill level of the assigned worker is calculated for each trait. If the
difference is positive the value will be cut down to zero to prevent a tradeoff
between "worse" and "good" allocations by "overfitting" the task which results
in higher satisfaction.

Result: Crisp Satisfaction of the individual
CrispSatisfaction ← 0;
forall Tasks do

forall Traits do
CrispSatisfaction += Min(0, Worker Skill - Requirements);

end
end
CrispSatisfaction ← CrispSatisfaction / 3;
return CrispSatisfaction

Algorithm 2: Calculation of the CrispSatisfaction

For example, the required value is 45. That means that each worker with a
value of 45 in this trait and higher fulfills the task to it’s fullest. Without the
constraint, the algorithm would optimize the given in the following way. The
value of 45 resembles a breakpoint. From here on all values greater than 45
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result in a satisfaction greater than zero, lower values in a negative one. Now
the highest possible satisfaction value is 55. If the algorithm assigns a worker
with a value of 100 in this trait to the task it would result in a satisfaction
level of 55. Nonetheless, this worker fulfills the task as good as a worker with
a value of 45 so a huge amount of potential is wasted. Also, the "over-fitting"
made it possible to compensate for bad task allocations where the satisfaction
level is negative. The maximum amount which can be compensated is negative
55. There were two factors which contradicted that way of modeling. First the
possibility of the compensation of bad task allocations within the individual.
Secondly, the modeling does not represent reality because it does not matter
how much the requirements are exceeded. If the threshold is reached the task
can be fulfilled to it’s fullest and can be completed. Therefore all exceeding
values are restricted to zero.

V iolation =
∑
i∈N

0≤i≤|S|

∑
t

min(0, wt
i(x)− sti(x))

CrispSatisfaction =
V iolation

3
+ |S|

The value for each trait is added to the variable which saves the "crisp satis-
faction". After all the differences over the stations were acquired the fitness
value is divided by 3. The result is now in the range of zero to minus one.
For an intuitive understanding of the result, the size of the set S is added.
Consequently, the value of the "crisp satisfaction" is in the range of zero and
the size of the set S. The value of zero describes that none of the require-
ments could be fulfilled. On the other hand, a value of the size of the set S
describes that all stations could be maintained as a result of the fulfillment of
the requirements.

Fuzzy Satisfaction
The second part of which the fitness can consist of is the fuzzy satisfaction.
Here the function also iterates over the individual and selects the station and
worker at the given index.

As in Algorithm 3 shown the algorithm fuzzifies all the traits in each iteration
first. The fuzzified values will be then combined to a result fuzzy set. The
result fuzzy sets per trait will then be unified to a result fuzzy set which will
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Result: Fuzzy Satisfaction of the individual
FuzzySatisfaction ← 0;
forall Tasks do

forall Traits do
Trait Result = Inference Fuzzify(Requirement) & Fuzzify(Worker
Skill);

end
UnifiedSets ← Union off all Trait Results;
Final Result ← defuzzify UnifiedSets;
FuzzySatisfaction ← FuzzySatisfaction + Final Result;

end
return FuzzySatisfaction

Algorithm 3: Calculation of the FuzzySatisfaction

represent the solution for this index. This fuzzy set which includes all partial
solutions will then be defuzzified. The resulted crisp value is then added to
the fuzzy satisfaction and the next iteration begins.

Following the different steps are described more specifically.

First, each trait will be fuzzified. Therefore a fuzzy set is needed. The set
which is used for the fuzzification is split up in three linguistic terms which are
small (S), middle (M), and great (G). The terms are defined by the following
characteristic functions of the linguistic terms:

S(x) =

{
−2x+ 1, [0; 0.5]

0, otherwise

M(x) =


4x− 1, [0.25; 0.5]

−4x+ 3, [0.5; 0.75]

0, otherwise

G(x) =

{
2x− 1, [0.5; 1]

0, otherwise

The characteristic functions are based on the following deliberations. The lin-
guistic terms small, middle, and great are gradations of the skill level of the
worker given to the skill. An equal distribution of the terms as well as almost
the same gradient of the graph was chosen to allow smooth transitions between
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the different terms. Furthermore, the same characteristic functions are used
for the modeling of the suitability. The goal is to find an allocation of work-
ers which fulfills the given requirements. The case that the requirements are
met is modeled by the linguistic term possible which has the same character-
istic function as middle. The other terms of not possible and surpassed have
their highest degree of membership at the extreme points. Their degrees of
membership decrease gradually when suitability converges to the middle point.
The "over-fitting" and "under-fitting" of the problem should have the same
influence on the result. Therefore, the fuzzy sets were modeled symmetrically.

For example the following values are given:

Target CS TU SoSk
Station 0.7 0.35 0.9
Worker 0.4 0.7 0.8

Table 4.3: Example Values

Through the fuzzification, we obtain the degrees of membership for the differ-
ent terms of the fuzzy variable of the corresponding trait related to the crisp
value. The crisp value of 0.7 from the station in craftsmanship (CS) will result
in the degree of membership of 0.2 for middle (M) and 0.4 for great (G). The
fuzzy set represented in Figure 4.3 is the set with which the crisp values are
fuzzified. Like described earlier in Table 4.3 the crisp value of 0.7 in craftsman-
ship is applied to the different characteristic functions. This results in the two
degrees of membership M(0.7) = 0.2 and G(0.7) = 0.4. These are the degrees
of membership recording to the different linguistic terms. Therefore the crisp
value is more affiliated towards great (0.4) than to middle (0.2). After this
procedure is done for all traits we obtain two three by three matrices one for
the station and one for the worker.

The results are summarized by the following table:

Now all the original trait values are fuzzified. Currently, it is not possible to
decide if the worker is suited to get the job done or not. Therefore a new
fuzzy variable is introduced. The suitability is constructed by the previously
obtained fuzzified values. In addition to the new variable comes a rule base as
well.

With this rule base, it is possible to transform the two fuzzy variables used in
the fuzzification to the new fuzzy variable which describes the suitability (Suit).
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Station Worker
Terms/ Variables CS TU SoSK CS TU SoSK

S 0 0.3 0 0.2 0 0
M 0.2 0.4 0 0.6 0.2 0
G 0.4 0 0.8 0 0.4 0.6

Table 4.4: Fuzzified Values for the station and worker from Table 4.3

Figure 4.3: Degrees of membership of the crisp value 0.7 to the different lin-
guistic terms of the fuzzy variable craftsmanship

Station CS Worker CS Suitability CS
S S P
S M SUR
S G SUR
M S NP
M M P
M G SUR
G S NP
G M NP
G G P

Table 4.5: Rulebase for the inference, small (S), middle(M), great (G), not
possible (NP), possible (P), surpassed (SUR)
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This rule base stays the same for all the fuzzy variables. Furthermore, we also
need a norm which calculates the value of the suitability corresponding to the
two input variables. The algorithm computes with the min-norm. This norm
takes the minimum of the degrees of membership of the inputs and assigns it to
the result variable. I choose the min-norm at this point to represent the point
that nobody can work over his limitations, therefore, the unit which is the
smallest will describe the suitability the worker has in this given combination
of the inputs.

A rule can be interpreted as follows:

If StationCS(S) ∧WorkerCS(S)→ SuitCS(P )

by applying the Min-Max T-(co)-norm:

SuitCS(P ) = min(StationCS(S),WorkerCS(S))

At this point, the crisp value is fuzzified shown by Table 4.4. Exemplary I will
explain the inference step based on the trait craftsmanship (CS) corresponding
to the linguistic term of not possible from the suitability. On the station side
the values are (0, 0.2, 0.4) and on the worker side (0.2, 0.6, 0).

The values for the suitability will be acquired in the following way:

SuitCS0(NP ) = min(StationCS(M),WorkerCS(S))

SuitCS0(NP ) = min(0.2, 0.2)

SuitCS0(NP ) = 0.2

The other two values are calculated in the same way.

SuitCS0(NP ) = min(0.4, 0.2)

SuitCS0(NP ) = min(0.4, 0.6)

The linguistic term not possible of the suitability fuzzy variable regarding the
craftsmanship has, therefore, the values of (0.2,0.2,0.4).

After that operation, each linguistic term has attained three values through
the inference. The complete result can be seen in table Table 4.6.
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Suitability
Variables/ Terms NP P SUR

CS 0.2 0.2 0.4 0 0.2 0 0 0 0
TU 0 0 0 0 0.2 0 0.2 0.3 0.4
SoSk 0 0 0 0 0 0.6 0 0 0

Table 4.6: Result of the inference using the fuzzified values from table Ta-
ble 4.4, small (S), middle(M), great (G), not possible (NP), possible
(P), surpassed (SUR)

Now each linguistic term got per trait three values. These values now need
to be unified. The inference calculated us the minimum the worker is capable
of corresponding to the rules in the rule base. As co-norm, I choose the max-
norm because the values are for sure fulfilled by the worker. As a result, the
maximum value can be taken. This norm picks the maximum of the three
stored values. For the suitability in the craftsmanship of the linguistic term
not possible the calculation would be as follows:

SuitCS(NP ) = max


SuitCS0(NP )

SuitCS1(NP )

SuitCS2(NP )

The result with the corresponding fuzzy set and delineated linguistic terms
can be seen in Figure 4.4.

Before the defuzzification can start there is one point left. The three different
sets have to be combined so that we obtain a result fuzzy set which ca be
defuzzified. To achieve the goal a union of the three different sets has to be
built.

The sets of Figures 4.4 to 4.6 are taken to build the set of Figure 4.7.

Here the intersections between the different linguistic terms have to be con-
sidered. In the interval of 0.25 to 0.5, the higher degree of membership is
applied. Either the value of the term not possible is applied or the value of
the term possible. The same rule has to be assigned to the other interval of
0.5 to 0.75 as well. Furthermore, it has to be regarded that the values stay in
the boundaries of the set. It is not possible to assign a degree of membership
of 0.8 to the term of not possible at the point of 0.2 because the boundary is
at 0.6.
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Figure 4.4: Suitability of the worker regarding the craftsmanship

Figure 4.5: Suitability of the worker regarding the technical understanding
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Figure 4.6: Suitability of the worker regarding the soft skills

Figure 4.7: Resulting fuzzy set after building the union of all intermediate
solutions
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The resulting fuzzy set is shown in Figure 4.7 can now be used for defuzzi-
fication. The exact solution would be determined by an integration over the
fuzzy set. Therefore the curve is split into spatial intervals which are then

integrated: A =
+x∫
−x
µ(x)dx.

This comes with a high computation cost. A trade-off between computation
time and the exact result is the result we choose. My solution approximates
the solution. Therefore we choose base points in the solution where singletons
are created. The more base points we take the better the result is. We took 10
base points for my solution. Every 0.1 step we set a base point. Additionally,
the mean is created to minimize the error which comes with the approximation.
Corresponding to the in Figure 4.7 the calculation look as follows:

A =

1∫
0.1

x · µ(x)

1∫
0.1

µ(x)

A =
0.1 · 0.4 + ...+ 0, 4 · 0, 6 + ...+ 0.6 · 0.6 + 0.7 · 0.4 + ...+ 1 · 0.4

0.4 · 7 + 0.6 · 3

A =
0.04 + ...+ 0.24 + ...+ 0.36 + 0.42 + ...+ 0.4

2.8 + 1.8

A =
2.64

4.6

A = 0.574

The term µ(x) represents the degree of membership of the corresponding lin-
guistic term.

If the number would be increased to infinity we would result in the integral
which calculates the exact result.
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4.4 Fitness Function

Constraints
Additionally to the different satisfaction values, two constraints have some
influence on the fitness value.

The first constraint is related to the working time of the worker and will be
referred to as the "working hour (WH)" constraint. The value given for this
constraint represents the maximum allowed working hours. If the threshold
of this constraint is exceeded a punishment factor will be added to the fitness
value. The value of the factor correlates to the difference between the threshold
and the exceeding value. The greater the difference, the greater will be the
adjustment by the constraint.

The punishment value for this constraint is the sum of the difference between
all exceeding values and the allowed value over all workers described by the
following formula:

ConstraintWH =
n∑

i=0

max(wi − ϕ, 0)

where wi are the working hours of every single worker and ϕ is the allowed
threshold for an employee. The result is then multiplied by the constraint
weight.

The second constraint displays the carpool or staff of the company also referred
to as the "carpool (CP)" constraint. The size of the carpool is shown by the
value of this constraint. A violation of this constraint means that there are
not enough cars in the carpool of the company to accomplish all tasks.

The adjustment value for the CP constraint is calculated by the difference of
the cars which are used and needed by the worker to accomplish their routes
and the cars which are provided by the carpool. In other words, the second
constraint is given by the difference of the employees who were assigned by the
individual and the estimated number of worker to complete the routes which
are given by the user.
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The CP constraint is calculated as follows:

ConstraintCP = max(Iw − ϕ, 0)

where Iw is the number of different employees assigned to the routes and ϕ the
estimated number of workers for the problem.

We assume that both constraint thresholds are set to five. The individual
is given in Section 4.2 would lead to the following constraint values. The
individual has two workers which exceed the threshold of five regarding the
WH constraint. Therefore the differences are calculated and summed. The
punishment for this constraint will be two. Since both workers exceeding the
threshold by one. This factor is then multiplied by the constraint weight which
is given by the user.

The CP constraint will not be triggered because only four workers were as-
signed to serve the stations. In the end, only the WH constraint would influ-
ence the fitness value for the given example.
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4.5 Selection Operators

4.5 Selection Operators

Like in Section 4.3 already mentioned a tournament selection is used for the
parental selection. The tournament is of size two. That means that two
individuals are selected randomly from the population and compete against
each other. There are always two different individuals chosen. The time the
first individual is picked it is removed from the pool of possible candidates.
This design decision was taken to increase the selection pressure. A result of
this decision is that the individual with the worst fitness value of the generation
has no chance to get into the reproduction, crossover, and mutation process as
the conclusion of the tournament because the individual with the best fitness
wins it. Resulting in the inevitable loss of the worst individual in all cases.
The environment selection is a µ+Lambda-Selection. Here the population
consists of 4 different groups of individuals which can be seen in Figure 4.2.
Three groups are coming from the foregoing evaluation. In the first group are
the individuals who were only mutated. The second branch consists of the
individuals which were created by crossover but were not mutated. Crossover
and mutation were applied to the next group. Last but not least the original
population, which was used for parental selection, is added to the process.
The selection operator takes the best individuals out of this population until
it reached the original problem size. The resulting population is the basis
of the next generation. The µ+Lambda-Selection provides a form of elitism.
The algorithm thereby can only improve the candidates of solutions. If a step
develops only worse solutions, which can be created by mutations and bad
crossovers, they are contained and eliminated by the individuals of the start
of the generation. The idea was to maintain the quality of the fitness values
over the different solutions because it is more likely that a better individual is
created by two individuals who have already "good" fitness values.

4.6 Crossover Operators

After the individuals for the recombination were chosen by the parental selec-
tion. Genetic diversion is created by three different operators. A one-point
crossover is the first crossover operator. Here the cutting is chosen randomly
and the right-hand side is then changed between both individuals. Another
proportion of the new population is created by a two-point crossover. The
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operator does not have fixed cutting points. The cutting points are changing
after each application. The two-point crossover exchanges the inner part be-
tween the individuals. The points for the cuts are both chosen randomly that
the exchanged part can reach from one single allele to the whole chromosome
except the first and last allele. The last group of new individuals is deter-
mined by the third operator which is a uniform crossover. The pattern of each
crossover is created randomly after each application so that at each applica-
tion a different scheme is used. The randomness in the setup of the different
operator should make it possible that the collection of alleles which contribute
to "good" solutions can be transferred between the individuals and therefore
improve the overall fitness of the individuals and thereby of the population.
These collections can vary in their lengths which makes it worthwhile that the
operators are highly flexible. If the operators would be fixed the algorithm
would converge as well but would split matching alleles which in turn results
in a long time of convergence. With the chosen approach a reduction of these
unintended splits is intended.

4.7 Mutation Operators

The algorithm uses two different mutation operators. In this step, small
changes are applied to the genes of the chosen individuals. The algorithm
uses two different mutation operators. The individuals who have to be mu-
tated are therefore split into two groups. For the first group, the mutation
operator will change a single index of the chromosome. This is done by adding
an arbitrary offset to the current index which results in a new allocation of a
worker to this station. The other mutation operator changes two workers of
the individual with each other. Resulting in the change of the assignment of
the workers to the two stations concluding a different satisfaction value.
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This chapter will present the results of this thesis. First, the parameter setting
of the evaluation benchmarks will be explained. Then the structure of the
benchmark instances will be described. An outline of the results of a single
run will be given as well. From there on the results will be presented and
interpreted. At the end of the chapter, the results will be summarized to a
conclusion.

5.1 Parameter Setting

The parameter setting will be examined in this section. We differentiate be-
tween global and local parameters. The global parameters will stay the same
for all benchmark problems. The parameter which change between the differ-
ent benchmark instances are the local parameters.

Parameter Value
Tournament Size k 2
Size of Population, Mutation only 0.1
One-Point Crossover Size 0.33
Two-Point Crossover Size 0.33
Uniform Crossover Size 0.34
Mutation Rate 0.1
Population Size 200
Iterations 500

Table 5.1: Global variables of the algorithm

The structure of the algorithm was shown in Section 4.3. The used parameters
for the different components are shown in Table 5.1. The tournament size is set
to a fixed size of two to invoke a small selection pressure by the preservation of
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Parameter Value
Problem1 Problem2 Problem3 Problem4

ConstraintWH 5 12 20 6
ConstraintPC 5 10 30 12
Number of Stations 16 100 500 50
Number of Workers 10 25 75 20

Punishment Weights

WeightWH 0.5 1 5 10
WeightPC 0.5 5 1 10

Table 5.2: Local variables of the algorithm

the diversity of the population. That allows the algorithm in the crossover part
to exchange good sub-structures even the individual is worse than the other.
This design decision should prevent that the algorithm gets stuck in a local
optimum. Further diversity is added by the three crossover operators which
are applied equally to the population. The different operators allow different
patterns to be exchanged. The encodings of "good" individuals show similar-
ities when they are compared with each other. Those structures within the
encoding of the "good" individuals have a huge impact on the fitness value. If a
crossover can exchange these coherent genes the individual will receive a boost
which is represented in the fitness value. The established structures in the en-
coding represent partial solutions to the problem. These patterns can be very
diverse. Therefore it is beneficial to have different crossover operators[12, 10].
The mutation rate and the size of the subset of the population which is only
mutated are set to 0.1 [18]. The population size is set to 200 and the evalua-
tion runs over 500 iterations. These values were chosen corresponding to the
size of the problems shown in Table 5.2. Each problem has it is own thresh-
old values for the constraints. The local variables change between different
problems. Four problems were evaluated. Each problem instance was then
evaluated with the different punishment weights. In the end, we have 16 dif-
ferent parameter setups. These setups were run for both approaches, the crisp
and fuzzy approach.
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5.2 Explaination of Benchmark

A benchmark instance evaluates the different problems with 31 runs each.
The punishment weights which are set for the instance does not change for
the different problems. Table 5.2 shows that four different problems have to
be evaluated. This evaluation is done for a crisp and fuzzy approach. In total
each benchmark instance has eight problems. These problems are evaluated
31 times each.

Station HG TV SoSk Worker HG TV SoSk

0 19 90 15 0 49 80 26
1 11 60 42 1 83 69 33
2 5 78 74 2 66 69 58
3 74 36 55 3 52 27 31
4 0 30 54 4 28 7 2
5 7 79 95 5 38 1 38
6 73 0 84 6 20 31 35
7 4 48 37 7 79 49 21
8 79 0 60 8 75 85 3
9 98 49 55 9 87 95 28
10 2 15 61
11 95 14 74
12 45 3 33
13 0 16 32
14 75 1 75
15 7 24 80

Table 5.3: Requirements and Capabilities of the instance C16W10

Each run the population will be initialized randomly. The data for the prob-
lems are provided by CSV-tables. These tables characterize the requirements/
skill levels of the different stations and workers. Each line represents the values
for craftsmanship, technical understanding, and soft skills. These values are
separated by a delimiter. The data for the stations and workers are saved in
different tables. Examples can be seen in Table 5.3. The values are in the
range between zero and 100. The data were created randomly by a random
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number generator. The values are then normalized to the range between zero
and one to simplify the evaluation later.

The random actions in the algorithm are derived from a random object. Each
problem has it is own random object. This object is initialized with a seed
given by a unique global random object. The seed of the global random was
over the whole evaluation the same.

If we calculate the satisfaction as described in Section 4.4 we can represent the
different satisfaction values by a matrix. The matrix is shown in Figure 5.1
is an example of the problem where 16 stations need to be served and the
staff consists of ten workers. The color spectrum of the matrix goes from
white to green. White values indicate a small violation of the requirements
whereas green values represent a huge requirement violation. Therefore values
that are highlighted in white should be preferred, values in green should be
avoided. With this matrix, it is possible to show how good a worker performs
if he is assigned to the task at the station. The third worker with index two
is the best worker of the staff which is displayed by the color range of the
third column which is in the worst case light green. Whereas column five
should be strictly avoided because of the vibrant green color spectrum which
is occasionally broken by a few slight green values.

Figure 5.1: Resulting matrix of the problem instance C16W10

This matrix is a good representation of what happens internally when the
algorithm optimizes the problem. The algorithm tries to find an allocation of
stations and workers so that only whitish values of the matrix are used and
the constraints are fulfilled as well.
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5.3 Results

The results of a benchmark instance are summarized in a table. The results of
the instance where both punishment weights were set to 0.5, 16 stations had
to be served and the staff consisted of 10 employees can be seen in Table 8.1.

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C16-W10 0.5 0.5

BruteForce 15.147 8.051 6 15.147
Crisp_No_Constraints 15.147 8.04 5 0 6 15.147
Crisp_Constraint_WH 14.793 8.043 0 0 3 14.793
Crisp_Constraint_CP 15.147 8.04 5 0 6 15.147
Crisp_Both 14.78 8.04 0 0 4 14.78
Fuzzy_No_Constraint 12.427 8.156 0.5 1 0 8.156
Fuzzy_Constraint_WH 12.853 8.156 0 1.5 0 8.156
Fuzzy_Constraint_CP 12.013 8.156 1.5 0 0 8.156
Fuzzy_Both 12.697 8.156 0 0 1 8.156

Table 5.4: Results of the benchmark instance with 16 stations and 10 worker
with both punishment weights set to 0.5

The first row of the table contains general information on the benchmark
instance. In the benchmark column, the problem which was evaluated is in-
dicated by an abbreviation of the problem. The other values in this row are
values that let us estimate how good the solutions are that we obtained.

First, there is the crisp satisfaction value which is obtained by a heuristic.
This method assigns to each station the best worker possible corresponding
to the task. If we recall Figure 5.1 with the matrix related to that problem.
The method searches in each row the data field with the highest value. This
list of numbers is the best allocation of workers to tasks possible without
regarding the constraints. This value will help us to interpret the results of
the evolutionary algorithm correctly.

An estimation for the fuzzy solution is given by the fuzzy satisfaction. The
method which obtains this value minimizes the difference between the sum of
all properties of the worker and the sum of all properties of the station. In the
end, the resulting value corresponds to an allocation of workers to the tasks
with the minimal amount of "over-fitting" or "under-fitting".

The next two values are the punishment weights which influence the calculation
of the fitness if the constraints are not fulfilled.

The number given for the completed task outlines how many tasks can be
completely fulfilled. That means that each requirement of the task is met with
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an equal or higher skill level in that area by the worker. This value allows us
later on to how applicable the used approach is.

Last but not least the fitness column shows the different fitness values used by
the evolutionary algorithm.

All other values in the table are medians of the given variables over 31 runs.

5.4 Evaluation

The first problem instance (Crisp-No-Constraints) is used to verify if the algo-
rithm can find the optimal solution. Therefore we compare the resulting crisp
satisfaction with the resulting value of the benchmark method. All resulting
tables can be find in Chapter 8

In Tables 8.1, 8.5, 8.9 and 8.13 we can see that with an increase of complex-
ity the distance towards the optimal solution increases. Also, the number of
completed tasks is decreasing. The algorithm can find the optimal solution for
the smaller problem instances (C16-W10, C50-W20). The number of function
evaluations for the other problems is insufficient to obtain the optimal solution.
This can be seen in the discrepancy of the values in the problem C500-W75.
The discrepancy shows as well that the algorithm has not converged yet. The
huge gap between the possible number of completed tasks and the reached
one is a result of missing influence. The fitness value which is used for the
optimization does not consider the number of completed tasks. In section Sec-
tion 4.4 the composition of the fitness value was visualized. It shows that the
fitness value solely depends on the crisp and fuzzy satisfaction as well as both
constraints values.

The constraints influence the number of completed tasks hence the algorithm
wants to avoid a violation of the constraints. This leads to other individuals
which are conform to the constraints. Resulting in a lower fitness value because
the quality of the solution was traded for the fulfillment of the constraints. No
adjustment would let to an even lower fitness value because the loss due to the
constraints would be greater than the loss of the trade-off.

Furthermore, the results show that the fuzzy approach has an even lower num-
ber of completed tasks. The fuzzification of the values leads to a greater inter-
val of solutions which were not possible with the crisp values. The aggregation
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of the different fuzzy sets to a single one and the subsequent defuzzification
have also their influence on the result. This process allows the algorithm to
compensate bad allocations with good allocations which leads to a smaller
number of completed tasks. Additionally, with an increase in the problem
complexity and therefore in the search space, we can determine a decrease of
the gap of the number of completed tasks between the crisp and fuzzy problem
formulations relative to the problem complexity. At the problem C50-W20 the
fuzzy approach could only fulfill a fifth of the tasks completed in comparison
to the crisp solution whereas the fulfillment increased to almost two-thirds of
the value of the crisp solution in the problem C500-W75.

The solutions to the different problems differ from each other which is proof
of the adaptation of the algorithm to the different compositions of the fitness
value. The adaptation is shown by the influence of the constraint values to the
fitness values.

Tables 8.9 to 8.12 showcase the results of the problem instance C100-W25
corresponding to the different constraint setups. The results differ marginally
hence the initialization of the global random variable was overall evaluations
the same. The slight changes in the result can be attributed to changes in the
constraint weights which influenced the decisions made by the algorithm. A
change of the weights only affected the evaluation of the crisp values. The val-
ues for the fuzzy satisfaction are unchanged over all the different problems. The
CrispConstraintCP and CrispBoth instance shows the marginal distinctions of
the fitness values corresponding to the change of the constraints weights.

Let us take a detailed look at the problem where the first constraint factor
was set to one and second to five. The results where the constraints were
not part of the fitness values showcase that there a few workers who can be
assigned to all tasks. It is represented by the high value for the first constraint.
The value meant that for the resulting allocation the assigned employees took
18 hours overtime in total. Further five additional employees are needed for
the allocation. We now look at the development of these constraint values
over the different problems by iterating through the rows. The next instance
accounts for violations of the first constraints. If the first constraint would be
disregarded the fitness would decrease relative to the extent of the violation.
The algorithm adapts the solution using an additional worker for the allocation
which increases the value to 30 in comparison to the problem earlier. With the
assignment of another employee, the algorithm avoided the negative influence
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of the first constraint which is now zero on the fitness value completely. We
go on to the problem where the second constraint has an impact on the fitness
value. In comparison to the first results, we can see that the algorithm avoided
the majority of the negative consequences by reducing the value to 5. The last
problem instance that we analyze in more detail calculates the fitness value
regarding both constraints. So both constraint values influence the fitness
value. Here the algorithm has to find a trade-off between the constraints.
Although the first constraint has a smaller influence on the calculation of
the fitness the algorithm reduced the violation towards zero. Consequently
exceeding the threshold of the second constraint by assigning two additional
workers.

Concluding we want to compare the results of the crisp approach with the ones
of the fuzzy approach. Overall it can be stated that the crisp approach fulfills
more tasks completely than the fuzzy approach. Also, the fuzzy satisfaction
values are almost the same even when the algorithm was not optimizing on
this value. This is a result of the defuzzification of the resulting fuzzy variable.
The fuzzy variable is the union of the three fuzzy variables which are related to
the different skill areas. This combination allowed that allocations that were
"over-fitted" were compensated by worse ones. Therefore the values are around
the optimum. In future works, the defuzzification method should be reworked
that an approach to compensate "over-fitted" allocations with "under-fitted"
ones results in negative consequences for the fitness value.

5.5 Summarization

In the end, we can summarize that the prototype can find an allocation of
workers to tasks which is near the optimal solution. Furthermore, the proto-
type can adapt to different constraint setups. The fuzzy approach used by the
algorithm remained behind its potential because of design decisions in the mod-
eling which influenced the results negatively. Nonetheless, we are convinced
that with modifications the fuzzy approach is competitive.
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6 Conclusion & Future Works

In this thesis, evolutionary algorithms and fuzzy techniques were used to solve
an allocation based on the VRP. One use case is the planning of tours in a
company that provides maintenance services for different industrial machines.
The related work was examined in Chapter 3. In Chapter 4, the concept of
a framework was introduced which can solve a variety of allocation problems
in different approaches. The different components are explained in detail. A
prototype framework was provided which solves allocation problems based on
the VRP for a variety of problem sizes. Although the crisp approach of the
prototype solves the problems well the fuzzy concept left room for improve-
ments.

Future Works
The fuzzy approach can be improved by modifying the defuzzification. Here
a weighting method can be introduced which prevents the compensation. An-
other point is the used t-norm and co-norms which can be changed with dif-
ferent measurements for the minimum and maximum.

The VRP which the prototype is based on can also be easily extended. The the-
sis assumed that the distance values were already encoded in the requirements.
The detachment of the different objectives would transform the problem in a
multi-objective optimization here the allocation of the worker to the tasks has
to be optimized as well as the distances of the different tours.
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Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C16-W10 0.5 0.5

BruteForce 15.147 8.051 6 15.147
Crisp_No_Constraints 15.147 8.04 5 0 6 15.147
Crisp_Constraint_WH 14.793 8.043 0 0 3 14.793
Crisp_Constraint_CP 15.147 8.04 5 0 6 15.147
Crisp_Both 14.78 8.04 0 0 4 14.78
Fuzzy_No_Constraint 12.427 8.156 0.5 1 0 8.156
Fuzzy_Constraint_WH 12.853 8.156 0 1.5 0 8.156
Fuzzy_Constraint_CP 12.013 8.156 1.5 0 0 8.156
Fuzzy_Both 12.697 8.156 0 0 1 8.156

Table 8.1: Results of the benchmark instance with 16 stations and 10 workers
with both punishment weights set to 0.5

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C16-W10 BruteForce 15.147 8.051 1 5 6 15.147

Crisp_No_Constraints 15.147 8.04 10 0 6 15.147
Crisp_Constraint_WH 14.79 8.043 0 0 4 14.79
Crisp_Constraint_CP 15.147 8.04 10 0 6 15.147
Crisp_Both 14.783 8.044 0 0 3 14.783
Fuzzy_No_Constraint 12.427 8.156 1 10 0 8.156
Fuzzy_Constraint_WH 12.853 8.156 0 15 0 8.156
Fuzzy_Constraint_CP 12.013 8.156 3 0 0 8.156
Fuzzy_Both 12.65 8.156 0 0 0 8.156

Table 8.2: Results of the benchmark instance with 16 stations and 10 workers
the punishment weights are set to one for the WH constraint and
five for the WH constraint
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Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C16-W10 BruteForce 15.147 8.051 5 1 6 15.147

Crisp_No_Constraints 15.147 8.04 50 0 6 15.147
Crisp_Constraint_WH 14.79 8.043 0 0 4 14.79
Crisp_Constraint_CP 15.147 8.04 50 0 6 15.147
Crisp_Both 14.79 8.04 0 0 4 14.79
Fuzzy_No_Constraint 12.427 8.156 5 2 0 8.156
Fuzzy_Constraint_WH 12.853 8.156 0 3 0 8.156
Fuzzy_Constraint_CP 12.013 8.156 15 0 0 8.156
Fuzzy_Both 12.48 8.156 0 0 0 8.156

Table 8.3: Results of the benchmark instance with 16 stations and 10 workers
the punishment weights are set to five for the WH constraint and
one for the CP constraint

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C16-W10 BruteForce 15.147 8.051 10 10 6 15.147

Crisp_No_Constraints 15.147 8.04 100 0 6 15.147
Crisp_Constraint_WH 14.79 8.043 0 0 4 14.79
Crisp_Constraint_CP 15.147 8.04 100 0 6 15.147
Crisp_Both 14.79 8.04 0 0 4 14.79
Fuzzy_No_Constraint 12.427 8.156 10 20 0 8.156
Fuzzy_Constraint_WH 12.853 8.156 0 30 0 8.156
Fuzzy_Constraint_CP 12.013 8.156 30 0 0 8.156
Fuzzy_Both 12.697 8.156 0 0 1 8.156

Table 8.4: Results of the benchmark instance with 16 stations and 10 workers
with both punishment weights set to 10

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C50-W20 BruteForce 48.573 25.015 0.5 0.5 32 48.573

CrispNoConstraints 48.573 25.006 7.5 0 32 48.573
CrispConstraintWH 48.207 25.006 0 0 25 48.207
CrispConstraintCP 48.573 25.006 7.5 0 32 48.573
CrispBoth 48.153 25.006 0 0 25 48.153
FuzzyNoConstraint 40.99 25.033 0 3 5 25.033
FuzzyConstraintWH 40.72 25.033 0 3 5 25.033
FuzzyConstraintCP 40.833 25.033 1 0 5 25.033
FuzzyBoth 40.577 25.033 0 0 5 25.033

Table 8.5: Results of the benchmark instance with 50 stations and 20 workers
with both punishment weights set to 0.5

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C50-W20 BruteForce 48.573 25.015 1 5 32 48.573

CrispNoConstraints 48.573 25.006 15 0 32 48.573
CrispConstraintWH 48.167 25.006 0 0 25 48.167
CrispConstraintCP 48.553 25.006 12 0 31 48.553
CrispBoth 48.11 25.006 0 0 24 48.11
FuzzyNoConstraint 40.99 25.033 0 30 5 25.033
FuzzyConstraintWH 40.72 25.033 0 30 5 25.033
FuzzyConstraintCP 40.833 25.033 2 0 5 25.033
FuzzyBoth 41.103 25.033 0 0 5 25.033

Table 8.6: Results of the benchmark instance with 50 stations and 20 workers
the punishment weights are set to one for the WH constraint and
five for the CP constraint
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Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C50-W20 BruteForce 48.573 25.015 5 1 32 48.573

CrispNoConstraints 48.573 25.006 75 0 32 48.573
CrispConstraintWH 48.167 25.006 0 0 25 48.167
CrispConstraintCP 48.563 25.006 75 0 31 48.563
CrispBoth 48.16 25.006 0 0 25 48.16
FuzzyNoConstraint 40.99 25.033 0 6 5 25.033
FuzzyConstraintWH 40.72 25.033 0 6 5 25.033
FuzzyConstraintCP 40.833 25.033 10 0 5 25.033
FuzzyBoth 40.367 25.033 0 0 5 25.033

Table 8.7: Results of the benchmark instance with 50 stations and 20 workers
the punishment weights are set to five for the WH constraint and
one for the CP constraint

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C50-W20 BruteForce 48.573 25.015 10 10 32 48.573

CrispNoConstraints 48.573 25.006 150 0 32 48.573
CrispConstraintWH 48.167 25.006 0 0 25 48.167
CrispConstraintCP 48.553 25.006 120 0 31 48.553
CrispBoth 48.117 25.006 0 0 24 48.117
FuzzyNoConstraint 40.99 25.033 0 60 5 25.033
FuzzyConstraintWH 40.72 25.033 0 60 5 25.033
FuzzyConstraintCP 40.833 25.033 20 0 5 25.033
FuzzyBoth 40.577 25.033 0 0 5 25.033

Table 8.8: Results of the benchmark instance with 50 stations and 20 workers
with both punishment weights set to 10

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C100-W25 BruteForce 98.96 50.052 0.5 0.5 70 98.96

Crisp_No_Constraints 97.88 50.03 9 2.5 46 97.88
Crisp_Constraint_WH 97.07 50.03 0 3 44 97.07
Crisp_Constraint_CP 97.287 50.03 7.5 0.5 43 96.55
Crisp_Both 96.547 50.03 0 1 41 95.443
Fuzzy_No_Constraint 82.5 50.087 0 7 13 50.087
Fuzzy_Constraint_WH 82.297 50.087 0 6.5 13 50.087
Fuzzy_Constraint_CP 82.487 50.087 0 3 13 47.079
Fuzzy_Both 82.73 50.087 0 3 15 47.079

Table 8.9: Results of the benchmark instance with 100 stations and 25 workers
with both punishment weights set to 0.5

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C100-W25 BruteForce 98.96 50.052 1 5 70 98.96

Crisp_No_Constraints 97.88 50.03 18 25 46 97.88
Crisp_Constraint_WH 97.067 50.03 0 30 43 97.067
Crisp_Constraint_CP 96.853 50.03 15 5 40 91.317
Crisp_Both 95.927 50.03 0 10 37 86.003
Fuzzy_No_Constraint 82.5 50.087 0 70 13 50.087
Fuzzy_Constraint_WH 82.297 50.087 0 65 13 50.087
Fuzzy_Constraint_CP 82.487 50.087 0 30 13 20.079
Fuzzy_Both 82.73 50.087 0 30 15 20.079

Table 8.10: Results of the benchmark instance with 100 stations and 25 workers
the punishment weights are set to one for the WH constraint and
five for the CP constraint
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Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C100-W25 BruteForce 98.96 50.052 5 1 70 98.96

Crisp_No_Constraints 97.88 50.03 90 5 46 97.88
Crisp_Constraint_WH 97.08 50.03 0 6 44 97.08
Crisp_Constraint_CP 97.177 50.03 75 1 41 95.947
Crisp_Both 96.317 50.03 0 2 39 94.227
Fuzzy_No_Constraint 82.5 50.087 0 14 13 50.087
Fuzzy_Constraint_WH 82.297 50.087 0 13 13 500.887
Fuzzy_Constraint_CP 82.487 50.087 0 6 13 44.079
Fuzzy_Both 82.73 50.087 0 6 15 44.079

Table 8.11: Results of the benchmark instance with 100 stations and 25 workers
the punishment weights are set to five for the WH constraint and
one for the CP constraint

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C100-W25 BruteForce 98.96 50.052 10 10 70 98.96

Crisp_No_Constraints 97.88 50.03 180 50 46 97.88
Crisp_Constraint_WH 97.08 50.03 0 60 44 97.08
Crisp_Constraint_CP 96.78 50.03 150 10 39 86.317
Crisp_Both 95.943 50.03 0 20 37 75.943
Fuzzy_No_Constraint 82.5 50.087 0 140 13 50.087
Fuzzy_Constraint_WH 82.297 50.087 0 130 13 50.087
Fuzzy_Constraint_CP 82.487 50.087 0 60 13 -9.921
Fuzzy_Both 82.73 50.087 0 60 15 -9.921

Table 8.12: Results of the benchmark instance with 100 stations and 25 workers
with both punishment weights set to 10

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C500-W75 BruteForce 498.893 250.226 0.5 0.5 438 498.893

Crisp_No_Constraints 441.193 250.074 0 22 76 441.193
Crisp_Constraint_WH 440.97 250.059 0 22 81 440.97
Crisp_Constraint_CP 440.253 250.057 0 20.5 78 419.677
Crisp_Both 439.833 250.065 0 20 78 420.153
Fuzzy_No_Constraint 404.98 250.6 0 21 48 250.6
Fuzzy_Constraint_WH 405.687 250.616 0 21 48 250.616
Fuzzy_Constraint_CP 406.303 250.54 0 20 48 230.681
Fuzzy_Both 405.337 250.594 0 20 49 230.597

Table 8.13: Results of the benchmark instance with 500 stations and 75 workers
with both punishment weights set to 0.5

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C500-W75 BruteForce 498.893 250.226 1 5 438 498.893

Crisp_No_Constraints 441.193 250.074 0 220 76 441.193
Crisp_Constraint_WH 440.97 250.059 0 220 81 440.97
Crisp_Constraint_CP 437.87 250.067 0 200 75 237.633
Crisp_Both 437.493 250.063 0 200 74 238.177
Fuzzy_No_Constraint 404.98 250.6 0 210 48 250.6
Fuzzy_Constraint_WH 405.687 250.616 0 210 48 250.616
Fuzzy_Constraint_CP 406.303 250.54 0 200 48 50.681
Fuzzy_Both 405.337 250.594 0 200 49 50.597

Table 8.14: Results of the benchmark instance with 500 stations and 75 workers
the punishment weights are set to one for the WH constraint and
five for the CP constraint
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Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C500-W75 BruteForce 498.893 250.226 5 1 438 498.893

CrispNoConstraints 441.193 250.074 0 44 76 441.193
CrispConstraintWH 440.97 250.059 0 44 81 440.97
CrispConstraintCP 439.45 250.061 0 41 79 399.39
CrispBoth 439.34 250.057 0 40 77 399.383
FuzzyNoConstraint 404.98 250.6 0 42 48 250.6
FuzzyConstraintWH 405.687 250.616 0 42 48 250.616
FuzzyConstraintCP 406.303 250.54 0 40 48 210.681
FuzzyBoth 405.337 250.594 0 40 49 210.597

Table 8.15: Results of the benchmark instance with 500 stations and 75 workers
the punishment weights are set to five for the WH constraint and
one for the CP constraint

Benchmark Problem Crisp Satisfaction Fuzzy Satisfaction ConstraintWH ConstraintCP Completed Tasks Fitness
C500-W75 BruteForce 498.893 250.226 10 10 438 498.893

CrispNoConstraints 441.193 250.074 0 440 76 441.193
CrispConstraintWH 440.97 250.059 0 440 81 440.97
CrispConstraintCP 437.11 250.062 0 400 73 37.153
CrispBoth 437.197 250.064 0 400 74 37.493
FuzzyNoConstraint 404.98 250.6 0 420 48 250.6
FuzzyConstraintWH 405.687 250.616 0 420 48 250.616
FuzzyConstraintCP 406.303 250.54 0 400 48 -149.319
FuzzyBoth 405.337 250.594 0 400 49 -149.403

Table 8.16: Results of the benchmark instance with 500 stations and 75 workers
with both punishment weights set to 10
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