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Abstract

Multi-objective Pathfinding is an important research field. Although research
has been done in multi-criteria decision making, there has been little research
on decision making methodologies for the multi-objective pathfinding problem.
In this thesis, a decision making approach is proposed that comes in three
versions. These versions support decision making according to decision space,
according to objective values or using a combination of these two steps. The
different steps are then compared by hypervolume and distance-observations. It
shows that each of the variant in decision space outperforms the other variants
according to distances while the objective space version is superior concerning
the hypervolume. The combination of both methods leads to a compromise.
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1 Introduction

1.1 Motivation

The multi-objective optimization problem (MOP) covers a wide field of very
important research problems. One problem that belongs to this category is the
multi-objective pathfinding problem (MOPP). Pathfinding itself surrounds
us in our daily lives, each time we navigate between places. Research is done
in multiple fields. It is used to find paths across the world in video games
[26]. Medical applications include resections [22, 20]. Another field of use is
route planning which plays an important rule in logistics [34]. An increasing
number of objectives in MOPP leads to huge numbers of optimal solutions
that overwhelm the user. In order to select solutions that are most relevant
for users, multi-criteria decision making(MCDM) is necessary [37].

Several MCDM-approaches have been proposed for the MOP [27, 35]. However,
there has been little research on evaluating these approaches on or specializing
them for the MOPP-Problem. Although there has been research conducted on
the comparison of trajectories like paths to each other using distance metrics,
using the similarity of paths has not been used as a criterion for decision
making.

1.2 Research Questions

Before designing a concept, the following main research question has been
formulated:

• How can decision making be done in multi-objective pathfinding?

Further, the thesis should answer the following additional questions?

• Which methods can be used?

1



1 Introduction

– Which methods can be used in decision space?

– Which methods can be used in objective space?

• How can both methods be combined?

As a result, the goal of this thesis is to find a decision making methodology for
the MOPP.

1.3 Structure of the Thesis

This introduction is followed by chapter 2 which explains the basic concepts of
multi-objective optimization, clustering and decision making, including tech-
niques that are used in this thesis. After that, chapter 3 gives a summary of
some related research that have been proposed for MCDM. In chapter 4, the
proposed concept of this thesis is explained. Chapter 5 is used to describe
the experiments that have been done for evaluation and explains the results.
Finally, chapter 6 concludes this thesis by giving a summary of results.
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2 Background

In this chapter, the fundamentals of the multi-objective optimization, pathfind-
ing, clustering and decision making are explained.

2.1 Optimization Problem

An optimization problem is a problem where the best solution of a number of
solutions needs to be selected. As defined in [18], an optimization problem (Ω, f)

consists of a search space Ω containing all potential solutions and an evaluation
function f : Ω→ R which calculates quality scores for each candidate ω ∈ Ω.
Optimization problems can be divided into minimization and maximization
problems. Depending on the type of optimization, a candidate ω ∈ Ω is called
solution if and only if either ∀ω′ ∈ Ω : f(ω′) ≥ f(ω) or ∀ω′ ∈ Ω : f(ω′) ≤ f(ω).
In the remainder of this thesis, optimizations are assumed to be minimization
problems, if not stated differently.

2.2 Multi-Objective Optimization Problem

As stated in [36], in multi objective optimization, there exists a multi objective
evaluation function ~f(x) where each component fi : Ω → R is an evaluation
function. ~f(x) needs to be optimized. In MOP, objective values are no longer
scalars but vectors. As a result, a different definition for solutions needs to be
determined in order to compare these objective vectors. The set of solutions is
referred to as S with |S| = n ∈ N,

2.2.1 Pareto-Dominance

A very common way to compare candidates and define solutions is using Pareto-
dominance.

3



2 Background

Figure 2.1: Illustration of Pareto-dominance

Definition 2.1 Pareto-Dominance

Pareto-dominance is a relation between candidates where x1 ∈ Ω dominates
x2 ∈ Ω if and only if (iff)

(∀i, 1 ≤ i ≤ k : fi(x1) ≤ fi(x2)) ∧ (∃i, 1 ≤ i ≤ k : fi(x1) < fi(x2)) (2.1)

, further denoted as x1 � x2 [18].

Definition 2.2 Pareto-Optimality

A candidate x is called Pareto-optimal iff @x′ ∈ Ω, x′ 6= x : x′ � x. Figure 2.1
shows a visualization of Pareto-dominance.

There exist different variants of dominance as alternatives to Pareto-dominance.

2.2.2 Epsilon-Dominance

The concept of epsilon-dominance can be used to approximate a Pareto-front.
In this thesis, it is used to select solutions from the Pareto-front according to
their objectives. The following terms are defined analogously to [19].

Definition 2.3 (ε-domination)

A candidate x1 ∈ Ω ε-dominates x2 ∈ Ω iff ∀i, 1 ≤ i ≤ k : (1+ε)·fi(s1) ≤ fi(s2)

for some ε > 0. This relation is further denoted as x1 �ε x2.

4
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Figure 2.2: Illustration of epsilon-dominance

Definition 2.4 (ε-optimality)

Analogously to Pareto-optimality, epsilon-optimality is defined: x is called ε-
optimal iff @x′ ∈ Ω, x′ 6= x : x′ �ε x. Using epsilon domination, the Pareto
Front can be approximated with a smaller number of solutions. Another benefit
is that subsequent concepts take less computational effort because operations
include fewer solutions. Figure 2.2 shows an example for epsilon-dominance.

2.2.3 Cone Dominance

In [17], Korhonen et al. describe a cone-shaped domination relation between
solutions. Analogously to Pareto- and epsilon-dominance, cone dominance-
relations are defined.

Definition 2.5 (Cone-Domination)

A candidate x1 ∈ Ω cone-dominates x2 ∈ Ω iff ∀i, 1 ≤ i ≤ k : fi(x1) +∑m
j=1,j 6=i αfj(x1) ≤ fi(x2) +

∑m
j=1,j 6=i αfj(x2) for some angle with radian mea-

sure α. This relation is further denoted as x1 �cone α x2.

Definition 2.6 (Cone-Optimality)

A non-cone-dominated solution is defined as follows: x is called cone-optimal
iff @x′ ∈ Ω, x′ 6= x : x′ �cone α x.

5



2 Background

Figure 2.3: Illustration of cone-dominance

The initial angle of 90° which spans across the area of dominated solutions
is increased by 2 · α. Therefor, all solutions in the angle ϕ = 90◦ + 2 · α are
cone-dominated. An illustration can be seen in Figure 2.3

2.3 Multi Objective Pathfinding

In the multi-objective pathfinding problem, there are given a directed Graph
G = (V,E), a starting node ns ∈ V , an end node ne ∈ V and a multi objective
evaluation function ~f . A path is defined as a sequence of nodes p = (n1, ..., nk)

for some k ∈ N, k 6= 0 [28]. A feasible solution is a path that connects the
starting node and the end node, having the form p = (ns, n2, ..., nk−1, ne). An
example of a path can be seen in Figure 2.4 Optimal solutions are paths that
optimize ~f .

2.4 Clustering

In order to understand large amounts of data, it is useful to divide them into
smaller groups. This process is called clustering [23]. In the following paragraph,
xi refers to an instance of S and clusters are referred to as Ci, i ∈ N.

6
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Figure 2.4: Example of a path connecting the points ns = (1, 1) and ne =

(10, 10)

2.4.1 Centroid-Based Clustering

A very often used clustering algorithm is k-Means, originally proposed in [23]
and [21]. It calculates k clusters Ci, 1 < i ≤ k by their cluster centers ci,
which are called centroids, and assigns all instances to a cluster [39]. First, the
number of clusters k ≤ |S| needs to be assigned. Then, k random centroids ci are
randomly assigned. All instances are iteratively assigned to their closest cluster
and new cluster centers are calculated, until the positions of the centroids stop
changing. The position of a centroid ci is defined as the average of the instances
of its cluster ci =

∑
x∈Ci

x

|Ci| . A disadvantage of this clustering method is that the
initial assignment of the centroids influences the clustering result.

2.4.2 Agglomerative Clustering

Agglomerative Clustering represents one way of clustering. The clustering is
done iteratively [39]. In the beginning, each point has its exclusive cluster. In
each step, the two clusters closest to each other are combined. This is done
until all entities belong to the same cluster. All of these joins can be visualized
in a dendrogram. In Figure 2.5, a dendrogram and the four stages of clustering
can be seen.

7
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Distance Metrics

In order to identify how close two clusters are, the similarity of two instances
needs to be defined. Distance metrics are used to determine how dissimilar two
instances are.

Definition 2.7 Distance Metric

As Chen defined in [4], a distance metric d : S × S → R needs to satisfy the
following conditions for s1, s2, s3 ∈ S:

1. non-negativity: d(s1, s2) ≥ 0

2. symmetry: d(s1, s2) = d(s2, s1)

3. triangular inequality: d(s1, s3) ≤ d(s1, s2) + d(s2, s3)

4. d(s1, s2) = 0 iff s1 = s2

Euclidean Distance Euclidean distance is a distance measure for points in
Euclidean space [32]. The distance for two n-dimensional points x and y is
defined as:

d(x, y) =

√√√√ n∑
i=1

(xi − yi) (2.2)

Hausdorff Distance The Hausdorff distance is a distance measure that
can be used on paths and curves in general [5]. For two paths p1 =

(n1s, n12, ..., n1k−1, n1e1) and p2 = (n2s, n22, ..., n2k−1, n2e2), it is defined as:

dH = max

 sup
n1i;

0<i≤e1

inf
n2i;

0<i≤e2

d(x, y), sup
n2i

0<i≤e2

;
inf
n2i;

0<i≤e1

d(x, y)

 (2.3)

This metric does not take the flow of the curves into consideration.

Fréchet Distance The Fréchet distance is a distance measure that can be
used on paths and curves in general. It was first proposed in [12]. Eiter and
Manilla use a dog walk analogy to explain the problem [33]: A person walks
a dog. Both are walking on their paths and are connected by a leash. Their

8



2.4 Clustering

speed can vary, but they can only move forward.An illustration of one of these
dog walks can be seen in Figure 2.6. The Fréchet distance now is the shortest
possible leash, depending on the travel speeds of the the dog and the person.

The Fréchet distance of two curves f : [a, b] → V and g : [a′, b′] → V with
a, a′, b, b′ ∈ R and V as metric space is calculated as:

δF (f, g) = inf
α,β

max
t∈[0,1]

d(f(α(t)), g(β(t))) (2.4)

α : [0, 1] → [a, b] and β : [0, 1] → [a′, b′] are non-decreasing functions. Hence,
f(α(t)) and g(β(t)) calculate the positions of the person and the dog at time t.
In [33], Eiter and Manilla proposed the discrete Fréchet distance as an approx-
imation of the Fréchet Distance δdF that reduces the computational effort to
O(kf · kg) where kf and kg are the number of nodes in each path. In order to
calculate the discrete Fréchet distance, the two curves are approximated by
polygonal curves P and Q. Their sequences of nodes in those paths are referred
to as σ(P ) = (u1, ..., up) and σ(Q) = (v1, ..., vq). The authors define a coupling
L of P and Q as a sequence L = (ua1 , vb1) , (ua2 , vb2) , . . . , (uam , vbm) where the
order of points from P and Q is not changed and a1 = 1, b1 = 1, am = p, bm = q.
The discrete Fréchet distance of P and Q is calculated as:

df (P,Q) = min{‖L‖ | L is a coupling between P and Q} (2.5)

Here, ||L|| refers to the length of the coupling L and is defined as the longest
length of couples in L.

Linkages

There exist different methods according to which clustering is done. Especially,
there are different ways to define distances between clusters. The following are
based on [9].

Single linkage defines the distance of two clusters C1 and C2 as the minimal
distance between two paths of these clusters: dsingle(C1, C2) = min

x∈C1,y∈C2

d(x, y).

Complete linkage defines the distance of two clusters as the maximum distance
between two paths of these clusters: dcomplete(C1, C2) = max

x∈C1,y∈C2

d(x, y).

Figure 2.7 illustrates both different linkages between two clusters of points.

9



2 Background

2.4.3 Center of Clusters

In order to represent a cluster, a medoid can be used [15]. It is defined as the
solution with the minimal distance to all other solutions in its cluster. Here, it
is defined using discrete Fréchet distance:

mC = arg min
x1∈C

∑
x2∈C

df (x1, x2) (2.6)

2.4.4 Comparing clusterings

There are different ways to compare clusterings of the same data to each other.
In this thesis, only internal measures are discussed. These only use data that
has been generated by or was used for the cluster analysis [38].

Average Silhouette Coefficient

The silhouette coefficient was proposed in [30] as a way to compare different
clusterings to each other. For every instance i, ai = 1

|Ci|−1
∑

j∈Ci,i 6=j dF (i, j)

describes the average distance of an instance i to all other instances in its
cluster ci and bi = mink 6=i

1
|Ck|
∑

j∈Ck
dF (i, j) is the average distance of i to that

cluster that minimizes this distance. Now, the silhouette coefficient is defined
as:

Si =
(bi − ai)

max (ai, bi)
(2.7)

It is used to determine how well an instance is being clustered. To compare
different clusterings, the average of the silhouette coefficients needs to be com-
pared. A higher silhouette coefficient might indicate a better clustering. The
silhouette coefficient for the different number of clusters can be visualized in
a graph, as shown in Figure 2.8. An assignment of a negative silhouette coeffi-
cient might indicate a false assignment of the observed individual. As a result,
a negative average silhouette coefficient indicates a weak clustering.

Dunn Index

A different approach was proposed by Dunn in [8]. The Dunn index is defined
as

α(k, P ) = min
16q6k

min
16r6k
r 6=q

d (Cq, Cr) / max
16p6k

diam (Cp) (2.8)

10
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where two clusters Ci and Cj have the inter-cluster separation d(Ci, Cj) =

min x∈Ci
y∈Cj

d(x, y)) and cluster Ci has the diameter diam(C1) = maxx,y∈Ci
d(x, y).

The Dunn index is challenged by noisy data because the inter-cluster separation
then is hardly influenced [38].

Davies-Bouldin index

Davies and Bouldin proposed a separation measure that can be used to
compare clusterings of the same data. It consists of operation measure be-

tween clusters Ci and Cj Mij =
{∑N

k=1 |cki − ckj|
p
}1/p

and a dispersion

Si =
{

1
|Ci|
∑|Ci|

j=1 |xj − ci|
q
}1/q

. Here, ci refers to the centroid of the cluster
Ci, and cki to the centroids k-th component. The similarity of two clusters is
defined as Rij ≡ Si+Sj

Mij
with maximum values Ri = maxi 6=j Rij. These values

can be used to calculate the average of cluster similarities R̄ ≡ 1
N

∑N
i=1Ri of

N clusters. It needs to be minimized.

2.5 Ramer-Douglas-Peucker algorithm (RDP)
for simplifying paths

For the agglomerative clustering, the distances between all paths of the Pareto
Front must be calculated. In order to minimize the computational effort of
the distance calculation, the paths can be shortened by an algorithm, Ramer,
Douglas and Peucker proposed in [7] and [29]. It selects points which are
needed to represent the curve using a parameter εrdp. The algorithm works as
follows:

The start and end point of the path are selected as A and B and added to the
simplified path. From all points that lie on the initial path between A and B,
the point with maximum distance to the line AB is detected and referred to
as C. If d(C,A,B) > εrdp then C is added to the simplified path between A
and B and the method is repeated recursively between points A and C and
between points C and B.

11



2 Background

In case εrdp = 0, all points are added to the simplified path, except for points
that are located on straight lines between two other points. Hence, only
obsolete points are being removed, and the simplified path is identical to the
original path.

An example can be seen in Figure 2.9. This figure shows how the curve stays
the same for εrdp = 0 while using fewer nodes and how εrdp = 0.5 reduces the
amount of nodes even more by simplifying the curve. A consequence of this
could be that a clustering or other operations on the paths calculate a different
output because the curve of the solutions change.

2.6 Decision Making

Decision making describes the process of selecting solutions, given a set of
solutions [11]. In MCDM, this is done whilst taking into account multiple
criteria [11]. Methods for MCDM usually calculate a ranking or a selection of
the possible solutions. Decision making can be categorized in a priori and a
posteriori decision making. The process of a posteriori decision making starts
after a Front of optimal solutions has been found [24]. This process tends
to be associated with high computational effort. On the other hand, a priori
decision making guides the process of finding solutions. For that purpose, the
decision maker’s preferences must already be specified before finding solutions
[24]. There exist also hybrids of these two approaches.

12



2.6 Decision Making

Figure 2.5: Different clusterings of a set of paths with seven (top left), six (top
right), two (left middle) and one (right middle) clusters and the
dendrogram (bottom)
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2 Background

Figure 2.6: Example of a dog walk; leash illustrated as red

Figure 2.7: An illustration of single and complete linkage

Figure 2.8: Example of curves for silhouette coefficient with single (left) and
complete (right) linkage clustering

Figure 2.9: An example path (left) and two simplifications using RDP wit
εrdp = 0 (middle) and εrdp = 0.5 (right)
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3 Related Research

There has been a lot of research on multi-objective pathfinding. This section
will explain some of the most common general decision making methods.

3.1 Weighted Sum Approach (WSM)

A very common and simple approach for MCDM, proposed in [10], uses a weight
wj for each criterion j [35]. For all solutions Ai, a WSM-score is calculated:

WSMAi
=

n∑
j=1

aijwj, i ∈ {1, ..., N} (3.1)

The best solution then is the one with the Maximum WSM-score. This method
can be used in problems where all criteria have the same dimensions and units.
On the other hand, in multi-dimensional problems, WSM can not be used
because the different criteria of different dimensions can not be compared to
each other.

3.2 Analytic Hierarchy Process

In [31], Saaty describes a different approach to solve the MCDM, called the
Analytic Hierarchy Process. First, weights for the different criteria are calcu-
lated, followed by weights for the different solutions. In both cases, this is done
by comparing the importance of the elements, which can refer to criteria or
solutions. A progressing scale from 1 to 9 ranges from equal importance to one
element being extremely important compared to the other one. The scale is
expanded by the reciprocal values. This can be represented in a matrix, where a
value aij = 9 means that element i is extremely important compared to element
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3 Related Research

criteria1 criteria2 criteria3
criteria1 1 3 7
criteria2 1/3 1 5
criteria3 1/7 1/5 1

Table 3.1: Example for the comparison matrix.

j, while aij = 1 means that both solutions have the same importance. It holds
that aij = 1/aji.

The weights wi for the criteria i are identical to the normalized principal
eigenvector. Afterward, the same method is used to get weightings wijfor each
solution j in respect to each criterion i. That means that for every criterion, a
matrix is created that compares the importance of all solutions. Finally, the
priority of a solution is equal to pj =

∑
iwij · wi. This can be used to get a

ranking of solutions.

A different method of obtaining priorities is to only use the weights obtained
for the different criteria. Those can be used to get a ranking analogously to
WSM but with relative attribute values [35].

3.3 ELECTRE

The Elimination and Choice Translating Reality (ELECTRE)-Method uses
pairwise comparisons between solutions [35]. Initially, the values of all solutions
are represented by a matrix X in which an entry xij holds the weighted,
normalized value of the j-th criterion of the i-th solution. The normalization
can be formulated as xij =

aij
|ai| · wi.

For each pair of solutions (k, l), the concordance set Ckl = {j|ykj ≤ ylj} and
discordance set Dkl = {j|ykj > ylj} are calculated. These sets are being used
to create a concordance matrix C with entries ckl =

∑
j∈Cki

wj and a discordance

matrix D with entries dkl =
maxj∈Dk1|ykj−ylj|

maxj|ykj−ylj| . Entries for k = l are not

defined in both matrices. A concordance threshold c = 1
m(m−1)

m∑
k=1

and k 6=l

m∑
l=1

and k 6=l

ckl

is used to determine a concordance dominance matrix F with entries
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3.4 TOPSIS

fkl =

{
1; ckl ≥ c

0; ckl < c
. Analogously, a discordance dominance matrix G with

entries gkl =

{
1; dkl ≥ d

0; dkl < d
is created based on a discordance threshold

d = 1
m(m−1)

m∑
k=1

and k 6=l

m∑
l=1

and k 6=l

dkl.

The aggregate dominance matrix E holds entries ekl = fkl × gkl. These entries
can be used to identify a domination according to ELECTRE: ekl = 1 means
that solution Ak dominates solution Al according to concordance and discor-
dance. As a result, all columns with at least one entry that is equal to one can
be discarded.

3.4 TOPSIS

"Technique for Order Preference by Similarity to Ideal Solution" (TOP-
SIS) was proposed by Yoon and Hwang in [14]. The main idea is that
the distance to the ideal solution for a problem should be minimal and
the distance to the worst problem should be maximal. The first step
of their approach is to create a matrix with weighted, normalized at-
tribute values, analogously to ELECTRE. Additionally, the ideal and
worst possible solutions A∗ = {(min vij

i

|j ∈ C)|i = 1, 2, ...,m} and

A− = {(max vij
i

|j ∈ C)|i = 1, 2, ...,m} are calculated. C refers to the set of

criteria that need to be minimized.

The relative closeness of solution Ai to the ideal solution is calculated as
closenessi∗ = di−/(di∗ + di−) with distances di− and di∗ to the worst and ideal
solution. Finally, the solutions Ai can be ranked in the decreasing order of
closenessi∗ .

3.5 Knee Points

In the MOP, a knee refers to a convex "bulge" in the curve of the Pareto-front
[6]. Those points that are located in this knee tend to be chosen as the preferred
solutions. An example can be seen in Figure 3.1.
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3 Related Research

Figure 3.1: An Example of a knee K for a MOP with two objectives

There have been multiple MCDM-approaches that use knees in solutions for
MOP.

3.5.1 Angle-Based Method

In [2], Branke et al. proposed two methods for a posteriori decsion making that
work by detecting knee points. The first method is based on the observation
that angles are spanned by neighbors of a knee point tend to be larger than
the angle around other points. To detect knee points, for each objective vector
~f(xi), lines are spanned to connect them with its two neighbors ~f(xi−1) and
~f(xi+1). The angle between these lines is calculated. In an advanced version,
four angles between ~f(xi) and its four neighbors ~f(xi−2), ~f(xi−1), ~f(xi+1) and
~f(xi+2) are calculated and the largest one is selected. In both variations, the
points that span the largest angles can be assumed to be knee points. Although
this method could be used to solve the MCDM in MOP in general, the authors
recommend this approach for bi-objective problems only.
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3.5 Knee Points

3.5.2 Utility-Based Method

The second method proposed in [2] can also be used for problems with more than
two objectives. It uses utility functions U(x, λ) =

∑
λifi(x) with randomly

chosen
∑
λi = 1. The marginal utility

U ′ (xi, λ) =

{
minj 6=i U (xj, λ)− U (xi, λ) for i = arg max

j
U (xj, λ)

0 otherwise
(3.2)

calculates the cost for discarding the value xi with the highest utility and having
to rely on the second best value xj. Its expected value can be approximated,
applying random utility functions on each solution and calculating the average
value. Finally, the values with a higher expectation of marginal utility values
are more likely to be knee points.
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4 Proposed Approach

The goal of Decision Making is to provide the user with a ranking or selection
of "good" solutions. The proposed approach selects these solutions according to
their objective values or according to their representation in decision space. In
both spaces, the methodologies are supposed to select solutions that represent
the set of solutions. The algorithm consists of two steps. One of them is done
in objective space. Here, the amount of solutions is reduced by using either
epsilon- or cone-dominance. The other step is done by clustering the data and
calculating output candidates in decision space. The algorithm works a priori,
which means that it selects solutions from an already generated set of Pareto-
optimal solutions.
There are three versions of the algorithm:

• Only make decision according to objective values

• Only make decision according to clustering in decision space

• Combination of both methods

The combination starts by reducing the solutions according to their objective
values, followed by applying the clustering algorithm. The different versions
are visualized in Figure 4.1

4.1 Preparation

The algorithm takes Pareto-optimal solutions represented by their paths and
objective values as input by reading them from files. The paths are simplified
with the RDP-algorithm and εrdp = 0 in order to keep their course while using
fewer nodes. This safes up computational time in later steps. Additionally, all
objective values are normalized to prepare for the evaluation.
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4 Proposed Approach

Figure 4.1: possible sequences of both steps of the algorithm

4.2 Objective Space

This step is supposed to make a decision according to the objective values of
solutions. Therefor, a relevant subset of solutions from the Pareto-front needs
to be selected. In order to that, a more general form of domination is used,
namely epsilon- or cone-dominance. This allows the algorithm to further select
non-dominated solutions out of the non-Pareto-dominated solutions. In order
to find representative solutions, the algorithms either uses as approximation of
the Pareto-front by using epsilon-dominance or tries to detect knee points by
using cone-dominance. First, the value of ε or ϕ is assigned. This is followed
by the selection of non-dominated solutions in the sense of epsilon- or cone-
dominance. For this selection process, a solution archive is maintained. All
solutions are inserted iteratively. On each insertion, all currently stored solu-
tions are checked for domination by the inserted one. Additionally, the inserted
solution is checked for domination by all other solutions. In case of domination,
the dominated solutions are discarded. This process written in pseudocode can
be seen in Algorithm 1. The input solution_front represents the front of so-
lution, dominates(objectives1, new_objectives2, domination_parameter) re-
turns true iff the vector of objective values objectives1 dominates
objectives2. This can either refer to epsilon- or cone-dominance. The func-
tion delete(list, value) is used to delete the value from the list list.
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4.3 Decision Space

Algorithm 1 DM in Objective Space
Input: solution_front, domination_parameter, dominates
1: archive = list[]

2: for new_objectives in solution_front do
3: is_dominated = FALSE

4: for objectives in archive do
5: if dominates(objectives, new_objectives, domination_parameter)

then
6: is_dominated = TRUE

7: BREAK
8: end if
9: end for

10: for objectives in archive do
11: if dominates(new_objectives, objectives) then
12: delete(archive, objectives)

13: end if
14: end for
15: end for

4.3 Decision Space

In decision space, the algorithm is supposed to select solutions that differ in their
course. Centroid-based clustering algorithms are difficult to use because they
need to calculate an average of the instances. For paths, this proves difficult,
although an approach for centroid-based clustering has been proposed in [3].
Hence, an agglomerative clustering is performed on the set of solutions with
the intention of finding clusters of similar paths. In order to take the flow of
the different paths into consideration, the distance between paths is calculated
using discrete Fréchet distance. As linkage, complete and single linkage are used.
The clustering is applied to calculate numbers of clusters ranging from two to
half of the number of paths in the set of solutions. The "best" clustering is
defined by the maximal silhouette coefficient. In order to find the best number
of clusters, the clustering algorithm calculates numbers of clusters ranging from
two to half of the number of paths in the set of solutions using single linkage and
complete linkage separately. Then, the silhouette coefficient for each clustering
is calculated. The clustering with the maximal value is supposed to be the best
choice and consequently selected. This is done for both linkages independently.
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4 Proposed Approach

Algorithm 2 Clustering in Decision Space
Input: solution_set

1: scores =
⌈
|soultion_set|

2

⌉
2: best_clustering = 0

3: best_score = 0

4: for linkage in {single, complete} do
5: for number_of_clusters = 2, 3, . . . ,

⌈
|solution_set|

2

⌉
do

6: clustering = clustering(solution_set, number_of_clusters,
discrete_fr_dist, linkage)

7: scores[number_of_clusters] = calculate_silhouette_score(clustering)

8: end for
9: if argmax(scores) > best_score then

10: best_clustering = clustering(argmax(scores) + 1)

11: best_score = max(scores)

12: end if
13: end for
14: for cluster in best_clustering do
15: Output: medoid(cluster, discrete_fr_dist)
16: end for

Finally, one path per cluster is used as output. This path should represent
the cluster. Therefor, the medoid of each cluster is used. A pseudocode of the
algorithm can be seen in Algorithm 2. The solution_set refers to the set of
solutions that need to be clustered. To calculate the discrete Frechét distance,
discrete_fr_dist is used. The function clustering performs a hierarchical
clustering. As arguments, it gets a set of solutions that need to be clustered,
the number of clusters, that need to be calculated, the distance functions and
the preferred linkage. Further, calculate_silhouette_score and medoid are
used to calculate the silhouette score and geometrical medoid of a clustering.
The terms single and complete refer to linkages for clustering.
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5 Evaluation

In this chapter, the evaluation of the methodologies is described. Therefor, the
problems that were used for evaluation are explained. The different evaluation
metrics are portrayed in order to present the evaluation results. Finally a
summary is given.

5.1 Problems to evaluate

For evaluation, the proposed decision making is applied to Pareto fronts of
different MOPs. These fronts have been provided by [37]. The Problems consist
of two-dimensional grids with sizes [1, xmax]× [1, ymax] for xmax, ymax ∈ N where
grid positions are referred to as (x, y). In each map, a start node nS = (1, 1)

and an end node ne = (xmax, ymax) are defined for path finding.

5.1.1 Features of Different Map Types

The different Problems differ in their size, but also in the type of the used map
[37]. The three different features are explained according to [37] in this section.

Obstacles

Weise and Mostaghim [37] implemented different kinds of obstacles in each
map: no obstacles, checkerboard pattern, lake obstacle. In the checkerboard
pattern, every second cell is an obstacle. The lake is a circle-shaped obstacle
with radius r = xmax/4. The velocity of an obstacle cell is v(x, y) = 0. The
lake and checkerboard obstacles for a 12× 12 map are shown in Figure 5.1
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5 Evaluation

Figure 5.1: An example of the different obstacle-types: no obstacles (left), lake
(middle) and lake Obstacles (right) for a map size of twelve; higher
velocities are represented by darker colors

Elevation

The height of the grid cells is defined by an elevation function which uses a
hill function in the interval [−3, 3]. The coordinates of the grid cells need to
be scaled to spread across the interval. As hill function, one of the following
functions are used with scaled coordinates (xs, ys):

hm(xs, ys) = 3(1− xs)2e−x
2
s−(ys+1)2 − 10e−x

2
s−y1s (−x3s + xs/5− y5s)

− 1/3e−(xs+1)2−y2s
(5.1)

h1(xs, ys) = 5e−(xs+1.5)2−(ys+1.5)2 (5.2)

h2(xs, ys) = 5e−(xs−1.5)
2−(ys−1.5)2 (5.3)

h3(xs, ys) = 5e−(xs−1.5)
2−(ys+1.5)2 (5.4)
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5.1 Problems to evaluate

The elevation is defined by combining those hill functions using a parameter
nh as follows:

h(x, y) =


∑nh

i=1 hi; nh ∈ 2, 3

h3; nh = 1

hm; nh = M

(5.5)

Neighborhood Relation

The 2k - neighborhood relation defines between which nodes an agent is
allowed to travel. The relation is denoted by a parameter k ∈ {2, 3} [37].
Therefore, k = 2 denotes a 4-neighborhood which means that an agent is only
allowed to move north, east, south and west. An 8-neighborhood which is
denoted by k = 2 additionally allows the agent to move north-east, south-east,
south-west and north-west.

Backtracking is not allowed in any of the maps. As a result, the agent is only
allowed to move north, east and north-east.

5.1.2 Objectives

The Pareto fronts were determined for problems with five objectives which
Weise described in [37] as follows.

Euclidean length

The length of a path is calculated by adding the sums of the Euclidean distance
between all adjacent pairs of nodes (ni, ni+1) of a path p.

f1(p) =
K−1∑
i=1

d (ni, ni+1) (5.6)
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Expected delays

The second objective is the sum of delays between two adjacent nodes in the
path. The delay function takes into consideration the velocity values of two
adjacent nodes:

delay (ni, ni+1) =
2; vmax (ni) 6= vmax (ni+1)

3; vmax (ni) = vmax (ni+1) = 50

1; vmax (ni) = vmax (ni+1) = 100
1
5
; otherwise

(5.7)

Therefore, the second objective is defined as follows:

f2(N) =
K−1∑
i=1

delay (ni, ni+1) (5.8)

Elevation

The Elevation describes the sum of ascends between two adjacent nodes in the
path e(ni, ni+1) using the elevation function h(ni):

f3(p) =
K−1∑
i=1

e (ni, ni+1)

e(m,n) =

{
h(n)− h(m), if h(n) > h(m)

0, otherwise

(5.9)

Traveling Time

The time which is needed by the agent to travel a path is used as the fourth
objective. The traveling time for a single path segment is calculated by dividing
the distance of the two adjacent nodes d(ni, ni+1) by their average velocity
vmax(n)+vmax(n+1)

2
:

f4(p) =
K−1∑
i=1

2d (ni, ni+1)

vmax(n) + vmax (ni+1)
(5.10)
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Smoothness

The fifth objective describes the curvature of a path. It is the sum of all angles
between two path segments. Said angle between two angles is calculated as
cos(ϕ) = a · b/||a|| ||b||. The smoothness, then, is the sum of all angles in the
path:

f5(p) =
K−1∑
i=2

arccos

(
nini−1· | ni+1ni
|nini−1| · |ni+1ni|

)
(5.11)

5.1.3 Names of Problems

The different problem instances are named according to their features. An ex-
ample is CH_X9_Y9_P1_K3_BF. The names contain six sections, separated
by a backslash. The first section stands for the obstacle type. The possible ab-
breviations, NO, CH, LA refer to the obstacle types, no obstacles, checkerboard
pattern and lake obstacles. The second and third section name the size of the
map in X- and Y-direction. The fourth section indicates the elevation function.
Here, the letter P is followed by a character that refers to the parameter nh of
the hill function. In the fifth section, the digit after K refers to the parameter k
of the neighborhood. The last section indicates the backtracking. BF and BT
stand for disabled and enabled backtracking. The example refers to a problem
with checkerboard obstacles, a size of nine by nine, an elevation of nh = 1, a
k = 3 neighborhood and no backtracking.

5.2 Evaluation Criteria

In this section the metrics used for evaluation are discussed. It needs to be
mentioned that a qualitative evaluation of the output is difficult because the
quality of results might be a subjective observation.

5.2.1 Metrics

Hypervolume Indicator

The hypervolume (HV) is a quality indicator for Pareto-fronts. It is calculated
as the combined volumes that are being dominated by the individuals of the
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Figure 5.2: Visualization of hypervolume

Pareto front [16]. It is limited by a reference point r [13]. In the illustration in
Figure 5.2, the HV can be described as the blue area. It is calculated as

HV (S, r) = λ(

|S|⋃
i=1

vi,r) (5.12)

where vi,r refers to the set of all points in the region dominated by xi, limited by
the reference point r. The Lebesgue measure λ assigns a volume-like measure
to a set.

In the experiments, hypervolume is used to compare the quality of the initial
front with the output of the algorithm. All initial solutions are normalized
as stated in Section 4.1. This is done because the objectives are of different
dimensions.

Hypervolume Cotribution (HVC)

While the HV can be used to compare different Pareto-fronts, the HVC can
be used to rank different solutions according to their importance for the HV
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[1]. For solution xi, it is defined as the part of the HV, the solutions dominates
exclusively

HV C(x, r) = λ

vi,r/ |S|⋃
j=1,j 6=i

vj,r

 (5.13)

In this evaluation, the HVC is used to compare the importance of selected
output solutions. This s done by setting the average HVC of all output solutions
in relation to the average HVC of all initial solutions.

Distances between paths

The decision making algorithm needs to put out paths that are different to
each other. In order to do that, the Fréchet distances between output paths
are used to indicate the spread. The minimal, maximal and average distances
of the output are used as indicators.

5.2.2 Further Evaluation Criteria

Optimal Number of Alternatives

The main goal of the proposed MCDM-approach is to provide the user with a
selection of representable solutions. On the other hand, it is very important to
define a maximum number of solutions, that should be presented. This can be
illustrated with the following example: a user is provided with a selection 100
out of 1000 solutions. Obviously, this selected output is smaller than the input
of the MCDM-algorithm. However, it would serve little to no purpose because
the user would still be overwhelmed by the amount of solutions. Hence, the
question arises, what number of solutions a user is still able to process.

Psychological research has been done on how many instances a human can
handle in his short-term memory. In [25], Miller found out that this number is
in the range of 5 to 9. This number seems to depend on the type of information.
Therefor, the lower bound of 5 will be used as a threshold for the number of
paths that can be processed by the decision maker.
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5.3 Experiments and Remarks

The experiments are performed on problems from [37]. More specifically, the
problem instances cover all combinations of problems with:

• a size ranged from three to 14,

• objectives of all different types: no objectives, checkerboard pattern and
lakes,

• all different elevation functions

• no backtracking

From the resulting problems, all problems with at least 4 paths are selected.
This is done, because the clustering does not output solutions for less than four
paths. This leads to 206 problem instances. The results are observed under the
assumption that a good output of the DM-algorithm consists of a maximum of
five solutions. In decision space, the average distance between paths should be
maximized in order to represent the set of solutions. The HV serves to com-
pare objective values of the output with objective values of the initial solutions.

In Section 5.4, the metric values for the output solutions will be represented
by relative values like relative HV. This means that the HV of the output
is set into relation to the HV of the initial solutions. There will be different
visualizations of solutions in decision space. In order for the solutions not to
overlap each other, solutions are shifted to the upper left. That way, it is still
possible to see the flow of all paths. An example is shown in Figure 5.3.

5.4 Results

In this section, the results of the experiments are presented and discussed.

5.4.1 Results of Clustering

The clustering in decision space is applied to the set of solutions in three
variations concerning the used linkage: single linkage only, complete linkage
only and best linkage as a combination of both. In the combination, clustering
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Figure 5.3: Visualization of a set of solutions without shift (left) and with shift
(right)

is done once with each linkage and the clustering with the maximal silhouette
coefficient is calculated.

As can be seen in Table 5.1, the silhouette coefficient tends to choose two as
the preferred number of clusters for all linkages, followed by three, four and five
clusters. As a result, for 91.7%, 97.6% and 98.1% of the problems, the algorithm
calculated an output with a maximum of 5 solutions using single, complete and
best linkage. The silhouette coefficient seems to assign higher scores for a higher
number of clusters when single linkage clustering is used. This indicates that
single linkage is inferior concerning the reduction of solutions. This might make
processing difficult for the decision maker. An extreme example can be seen in
Figure 5.4. In this example and other problem instances with a high number of
output clusters, the silhouette coefficient falls for a smaller number of clusters
till it has reached its minimum and then starts to rise again. While the scores
for complete linkage stay positive in these situations, the score for single linkage
tends to reach negative values. This indicates a wrong assignment of clusters.
For some problems, single linkage clustering does not reach a positive score at
all. An example can be seen in Figure 5.5. In this problem, the silhouette score
is the highest for two clusters for both linkages. However, for single linkage,
it stays negative while it stays positive for complete linkage as it does in all
other problems too. As a result, single linkage seems to be worse than complete
linkage according to the silhouette coefficient. On the other hand, in some
cases it calculates the better solution according to the silhouette coefficient,
as Figure 5.6 shows. This shows that using both methods and using the best
method according to the score might be a good solution.
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number of clusters single linkage complete linkage best linkage
2 150 148 152
3 22 36 34
4 12 12 10
5 5 5 6
6 3 1 1
7 1 1 1
8 2 0 0
9 1 0 0
11 0 1 1
12 1 1 1
14 1 0 0
15 0 1 0
16 1 0 0
18 1 0 0
27 1 0 0
28 1 0 0
30 1 0 0
40 1 0 0
42 1 0 0
50 1 0 0

Table 5.1: Distribution of the number of calculated clusters for the different
linkages used

According to Table 5.2, the average count of output solutions for single linkage
is 31% higher than for complete linkage and 33% higher than for best linkage.
The average relative comparison metrics concerning the path distance of the
output are the lowest for sinlge linkage. However, the average relative path
distance is still 96.9% of the one for complete and 96.6% of the one for best
linkage. This means that the additional solutions that come from single linkage
are important to represent the data. It should be kept in mind that too many
selected paths might overwhelm the decision maker. In cases with an especially
large number of output solutions, the output could be further reduced, either
by setting a fixed limit and choosing the best clustering according to that
limit and silhouette score, or reducing solutions according to their objective
values. An example where single linkage calculates a larger output with a
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Figure 5.4: silhouette scores for clustering of problem
NO_X11_Y11_P3_K3_BF with single linkage(left) and
complete linkage(right)

relative HV discrete Fréchet dist #solutions
linkage HV HVC min max avg total relative
single 0.3913 0.9034 4.7874 0.761 1.419 3.7184 0.211

complete 0.3893 1.0298 5.0184 0.7679 1.4642 2.5631 0.1987
best 0.3709 0.9756 5.0689 0.7647 1.4692 2.4854 0.1973

Table 5.2: Benchmarks for clustering in decision space, values for output are
set in relation to initial values

higher average distance than complete linkage can be seen in Figure 5.7.
Here, for complete linkage, the best clustering consists of 2 clusters. In the
best clustering for single linkage, an additional cluster consists of one path of
each of those two clusters. The initial output candidates remain, while a new
candidate increases the average distance between output paths from 6.32 to
6.97.

For single, complete and best linkage, the HV decreases to 39.1%, 38.9% and
37.1%. This is a result of the reduction of solutions. The HVC is only decreased
by 3% for complete linkage clustering while it even decreases up to 9.7% for
the other linkages. A reason for this might be that the clustering is only done
according to decision space and does not consider objective values.
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Figure 5.5: silhouette scores for clustering of problem
CH_X9_Y9_P1_K3_BF with single linkage(left) and com-
plete linkage(right)

5.4.2 Epsilon- and Cone-Dominance

In order to find good values for ε and ϕ, different values were used. A value
bigger than ε = 3.2 leads to the reduction of solutions to one for most problems.
As a result, the values ε ∈ {0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2} were used. As
shown in Table 5.3, the number of paths calculated using epsilon-dominance
exceeds the threshold of 5 in many cases for ε ∈ {0.05, 0.1, 0.2} and for greater
values it tends to reduce the number of paths to one. However, it needs to be
mentioned that for all problems, at least one ε-value created an output with
a number of solutions between one and five. For cone-dominance, there were
two cases, in which the minimal number of output solutions was 6. Hence, for
observations concerning the HV, all ε-value were considered for all problems
where their output consisted of a number of paths in the said range. For further
evaluation and for each problem, the best solution according to HV was chosen.

Table 5.5 shows the average of HV, HVC, path distances and solution-count
of the output of problem-instances, set in relation to the initial values of the
problem and the total solution count. As could be inspected, the minimal and
average distance values are worse than the values for the different linkages
in clustering. In contrast to that, the maximum value is larger. It needs to
be considered that a higher number of output solutions was generated. The
interesting criterion in objective space, however, is the HV which is decreases
compared to the initial Pareto-Front due to the reduction of solutions. In
contrast to that, it increases compared to the clusterings. With 74.5% and 80%
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5.4 Results

Figure 5.6: silhouette scores for clustering of problem
NO_X12_Y12_P1_K3_BF with single linkage(left) and
complete linkage(right)

ε |output>5| |output=1|
0.025 153 0
0.05 136 1
0.1 103 3
0.2 40 8
0,4 2 15
0.8 0 80
1.6 0 154
3.2 0 184

Table 5.3: Number of occurrences of output paths for different epsilon-values

of the initial value, the original Pareto-fronts seem to be represented while
reducing the output to a size that is processable. In general, epsilon-domination
seems to be better concerning the HV compared to cone-dominance. A look
at the HVC-values shows an increase to 310% for epsilon-dominance and
507% for cone dominance. This shows that both methods selected important
solutions although cone-dominance was superior.

For both domination alternatives, there are problems for which the reduc-
tion of solution is especially large compared to loss of HV. An example is
LA_X13_Y13_P2_K8 with a HV-loss of 8.1% while reducing the amount
of solutions to 8.5% with ε = 0.05. It is illustrated in Figure 5.8. Here the
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5 Evaluation

Figure 5.7: Clustering (top pictures) and output candidates (bottom pictures)
for clustering problem CH_X12_Y12_P1_K3_BF; complete link-
age (left); single linkage (right)

relative HVC is 10.76. On the other hand, there are also problems, for which
HV-loss is very high compared to the reduction of solutions. An example,
LA_X11_Y11_P2_K3, can be seen in Figure 5.9. Here, the HV is decreased
to 9.47% with ε = 0.1 while the number of paths is reduced to 25%. This is
also an example of a bad selection of paths concerning the decision space, as
the paths initially go in two different directions around the lake-obstacle and
the output solutions only go in one direction.
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5.5 Combination of alternative Dominance and Clustering

ϕ in ° |output>5| |output=1|
91 156 0
92 151 0
93 151 0
95 150 0
100 137 1
110 106 3
120 67 8
150 2 83

Table 5.4: Number of occurrences of output paths for different angles

relative HV discrete Fréchet dist #solutions
dominance HV HVC min max avg total relative

epsilon 0.7448 3.0968 1.9882 0.8668 1.1852 4.0874 0.3655
cone 0.8 5.0653 1.6125 0.7763 1.0222 3.8529 0.3674

Table 5.5: Benchmarks for domination alternatives, values for output are set
in relation to initial values

5.5 Combination of alternative Dominance and
Clustering

Table 5.6 shows the benchmark for both variations of the combined version
of the algorithm. The selected solutions were obtained by first applying
a dominance alternative with previously used parameters, then clustering
using best linkage followed by choosing the solution with maximum HV.
It shows that the relative HV for both combinations is higher on average
than for all clusterings and smaller than for the dominance-alternatives
themselves. The same holds for HVC. Interestingly, the HVC for the
cone-dominance-combination is reduced to 64.2% compared to only using cone-
dominance while it is only reduced to 98.3% for epsilon-dominance. According
to relative values for HV and HVC, cone-dominance still shows superior results.

For relative minimal, maximal and average path distance, the combination with
epsilon-dominance shows superior results. Compared to best linkage, the results
for these metrics change to 96.9%, 99.7% and 99% for epsilon-dominance and to
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5 Evaluation

Figure 5.8: Objective values (top pictures) and paths (bottom pictures) for
clustering problem LA_X13_Y13_P2_K8; initial paths (left) and
for ε = 0.05 (right)

89.2%, 97% and 93.4% for cone-dominance. For both combinations, the minimal
and average path distances increase compared to only using the dominance
alternatives. However, the maximal distance decreases.

The combined algorithm could not select solutions for 16 problems with cone-
dominance and six problems using epsilon-dominance. The reason for this is
that the usage of Pareto-alternatives lead to less than four solutions and the
clustering step was not possible. NO_X13_Y13_P2_K3_BF was one of the
two problems, the cone-dominance reduction put out more than five solutions.
For said problem, it selected 6 out of 139 solutions with ϕ = 150. Further
applying best linkage-clustering returned three solutions. As a result of the
reduction of solutions, the HV was reduced to 0.0094%. Illustrations can be
seen in Figure 5.10.
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5.6 Summary

Figure 5.9: Objective values (top pictures) and paths (bottom pictures) for
clustering problem LA_X11_Y11_P2_K3; initial paths (left) and
for ε = 0.1 (right)

5.6 Summary

The results show that the algorithm is able to reduce the amount of solutions t
in all its three variants although the combination of clustering and alternative
dominance relations did find solutions for all problems. The results were
interpreted under the assumption that an user can process 5 paths. The
clustering in decision space was not always able to reduce the amount of
solutions below 6. Concerning this criterion, complete linkage was superior to
single linkage, while best linkage was even better.

The clustering step is able to increase the average and minimal distances be-
tween paths and therefor finds a representative representation of the problems
in decision space. For this metric, the dominance-alternatives lead to worse
results than clustering. In respect to the path distances, the clustering outper-
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5 Evaluation

relative HV discrete Fréchet dist #solutions
dominance HV HVC min max avg total relative

epsilon 0.5583 3.045 4.9108 0.7624 1.455 2.4975 0.1881
cone 0.5792 3.2515 4.5207 0.7419 1.3726 2.5612 0.1893

Table 5.6: Benchmarks for combinations of clustering and alternative dominace
metrics, values for output are set in relation to initial values

forms the dominance alternatives. An exception is maximal path distance.
On other hand, the step in objective space outputs solutions with higher HV-
and HVC-values than the clustering. These metrics were used as indicators for
the output quality in objective space. According to them, cone-dominance is
superior to epsilon-dominance. A ranking of the results puts the combination
of clustering and decision space between the separate use of these steps.
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5.6 Summary

Figure 5.10: Initial solutions (top pictures), solutions obtained with cone-
dominance (middle pictures) and solutions obtained by combi-
nation of cone-dominance and best linkage (bottom pictures) for
clustering problem NO_X13_Y13_P2_K3_BF; paths (left) and
objective values(right)
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6 Conclusion and Future Work

For the MOPP, little research has been done to find a decision making
algorithm. In this thesis, an algorithm for Decision Making for the MOPP
has been proposed that supports the user in making decisions according to
decision space and objective space. It comes in three versions: DM according
to objective values, DM according to the solutions in decision space and a
combination of both versions. The results show that the version in decision
space seems to select a good representation of solutions according to their
representation in decision space for the decision maker that he is able to
process. The use of alternatives to Pareto-domination is able to represent more
of the initial information in objective space. The combination of both methods
is a compromise concerning decision and objective space.

For some problems, the clustering returned more than five solutions. In the
future, it could be analyzed how to further reduce those solutions. Additionally,
further techniques for objective space can be proposed.

In this thesis, average silhouette score was used to select the best number
of clusters although there are alternatives. Future research might compare
different techniques for clustering of paths.

Concerning the used evaluation metrics, further research might examine which
results can be considered as "good solutions".
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