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Abstract

In collective robotic search, a group of small robots with basic features work
together to solve a task that a single one of them would not be able to solve
by itself. In recent years, Particle Swarm Optimization (PSO) has success-
fully been used as a control mechanism for such a group of robots. However,
dynamic external disturbances that in�uence the robots' movement, such as
wind that hinders the movement of aerial robots, have not yet been considered
in those cases. This thesis analyses the behaviour of PSO under the in�uence
of dynamic external disturbances. Planar vector �elds are used to model the
dynamic disturbances and Dynamic Environment Recti�ed-PSO (DER-PSO)
is introduced as an extension of Vector Field Map-PSO (VFM-PSO), which is
a multi-swarm variant of PSO that uses a second swarm to gather information
about static environmental disturbances that in�uence the movement of the
particles. This information is then used for the correction of the movement
of the particles. DER-PSO extends this method to accommodate for dynamic
changes of the environment.

In this work, the dynamic environments are modelled through creating vector
�elds that are made dynamic by applying time-dependent manipulations to
the vectors as well as placing and moving singular points in the vector �eld.
The resulting scenarios serve as disturbance terms for PSO. Five methods of
movement correction calculation are devised in order to counter the distur-
bance: (1) a basic approach using no correction, (2) using the most recently
encountered disturbance and (3) using a mean value that decreases over time.
(4) and (5) are interpolated versions of (2) and (3), where the gathered infor-
mation is spread over the whole space instead of just being used where the
disturbance information was gathered. These �ve approaches are evaluated on
four di�erent groups of scenarios characterized by (1) no singular points, (2)
one type of singular points, (3) several types of singular points and (4) very
severe changes to the vector �eld. The results are analysed with regards to
the applicability of the approaches to groups of scenarios. It can be concluded
that the interpolated approaches (4) and (5) produced the best results across
the groups of scenarios, with (4) being the best approach as long as a basic
vector �eld is used. With no basic vector �eld, (5) can be considered the best
approach because of consistently good performance in that case.
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1 Introduction

1.1 Motivation

In nowadays world, it is becoming more and more customary to use robots for

various tasks that are dangerous for humans. That can be �nding a source

of toxicity or radiation. A swarm of simple, autonomous robots is well suited

for these kinds of tasks, as it is robust and the robots are dispensable [�ahin,

2005].

Let such a swarm of small aerial robots be released into an unknown area,

tasked with �nding a source of radiation inside that environment. The robots

are equipped with a Geiger counter1 to evaluate their current position in terms

of the level of radiation. They can also communicate with each other and

exchange information about where they measured a lot of radiation, e. g. over

Bluetooth. Following the radiation, ideally the robots would all end up at

the same spot, namely the source of radiation. However, unknown external

disturbances, such as wind, might hinder the robots' movement. Not equipped

to handle such in�uences, the robots might fail in their task.

In order to analyse and �nd solutions for this problem, it can be modelled

by applying Particle Swarm Optimisation (PSO) to vector �elds (VF), where

PSO is a model for the collective robotic search and the vectors model the

disturbances that in�uence the PSO-particles' movement, as has been done

in [Bartashevich et al., 2017]. However, this model works with static distur-

bance and does not incorporate dynamic changes of the disturbance as they

occur with wind, for example. In order to make the model more akin to

natural conditions, in the present thesis I extend it to incorporate dynamic

external in�uences and analyse the behaviour of PSO under the in�uence of

these dynamic disturbances.

1A device for detecting and measuring ionizing radiation. https://en.wikipedia.org/

wiki/Geiger_counter

1
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1 Introduction

1.2 State of the Art

In collective robotic search, dynamic environmental in�uence has been studied

in the case of �ight formations of aerial robots [Vásárhelyi et al., 2014] and

aquatic surface robots [Duarte et al., 2016]. However, these works did not

incorporate PSO.

PSO has been used as a control mechanism in collective robotic search in sev-

eral works: Hereford developed a version of PSO suitable for search operations

with small, mobile robots [Hereford, 2006]. Later, Hereford et al. successfully

used PSO to control a group of robots that had to �nd the brightest spot in a

room [Hereford et al., 2007]. Tang and Eberhard built a solution for coopera-

tive motion of a robotic swarm for search tasks that was inspired by PSO [Tang

and Eberhard, 2011] and Doctor et al. applied PSO for collective robotic search

using a second PSO algorithm to optimize its parameters [Doctor et al., 2004].

Smith et al. incorporated obstacle avoidance into a PSO approach for collec-

tive robotic search [Smith et al., 2006]. Also, Aziz and Ibrahim examined the

adequacy of asynchronous PSO for robotic swarms [Aziz and Ibrahim, 2012].

Vector �elds can be created arti�cially for several purposes, such as texture

synthesis [Turk, 2001], non-photorealistic rendering [Hertzmann and Zorin,

2000] and even robot control [Gonçalves et al., 2009]. Naturally, there has

been a lot of research on the design of vector �elds [van Wijk, 2002], [Fisher

et al., 2007], [Zhang et al., 2006], some of which focused on time-varying vector

�elds as well [Chen et al., 2012].

Bartashevich et al. proposed a multi-swarm variant of PSO where the particles

were subject to external disturbances that altered their movement. One swarm

would collect information about the search space while the other swarm would

use that information to counteract the disturbance and the external distur-

bances were modelled with vector �elds [Bartashevich et al., 2017].

While there has been research on the topic of dynamics regarding PSO, these

studies focused on dynamically changing objective functions [Xiaohui Hu and

Eberhart, 2002], [Blackwell and Branke, 2004], [Kamosi et al., 2010], [Jatmiko

et al., 2009] or introduced the disturbance themselves to avoid stagnation in

local optima [Jian et al., 2004], [Zhao and Feng, 2014], [Saxena et al., 2015].

It can be concluded that there has been an abundance of research on the topics

touched upon in this thesis. However, to my knowledge there has been no work

that has combined the topics in the way it is done in this work.

2



1.3 Goal and Objectives

1.3 Goal and Objectives

The main goal of this thesis is to analyse the behaviour of PSO in a dynamically

changing environment. This involves building a framework for the creation of

these dynamic environments and devising an extension to PSO which coun-

teracts the resulting disturbances. The goal can be split into the following

objectives.

The �rst objective is to model a dynamically changing environment through

combination of global vector �eld manipulation, i. e. the manipulation of the

vectors over time, and the addition of local in�uences de�ned by singular points

and exhibiting a dynamic behaviour, e.g. rotation or movement.

Objective 1: Create a model for the design of dynamically changing

environments via vector �elds and singular points

Using the proposed model, a framework should be created that allows for the

design of distinct combinations of the global VF and the local in�uence of SPs.

With the framework, those scenarios need to be created in such a way that PSO

can be run with the VF resulting from the scenario as external disturbance.

Additionally, a method to randomly create scenarios should be provided.

Objective 2: Create a framework for the design of scenarios and appli-

cation of PSO to them

In order for PSO to be able to �nd a good solution for the optimisation problem

while under the in�uence of a scenario an adjusted version of PSO has to be

devised that can handle the various occurring changes.

Objective 3: Create a PSO-based search mechanism which performs

well in spite of the dynamic environment

The �nal objective is to measure the e�ectiveness of the adjusted PSO variant

on the created scenarios and to analyse whether it helps in dealing with the

disturbances.

Objective 4: Evaluate the performance of the correction approaches of

the adjusted PSO on di�erent scenarios

3



1 Introduction

1.4 Structure of the Thesis

This thesis is organized as follows. In Chapter 2, background for this work is

given. Then in Chapter 3, the proposed methods of creating dynamic vector

�elds are presented and in Chapter 4, the adjusted PSO is introduced. In

Chapter 5, the implementation of the aforementioned concepts is described

and Chapter 6 covers the experiments that have been conducted. Finally, in

Chapter 7 the thesis is summarized and an outlook is given.

4



2 Background

In this chapter, basic information about the concepts used in this thesis will

be given and the work on which this thesis built upon will be introduced. In

Section 2.1, vector �elds along with singular points are presented. In Section

2.2 information on PSO is given and in Section 2.3 the PSO variant that

this thesis builds upon is explained. Finally, in Section 2.4, two methods of

interpolation that were used in this thesis will be stated.

2.1 Vector Fields

Intuitively speaking, a vector �eld (VF) is an assignment of a vector to each

point of a space [Galbis and Maestre, 2012]. VFs can be used as a visual model

for various natural phenomena, among them the motion in �uid mechanics,

magnetic or gravitational forces, wind and ocean currents (e. g. Figure 2.1).

A planar VF V is a mapping of a vector to each point of the plane:

~V : D ⊂ R2 → R2

(x, y) 7→ ~V (x, y)
(2.1)

where D is the domain of the VF [Scheuermann et al., 2003].

In the scope of this thesis, D is given as a two-dimensional Cartesian Grid, i. e.

a grid where the vertices are integers and the grid cells are unit squares [Barta-

shevich et al., 2017]. A continuous VF for the whole domain is created by using

interpolation [Scheuermann et al., 2003], which will be discussed in Section 2.4.

5



2 Background

22_Feb_2014.png (PNG-Grafik, 1565 × 779 Pixel) http://oceancurrent.imos.org.au/misc/22_Feb_2014.png

1 von 1 28.06.2018, 19:32

Figure 2.1: Example of a Vector Field. The image shows the ocean cur-

rents around Rottnest island o� the coast of Western Australia on

22/2/2014, with the vectors indicating the �ow of the currents.1

Let x,y be the coordinates of a point ~p in R2. Then X and Y with

X = α(x, y), Y = β(x, y), (2.2)

are the coordinates of ~V (~p) where α : R2 → R as well as β : R2 → R are

real-valued functions on the plane2. Following this de�nition, a VF can be

constructed by providing α and β.

For example,

α = 1 and β = 1 (2.3)

will create the VF from Figure 2.2.

1Data was sourced from the Integrated Marine Observing System (IMOS) - IMOS is a

national collaborative research infrastructure, supported by Australian Government.

http://oceancurrent.imos.org.au/latestnews.php
2http://ium.mccme.ru/postscript/s16/topology1-Lec7.pdf

6
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2.1 Vector Fields
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Figure 2.2: A basic vector �eld on the Cartesian grid with x, y ∈ [−15, 15]. To

each point ~p = (x, y) the vector (1, 1) is assigned.

2.1.1 Singular Points

In this thesis, it will be looked at how a VF can be created not just by providing

equations like Equations 2.2 and 2.3 but by wilfully placing singular points on

the grid.

A singular point (SP) ~p0 = (x0, y0) of a VF V is a point where V vanishes

[Scheuermann et al., 2003]:

~V (~p0) = ~0 (2.4)

There are di�erent types of SPs, depending on the character of the neighbour-

ing vectors, which can be pointing towards the SP, away from it or form a

circle around it. Accordingly, the types are named Sink, Source, Saddle and

Centre [Marin, 2008]. For example, Figure 2.3 shows a SP of type Sink.

In order to create a VF V via singular points, the type and position of the SP

need to be provided. The vector for a point ~p of V can then be calculated as

follows [Marin, 2008], [Zhang et al., 2006].

~V~p0(~p) = e−d||~p−~p0||
2

JV

(
x− x0
y − y0

)
(2.5)
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Figure 2.3: The Sink -SP, with a centre at (0, 0) on a grid with x, y ∈ [−5, 5]

and grid cells of size 0.5× 0.5.

where ~p0 is the position of the singular point at coordinates (x0, y0), (x, y) are

the coordinates of ~p, d is a parameter called decay that controls the reach of

the in�uence of the SP and ||~a−~b|| is the Euclidean distance of two points in

the plane ~a and ~b:

||~a−~b|| =
√

(a1 − b1)2 + (a2 − b2)2 (2.6)

JV is the Jacobian matrix of V , which alters the way the SP's surroundings

are shaped and therefore determines the type of the SP. Mathematically, the 2-

dimensional Jacobian matrix JF (~p) is the matrix of the �rst-order derivatives

of a set of functions F = (f1, f2) : R2 → R2 at a point ~p = (x, y) [Blume and

Simon, 1994]:

JF (~p) =

(
∂f1
∂x

(~p) ∂f1
∂y

(~p)
∂f2
∂x

(~p) ∂f2
∂y

(~p)

)
(2.7)

In case of more than one SP, the VF values resulting from Equation 2.5 can

simply be added [Marin, 2008]:

~V (~p) = ~V~p0(~p) + ~V~p ′
0
(~p) (2.8)

for SPs ~p0 and ~p
′
0.

8



2.2 Particle Swarm Optimisation

2.2 Particle Swarm Optimisation (PSO)

Introduced by Kennedy and Eberhart in 1995, PSO is a population-based

global optimisation technique [Kennedy and Eberhart, 1995], [Zambrano-

Bigiarini et al., 2013]. Inspired by bird �ocks in nature, a swarm of individuals,

called particles, aims to discover an optimal solution based on an objective

function [Xu et al., 2018]. They do so by moving around the search space and

evaluating their position at every iteration. Then, the result is communicated

to other particles. The movement of the particles depends on the quality of the

positions which have been found so far: Each particle heads towards the �best�

positions both itself and its neighbourhood of particles have found (called the

cognitive and the social term, respectively).

For a given problem, N particles ~xi, i ∈ [1, N ], are created in the d-dimensional

search space S. Each of the particles represents a solution to the problem at

hand [Eberhart et al., 2001]. During each iteration, the objective function

(OF) f : Rd → R evaluates each particle's �tness with respect to the problem.

Every particle moves through the search space, with its movement ~vi(t) at time

t determined by three terms: its previous movement ~vi(t − 1), an attraction

towards the best position it has found so far ~P best
i (t− 1), called personal best,

and the best position the whole swarm has found so far ~xg(t− 1), called global

best :

~vi(t) = ω~vi(t− 1) + C1
~φ1(~P

best
i (t− 1)− ~xi(t− 1))

+ C2
~φ2(~xg(t− 1)− ~xi(t− 1))

(2.9)

where ω is the inertia weight, C1 and C2 are scaling parameters and ~φ1 and ~φ2

∈ [0, 1]n are random vectors.

Movement is conducted by adding the particle's velocity to its position:

~xi(t) = ~xi(t− 1) + ~vi(t) (2.10)

After a particle has moved, its personal best is updated when its new position

is better than its previous personal best:

~P best
i (t)←

{
f(~xi(t)) if f(~xi(t)) < ~P best

i (t− 1)

~P best
i (t− 1) else

(2.11)
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where f is to be minimised.

Similarly, after all particles have moved the global best is updated if a particle's

position is better than the previous global best:

~xg(t)← max
1≤i≤N

~P best
i (t) (2.12)

PSO is terminated when a stopping criterion is ful�lled, which can be a max-

imum number of iterations or �tness threshold. When terminated, the global

best is returned as the best solution that has been found. The whole routine

is shown in Algorithm 1.

Algorithm 1: PSO

Data: Swarm size N , Search space S, Objective function f , inertia ω,

scaling parameters C1 and C2, Stopping criterion

Result: ~xg

t← 0

Initialize N Particles

for i← 1 to N do

~vi(t)← 0

~xi(t)← random numbers ∈ S
~P best
i (t)← f(~xi)

end

while Stopping criterion not ful�lled do
t← t+ 1

for i← 1 to N do

Update ~vi(t) (Equation 2.9)

Update ~xi(t) (Equation 2.10)

Update ~P best
i (t) (Equation 2.11)

end

Update ~xg(t) (Equation 2.12)

end

return ~xg(t)

10



2.3 Vector Field Map-PSO

2.3 Vector Field Map-PSO (VFM-PSO)

The Vector Field Map-PSO (VFM-PSO) is a PSO-based search mechanism

that was created to enable the PSO particles to manoeuvre under environ-

mental in�uence, e. g. vector �elds [Bartashevich et al., 2017].

VFM-PSO is a multi-swarm approach, which means there are two swarms -

the Optimizer Swarm and the Explorer Swarm. The Nexp explorer particles ~ej,

j ∈ [1, Nexp], move only through the VF in�uence and are therefore �blown�

around the search space:

~vj(t) = ~V (~ej) (2.13)

During each iteration, the experienced velocity ~V (~ej) at the particle's position

is saved in what is called the Information Map (IM). The IM consists of two

matrices, IMx and IMy, and serves as a global memory of the vector �eld

velocities that have been experienced by all explorer particles.(
IMx(~ej)

IMy(~ej)

)
= ~V (~ej) (2.14)

The Nopt optimizer particles ~oi, i ∈ [1, Nopt], are in�uenced by the vector �eld

velocity ~V (~oi) as well. However, they also have movement on their own similar

to Equation 2.9. Additionally, their movement is in�uenced by a correction

term ~Cor(~oi), which is the value of the IM at the optimizer's current position:

~Cor(~oi) =

(
IMx(~oi)

IMy(~oi)

)
(2.15)

This correction term is subtracted during velocity calculation of the optimizers

in order to counteract the vector �eld in�uence. This results in the following

equation for the velocity term:

~vi(t+ 1) = ω~vi(t) + C1
~φ1(~Pbest − ~oi(t)) + C2

~φ2(~xg − ~oi(t))
+ ~V (~oi)− ~Cor(~oi)

(2.16)

Both the explorers and the optimizers follow Equation 2.10 for updating their

position. The adjusted routine is shown in Algorithm 2.
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Algorithm 2: VFM-PSO

Data: Vector �eld V , optimizer swarm size Nopt, explorer swarm size

Nexp, search space S, objective function f , inertia ω, scaling

parameters C1 and C2, Stopping criterion

Result: ~xg

t← 0

Initialize Nopt Optimizers

for i← 1 to Nopt do

~vi(t)← 0

~oi(t)← random numbers ∈ S
~P best
i (t)← f(~vi)

end

Initialize Nexp Explorers

for j ← 1 to Nexp do

~ej(t)← random numbers ∈ S
end

Initialize IM as null matrices of the size of S

IMx = 0S

IMy = 0S

while Stopping criterion not ful�lled do
t← t+ 1

for j ← 1 to Nexp do

Update ~vj(t) (Equation 2.13)

Update ~ej(t) (Equation 2.10)

Update IM (Equation 2.14)

end

for i← 1 to Nopt do

Get ~Cor(~oi) (Equation 2.15)

Update ~vi(t) (Equation 2.16)

Update ~oi(t) (Equation 2.10)

Update ~P best
i (t) (Equation 2.11)

end

Update ~xg(t) (Equation 2.12)

end

return ~xg(t)
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2.4 Interpolation

2.4.1 Bilinear Interpolation

Although the vector �eld is discretised on a grid, the particles can move not

only on the grid's corner points but also in between a grid cell as well. Because

the VF velocity is not known in those areas, it is calculated using bilinear

interpolation.

The velocity ~V (~p) at a point inside a grid cell ~p is calculated by multiplying

the (known) velocities of the cell's corners ~V (~p0,0), ~V (~p0,1), ~V (~p1,0) and ~V (~p1,1)

with two values, each between 0 and 1, depending on the distance of ~p from

~p0,0 in horizontal (ux) and vertical (uy) direction, respectively, and then added

to get ~p 's velocity [Joy, 2007].

~V (~p) =(1− ux)(1− uy)~V (~p0,0) + (ux)(1− uy)~V (~p0,1)+

(1− ux)(uy)~V (~p1,0) + (ux)(uy)~V (~p1,1)
(2.17)

~p0,0
~V (~p0,0)

~p1,0

~V (~p1,0)

~p0,1 ~V (~p0,1) ~p1,1

~V (~p1,1)

~p
~V (~p)

ux

uy

Figure 2.4: Example of bilinear interpolation. ~V (~p) at point ~p is calcu-

lated by interpolating ~V (~p0,0), ~V (~p1,0), ~V (~p0,1), ~V (~p1,1) of points

~p0,0, ~p1,0, ~p0,1, ~p1,1 with respect to the distance of ~p from ~p0,0 in hor-

izontal (ux) and vertical (uy) direction.
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2.4.2 Nearest-Neighbour Interpolation

Nearest-neighbour is an interpolation method that assigns a non-given point ~p

the value ρ of the closest given point, i. e. a point for which the value is known.

It is di�erent from bilinear interpolation in that only one given value is needed

instead of four and that in can also be used for extrapolation.

~pclosest = min
j

(||~p− ~pj||)

ρ~p = ρ~pclosest

(2.18)

where ~pj is a given point and j ∈ [1, P ] with P being the number of given

points. ||~p − ~pj|| is the Euclidean distance between ~p and ~pj (see Equation

2.6).

~p1

~p2

~p3

~p

~p ′

Figure 2.5: Example of Nearest-neighbour interpolation with given points ~p1,

~p2 and ~p3 and non-given points ~p and ~p ′. The dashed lines indicate

the regions for which the respective given points are the closest

points. ~p is assigned the value of ~p1 and ~p
′ is assigned the value of

~p3.
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The goal of this thesis is to investigate the behaviour of PSO in a dynamically

changing environment. In order to achieve this goal, �rst the dynamic envi-

ronment has to be created. The idea is to take vector �elds, to which PSO has

already been successfully applied [Bartashevich et al., 2017], and devise ways

in which to make the VF change its structure over time. This would be the

model of a dynamically changing environment. Two ways are used to create

the dynamics. The �rst way is to alter the vectors of a vector �eld. The second

way is to add singular points to the vector �eld, and then make the singular

points showcase the dynamic behaviour.

This chapter presents both these ways and shows how the di�erent kinds of

dynamic environments were created. In Section 3.1, the ways in which dynamic

VFs are created without the use of SPs will be explained. In Section 3.2, it is

shown how a basic VF is combined with SPs in this thesis and in Section 3.3,

dynamic singular points will be introduced.

3.1 Changes Over Time

Depending on the actual way a certain VF is constructed, there are di�erent

possibilities to make it dynamic, e. g. through singular points and their tra-

jectories or bifurcations, which is the �death and birth� of SPs [Chen et al.,

2012]. When the VF is constructed without any SPs, the dynamic can be cre-

ated through altering the vectors of the VF at every step in time, either with

respect to their direction or their magnitude. This thesis has used a number

of static VFs, which were used in conjunction with SPs, and some dynamic

VFs. The dynamics were created by adding a time-dependent term to the VF

equation. In every iteration, this equation was computed anew and the result-

ing VF was di�erent to the one of the previous iteration. Apart from that,

rotation is applied to a whole static VF, i. e. every vector is rotated by the
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3 Modelling the Dynamics

same amount. Using this method the formerly static VFs are made dynamic

as well, while the VF's structure is kept the same.

3.2 Combining VF and SPs

As mentioned in Section 2.1, a SP ~p0 is a point where the VF vanishes, i.e.
~V (~p0) = ~0. When designing VFs with SPs, the equations of the design elements

(like Equation 2.5) are added (Equation 2.8) [Chen et al., 2012]. In that case

it is possible that SPs disappear, i.e. ~V (~p0) 6= ~0, or new SPs appear. This

might also happen when ~p0 is moved along a trajectory and into the in�uence

of another SP ~p ′0. Additionally, the structure of the SPs would be lost and

the Jacobian would not �t the SP neighbourhood. In these situations, the VF

topology can be preserved by applying topological editing operations such as

�ow rotation, �ow re�ection, �ow smoothing or singularity pair cancellation

[Zhang et al., 2006]. However, in this work the focus lies on creating VFs

through simple methods that are easily comprehended by readers from �elds

not concerned with vector �eld topologies. Therefore none of the previously

mentioned topological operators are used. Instead, the following methods have

been used as a �topological operator�.

In order to keep the structure of the SPs, repulsion and a mask are used.

Repulsion is added to the SP movement to keep the SP centres a certain

distance apart from each other. After the centre is moved according to the

equations from, the distance every other SP is calculated and the SP is moved

away from a SP to which it is too close.

~rep = krep · exp(
−1

2
||~p0 − ~p ′0||2

rep2s
)(~p0 − ~p ′0) (3.1)

with ~rep being the repulsion, ||~p0− ~p ′0|| being the Euclidean distance between

~p0 and ~p
′
0, reps being the region size for repulsion and krep being the strength

of repulsion.

When combining SPs with VFs, a logical mask is created that marks the grid

points where there is SP in�uence. The mask has the same size as the VF and

the value at each point would be 1 when there is SP in�uence at that point

and 0 when there is not. The underlying VF is then only applied at the points
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3.3 Dynamic Singular Points

that are not marked. Since according to Equation 2.5 the size of the vectors

from the SP decrease in size in a logarithmic fashion, a threshold value is used

to decide whether a point is still in�uenced by a SP.

Let ~VSP be the VF that resulted from adding all SPs in�uences according to

Equation 2.8. Then the mask of SP in�uence µ is calculated as follows:

Algorithm 3: Mask Creation

Data: Search space S, VF ~VSP , threshold ε

Result: Mask µ

Initialize µ as null matrix of size of S

foreach point ~p in ~VSP do

If the magnitude of ~VSP at ~p is bigger than the threshold, set the mask

to 1.

if ||~VSP (~p)|| > ε then
µ(~p)← 1

end

end

return µ

The combined VF ~V is the calculated from ~VSP and the basic VF ~VB as follows:

~V = µ · ~VSP + ¬µ · ~VB (3.2)

where ¬ is the logical not-operator.

Finally, in order to prevent the loss of SPs, the vector of the resulting VF is

set to ~0 at the position of the SPs, e.g. ~V (~p0) = ~0.

3.3 Dynamic Singular Points

In the previous section, it has been explained how SPs are combined with a

VF. However, the mere addition of singular points to a basic VF does not yet

make the VF dynamic. For this, the SPs have to behave in a way that changes

over time. In this work, that is achieved by making the SPs move around in

the search space. Also, the vectors of the VF around the SP can be made

rotating, i. e. uniformly change their angle.

17



3 Modelling the Dynamics

3.3.1 Movement

Movement is the main source of dynamics regarding singular points. In order

to make the SP move, several methods have been implemented. Generally, the

movement consist of changing the position of the SP. The new position of the

SP is calculated depending on the movement type of the SP. Figure 3.1 shows

the movement on an example of a singular point Sink, where the position of

the SP is changed.

-5 0 5

x

-5

0

5

y

Sink

-5 0 5

x

-5

0

5

y

Sink

Figure 3.1: Example of SP-movement on a grid with x, y ∈ [−5, 5]. The left

image shows a Sink -SP at (−3, 0), the right image shows the SP

after its centre has been moved to (3, 0).

The SP movement is governed by a vector of movement coe�cients ~v = (v1, v2).

In the following, the movement methods are listed:

Linear Movement along a linear path.

~p0new = ~p0old + ~v (3.3)

Sine Movement like a Sine curve.

~p0new = ~p0old +

(
v1

v2 · sin(t)

)
(3.4)

with t being the iteration.

Zigzag Alternating linear movement of two directions.

~p0new = ~p0old +

(
v1
|v1|v2

)
~v =

(
vx
−vy

) (3.5)
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Circle Circular movement.

~p0new = r

(
sin(2π + |v2| · tv1)
cos(2π + |v2| · tv1)

)
(3.6)

with r being the radius and t being the iteration.

Spiral Circular movement with changing radius, similar to a spiral.

c = c+ out
π

20

~p0new =
2r

|S|

(
sin(2π + |v2| · tv1)
cos(2π + |v2| · tv1)

) (3.7)

with r being the radius, out ∈ {−1, 1} indicating whether the spiral

movement is going outwards or inwards and |S| being the size of the

search space in one dimension, i.e. when the search space is de�ned as

S = [−10 10,−10 10], |S| is 20.

Random Movement in a random direction at every step.

γ = rand · 2π

~p0new = ~p0old +

(
cos(γ)

sin(γ)

)
(3.8)

with rand ∈ [0, 1] being a random variable.

Disturbance While the VF velocity at the position of a SP ~p0 is 0: ~V (~p0) = ~0,

the VF velocity of the basic VF ~VB can be used to move the SP.

~p0new = ~p0old + ~VB(~p0old) (3.9)
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Figure 3.2: Visualization of the types of movement that are not VF-dependent,

indicated by the blue line. Linear (top left), Sine (top right), Zigzag

(centre left), Circle (centre right), Spiral (bottom left), Random

(bottom right).

3.3.2 Boundary Handling

When a singular point passes the boundaries of the search space, boundary

handling has to be applied in order to keep the SP inside the search space.

Therefore, after the new centre position of a singular point has been computed,

it is checked whether the SP left the search space. If that is the case, one of

the following boundary handling methods is applied:
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Bounce Bounce/re�ect the singular point o� the border - revert the move-

ment of the dimension of border that was exceeded, keep the one of the

other dimension. Recommended for linear movement.

If a horizontal border has been overstepped:

d = |x0| −
|S|
2

+ 0.1

~p0corrected = ~p0new −
(
sgn(vx) · d

0

)
~v =

(
−v1
v2

) (3.10)

If a vertical border has been overstepped:

d = |y0| −
|S|
2

+ 0.1

~p0corrected = ~p0new −
(

0

sgn(vy) · d

)
~v =

(
v1
−v2

) (3.11)

with sgn being the sign-function and |S| being the size of the search

space.

Continue Set the singular point centre's position to the opposite border of

the search space. Recommended for Sine movement. If a horizontal

border has been overstepped:

~p0corrected =

−sgn(x0)(
|S|
2
− 0.1)

y0

 (3.12)

If a vertical border has been overstepped:

~p0corrected =

 x0

−sgn(y0)(
|S|
2
− 0.1)

 (3.13)

with sgn being the sign-function and |S| being the size of the search

space.
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Reset Set the singular point centre's position to the centre of the search

space.

~p0corrected = ~0 (3.14)

Spiral Only to be used for Spiral movement. When a border is reached, the

sp is not moved but the movement is reverted - from outwards to inwards

- so from the next iteration the movement will be away from the border.

~p0corrected = ~p0old

out = −out
(3.15)

with out ∈ {−1, 1} indicating whether the spiral movement is going

outwards or inwards.

Kill Let the singular point leave the search space and do not consider it in

the calculation of the VF anymore.

~p0corrected = ~p0new (3.16)

3.3.3 Rotation

In order to make the vectors around a SP rotate the 2-dimensional rotation

matrix

R =

(
cos(tα) −sin(tα)

sin(tα) cos(tα)

)
(3.17)

was added to Equation 2.5 in the following way:

~V (~p) = e−d||~p−~p0||
2

R · JV
(
x− x0
y − y0

)
(3.18)

where α ∈ [0, 359) is the amount of degrees by which the vectors are rotated

every iteration.
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Figure 3.3: Example of rotation of vectors around a Sink -SP, rotated by 5

degrees counter-clockwise every iteration. Images show the SP at

iteration 0 (top left), 5 (top right) and 10 (bottom).
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4 Dynamic Environment

Recti�ed-PSO (DER-PSO)

This chapter presents DER-PSO, which is an extension of VFM-PSO (see

Section 2.3) for dynamic environments that adds several new ways to process

the values from the Information Map in order to accommodate for the dynamics

of the environment.

In VFM-PSO, a value that is experienced by an explorer particle inside some

cell of the grid is saved without further processing and later applied as a

correction term to the movement calculation of optimizer particles that are

located inside the same cell. When used in dynamic environments, the values

saved in the IM can quickly become obsolete when the VF in�uence changes.

Therefore, for DER-PSO several di�erent methods for the calculation of the

values that are used for the correction of the optimizer particles are adopted.

In the following, �rst some assumptions and restrictions of DER-PSO are dis-

cussed in Section 4.1. Section 4.2 introduces the new correction approaches,

Recent and Evaporating Mean, and Section 4.3 gives additional details on the

particle behaviour.

4.1 Assumptions and Restrictions

In the proposed model, some assumptions or restrictions have been made to

simplify the model. Firstly, it is assumed that the particles can communicate

globally, so that every particle has access to information gained by every other

particle. This is a common assumption for PSO [Doctor et al., 2004], [Par-

sopoulos and Vrahatis, 2004], but it should be mentioned that the neighbour-

hood of PSO particles has been the subject of research as well, where only a

fraction of the swarm is considered a neighbour of a particular particle and
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4 Dynamic Environment Recti�ed-PSO (DER-PSO)

consulted for the social term [Burak Akat and Gazi, 2008]. Secondly, an up-

per bound for the movement of the particles is used. This is to prevent the

particles from diverging or even leaving the search space and is also a common

restriction for PSO applications [Parsopoulos and Vrahatis, 2004], [Hereford,

2006].

4.2 Correction Approaches

In this Section the new correction approaches for the particle movement are ex-

plained. As described in Section 2.3, the Information Map is used to keep track

of the velocities experienced by the explorer particles. An optimizer particle

subtracts the value saved in the IM from its own movement in order to make

it more accurate, provided a value exists for the position of the particle. The

introduced dynamic of the scenarios however makes it necessary to review this

process and devise other strategies for getting the correction values, because

a once explored and saved value might be inaccurate at the time a optimizer

particle would use it for correction. In the following, the two approaches that

have been implemented and tested are detailed.

Similar to VFM-PSO, DER-PSO uses the IM to keep track of the experienced

velocities of the explorer particles. However, in addition to the IM a Memory

Mem ∈ R3 with the size of the 2-dimensional search space S times the number

of iterations is used to keep track of the experienced values over all iterations

t ∈ [1, T ]. The value of the IM is then calculated from Mem depending on the

approach that is used. Algorithm 4 shows how the memory is updated using

the explorers:

Algorithm 4: Memory Update

Data: Explorer swarm size Nexp, memory mem, current iteration t

for j ← 1 to Nexp do

Mem(~ej(t), t)← ~V (~ej(t))

end
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4.2.1 Recent (Rec)

The approach called Recent (Rec) uses the most recently experienced velocity

as the correction value. To get the correction value at position p, the memory

is searched for the last time an explorer particle was at position p and that

value is taken as the correction value for the IM at that position.

The advantages of this approach are its simplicity and the fact that the most

recently experienced value is likely to still be close enough to the actual velocity

of the VF. However, changes in the Vector Field are not accounted for. When a

cell is visited a second time, all information from the �rst visit is lost, since the

old value gets overwritten. Also, when a cell is not visited for a long time, the

saved correction value might be very inaccurate and even hinder the search.

4.2.2 Evaporating Mean (EM)

The Evaporating Mean-approach (EM) aims to do better in situations where

Rec might struggle, as explained above. In order to preserve the information

from previous cell visits, the mean of all values perceived at this position is

computed and used instead of just the most recent value. To account for the

time since a cell was last visited, evaporation is introduced - the correction

value will approach a minimal value at every time-step with a certain rate.

When a cell is visited several times, the evaporation rate at that cell will be

reduced due to higher con�dence in the mean value.

~Cor(~oi, t) =


~Cor(~oi, t− 1)− ER(t) +Mem(~oi, t− 1)

2
, if vis(~oi, t) > 1

~Cor(~oi, t− 1)− ER(t), otherwise

(4.1)

with vis(~oi, t) indicating how often a cell was visited until a certain time-step.

When the cell has been visited at all, the correction value should not go below

a minimal value θ:

~Cor(~oi, t) =


θ if 0 < ~Cor(~oi, t) ≤ θ

−θ if − θ ≤ ~Cor(~oi, t) < 0

~Cor(~oi, t) otherwise

(4.2)
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The evaporation rate (ER) is updated as follows:

ER(t) =


ER(t− 1)

vis(~oi, t)
, if vis(~oi, t) > 1

ER(t− 1), otherwise
(4.3)

4.2.3 Interpolation

The optimizer particles can only use a correction value if the cell in which they

are currently in has been reached by an explorer particle before. However, pre-

liminary experiments have shown that it often occurred that this was not the

case. Therefore, in addition to the presented correction approaches Recent and

EM, two more correction approaches have been used. These two approaches

use Recent and EM, respectively, for calculating the correction values. Then,

interpolation is used to calculate correction values for every cell that has not

been reached by an explorer particle. For this, Nearest-Neighbour Interpola-

tion (see Section 2.4.2) was chosen because a single given value is su�cient

and it can be used for extrapolation as well. The resulting methods are called

Continuous Recent (Rec-C) and Continuous EM (EM-C) to contrast the ap-

proaches that do not use interpolation, which are named Discrete Rec (Rec-D)

and Discrete EM (EM-D).

In addition to the explained methods, using no correction at all has been

used as a correction approach. All in all, the following �ve approaches were

implemented and tested in the experiments:

Name Type Interpolation

None None -

Rec-D Recent No

EM-D Evaporating Mean No

Rec-C Recent Yes

EM-C Evaporating Mean Yes

Table 4.1: Overview of the correction approaches
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4.3 Particle Behaviour

4.3 Particle Behaviour

Some adjustments have been made to DER-PSO that di�er from regular PSO

or VFM-PSO. In this section, these adjustments are motivated and explained.

4.3.1 Movement

The movement of the explorer ~ej is simply the VF in�uence at its position
~V (ej), but as mentioned in Section 4.1 a maximum velocity vmaxexp is intro-

duced to prevent diverging and leaving the search space too fast. The optimizer

particle movement is almost the same as that of the VFM-PSO in Equation

2.16. The di�erence lies entirely in the way the correction value is calculated.

Again, the particle velocity is capped to a maximum value vmaxopt , so the

correction mostly in�uence the direction of the movement. Contrary to the

explorer particles, which simply leave the search space, the optimizer particles

are kept inside the search space by setting them to the border of the search

space when their new position would be outside of it [Helwig et al., 2012].

4.3.2 Limited Initialization Space

While it is the intuitive approach to initialize the particles across the whole

search space, in nature such a procedure would most likely not be the case.

Instead, it is a lot more reasonable to expect the robots to be launched from

some kind of starting point at an edge of the area. In order to satisfy this idea,

the particles in DER-PSO are launched from a bounded rectangular subspace

of the search space.

4.3.3 Reinitialisation of the Explorers

Because the VFM-PSO was designed with static VFs in mind, the explorers

are initialized once at the beginning and then they just follow the �ow. The

particles would often get stuck, either at the borders or at the centre, which did

not better as they did exploration on the way. For dynamic VFs however, this

would be a huge problem. Since the VF is changing all the time, exploration

needs to be constantly done, which is not the case when the explorers are
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stuck somewhere. Therefore, for DER-PSO the explorers are re-initialized

with a certain frequency to ensure constant exploration.
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This chapter describes how the previously explained concepts were imple-

mented. Section 5.1 and Section 5.2 detail the basic vector �elds and the

exact types of singular points that were used. Section 5.3 summarizes the sce-

nario creation and presents the Random Scenario Creation. Section 5.4 shows

the exact ways the correction approaches were implemented and Section 5.5

summarizes the whole simulation process.

5.1 Basic Vector Fields

In the following Table 5.1, the basic vector �eld functions used in this work

are listed. There exist both static and dynamic VFs, with the dynamic VFs

depending on the time-step t. The static VFs serve as the underlying VF in

scenarios including SPs. They can also be made dynamic by applying rotation

at every iteration through the rotation matrix R (see Equation 3.17).

Name Equation

Static

Empty ~V (~p) = (0, 0)

Cross ~V (~p) = (y, x)

Sheared ~V (~p) = (x+ y, y)

Tornado ~V (~p) = (−x− y, x)

Uniform ~V (~p) = (3, 3)

Dynamic

Waves ~V (~p) = (10, 3 cos(x− 0.5t))

Helices ~V (~p) = (3 cos(x− 0.5t), 3 cos(0.3x− 0.2t)

Table 5.1: Basic vector �eld functions. ~V (~p) is the value of the VF ~V at the

point ~p = (x, y). t denotes the time-step.
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5.2 Singular Points

This section covers the implementation of singular points. The parameters of

SPs will be explained, then the routine of SP movement is touched upon.

5.2.1 Parameters

In this thesis, singular points are characterized by nine parameters, which will

be detailed in the following: Their type, position p0, strength k, decay d, if

they rotate, their movement type, boundary handling type, speed in x- and

y-direction and if they are disturbed by the VF.

Type In this thesis, �ve types of singular points were implemented which are

denoted in Table 5.2 along with their respective Jacobian matrix (see Section

2.1.1). Figure 5.1 shows a SP of each type plotted besides one another.

Name JV

Sink

(
−k 0

0 −k

)

Saddle

(
−k 0

0 k

)

Source

(
k 0

0 k

)

Clockwise Centre

(
0 −k
k 0

)

Counter-Clockwise Centre

(
0 k

−k 0

)

Table 5.2: The types of singular points along with the corresponding Jacobian

matrices. k ∈ R+ is the strength of the SP.
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Figure 5.1: Five types of singular points: Source (at (−6, 6)), Clockwise Centre

(at (6, 6)), Counter-Clockwise Centre (at (0, 0)), Sink (at (−6,−6))

and Saddle (at (6,−6)), on a grid with x, y ∈ [−10, 10].

Position The position p0 of a SP is its centre, consisting of x- and y-position,

denoted as ~p0 =

(
x0
y0

)
.

Strength The strength k ∈ R+ of a SP is the magnitude of the vectors it

creates, denoted in the Jacobian matrix (see Table 5.2). A larger value of k

leads to an increase in magnitude of the vectors (see Figure 5.2).

Decay The decay d ∈ [0.1, 1] controls the magnitude decrease of the vectors

that are further from the centre of the SP. It is applied during the calculation

of the vectors (see Equation 2.5). As can be seen in Figure 5.2, a larger value

of d leads to the vectors rapidly decreasing in magnitude the further they are

from the SP.

Rotation The vectors around a SP can be rotated. This is implemented as

an option for each SP that can either be 1 or 0. If the option is set to 1, the

rotation matrix R (see Equation 3.17) is added to Equation 2.5.
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Figure 5.2: Example of the in�uence of strength k and decay d on a Source-

SP at (0, 0) on a grid with x, y ∈ [−5, 5]. k = 1, d = 0.25 (left),

k = 2, d = 0.25 (centre) and k = 1, d = 0.5 (right).

Movement During movement, some value is added to the current position of

the SP depending on the movement type (see Section 3.3). The SP's movement

type is saved as a constant value.

Boundary Handling The boundary handling type determines the way in

which a SP is handled that would leave the search space according to its

movement. The methods Bounce, Reset, Continue and Kill have been im-

plemented for that (see Section 3.3). Similar to movement type, the boundary

handling type is saved as a constant value that represents the method.

Speed The speed ~v =

(
vx
vy

)
in x- and y-direction is used for speci�cation

of the movement depending on the type. For Linear, the values represent

exactly the change in x- and y-direction. For Sine, vx denotes the change in

x-direction while vy stretches (vy > 1) or compresses (vy < 1) the amplitude.

Disturbance Optionally, SPs can be moved along the velocities of a basic

VF ~VB. This option can be either 1 or 0. If it is 1, ~VB(~p0) is taken as the

movement.

5.2.2 Routine

During each iteration, the movement of each singular point is calculated ac-

cording to its parameters. Then, the change in position is capped to a max-
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imum value ∆max, should it be higher and repulsion is applied. Afterwards,

the new centre position is calculated by adding the resulting value to the old

centre position. Finally, boundary handling is applied should the new centre

be outside of the search space. Then, the Singular Point's position is set to

the new value.

5.3 Scenario Creation

A scenario consists of a basic VF (Section 5.1) and some number of SPs (Section

5.2).

Scenario = V F (type)+∑
SP (type, position, strength, decay,

movement, borderhandling)

(5.1)

The resulting overall VF is computed as a sum of the basic VF and the singular

points' in�uences, according to Algorithm 3 and Equation 3.2.

Scenarios are encoded in excel-tables. In order to create a new Scenario, a new

�le has to be created and the values have to be written into the corresponding

cells. Figure 5.3 shows an exemplary Scenario �le, where the VF type is

highlighted in orange, the rotation angle α in red, and a row representing a

Singular Point in green, and Figure 5.4 shows the basic decision process behind

Scenario Creation.

Figure 5.3: Example of a Scenario encoded in an xlsx-�le. Cell B3 (orange)

contains the VF type and cell C3 (red) contains the degrees by

which the VF is rotated at every iteration.
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Choose
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Figure 5.4: The process of Scenario Creation

5.3.1 Random Scenario Creation

For convenience as well as to create a big database of scenarios, random sce-

nario creation has been implemented. In order to use this method, the user

simply has to choose the desired number of singular points. The program will

randomly choose the parameters mentioned in Sections 5.1 and 5.2 and cre-

ate the �le. The set of possible values of speci�c parameters can be further

restrained according to the user's preferences, e.g. the SP type is chosen from

only two out of the �ve existing ones or a range from which the rotation angle

α is chosen is given.

5.4 Correction Routine

These are the algorithms that show how the correction approaches from Section

4.2 were implemented. The algorithms show how to calculate a correction value

36



5.4 Correction Routine

at the position of one optimizer particle at a certain time-step. Approaches

Rec − D and EM − D calculate these values for every optimizer. When an

optimizer is inside a cell that has not been reached by an explorer up to that

point, the correction value simply is 0. For Rec− C and EM − C, values for
the whole search space are calculated. Where that cannot be done due to a

lack of saved values in the memory, i.e. for cells where there has not been an

explorer up to that point, interpolation is used to calculate a correction value

for that cell.

Algorithm 5: Correction approach: Recent

Data: Optimizer position ~oi, current iteration t, Memory Mem

Result: Correction Value at optimizer position ~Cor(~oi)

~Cor(~oi, t)← 0

Starting from the current iteration, �nd the most recent value that was

saved in the memory at this position:

for j ← t to 1 do

if ∃Mem(~oi), j then
~Cor(~oi, t)←Mem(~oi, j)

end

end

return ~Cor(~oi, t)
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Algorithm 6: Correction approach: Evaporating Mean

Data: Optimizer position ~oi, current iteration t, Memory Mem, minimal

value θ, initial evaporation rate ER

Result: Correction Value at optimizer position ~Cor(~oi, t)

Initialize the mean and the counter of saved cell values:
~Cor(~oi, 0)← 0

vis(~oi, 0)← 0

For every iteration up until now:

for j ← 1 to t do
Apply evaporation if at least one value has been saved. When the

absolute of the mean would be smaller than the minimum value, set

it to the minimum value with the same sign as the mean value

if vis(~oi, j − 1) > 0 then

if | ~Cor(~oi, j − 1)| < θ + ER(j) then
~Cor(~oi, j)← sgn( ~Cor(~oi, j − 1)) · θ

else if | ~Cor(~oi)| > θ then
~Cor(~oi, j)← ~Cor(~oi, j − 1)− sgn( ~Cor(~oi, j − 1)) · ER(j)

else
~Cor(~oi, j)← ~Cor(~oi, j − 1)

end

end

If there is a value saved for the current iteration: Update the counter,

update the mean using the the value from the current iteration and

update the ER

if Mem(~oi, j) 6= 0 then
vis(~oi, j)← vis(~oi, j − 1) + 1

~Cor(~oi, j)←
~Cor(~oi, j) +Mem(~oi, j)

min(2, enc)

ER(j)← ER(j − 1)

vis(~oi, j)

end

else

vis(~oi, j)← vis(~oi, j − 1)

ER(j)← ER(j − 1)

end

end

return ~Cor(~oi, t)
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5.5 Main Routine

This section gives a conceptual overview over the routine that is executed

during a simulation run (Figure 5.5) as well as the algorithm (Algorithm 7).

After the initialization of the scenario and the parameters, the main loop is

initiated. At the beginning of every iteration, the VF is reinitialized: Possible

time-dependent changes are applied and the singular points are moved. When

the new VF has been calculated, the vector �eld-disturbances at the explorers'

positions are determined and the results are saved in the memory. Then, the

Information Map is calculated and the explorers are moved. Afterwards, the

VF and IM values at the optimizers' positions are applied to their movement,

which is then executed. After the movement, the optimizers evaluate their

positions and a change of the global best is broadcasted, if it occurred. This

procedure is repeated in every iteration. After the �nal iteration, the global

best is returned.
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Algorithm 7: Main Routine

Data: Scenario S, optimizer swarm size Nopt, explorer swarm size Nexp,

search space S, objective function f , inertia ω, scaling parameters

C1 and C2, Stopping criterion, correction approach

Result: ~xg

t← 0

Initialize VF and SPs

Initialize Nopt Optimizers

for i← 1 to Nopt do

~vi(t)← 0

~oi(t)← random numbers ∈ S
~P best
i (t)← f(~vi)

end

Initialize Nexp Explorers

for j ← 1 to Nexp do

~ej(t)← random numbers ∈ S
end

Initialize Mem as a 3-dimensional null matrix of the size of S × T
while Stopping criterion not ful�lled do

t← t+ 1

Apply dynamic changes and calculate resulting VF ~V

for j ← 1 to Nexp do

Update ~vj(t) (Equation 2.13)

Update ~ej(t) (Equation 2.10)

Mem(~ej(t), t)← ~V (~ej(t))

end

for i← 1 to Nopt do

Get ~Cor(~oi, t) according to the correction approach

Update ~vi(t) (Equation 2.16)

Update ~oi(t) (Equation 2.10)

Update ~P best
i (t) (Equation 2.11)

end

Update ~xg(t) (Equation 2.12)

end

return ~xg(t)
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Figure 5.5: Structure of the main algorithm
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This chapter outlines the experiments that have been conducted in order to test

the performance of DER-PSO on the scenarios that haven been created. The

goal of the experiments was to collect data of the behaviour of DER-PSO's

di�erent correction approaches in di�erent dynamic vector �elds that could

then be analysed to gain knowledge about the e�ectiveness of the approaches.

In order to achieve this, DER-PSO has been conducted with each of the ap-

proaches None, Rec-D, EM-D, Rec-C and EM-C on 14 di�erent scenarios. 30

runs have been conducted for each of the approaches on every Scenario where

a run was constituted by executing DER-PSO for 100 iterations. The global

best value at the �nal iteration as well as the number of times a solution close

to the global optimum has been found have been measured and compared.

The structure of this chapter is as follows: First, in Section 6.1 the parameters

of the experiments are listed. Also, the metrics that have been used to evaluate

the performance are explained and the objective functions are stated. Then,

in Section 6.2 the scenarios on which the experiments have been conducted are

listed and in Section 6.3 the results are detailed along with an explanation of

the statistical analysis. Finally, in Section 6.4 the results are discussed.

6.1 Parameters

In this Section, the metrics that were collected during the experiments and used

to evaluate the di�erent approaches are presented, followed by the objective

functions that were used in the experiments and an overview of the parameters

for the experiments.

Global Best The function value at the global best position at the �nal iter-

ation:

GlobalBest = f(~xg(T )) (6.1)
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where ~xg(t) is the global best position at iteration t, T is the �nal

iteration and f is the objective function.

Success Rate A simulation run r in which the di�erence of Global Best and

the function value at the global optimum was not bigger than 0.1 is

considered �successful�. The success rate is the fraction of runs that were

successful, given in percent.

SuccessRate =
100

R

R∑
r=1

{
1, if |GlobalBestr − f(−10, 10)| < 0.1

0, else
(6.2)

The following three functions serve as the benchmarks for the PSO. For each

point in the search space, the objective functions return a value indicating

the �tness of the point. The objective is to reach the global minimum of the

objective functions. The global minimum, which is usually at (0,0), has been

shifted to (−10,10) in order to not arti�cially make the search easier as the

search space is centred around the point (0,0) and therefore particles would

have a higher probability to reach the optimum by chance.

The following objective functions are used:

Sphere

fsph(x, y) = (x+ 10)2 + (y − 10)2 (6.3)

Ackley

fack(x, y) =− 20 exp

(
−0.2

√
(x+ 10)2 + (y − 10)2

2

)

− exp

(
cos((x+ 10) · 2π) + cos((y − 10) · 2π)

2

)
+ 20 + exp

(6.4)

Rosenbrock

fros(x, y) = 100 · ((x+ 10 + 1)2 − (y − 10 + 1)2 + (x+ 10)2) (6.5)

The following table presents the parameters with which the experiments were

executed.
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Description Symbol Value Value2

General

Iterations T 100

Runs R 30

Search Space S [−15 15,−15 15]

SPs

Maximum speed ∆max 1

Strength k 15

Decay d 0.4

Movement coe�cients ~v (1 1)

Optimizers

Swarm size Nopt 20

Inertia ωopt 0.6

Acceleration factors C1opt , C2opt 1

Maximum Speed Vmaxopt 2

Explorers

Swarm size Nexp 10

Maximum Speed Vmaxexp 2 1

Initialization space - x [−8 8] [−15 15]

Initialization space - y [−15 −10] [−15 15]

EM

Initial ER ER 0.3

Minimum value θ 0.5 0.005

Table 6.1: Parameters for the experiments. Value2 denotes deviating parame-

ter values for the experiments of the Scenarios S11-S14.
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6.2 Scenarios

In order to analyse and compare the behaviour of DER-PSO with its dif-

ferent correction approaches, 14 scenarios have been devised on which the

performance was evaluated. Four classes of scenarios have been created and

the experiments have been conducted with some scenarios from each of those

classes. As a measure of di�culty, the scenarios vary in complexity and sever-

ity. Complex VFs, i. e. VFs with a lot of changes, make the e�ective use of the

Information Map harder as old values become obsolete more quickly.

Basic vector �eld (BVF) consists only of a basic underlying vector �eld and

no singular points.

Single type of singular points (SSP) increases complexity by adding sin-

gular points to the basic vector �elds. The SPs are all of the same type,

which means they exert a similar in�uence. The dynamic is created by

movement of the SPs and partly by the basic VF.

Multiple types of singular points (MSP) further increases complexity by

introducing SPs of di�erent types to the basic VFs. Contrary to class

SSP, the di�erent SPs exert a di�erent in�uence on their surroundings.

Severe has the highest complexity as scenarios of this class consist of very

di�erent, less complex scenarios that substitute one another after some

number of iterations.

According to preliminary experiments, several parameters of the EM-approach

were adjusted for the Scenarios 11-14 for better analysis of the proposed ap-

proach. In particular, the initialization of the explorers has been moved from

the bounded subspace to the whole search space, the maximum velocity of the

explorers has been decreased from 2 to 1 and the minimum value of the ER

has been set to 0.005 (from 0.5). In Table 6.1, the new parameters are denoted

in column Value2.

In the following, the scenarios are explained in detail.
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BVF SSP MSP Severe

S1 S7 S4 S10

S2 S8 S5 S11

S3 S9 S6 -

S12 S13 S14 -

Table 6.2: Overview of the classes of scenarios and the belonging scenarios.

6.2.1 Basic Vector Field (BVF)

The equations of the scenarios S1-S3 depend on the iteration t. Figure 6.1

shows the scenarios before the �rst change.

Scenario 1 (S1) Basic Cross-VF with a rotation of 5 degrees counter-

clockwise at every iteration.

~V (x, y) = R · (y, x) (6.6)

Scenario 2 (S2) Basic Waves-VF. The vectors are constant in x-direction

and periodically increase and decrease in y-direction.

~V (x, y) = (10, 3 · cos(x− 0.5t)) (6.7)

Scenario 3 (S3) Basic Helices-VF. Periodic changes in both x- and y-

direction that resemble car-wash brushes.

~V (x, y) = (3 · cos(x− 0.5t),

3 · cos(0.3x− 0.2t))
(6.8)

Scenario 12 (S12) Basic Tornado-VF.

~V F (x, y) = (−x− y, x) (6.9)
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Figure 6.1: Scenarios S1 (top left), S2 (top right), S3 (bottom left) and S12

(bottom right) at iteration 0.

6.2.2 Single Type of Singular Points (SSP)

Scenario 7 (S7) No basic VF. 9 Counter-Clockwise Centre-SPs at

(−10,−8), (−10, 1), (−10, 10), (0,−10), (0,−1), (0, 8), (10,−6), (10, 3),

(10, 12), all with Sine(1, 1)-movement and Continue- Border Handling.

Scenario 8 (S8) Basic Waves-VF. 3 Counter-Clockwise Centre-SPs at

(−10,−8), (−10, 1), (−10, 10), all with Disturbance-movement and Con-

tinue- Border Handling.

Scenario 9 (S9) Basic Waves-VF.9 Counter-Clockwise Centre-SPs at

(−10,−8), (−10, 1), (−10, 10), (0,−10), (0,−1), (0, 8), (10,−6), (10, 3),

(10, 12), all with Disturbance-movement and Continue- Border Handling.
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Scenario 13 (S13) Basic Tornado-VF with 5 Centre-SPs as noted in Table

6.3. Created via Random Scenario-Creation (see Section 5.3).

Type Position (x0, y0) Strength k Decay d Movement Border Handling

Centre (-7,10) 15 0.36 Linear(0.52, 1.53) Reset

Centre (-12,11) 11 0.16 Sine(0.83, 1.28) Continue

Centre (11,-7) 23 0.25 Linear(0.54, 1.33) Bounce

Centre (2,9) 22 0.35 Linear(1.57, 1.31) Bounce

Centre (0,-13) 13 0.09 Sine(0.69, 1.46) Continue

Table 6.3: Singular points of S13.
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Figure 6.2: Scenarios S7 (top left), S8 (top right), S9 (bottom left) and

S13(right) at iteration 0. Counter-Clockwise Centre-SPs are

marked as diamonds and Centre-SPs as squares.
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6.2.3 Multiple Types of Singular Points (MSP)

The three Scenarios S4, S5 and S6 all have the same combination of singular

points but di�erent basic vector �elds.

Scenario 4 (S4) No basic VF. 5 Source-SPs at (−10,−8), (−10, 10), (0,−1),

(10,−6), (10, 12) and 4 Saddle-SPs at (−10, 1), (0,−10), (0, 8), (10, 3),

all with Sine(1, 1)-movement and Continue- Border Handling.

Scenario 5 (S5) Basic Sheared -VF. 5 Source-SPs at (−10,−8), (−10, 10),

(0,−1), (10,−6), (10, 12) and 4 Saddle-SPs at (−10, 1), (0,−10), (0, 8),

(10, 3), all with Sine(1, 1)-movement and Continue- Border Handling.

Scenario 6 (S6) Basic Cross-VF. 5 Source-SPs at (−10,−8), (−10, 10),

(0,−1), (10,−6), (10, 12) and 4 Saddle-SPs at (−10, 1), (0,−10), (0, 8),

(10, 3), all with Sine(1, 1)-movement and Continue- Border Handling.

Scenario 14 (S14) Basic Tornado-VF with 3 Centre-SPs and 2 Sink -SPs as

noted in Table 6.4. Created via Random Scenario-Creation (see Section

5.3).

Type Position (x0, y0) Strength k Decay d Movement Border Handling

Centre (9,-12) 21 0.21 Linear(0.75, 1.89) Bounce

Sink (-10,15) 21 0.34 Linear(1.34, 1.74) Bounce

Sink (1,10) 15 0.24 Linear(1.35, 0.51) Bounce

Centre (10,9) 22 0.18 Linear(1.61, 0.58) Bounce

Centre (-1,-14) 23 0.11 Sine(1.98, 1.99) Continue

Table 6.4: Singular points of S14.
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Figure 6.3: Scenarios S4 (top left), S5 (top right) S6 (bottom left) and S14

(bottom right) at iteration 0. Source-SPs are marked as cir-

cles, Saddle-SPs as pluses, Centre-SPs as squares and Sink -SPs

as crosses.

6.2.4 Severe

Scenario 10 (S10) One third of the iterations S1, the next third of the iter-

ations S4 and the �nal iterations basic Uniform-VF with a rotation of 5

degrees counter-clockwise at every iteration.

~V (x, y) =


S1 if t < 1

3
T

S4 if 1
3
T ≤ t < 2

3
T

R · (3, 3) else

(6.10)
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Figure 6.4: The three stages of S10 at iteration 0 (left), 34 (centre) and 67

(right) (with T = 100).

Scenario 11 (S11) The �rst half of the iterations S1, then empty.

~V (x, y) =

{
S1 if t < 1

2
T

(0, 0) else
(6.11)

6.3 Results

This Section presents the results of the experiments, where the di�erent cor-

rection approaches are compared on each of the scenarios. First, the focus of

the analysis is explained and the statistical analysis is introduced. Then, the

observations from the experiments are described in detail with respect to the

classes of scenarios from Table 6.2.

For the analysis, only the �tness values at the �nal iteration have been con-

sidered. Commonly, �tness plots over all iterations are used to analyse the

results of PSO-related methods (see [Aziz and Ibrahim, 2012], [Zambrano-

Bigiarini et al., 2013]), and while there is some continued improvement over

time, especially on Ackley, most changes in �tness appear during the �rst about

30 iterations, as can be seen from the plots in Figure 6.5, and no additional

information can be drawn from the analysis of the plots over the iterations.

Therefore, the focus of the analysis is on the �tness value at the �nal iteration.
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Figure 6.5: Fitness plots of Scenario S12. The left column shows the �tness of

the discrete methods: None is black, Rec-D is blue and EM-D is

red. The right column shows the �tness of the continuous methods:

None is black, Rec-C is blue and EM-C is red.
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6.3.1 Statistical Analysis

As the experiments have been executed with only 30 runs for each con�gura-

tion, it is necessary to check whether di�erent results and perceived improve-

ments appeared because of an actual improvement or just because of random-

ness. For this, Mood's median test has been used. The median test was used

in this thesis because the results are mostly not normally distributed. This be-

came evident when the data was analysed using the Kolmogorov-Smirnov test,

which can be used to compare a sample to a probability distribution [Daniel,

1978].

Introduced by Mood et al., the median test is a non-parametric test that tests

whether the medians of two groups of data are identical or not [Mood et al.,

1974]. This is done by �nding the combined median of the two groups and then

comparing how many samples of each group are lower and greater than the

median. The tests were conducted using the XLSTAT1 addition for Microsoft

Excel 20102.

In the following tables, the p-value is given. If this value is below a certain

threshold, the null-hypothesis h0 should be rejected. For these tests, h0 is

the hypothesis that the medians of all groups tested are equal, which means

there is no signi�cant di�erence in the performance if h0 cannot be rejected

and a signi�cant di�erence in performance is hinted at when it is suggested to

reject h0. The threshold is 5.0 as a con�dence value of 95% is desired. In the

following tables, the cells in which the threshold was reached are marked in

green, which means that the green cells are those where a signi�cant di�erence

in performance is suggested. Table 6.5 shows the overall test results for each

combination of Scenario and OF, i. e. over all �ve approaches, and Figures 6.7,

6.9, 6.11 and 6.12 show the pairwise comparisons between the approaches.

6.3.2 Basic Vector Field (BVF)

On S1, only Rec-D on Rosenbrock and Rec-C on Sphere have a success rate

of at least 10%. Apart from that, there is not much di�erence in success rates

and medians, which are very low between 0% and 10%. The box plots are on

1https://www.xlstat.com/en/
2https://products.office.com/de-de/excel
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6.3 Results

OF S1 S2 S3 S4 S5 S6 S7

Sphere 19.99 <0.01 76.03 33.86 <0.01 <0.01 40.60

Ackley 91.88 <0.01 <2.73 <2.44 <0.01 <0.01 <1.38

Rosenbrock 12.57 <0.01 76.03 <0.30 <3.82 <0.09 <2.44

S8 S9 S10 S11 S12 S13 S14

Sphere <0.01 <0.01 30.84 10.18 <1.63 <0.01 <0.61

Ackley <0.01 <0.01 <1.38 <0.01 <0.27 <0.01 <0.54

Rosenbrock <0.01 <0.01 40.60 <0.48 8.23 <0.01 <0.06

Table 6.5: Median-test results of h0: The medians of all 5 approaches are

equal. The values represent the probability of an error when h0 is

rejected. Green cells indicate 95%-con�dence of correctly rejecting

h0 is passed.

the same levels as well (Figure 6.6). The Mood test suggests to not reject the

hypothesis that all medians are equal for every OF (Table 6.5).

On S2, None, Rec-D and EM-D success rates and medians are similar for every

OF, with the success rates being between 0% and 10%. Rec-C has signi�cantly

higher success rates with 100% on Sphere and about 66% on the other OFs.

EM-C has a success rate of over 50% on Sphere while the success rates on the

other OFs are similar to those of None, Rec-D and EM-D (Figure 6.6). The

Mood test suggests to reject the hypothesis that all medians are the same on

every OF and also for most of the pairwise comparisons (Table 6.5, Figure

6.7).

On S3, every approach has a success rate of 100% on Sphere. On Ackley,

success rates are much lower with Rec-D and None being the lowest with 3%

and 10%, respectively, and similar medians of around 0.39. EM-D, Rec-C and

EM-C have similar have similar success rates of around 20% with the median

of EM-C being slightly lower than that of the other two approaches ( 0.23

versus 0.28). On Rosenbrock, every approach has a success rate of around

80% and a median of about 0.035, except Rec-C with a lower success rate of

63% and a median of 0.055 (Figure 6.6). The Mood Test suggests to reject

the hypothesis that all medians are equal only on Ackley (Table 6.5).
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S1 Correction Median Std. Error Success Rate

Sphere

None 4 2.036 6,6̄

Rec-D 5 1.635 3,3̄

EM-D 5 3.385 6,6̄

Rec-C 2 1.880 13,3̄

EM-C 2 2.112 6,6̄

Ackley

None 5.175 0.604 6,6̄

Rec-D 5.422 0.559 3,3̄

EM-D 4.276 0.584 3,3̄

Rec-C 5.175 0.553 6,6̄

EM-C 5.422 0.594 3,3̄

Rosenbrock

None 400 938.299 3,3̄

Rec-D 101 430.709 10

EM-D 902.5 1364.513 0

Rec-C 404 904.373 3,3̄

EM-C 652 1292.431 6,6̄

(a) S1

S1 S2 S3

10-4

10-2

100

Sphere

S2 Correction Median Std. Error Success Rate

Sphere

None 5 1.807 3,3̄

Rec-D 3.164 1.095 0

EM-D 1.088 2.526 3,3̄

Rec-C 0.003 0.001 100

EM-C 0.066 0.211 53,3̄

Ackley

None 4.927 0.480 0

Rec-D 5.422 0.529 6,6̄

EM-D 4.261 0.448 3,3̄

Rec-C 0.066 0.085 66,6̄

EM-C 2.653 0.479 3,3̄

Rosenbrock

None 281.305 1237.969 3,3̄

Rec-D 306.113 1201.572 10

EM-D 27.038 650.958 6,6̄

Rec-C 0.025 0.051 63,3̄

EM-C 1.290 76.488 10

(b) S2

S1 S2 S3
10-3

10-2

10-1

100

101

Ackley

S3 Correction Median Std. Error Success Rate

Sphere

None 0.007 0.001 100

Rec-D 0.007 0.001 100

EM-D 0.005 0.001 100

Rec-C 0.006 0.001 100

EM-C 0.005 0.002 100

Ackley

None 0.393 0.047 10

Rec-D 0.386 0.045 3,3̄

EM-D 0.278 0.044 20

Rec-C 0.228 0.043 20

EM-C 0.278 0.042 16,6̄

Rosenbrock

None 0.042 0.009 80

Rec-D 0.036 0.012 83,3̄

EM-D 0.032 0.019 83,3̄

Rec-C 0.056 0.040 63,3̄

EM-C 0.035 0.008 83,3̄

(c) S3

S1 S2 S3

10-5

100

Rosenbrock

Figure 6.6: Results of Scenarios S1, S2 and S3. The boxplots show approaches

None, Rec−D,EM−D,Rec−C and EM−C, in order. Repeating
digits are denoted by an upper bar¯.
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S1 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D 5.81 -

EM-D 39.01 29.18 -

Rec-C 60.23 12.13 19.65 -

EM-C 12.13 <3.84 79.52 6.93 -

Ackley

None -

Rec-D 79.30 -

EM-D 60.50 59.80 -

Rec-C 100.00 59.80 60.48 -

EM-C 60.20 79.52 43.21 43.83 -

Rosenbrock

None -

Rec-D 30.17 -

EM-D 11.80 12.13 -

Rec-C 11.80 <1.95 60.56 -

EM-C 11.80 12.13 79.61 43.83 -

(a) S1

S2 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D <3.89 -

EM-D 60.23 60.56 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <0.01 <0.01 <0.10 <0.01 -

Ackley

None -

Rec-D 60.56 -

EM-D 60.56 30.06 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <1.95 <0.45 <0.01 11.38 -

Rosenbrock

None -

Rec-D 100.00 -

EM-D 30.17 43.83 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <0.01 <0.01 <0.01 <0.01 -

(b) S2

S3 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D 100.00 -

EM-D 60.56 12.13 -

Rec-C 100.00 60.56 60.56 -

EM-C 60.56 60.56 60.56 100.00 -

Ackley

None -

Rec-D 100.00 -

EM-D <0.98 30.17 -

Rec-C 12.13 30.17 30.17 -

EM-C <3.98 30.17 100.00 60.56 -

Rosenbrock

None -

Rec-D 60.56 -

EM-D 30.17 100.00 -

Rec-C 60.56 60.56 30.17 -

EM-C 60.56 100.00 100.00 30.17 -

(c) S3

Figure 6.7: Pairwise statistical analysis of Scenarios S1-S3. The values repre-

sent the probability of an error when the h0 is rejected. Green cells

indicate 95%-con�dence of correctly rejecting h0 is passed.
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6.3.3 Multiple Types of Singular Points (MSP)

On S4, every approach has a success rate of 100% on Sphere as well as a very

high (>90%) success rate on Rosenbrock, except for Rec-C, which has 80%.

On Ackley, None and EM-C have a success rate of 50% while Rec-D and EM-

D have one of 66% and Rec-C has one of 30% (Figure 6.8). The Mood test

suggests to reject the hypothesis that all medians are equal on Ackley and

Rosenbrock (Table 6.5).

On S5, Rec-C has the highest success rates on Sphere and Rosenbrock and

shares the highest success rate on Ackley with EM-D while having a substan-

tially lower median ( 0.45 compared to 4.93). EM-D also has the lowest

success rate on Sphere and the second highest success rate on Rosenbrock con-

trary to EM-C, which has the second highest success rate of 60% on Sphere

and the lowest on Rosenbrock. None and Rec-D share the lowest success rate

for Ackley while having average rates on Sphere and Rosenbrock (Figure 6.8).

The Mood test suggests to reject the hypothesis that all medians are equal on

every OF (Table 6.5).

On S6, compared to the other approaches Rec-C has very high success rates on

Sphere and Rosenbrock. It also has the lowest median on Ackley, where EM-C

has the highest success rate by a small margin. All the other success rates are

from 0% to around 15%. While the box plots indicates better performance

of EM-C than None, Rec-D and EM-D (Figure 6.8), the Mood test suggests

signi�cant di�erence between these approaches only on Sphere and Ackley

(Figure 6.9). Overall, the Mood test suggests to reject the hypothesis that all

medians are equal on every OF (Table 6.5).
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S4 Correction Median Std. Error Success Rate

Sphere

None 0.006 0.001 100

Rec-D 0.003 0.001 100

EM-D 0.006 0.001 100

Rec-C 0.005 0.001 100

EM-C 0.004 0.001 100

Ackley

None 0.093 0.011 53,3̄

Rec-D 0.074 0.015 66,6̄

EM-D 0.076 0.008 66,6̄

Rec-C 0.144 0.027 30

EM-C 0.102 0.023 50

Rosenbrock

None 0.009 0.005 96,6̄

Rec-D 0.006 0.002 100

EM-D 0.012 0.003 100

Rec-C 0.045 0.009 80

EM-C 0.019 0.020 93,3̄

(a) S4 S4 S5 S6

10-4

10-2

100

Sphere

S5 Correction Median Std. Error Success Rate

Sphere

None 1.038 0.435 20

Rec-D 1.004 0.494 20

EM-D 1.918 0.423 10

Rec-C 0.041 0.447 73,3̄

EM-C 0.074 0.181 60

Ackley

None 4.151 0.326 3,3̄

Rec-D 2.820 0.245 3,3̄

EM-D 4.927 0.536 10

Rec-C 0.448 0.402 10

EM-C 1.442 0.246 6,6̄

Rosenbrock

None 2.557 1028.864 13,3̄

Rec-D 1.608 0.380 10

EM-D 1.922 0.337 16,6̄

Rec-C 0.623 52.415 33,3̄

EM-C 1.258 304.670 6,6̄

(b) S5 S4 S5 S6
10-3

10-2

10-1

100

101

Ackley

S6 Correction Median Std. Error Success Rate

Sphere

None 5 1.777 10

Rec-D 1.529 0.844 16,6̄

EM-D 6.5 2.411 6,6̄

Rec-C 0.036 0.390 60

EM-C 1 1.058 16,6̄

Ackley

None 6.594 0.629 0

Rec-D 3.858 0.581 6,6̄

EM-D 3.625 0.525 6,6̄

Rec-C 1.822 0.359 6,6̄

EM-C 2.638 0.477 10

Rosenbrock

None 400 525.756 10

Rec-D 182.489 815.527 0

EM-D 101 600.221 10

Rec-C 0.369 78.437 30

EM-C 3.334 417.019 3,3̄

(c) S6 S4 S5 S6

10-5

100

Rosenbrock

Figure 6.8: Fitness of Scenarios S4, S5 and S6. The boxplots show approaches

None, Rec−D,EM−D,Rec−C and EM−C, in order. Repeating
digits are denoted by an upper bar¯.
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S4 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D 30.17 -

EM-D 100.00 12.13 -

Rec-C 60.56 <3.89 100.00 -

EM-C 60.56 60.56 30.17 30.17 -

Ackley

None -

Rec-D 30.17 -

EM-D 30.17 100.00 - <0.19

Rec-C 30.17 <0.19 -

EM-C 60.56 30.17 30.17 60.56 -

Rosenbrock

None -

Rec-D 12.13 -

EM-D 60.56 12.13 -

Rec-C <0.03 <0.01 <0.03 -

EM-C <3.89 <0.19 30.17 12.13 -

(a) S4

S5 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D 100.00 -

EM-D 12.13 30.17 -

Rec-C <0.01 <0.01 <0.01 -

EM-C 6.31 <0.19 <0.01 30.17 -

Ackley

None -

Rec-D <0.07 -

EM-D 12.13 <0.16 -

Rec-C <0.01 <0.07 <0.01 -

EM-C <0.01 30.17 <0.19 12.13 -

Rosenbrock

None -

Rec-D <0.98 -

EM-D 30.17 60.56 -

Rec-C <0.98 <3.89 <3.89 -

EM-C <0.98 <3.89 60.56 30.17 -

(b) S5

S6 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D 12.13 -

EM-D 79.61 <3.89 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <3.84 19.45 <0.98 <0.03 -

Ackley

None -

Rec-D <2.01 -

EM-D <0.43 43.63 -

Rec-C <0.01 <0.19 <0.19 -

EM-C <0.03 <0.98 <0.98 <0.98 -

Rosenbrock

None -

Rec-D 60.56 -

EM-D 19.45 29.74 -

Rec-C <0.01 <0.01 <0.01 -

EM-C 12.13 30.17 12.13 <3.89 -

(c) S6

Figure 6.9: Pairwise statistical analysis of Scenarios S4-S6. The values repre-

sent the probability of an error when the h0 is rejected. Green cells

indicate 95%-con�dence of correctly rejecting h0 is passed.
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6.3.4 Single Type of Singular Points (SSP)

On S7, every approach has a success rate of 100% on Sphere and a very high

one on Rosenbrock with Rec-C being a bit lower at 83%. On Ackley, None has

the highest success rate at 43% with the other approaches trailing from 30%

(EM-D) to 16% (EM-C) (Figure 6.6). The Mood test suggests to reject the

hypothesis that all medians are equal only for Ackley and Rosenbrock (Table

6.5).

On S8, Rec-C has the highest success rate on every OF. On Sphere, EM-C has

a high success rate compared to the other approaches, while on Ackley and

Rosenbrock the success rates are in the same region of 0% to 10% (Figure 6.6).

The medians of EM-C however are signi�cantly lower, which shows in the box

plot (Figure 6.10). The Mood test suggests to reject the hypothesis that all

medians are equal on every OF (Table 6.5).

On S9, only Rec-C and EM-C have a success rate >10% on Sphere, with Rec-C

having the much higher one. Also, only Rec-C has a success rate >10% on

Rosenbrock. On Ackley, no approach has a success rate >10%, but Rec-C and

EM-C have a lot lower medians than the other approaches (1 1.5 compared to

5 5.4) (Figure 6.6). This is indicated by the box plots as well (Figure 6.10).

The Mood test suggests to reject the hypothesis that all medians are equal on

every OF (Table 6.5).

6.3.5 Severe

On S10, every approach has a success rate of about 100% on Sphere. Rec-D

and Rec-C have the highest success rate on Rosenbrock and Rec-C has the

highest success rate on Ackley. EM-C has the lowest success rates on every

OF with 16% on Ackley and 53% on Rosenbrock, but not by a huge margin

(Figure 6.6). The Mood test suggests to reject the hypothesis that all medians

are equal only on Ackley (Table 6.5).
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S7 Correction Median Std. Error Success Rate

Sphere

None 0.004 0.001 100

Rec-D 0.005 0.001 100

EM-D 0.005 0.001 100

Rec-C 0.007 0.001 100

EM-C 0.003 0.001 100

Ackley

None 0.128 0.019 43,3̄

Rec-D 0.156 0.020 23,3̄

EM-D 0.138 0.017 30

Rec-C 0.207 0.030 23,3̄

EM-C 0.195 0.019 16,6̄

Rosenbrock

None 0.014 0.006 93,3̄

Rec-D 0.014 0.005 96,6̄

EM-D 0.012 0.004 100

Rec-C 0.032 0.021 83,3̄

EM-C 0.014 0.004 100

(a) S7

S8 Correction Median Std. Error Success Rate

Sphere

None 2.370 0.748 6,6̄

Rec-D 3.577 2.681 0

EM-D 1.362 1.704 13,3̄

Rec-C 0.011 0.003 100

EM-C 0.065 1.057 66,6̄

Ackley

None 6.754 0.505 3,3̄

Rec-D 4.801 0.525 3,3̄

EM-D 4.796 0.465 0

Rec-C 0.732 0.095 6,6̄

EM-C 1.967 0.556 3,3̄

Rosenbrock

None 560.531 1897.872 6,6̄

Rec-D 137.510 1521.277 0

EM-D 122.458 532.907 10

Rec-C 0.099 0.048 53,3̄

EM-C 0.687 0.912 6,6̄

(b) S8

S9 Correction Median Std. Error Success Rate

Sphere

None 4 3.332 10

Rec-D 5 2.778 6,6̄

EM-D 2.039 3.304 6,6̄

Rec-C 0.018 0.524 76,6̄

EM-C 0.213 0.948 33,3̄

Ackley

None 5.382 0.503 0

Rec-D 5.227 0.496 6,6̄

EM-D 5.020 0.521 0

Rec-C 1.008 0.193 6,6̄

EM-C 1.666 0.251 3,3̄

Rosenbrock

None 102.5 573.057 6,6̄

Rec-D 101 436.375 0

EM-D 105 1143.518 10

Rec-C 0.323 0.296 16,6̄

EM-C 1.110 476.982 6,6̄

(c) S9

S10 Correction Median Std. Error Success Rate

Sphere

None 0.006 0.001 100

Rec-D 0.006 0.001 100

EM-D 0.005 0.001 100

Rec-C 0.005 0.021 96,6̄

EM-C 0.009 0.010 96,6̄

Ackley

None 0.151 0.030 33,3̄

Rec-D 0.159 0.023 46,6̄

EM-D 0.204 0.043 30

Rec-C 0.024 0.045 56,6̄

EM-C 0.319 0.090 16,6̄

Rosenbrock

None 0.068 0.023 66,6̄

Rec-D 0.049 0.017 70

EM-D 0.070 0.015 66,6̄

Rec-C 0.017 0.373 70

EM-C 0.098 0.090 53,3̄

(d) S10

Table 6.6: Results of Scenarios S7, S8, S9 and S10. Success rate is given in %.
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S7 S8 S9 S10

10-4

10-2

100

Sphere

S11 S12 S13 S14

10-4

10-2

100

Sphere

S7 S8 S9 S10
10-3

10-2

10-1

100

101

Ackley

S11 S12 S13 S14
10-3

10-2

10-1

100

101

Ackley

S7 S8 S9 S10

10-5

100

Rosenbrock

S11 S12 S13 S14

10-5

100

Rosenbrock

Figure 6.10: Fitness of Scenarios S7, S8, S9, S10 and S11, S12, S13, S14. The

boxplots show approaches None, Rec−D,EM −D,Rec−C and

EM −C, in order. Repeating digits are denoted by an upper bar

¯.
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S7 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D 30.17 -

EM-D 30.17 100.00 -

Rec-C 12.13 30.17 30.17 -

EM-C 60.56 30.17 30.17 12.13 -

Ackley

None -

Rec-D 60.56 -

EM-D 60.56 30.17 -

Rec-C <0.98 12.13 <0.98 -

EM-C <0.98 12.13 <3.89 60.56 -

Rosenbrock

None -

Rec-D 100.00 -

EM-D 60.56 60.56 -

Rec-C <0.98 <0.98 <0.98 -

EM-C 100.00 100.00 60.56 <0.19 -

(a) S7

S8 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D 60.56 -

EM-D 19.65 <3.89 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <0.01 <0.01 <0.01 <0.01 -

Ackley

None -

Rec-D 7.05 -

EM-D 12.13 100.00 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <0.01 <0.01 <0.01 <0.01 -

Rosenbrock

None -

Rec-D 60.56 -

EM-D 60.56 79.61 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <0.01 <0.01 <0.01 <0.01 -

(b) S8

S9 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D 29.18 -

EM-D 60.56 12.13 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <0.03 <0.01 <0.01 <0.19 -

Ackley

None -

Rec-D 79.61 -

EM-D 60.56 79.61 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <0.01 <0.01 <0.01 <0.98 -

Rosenbrock

None -

Rec-D 79.61 -

EM-D 100.00 79.61 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <0.19 <0.01 <0.01 <0.19 -

(c) S9

S10 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D 100.00 -

EM-D 60.56 100.00 -

Rec-C 60.56 100.00 100.00 -

EM-C <3.89 <3.89 <3.89 60.56 -

Ackley

None -

Rec-D 100.00 -

EM-D 30.17 60.56 -

Rec-C 30.17 30.17 12.13 -

EM-C <0.98 12.13 12.13 <0.19 -

Rosenbrock

None -

Rec-D 12.13 -

EM-D 100.00 30.17 -

Rec-C 30.17 30.17 30.17 -

EM-C 30.17 12.13 30.17 12.13 -

(d) S10

Figure 6.11: Pairwise statistical analysis of Scenarios S7-S10. The values rep-

resent the probability of an error when the h0 is rejected. Green

cells indicate 95%-con�dence of correctly rejecting h0 is passed.
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6.3.6 Changed Parameters

On S11, every approach has a success rate of about 100% on Sphere. None and

EM-D have very high success rates on Ackley with 100% and 93%, respectively,

and EM-D has a success rate of 96% on Rosenbrock, which means it has >90%

on every OF. Rec-C has the lowest success rates on every OF, although only

by very little on Sphere. Rec-D has the next worst success rates on Ackley and

Rosenbrock (Table 6.7). The Mood test suggests to reject the hypothesis that

all medians are equal on Ackley and Rosenbrock (Table 6.5).

On S12, Rec-C has the highest success rates on every OF, with >50% on

Sphere, >20% on Ackley and >30% on Rosenbrock. The other approaches

have success rates between 13% (EM-D) and 30% (Rec-D) on Sphere and at

most 10% on the other OF (Table 6.7)s. The Mood test suggests to reject the

hypothesis that all medians are equal on Sphere and Ackley (Table 6.5).

On S13, None has the highest median and lowest success rate on every ap-

proach. On Sphere, Rec-C has the lowest median and the second highest

success rate, while Rec-D has the second lowest median and the highest suc-

cess rate, both >90%. EM-D and EM-C have higher medians and success

rates of 60% and 70%, respectively. On Ackley and Rosenbrock, Rec-C has the

highest success rate and the lowest median by far, where EM-C has the second

lowest median. (Table 6.7). The Mood test suggests that the hypothesis that

all medians are equal is rejected on every OF (Table 6.5).

On S14, all approaches except None have a success rate >90% on Sphere, with

Rec-C and EM-C having the highest. On Ackley, with a success rate of 20%

only Rec-C has a success rate >10%. On Rosenbrock, Rec-C has the highest

success rate with 73% with EM-C having the second highest success rate at

43% while having a similar median to Rec-D (Table 6.7). The Mood test

suggests that the hypothesis that all medians are equal is rejected on every

OF (Table 6.5).
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S11 Correction Median Std. Error Success Rate

Sphere

None 0.004 0.001 100

Rec-D 0.008 0.002 100

EM-D 0.004 0.001 100

Rec-C 0.010 0.005 96,6̄

EM-C 0.005 0.001 100

Ackley

None 0.007 0.001 100

Rec-D 0.208 0.069 33,3̄

EM-D 0.011 0.009 93,3̄

Rec-C 0.599 0.094 10

EM-C 0.085 0.084 53,3̄

Rosenbrock

None 0.010 0.051 73,3̄

Rec-D 0.037 0.031 73,3̄

EM-D 0.008 0.007 96,6̄

Rec-C 0.108 0.111 46,6̄

EM-C 0.018 0.022 80

(a) S11

S12 Correction Median Std. Error Success Rate

Sphere

None 2.203 0.432 20

Rec-D 1 1.043 30

EM-D 1 0.381 13,3̄

Rec-C 0.017 0.954 53,3̄

EM-C 1 0.881 26,6̄

Ackley

None 3.625 0.485 3,3̄

Rec-D 2.679 0.383 0

EM-D 3.422 0.311 6,6̄

Rec-C 0.845 0.598 23,3̄

EM-C 2.732 0.381 10

Rosenbrock

None 102 1088.159 6,6̄

Rec-D 4 151.118 10

EM-D 32.829 267.555 6,6̄

Rec-C 1.366 292.999 36,6̄

EM-C 68.530 736.979 6,6̄

(b) S12

S13 Correction Median Std. Error Success Rate

Sphere

None 1.484 0.286 6,6̄

Rec-D 0.015 0.034 93,3̄

EM-D 0.037 0.159 60

Rec-C 0.007 0.026 90

EM-C 0.040 0.118 70

Ackley

None 3.725 0.305 0

Rec-D 1.609 0.224 3,3̄

EM-D 2.870 0.345 3,3̄

Rec-C 0.146 0.134 26,6̄

EM-C 0.675 0.223 3,3̄

Rosenbrock

None 26.918 45.595 0

Rec-D 0.956 63.146 6,6̄

EM-D 5.389 35.566 6,6̄

Rec-C 0.032 0.018 80

EM-C 0.664 13.758 16,6̄

(c) S13

S14 Correction Median Std. Error Success Rate

Sphere

None 0.016 0.011 83,3̄

Rec-D 0.016 0.008 90

EM-D 0.021 0.008 93,3̄

Rec-C 0.006 0.002 100

EM-C 0.008 0.003 100

Ackley

None 1.081 0.126 0

Rec-D 0.620 0.110 6,6̄

EM-D 0.817 0.126 10

Rec-C 0.311 0.093 20

EM-C 0.527 0.096 10

Rosenbrock

None 0.436 0.221 23,3̄

Rec-D 0.146 0.085 26,6̄

EM-D 0.558 0.164 16,6̄

Rec-C 0.042 91.581 73,3̄

EM-C 0.188 0.074 43,3̄

(d) S14

Table 6.7: Results of Scenarios S11, S12, S13 and S14. Success rate is given in

%. Repeating digits are denoted by an upper bar¯.
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S11 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D 12.13 -

EM-D 60.56 60.56 -

Rec-C <0.19 30.17 <0.98 -

EM-C <3.89 60.56 60.56 <0.98 -

Ackley

None -

Rec-D <0.01 -

EM-D <0.98 <0.03 -

Rec-C <0.01 <3.89 <0.01 -

EM-C <0.01 <3.89 <0.03 <0.01 -

Rosenbrock

None -

Rec-D 12.13 -

EM-D 60.56 <3.89 -

Rec-C <0.19 12.13 <0.03 -

EM-C 12.13 30.17 <3.89 <0.98 -

(a) S11

S12 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D <0.98 -

EM-D <0.98 100.00 -

Rec-C <0.03 28.39 28.39 -

EM-C 19.04 79.52 79.52 30.17 -

Ackley

None -

Rec-D 12.13 -

EM-D 40.51 30.17 -

Rec-C <0.03 <0.74 <0.03 -

EM-C <3.89 100.00 30.17 12.13 -

Rosenbrock

None -

Rec-D 7.05 -

EM-D 79.61 43.83 -

Rec-C 12.13 79.52 60.56 -

EM-C 60.48 <0.98 100.00 12.13 -

(b) S12

S13 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D <0.01 -

EM-D <0.01 <0.19 -

Rec-C <0.01 <0.98 <0.01 -

EM-C <0.01 30.17 100.00 <3.89 -

Ackley

None -

Rec-D <0.01 -

EM-D 12.13 <0.98 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <0.01 <3.89 <0-19 <0.01 -

Rosenbrock

None -

Rec-D <0.01 -

EM-D 12.13 <3.89 -

Rec-C <0.01 <0.01 <0.01 -

EM-C <0.01 60.56 <3.89 <0.01 -

(c) S13

S13 None Rec-D EM-D Rec-C EM-C

Sphere

None -

Rec-D 100 -

EM-D 60.56 30.17 -

Rec-C <0.01 <0.98 <0.03 -

EM-C 12.13 12.13 3.89 30.17 -

Ackley

None -

Rec-D <3.89 -

EM-D 30.17 30.17 -

Rec-C <0.19 <3.89 <0.19 -

EM-C <0.98 30.17 <3.89 <3.89 -

Rosenbrock

None -

Rec-D <0.98 -

EM-D 30.17 <0.19 -

Rec-C <0.03 <0.03 <0.03 -

EM-C <0.98 60.56 <0.19 12.13 -

(d) S14

Figure 6.12: Pairwise statistical analysis of Scenarios S11-S14. The values rep-

resent the probability of an error when the h0 is rejected. Green

cells indicate 95%-con�dence of correctly rejecting h0 is passed.
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6.4 Discussion

In this section the observations of the experiments are reviewed and conclusions

are drawn from them. The results are interpreted with respect to the types of

Scenarios as in Table 6.2.

6.4.1 Basic Vector Field (BVF)

Results on a dynamic VF without SPs seem to depend heavily on the Scenario.

While on S1 success rates are very low and medians are high, on S2 Rec-C and

on Sphere also EM-C have notably higher success rates as well as lower median

values and on S3 all approaches have high success rates and low median values

for Sphere and Rosenbrock (Figure 6.6). The rotation of S1 seems to increase

the di�culty for all approaches to �nd the optimum. The rapid change in

direction of the vectors seems to make the saved correction values useless very

fast and thereby make interpolation ine�ective. Contrary to that, on S2 the

vectors only rotate in vertical direction, therefore the horizontal correction

is accurate. The fact that explorer particles are immediately pushed to the

right border makes for very little exploration of the search space. Therefore,

the discrete approaches struggle a lot. The continuous approaches are more

successful, because the VF-disturbance is the same on the right-hand border

as everywhere else, so the correction is accurate even if the explored area is

far away. Finally, S3 pushes the particles to the top and periodically to the

right. It appears that this creates a better exploration of the search space and

also naturally pushes the optimizers towards the shifted optimum at (-10,10),

so that both discrete and continuous approaches as well as using no correction

at all provide good results.

6.4.2 Single Type of Singular Points (SSP)

The use of a single type of SPs shows that the e�ect of introducing SPs de-

pends on the Scenario and more speci�cally, on the underlying VF. In case of

S2, performance drops when three (S8) and nine (S9) SPs are added (Figure

6.10, Table 6.6). It seems that the decrease in performance is linked to the

number of SPs, as S9 is the scenario where results are the worst. This could

be linked to the fact that interpolation has a big impact on S2 as discussed
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above. Introducing a (high) number of SPs could lower the e�ectiveness of

interpolation as the correction values from explorers not under the in�uence

of a SP are wrong for optimizers that are in�uenced by a SP. Accordingly,

using the experienced value of an explorer particle under the in�uence of a

SP for interpolation gives inaccurate correction values for all optimizers not

in�uenced by a SP.

However, introducing SPs to S12 improves the performance (S13, S14) (Table

6.7, Figure 6.10). The introduction of SPs of one type has the continuous

approaches produce signi�cantly better results while the discrete approaches

behave more or less the same way. One di�erence to the case of Scenarios S2,

S8 and S9 is that the present underlying VF is not uniform in the way that

interpolation from one end of the search space would still be very accurate

on the other end. Since the explorer particles tend to converge to the centre

of the VF on this particular underlying VF as its vectors are aimed slightly

towards the centre, the introduction of SPs leads to increased exploration by

pushing the explorers away from the centre. This was enough to increase the

performance of interpolation, but not enough to improve the discrete methods'

results.

6.4.3 Multiple Types of Singular Points (MSP)

It can be noted that in this case the introduction of SPs with di�erent types

produces better results than the introduction of just one type of SPs, because

S14 shows better results than S13 along with an improvement of the results of

the discrete approaches (although this di�erence might have other reasons than

the type of SPs, since the Scenarios are randomly created) (Table 6.7, Figure

6.10). The addition of the second type, Sink, further improves the exploration

of the search space due to its capability to 'carry' particles. Since the in�uence

of the underlying VF is weak at the centre and stronger at the edges, the Sinks

might pick up the particles near the centre, where their in�uence is bigger than

that of the VF, and 'drop' them close to the edges, as the VF in�uence would

have been stronger there. This leads to increased exploration of both the

optimizer and the explorer swarm.
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6.4.4 Severe

On the severe Scenario S10, Rec-C performs well (Figure 6.10, Table 6.6).

Even though the Recent approach struggles to adapt fast enough and keeps

using a lot of outdated correction values, the fact that the explorer particles

are continuously spawning makes the Recent approach adapt fast enough to

still produce good results. The severe Scenario S11 produces a slightly dif-

ferent result, namely the Recent-approaches performing worse than the EM -

approaches (Table 6.7, Figure 6.10). This is due to the changes made to EM,

i.e. the lower minimum value, as well as the di�erence to S10: In S11 the

VF from the beginning completely vanishes, which means only the values of

the cells in which the explorer particles spawn can be corrected, as there is no

more VF to move the explorers, which is the case on S10. Additionally, the

discrete approaches perform better than the continuous approaches, which is

also expected as interpolation complicates the search on an empty VF.

6.4.5 General Observations

Generally, it can be concluded that the use of the correction approaches im-

proves the performance of DER-PSO compared to regular PSO.

It is noteworthy that the continuous approaches produce much better

results than the discrete approaches. As can be seen in the box plots in

Figures 6.6, 6.8 and 6.10, in many Scenarios where there is a signi�cant

di�erence it is Rec-C and, to a lesser extent, EM-C that have a lower

median. This leads to the conclusion that exploration of the search space

by explorer particle movement alone is often times insu�cient and only a

fraction of the search space will be explored. This problem is even more

apparent in dynamic environments, since once experienced in�uences might

be incorrect after some time, e�ectively reducing the fraction of the area that

can be considered explored. Interpolation however seems to solve this problem.
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This chapter concludes the thesis with a summary of the results in Section 7.1

and presents possibilities for future work in Section 7.2.

7.1 Conclusion

The goal of this thesis was to analyse the behaviour of PSO in a dynamically

changing environment as a model for collective robotic search. For that pur-

pose, objectives have been formulated. The thesis is concluded based on these

objectives.

Objective 1: Create a model for the design of dynamically changing

environments via vector �elds and singular points

A model for the design of dynamically changing environments has been created.

A plane vector �eld is used to model the environmental in�uence. The in�uence

can be created by choosing one of several provided VF types. Some of those are

dynamic and rotation can be applied to them as well. Each of the VF types

corresponds to an equation describing the vectors of the VF. Additionally,

singular points can be used as local in�uences. The model returns a vector

representing the environmental in�uence for any given point inside the VF's

boundaries.

Objective 2: Create a framework for the design of scenarios and appli-

cation of PSO to them

The framework for the design of scenarios has been created. The information

about the scenarios, i. e. the parameters of the VF and the SPs, is stored in

.xlsx-�les. New scenarios can be easily created from a template. A dynamic VF
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can be built from the scenarios which can then be used as the environment of

PSO. Additionally, a method to create scenarios randomly has been provided,

to which user-desired adjustments can be made. Also, a collection of scenarios

has been supplied alongside a manual for the use of the framework.

Objective 3: Create a PSO-based search mechanism which performs

well in spite of the dynamic environment

The new PSO variant Dynamic Environment Recti�ed-PSO has been created

as an extension to VFM-PSO. Environmental in�uence has been added to the

movement of the particles. As a means of correction, the correction methods

Recent and Evaporating Mean both with and without interpolation have been

implemented. Information of the environment is gathered by a second swarm

of particles moving only passively through the external in�uence. The informa-

tion is processed by the correction methods to adjust the particles' movement

to the environmental in�uence.

Objective 4: Evaluate the performance of the correction approaches

the adjusted PSO on di�erent Scenarios

DER-PSO along with the correction approaches has been tested on three test

problems (Sphere, Ackley and Rosenbrock) and evaluated across several sce-

narios which have been created through the supplied framework.

It can be stated that when a basic VF was used, Rec-C was consistently

among the best results. The approach showed especially good results when

the underlying VF was similar in di�erent areas of the VF, even if the VF was

pushing the optimizers away from the optimums (like the Waves-VF). When

a lot of SPs were present or when the underlying VF had very di�erent areas

(like the Cross-VF), the performance was still among the best approaches in

most cases. As a consequence, it is advised to resort to this approach when an

underlying VF is expected as well as when it is unknown what kind of VF is

present. When there was no underlying VF, EM-C would be the best choice,

as it performed consistently good in that case, unlike the Recent approaches

which were performing worse on S7 and were especially bad on S11, where

the VF disappeared. Therefore, when it is known or likely that there is no

underlying VF, EM-C is recommended.
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7.2 Future Work

This Section presents possibilities to extend and build upon the work of this

thesis.

First of all, the restrictions that have been made in this thesis could be looked

at for further development. For example, the assumption of the possibility

of global communication among the particles was made due to the scope of

the thesis. It could be looked into how to adapt DER-PSO when only local

communication was possible.

Also, new correction methods for DER-PSO could be devised. The approaches

that were used were either very straightforward (Recent) or a �rst attempt at

counteracting the dynamics in a more complex way (EM ). Continuing from

the results and �ndings in this thesis more sophisticated approaches that might

improve the performance of DER-PSO could be developed and tested using

the framework this thesis provides. For example, a correction approach that

could detect and react to periodic changes might show very good results.

Looking at the scenarios, the approach that was taken in this thesis was to

create arti�cial, dynamic vector �elds, by arbitrarily choosing a basic VF and

placing SPs. It would be interesting to analyse the behaviour of DER-PSO

when applied to a realistic VF which accurately models a natural phenomenon,

for example a wind map or a map of ocean currents.
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