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Abstract

The field of Multi-Objective Optimisation aims to find a broad set of solutions
along the optimal, non-dominated solution front, the Pareto Front. Widely
used optimisation approaches to approximate the Pareto Front are Evolution-
ary Algorithms, which use evolutionary principles for optimisation. Multi-
Criteria Decision-Making deals with Decision Makers and fulfilling their pref-
erences, often stated as reference points, for solving optimisation problems,
typically choosing a single, final, solution from a set of solutions. Combining
both Evolutionary Algorithms and multiple Decision Makers’ preferences, a
subset of the pareto front, which is based on consensus, can be approximated
to find a solution all Decision Makers can agree on.
This thesis presents two novel adaptations of NSGA-II for Teams, which inte-
grates the concepts of fairness and gain to the Evolutionary Algorithm NSGA-
II by adding a Pareto Regret based filtering step before environment selection.
The first presented adaptation calculates Pareto Regret based on the Decision
Maker’s partial preference towards specific base values of a solution, whose
regular objective values are aggregated on these partial base objective values.
The resulting algorithm Win-Win NSGA-II for Teams optimises for a "win-
win" consensus, wherein a Decision Maker’s preference is only considered for
their chosen partial objective values of the solution and the resulting solution
therefore respects all Decision Maker’s preferences.
The second adaptation, Cosine NSGA-II for Teams, is based on specifying ref-
erence weights instead of points, which form a reference line from which the
cosine similarity to the solution vector is computed to specify the similarity
between both solutions through their shared angle. Resulting is a reference
line along which the Decision Maker prefers the solutions, which eliminates
the need for repositioning reference points towards the Pareto Front.
Both algorithms were tested and compared to NSGA-II and (Adaptive)
NSGA-II for Teams on the scalable Multi-Objective Multi-Agent Pathfind-
ing (MOMAPF) problem, in which agents travel from one side of a map with
obstacles to the other, an example relevant in the real world, as e.g. in robot
path planning. Additionally, the second algorithm was tested and compared
on the benchmark TNK problem.
Results indicate that, while worse in terms of "regular" fairness and gain, Win-
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Win NSGA-II for Teams successfully optimise for win-win solutions, wherein
all Decision Makers’ preferences are aimed to be fullfilled, which also lead to a
higher diversity. Regarding Cosine NSGA-II for Teams, performance is similar
to regular NSGA-II for Teams, with a stronger effect of the Decision Makers’
preferences and the optimisation for consensus, the effect coined as consensus
pressure, while exhibiting less convergence to the Pareto Front.
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1 Introduction

Multi-Objective Optimisation and Multi-Criteria Decision-Making are im-
portant areas of research regarding the general topic of finding solutions to
optimisation problems. Multi-Objective Optimisation deals with finding a
set of solutions to an optimisation problem with multiple different values
that are are optimised for, the objective values. On the other hand, the
field of Multi-Criteria Decision-Making covers choosing a solution from a set
of solutions based on the preferences of (multiple) Decision Maker(s). An
optimisation method used to find a set of solutions close to the problem’s
Pareto Front, the set of solutions that are the respective best for their
combination of objective values, is the Evolutionary Algorithm. It utilises
evolutionary principles like mutation, crossover and selection to generate a
population of solutions which then enters the next cycle (or generation) of
evolutionary optimisation.
Utilising the preferences of the Decision Makers, the Evolutionary Algorithm
can focus it’s search towards the part of the Pareto Front which is the
most interesting for them, improving the exploitation, the thoroughness of
optimisation search, of that area. In the past [8] [6] attempts have been made
to include the concepts of fairness and gain into Evolutionary Algorithms to
satisfy the Decision Makers preferences and create a consensus in which all
Decision Makers can to some degree agree on the found solutions. This was
accomplished by having the Decision Makers state reference points, which
declare their preferences as points in the space of objective values, and then
filtering the population of the Evolutionary Algorithm for the solutions with
the most fairness and gain, calculated through the usage of Pareto Regret, the
Euclidean distance of a solution to the ideal solution (the respective reference
point).
A problem of Multi-Objective Optimisation specifically in combination with
Multi-Criteria Decision-Making is the common inability of Decision Makers
to state their preferences for specific aspects of the solution, as a partial
preferences, whereas objective values oftentimes are based on other aggregated
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1 Introduction

base values (partial objective values), e.g. the average travel time of multiple
agents in a pathfinding problem is not the same as the travel time of one
specific agent, which the Decision Maker might be more interested in however.
Optimising for creating a consensus and finding a "win-win" solution, as to
that all Decision Makers satisfy their preferences, even though in regular
objective space they would be in opposition, between partial preferences of
multiple Decision Makers, using fairness and gain filtering is a novel field of
research and this work’s topic.

The scalable Multi-Objective Multi-Agent Pathfinding problem provides a
suitable and realistic test-bed for this thesis, as it deals with multiple agents
which each try to reach a goal on a map with obstacles. This problem is well
suited for testing partial preferences and optimising for win-win situations, as
each Decision Maker can focus on one agent’s partial objective values and state
their preferences as to how safe or fast they want them to be.

1.1 Motivation

This thesis explores new approaches to adapt the concepts of fairness, gain
and Pareto Regret to optimise the consent in Multi-Objective Optimisation
Problems (MOOPs) with multiple Decision Makers (DMs). The problem
used to showcase this work is the scalable Multi-Objective Multi-Agent
Pathfinding (MOMAPF) problem, visible in figure 1.1, based on the work of
Mai et al. [23] [14] [15].

For finding a solution a DM can agree on, a common approach is to use refer-
ence points [18] [16] [5] to express their preferences beforehand (a-priori, see
2.2). With multiple DMs, finding consensus on their preferences is a common
problem [7] [25].

Finding a consensing solution includes three main steps [8]:

1. Formulation of a goal (agreement on the model)

2. Select a subset of solutions

3. Negotiate the final solution

2



1.1 Motivation

Figure 1.1: A Multi-Objective Multi-Agent Pathfinding (MOMAPF) problem
solution visualisation, with agents on both sides of the map, navi-
gating from the small end to the large end of their respective path,
the colour indicates the risk of the agent based on the distance
to obstacles and other agents, the path’s thickness indicates the
passed time

This work focuses on augmenting an existing approach for solving step 2, the
selection of a subset of solutions which is tied to the DMs’ preferences. The
difficulty in this step lies in the possibly widely differing preferences of the DMs.

The approach this work focuses on are fairness- and gain-based selection
algorithms, specifically for Evolutionary Algorithms. The primary work this
is based on is a report from the 2020 Dagstuhl seminar 20031 by Emmerich et
al. [8], where reference points are used to focus the selection of the solution
subset under consideration of the DMs’ preferences. The approach used
utilises a second level of filtering solutions with fairness and gain. Both
fairness and gain are computed using Pareto Regret as the underlying metric
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1 Introduction

(see 2.3), which describes the similarity of solutions to a desired ideal solution.

This work introduces the differentiation of a specific kind of MOOP, a Par-
titionable Multi-Objective Optimisation Problem (see 4.2). Partitionable in
this sense contrasts that objective functions in MOOPs oftentimes aggregate
underlying metrics to reduce the number of objectives, e.g. by averaging the
time of flight of multiple agents in Multi-Agent Pathfinding (MAPF) (see
2.4), instead of using each agent’s value as a separate objective. This in
turn, in favor of simplifying the computational problem, takes away from the
ability of DMs to prefer some elements of a solution, e.g. the time of flight
of a specific agent in MAPF, rather than the aggregated (e.g. the average)
value of all elements, which is referred to as partial preference from here
on. An example on why this can be beneficial is shown in figure 1.2, where
each DM cares about their agents specific preference and in that sense do
not agree with the presented solution, but due to the objective values being
aggregated (e.g. averaged), the presented solution is regularly acceptable,
as it exhibits a certain degree of compromise between high safety for the
Raw-Egg-Agent (REA), high speed for the Cut-Avocado-Agent (CAA) and
compromising values for the Bread-Agent (BA).

Partitionable Multi-Objective Optimisation Problems therefore are problems
where the objective functions aggregate the underlying base values and the
base values, from here partial objective values, can still be accessed for
optimisation (see 4.2).

In comparison to the base work using regular fairness and gain, using the
partial objective values in the calculation of fairness and gain is poised to
better express specific interests of DMs (e.g. as shown in 1.2) and potentially
even find better overall solutions by incorporating a "win-win" approach in
the solution, as to that all DMs are satisfied by the solution, even though the
DMs’ preferences would be in opposition with each other in regular objective
space.

An aside result of this work is an additional new way to calculate Pareto
Regret, using the new concept of reference lines.
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1.2 Research Questions

Figure 1.2: An Example MOMAPF-Scenario with DMs caring about one
agents performance each, wherein the Raw-Egg-Agent should care
about safety, the Bread-Agent should be able to compromise and
the Cut-Avocado-Agent should care about travel time

1.2 Research Questions

The following research questions are proposed to examine how effective the
proposed algorithms are.

• How do the presented algorithms compare to the existing algorithms on
the regular objective space, measured by Hypervolume?

• How well do the presented algorithms respect Decision Makers’ prefer-
ence points on the regular objective space by qualitative inspection?

• How do the presented algorithms compare to the existing algorithms in
terms of Pareto Regret based fairness and gain, measured by Coverage-
Metric (C-Metric)?

• How do the presented algorithms compare to the existing algorithms in
terms of the novel Egoistic Pareto based fairness and gain, measured by
C-Metric?

5



1 Introduction

• How well do the presented algorithms respect the Decision Makers’ par-
tial preferences with regards to phenotype of the solutions by qualitative
inspection?

To evaluate these questions, the new algorithms are compared with algorithms
proposed in the work of Emmerich et al. [8] and the work of Djartov [6] based
on the Dagstuhl seminar 20031 report, by applying them to the benchmark
experiment, using the Multi-Objective Multi-Agent Pathfinding (MOMAPF)
problem.
The novelty way to calculate Pareto Regret using cosine similarity is addition-
ally separately compared in a non-partitionable, more simple experiment using
the benchmark TNK problem (see 2.5).

1.3 Thesis Structure

This thesis is structured in 7 chapters: Introduction, Basic Principles, Re-
lated Work, Methodology, Experiments, Evaluation and Conclusion and Fu-
ture Work. Chapter 2 deals with basic principles like Evolutionary Algorithms
and Decision Making. Chapter 3 deals with the current state of fairness
and gain in Multi-Objective Optimisation and, in specific, Evolutionary Al-
gorithms, as well as the optimisation of Multi-Agent Pathfinding. Chapter 4
explains the basics of Evolutionary Algorithms, the research this work is based
on and the new approaches to fairness and gain. Chapter 5 and 6 deal with
the conducted experiments and their evaluation respectively. In the last, sev-
enth chapter, a conclusion is drawn and an outlook to potential future work is
given.
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2 Basic Principles

This chapter deals with basic, ground-laying principles, equations and al-
gorithms, that are used throughout this thesis. First presented are Multi-
Objective Optimisation, Multi-Objective Optimisation Problems and Evolu-
tionary Algorithms in general, after which an introduction to the field of Multi-
Criteria Decision-Making is given, both to introduce the general principles on
which this thesis is built. The concepts and specific implementations of fairness
and gain are presented next, which represent the core part of the algorithms
presented in this thesis. Finally, the scalable Multi-Objective Multi-Agent
Pathfinding (MOMAPF) problem, dealing with Multi-Agent Pathfinding but
optimising for multiple objectives, and the much simpler TNK problem are
introduced, as they are the benchmark problems on which the presented algo-
rithms are tested.

2.1 Multi-Objective Optimisation, Evolutionary
Algorithms

In this section both the general concepts of Multi-Objective Optimisation
Problem (MOOP) and Evolutionary Algorithms, as well as the main algo-
rithm on which all presented algorithms and their original base algorithms are
based on, the Non-Dominated Sorting Algorithm II (NSGA-II).

2.1.1 Multi-Objective Optimisation Problems

A Multi-Objective Optimisation Problem consists of multiple objective values
σi which are to be optimised for. These typically conflict with each other, which
presents additional challenges during optimisation in comparison to single-
objective problems.

7



2 Basic Principles

Multi-Objective Optimisation Problem:
minimise f(x) = (f1(x), . . . , fm(x)) = (σ1, . . . , σm)

(2.1)

The above equation defines a minimisation MOOP.

2.1.2 Pareto-Optimality and -Fronts

A solution x of a MOOP is pareto-optimal, if no other solution y exists that
pareto-dominates it.

x is pareto-optimal ¬∃y ≻ x (2.2)

x pareto-dominates y = x ≻ y =
∃i σy,i < σx,i ∧
∀i σy,i ≤ σx,i

(2.3)

The concept of Pareto Dominance introduces an ordering between multiple
Multi-Objective solutions. This describes how one solution can be better than
another solution in every respect, if it is better (for minimisation problems
smaller) in at least one objective value and at least equal in all other objective
values (2.1.2).

8



2.1 Multi-Objective Optimisation, Evolutionary Algorithms

Figure 2.1: Visualisation of Pareto Dominance for Minimisation, a dominates
b and c, but not d

The set of pareto-optimal solutions is the Pareto Front, which is typically
the set of solutions optimisation algorithms try to approximate to present a
DM with, so that they can make an informed decision and select the final
solution(s).

Figure 2.2: Visualisation of a Pareto Front for Minimisation
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2 Basic Principles

2.1.3 Evolutionary Algorithms

The optimisation methods used in this thesis, Evolutionary Algorithms (EAs)
are a group of meta-heuristics using evolutionary principles to heuristically
find good solutions to, for example, Multi-Objective Optimisation Problems.
In this work, if EAs are mentioned, they refer to a subset of EAs, Genetic
Algorithms (GAs). GAs takes strong inspiration from natural evolutionary
principles like genotype, phenotype, the concept of fitness, genetic mutation
and crossover, natural (environmental) selection, populations and generational
advancements.

Figure 2.3: Visualisation of a generic Genetic Algorithm’s elements and pro-
cedure, first a population of solutions is initialised, they are then
each assigned a fitness value through evaluation, on which basis
they are selected for reproduction, they create an offspring using
crossover and mutation, which then gets assigned a fitness as well,
the population is reduced through environmental selection based
on the individuals’ fitness values and finally the algorithm either
enters the next generation or stops

As seen in 2.3, a basic approach to a GA is to first initialise a population,
evaluate it (therefore assign a fitness to each individual), based on the
fitness, select, with a mating selection method, parent individuals to create
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2.2 Multi-Criteria Decision-Making

offspring with both crossover and mutation methods. After also evaluating
the offspring, an environmental selection method is employed to keep the
population size in check (e.g. to reduce it to the starting size). The cycle
of mating selection, creating offspring and environmental selection, which is
a generation, continues until a termination criterium (e.g. a set number of
generations) is reached. Elements of GAs are (often) problem-specific, mainly
encoding solutions for a genotype representation and fitness evaluation, but
oftentimes also genetic mutation and crossover methods. This is not only due
to problem-specific genotypes which are not necessarily able to work with any
type of mutation or crossover method, but also due to the possibility to create
offspring that are invalid solution, as they e.g. would break problem-specific
constraints like a weight limit on a knapsack problem. For that operators
oftentimes need problem-specific handling to ensure that either no invalid
solutions are created, to "repair" or to penalise invalid solutions.

Non-Dominated-Sorting-Algorithm-II

An example of a popular, widely used EA, which also is the basis for all
presented algorithms and their base algorithms, is the Non-Dominated Sort-
ing Algorithm II (NSGA-II) [4]. Parent selection is based on binary tour-
nament selection, where two individuals are chosen from the population at
random and, based on a criterion, the better solution is added to the parent
set. Pareto-Dominance (see 2.1.2) is used as the selection criterion and, as
a tie-breaker, crowding-distance is utilised. As seen in algorithm 1, NSGA-II
uses fast non-dominated sorting (FNDS [4]) to sort solutions into the respec-
tive pareto fronts, assigning each a rank based on the front they are sorted
into. For selection, NSGA-II takes as many fronts (top-down) as possible, un-
til there would be too many solutions selected (see 2.4). The last front, which
was not added, gets sorted by highest crowding distance of each solution, so
that a high diversity is ensured when adding the remaining solutions to the
selected set.

2.2 Multi-Criteria Decision-Making

The term Multi-Criteria Decision-Making (MCDM) refers to solving or opti-
mising MOOPs for a, typically human, Decision Maker (DM), who has goals
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Algorithm 1 The Non-Dominated Sorting Algorithm II (NSGA-II), operating
on population Pg for generation g, parent_select is a tournament selection,
generate_offspring is problem-dependent [4]
1: PAg ← parent_select(Pg) ▷ Select parent individuals
2: Og ← generate_offspring(PAg) ▷ Generate offspring
3: F ← fnds(Pg ∪Og) ▷ Use FNDS to sort into fronts
4: Pg+1 ← ∅, i← 1

5: while |Pg+1| < npop ∧ |Pg+1|+ |Fi| ≤ npop do
6: Pg+1 ← Pg+1 ∪ Fi ▷ Add fronts until
7: i← i+ 1 ▷ population would grow too large
8: CD ← cd(Fi) ▷ Calculate crowding-distances for last, partially included

front
9: Fi ← sort_by(Fi, CD) ▷ Sort front by crowding-distances

10: Pg+1 ← Pg+1 ∪ Fi[1 : (npop − |Pg+1|)]

or preferences as to what values are supposed to be reached in the optimisation
process, which in this thesis helps to focus the optimisation search on a specific
area of the Pareto Front. MCDM is commonly defined by helping the DM in
their decision process, which is typically classified in 4 distinct approaches [21]:
no preference, a priori, a posteriori and interactive methods. If there is no
preference information of a DM available, no preference methods are used to
select a neutral solution, compromising between objective functions. A priori
methods utilise a DM’s stated-prior preference information to present the DM
a single / multiple preference-appropiate solution(s). A posteriori methods
on the other hand rely on the DM to select from a subset of (pareto-)optimal
solutions after the fact. Lastly, if a DM is able to participate during the op-
timisation process, Interactive methods are a possibility for the DM to adapt
their preferences based on presented solutions and further explore the solution
space.

2.3 Fairness and Gain

Fairness and Gain, providing the basis of the filtering algorithm the presented
algorithms adapt, aredefined in the report of the Dagstuhl Seminar 20031
[8] and based on the metric of Pareto Regret (see 2.3), calculated using the
preferences of a group of Decision Makers (DMs). Pareto Regret [11] is defined
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Figure 2.4: Visualisation of ranking and selection in NSGA-II, the last front is
only partially included based on crowding distance [4]

as a loss metric of a given solution x over an ideal solution r. In the report,
the ideal solution is a DM-specified reference point and Pareto Regret is the
Euclidean distance from x to r.

pr(x,Rm) =
m∑
i=1

(fi(x)−Rm,i) (2.4)

Gain is then based on Pareto Regret (pr), averaging Pareto Regret (Average
Pareto Regret apr) values of the solution x in regard to each reference point.
Fairness is the summed inequality (Inequality in Pareto Regret ipr), meaning
the deviation from the average, of Pareto Regret of a solution x in regard to
each reference point Rm.

apr(f(x), R) =
1

d

d∑
i=1

pr(f(x), Ri) (2.5)

ipr(f(x), R) =
d∑

i=1

|pr(f(x), Ri)− apr(f(x), R)| (2.6)
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Figure 2.5: Visualisation of the fronts in NSGA-II, different colours represent
different fronts

2.4 Multi-Agent Pathfinding

The field of MAPF deals with pathfinding problems for multiple agents, to
find efficient paths without crossover or collisions to reach their goal from a
set starting position, typically as a Single-Objective problem. Commonly one
of the following objective functions is used [9]:

• Summed cost, the sum of all path’s time cost

• Makespan, the maximum cost of a path / the time until all agents have
reached their goal

Additionally, a common way to ensure solution quality is to discard solutions
that include collisions with either the environment or other agents (or, the
other way around: only collision-free solutions are considered valid).

Multi-Objective Multi-Agent Pathfinding

Proposed by Mai et al. [23] [14] [15], the MOMAPF(-Vehicle-Model) problem
deals with MAPF in a novel way by including multiple objectives during opti-
misation, with the goal to create an easily scalable benchmark problem to test
optimisation algorithms against.

The MOMAPF problem referred to in this work (and used in the experiments)
is based on the work by Mai and Mostaghim [15], but also modified in the
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sense that liberties have been taken to e.g. only use a subset of objective
functions defined by the author.

In MOMAPF, in this work, multiple agents are placed on a square map, con-
sisting of grid cells, with obstacles, each with it’s respective starting and goal
positions, such that agents from both sides must cross the map to reach their
respective goals. A solution for MOMAPF is encoded as a set of waypoints
through which the agent navigates from start to goal (see 2.6).

Figure 2.6: Visualisation of a solution for MOMAPF, the agents travel from
one side of the map to the other, risk of each agent is indicated by
how red the agent’s path’s colour is, passed time is indicated by
thickness of the agent’s path

Decoding a solution is accomplished by employing an algorithm to find the
shortest path in accordance with the used vehicle model connecting the way-
points.

Different vehicle models for planning agent navigation can be used:

• Straight, the waypoints connect by linear movements
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• Rotate Translate Rotate, the agent can turn in place, moves linearly to
the waypoint and rotates afterwards

• Dubins, the agent always moves forward in straight lines and circle seg-
ments

• Reeds-Shepp, similar to dubins the agent can however change direction

• Adaptive Dubins, like Dubins, but with velocity based circle segments
(the faster the agent goes the bigger the circle has to be)

• Adaptive Reeds-Shepp, analogous to Adaptive Dubins

A solution vector x contains multiple objective values.

∅ ≠ f⃗(x) ⊆ {fR(x), fT (x), fL(x)} (2.7)

For optimisation using EAs, multiple options for objective functions are defined
and can be mixed and matched as defined in the equations below.

risk fR(x) = dmax − dA(x) (2.8)

time fT (x) =

k∑
i=0

τi

k
(2.9)

length fL(x) =

k∑
i=0

τi∑
t=0

|x⃗i(t)− x⃗i(t+ 1)|

k
(2.10)

min. distance of agents dA(x) = min(
min
∀i ̸=j,∀t

(|⃗ai(t)− a⃗j(t)|),
1
2
min
∀i,j,t

(|x⃗i(t)− o⃗j|)
) (2.11)

As can be seen in figure 2.7, MOMAPF defines different map types:

• empty, no obstacles are on the map
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• double_gap, a number ngaps of gaps are in a rectangular obstacle in the
middle of the map

• labyrinth, two rectangular obstacles flush with either the top or the bot-
tom to form a winding tunnel

Additionally, a bar of length lbar, can be placed on the map as a rectangular
obstacle.

Figure 2.7: Available map types in MOMAPF, additionally an empty map can
be chosen, also a rectangular obstacle (bar) can be placed on the
map

2.5 TNK

As described by Tanaka et al. [20] in 1995, the TNK -problem is a multi-
objective benchmark problem to test optimisation methods. Below are the
objective functions and their constraints, figure 2.8 shows the Pareto Front.

minimise f1(x) = x1, f2(x) = x2

constrained by c1 : x2
1 + x2

2 − 1− 0.1 cos(16 arctan(x1

x2
) ≥ 0

and c2 : (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

and c3 : 0 ≤ x1, x2 ≤ π

(2.12)

This work’s implementation assign’s a penalty term of xnew = x1 +1, x2 +1, if
solutions violate constraints.
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Figure 2.8: The approximated pareto front of the tnk problem [20]
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3 Related Work

This work relates to other work in three ways: It relates to similar approaches
for solving Multi-Objective Optimisation Problem (MOOP) using Evolution-
ary Algorithms (EAs) including a Decision Maker (DM)’s preferences (3.1),
as well as Multi-Criteria Decision-Making problems with multiple DMs trying
to achieve high consensus among DMs (3.2). Secondly, it relates to the base
work, the report from the Dagstuhl seminar 20031 [8], and the master thesis
[6], written by Djartov, introducing the explicit usage of fairness and gain in
EA (3.4). Lastly, this work relates to solving pathfinding problems with EAs or
by including DM preference, but explicitly the (scalable) MOMAPF problem
[15] (3.3).

3.1 Including Decision Maker’s Preferences in
Evolutionary Algorithms

For including the preference of DMs in optimisation using EAs, several
approaches have been made, mostly focussing on a priori (see 2.2) methods,
to further guide the set of solutions returned by the algorithm to better
represent the DM’s goals. As to the author’s knowledge however, no research
(aside from the report from the Dagstuhl seminar, see 3.4) with respect to
including and optimising for fairness and gain using EAs has been done. Some
of the presented works do however have the ability to achieve some degree of
consensus between DMs, which is similar to the combination of fairness and
gain, as the approaches try to both achieve convergence (in that sense the
"gain") and respect the preferences of all DMs ("fairness").

Thiele et al. [21] explore an interactive method for incorporating DM
preference in optimisation with EAs. The author’s approach employs an
achievement scalarisation function, which through the use of weight values
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aggregates a multi-objective problem into a single-objective problem and then
"projects" the reference point to the pareto front. This function, combined
with an indicator-based EA (IBEA), leads to the algorithm now respecting
the DM’s preference (therefore named PBEA). The need for interactive
approaches is emphasized, as a priori methods highly depend on the DM to
express realistic and optimal preferences, for which the authors introduce an
interactive procedure to use PBEA, in which the DM is asked to specify a
reference point, the algorithm is being executed and the DM is then presented
the solution with the smallest achievement function value and can decide to
again re-specify a reference point or to end the algorithm. As the author’s
approach circumvents the multi-objective nature of MOOPs by using a
scalarisation function, PBEA does inherently not work towards the goal of
this thesis’s goals, the interactive way of specifying reference points however
could be incorporated into the presented algorithms and be subject of future
research.

Branke et al. [2] integrate user preference a priori into an EA by defining
minimum and maximum tradeoff functions, which specify the DM’s desire to
tradeoff between objective functions. Based on these tradeoff functions the
authors specify the Guided Multi-Objective-EA (GMOEA), which changes
domination criteria by introducing different (wider) domination cone angles
(compare for 2.1). The change in domination leads to specific areas of
the pareto front being emphasized and quicker convergence to these areas.
GMOEA appears interesting, it however completely changes domination
alltogether, making it less easy to change components of the employed EA to
further improve on the optimisation procedure.

Mohammadi et al. [16] describe an extension to MOEA/D [27], which
decomposes MOOPs into single-objective sub-problems and optimises simul-
taneously. The extension (the algorithm is then named R-MEAD) lies in the
inclusion of (multiple) DM preference(s) to solve a shortcoming of MOEA/D,
namely that there is a high number of sub-problems to approximate the entire
pareto front, by only approximating a specific region of the front through the
use of a smaller set of weight vectors and preference information. The smaller
set of weight vectors leads to a smaller number of sub-problems, the weight
vectors get adapted during evolution by calculating the update-direction
through euclidean distance of solutions to the closest reference point. This
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results in multiple solution sets, each near a DM’s reference point, it however
does not lead to a consensus between DMs.

Deb et al. [5] also suggest an approach based on multiple reference points
to better guide an EA towards the DM-preferred sub-set of the pareto
front. The authors focus specifically on finding a set of solutions instead of
a singular solution, which is a common approach in regards to combining
DM-preference with MOOPs, to find the exact "best" solution with regard
to the preference information (e.g. as the best solution of an achievement
scalarisation function). To find a sub-set of solutions, the authors describe an
extension to NSGA-II’s niching process (see 1), where solutions are clustered
to ensure diversity along the pareto front, which emphasizes solutions close
to the reference points (euclidean distance) and clusters very similar solutions
(the extension is named R-NSGA-II). The authors conclude that the approach
works well to find several sub-sets along the reference points, the sub-sets are
notably near each reference point however, without any consensing solutions
inbetween points.

Tan et al. [19] explore a two-stage approach to integrating DM preference
into the optimisation process. By defining multiple goals for the algorithms
to reach (e.g. an objective value σi < 10), the DM’s preference is considered
while searching for solutions by trying to fulfill the given goals. Additionally,
the goals are connected with logical connections (OR and AND) and can be
assigned with different priorities. The employed EA utilises a novel ranking
scheme, based on the number of goals fulfilled by a solution and their respec-
tive given priorities. While the authors do not directly compare their novel
algorithm with established algorithms, they conclude that it works well on
benchmark problems. Interestingly, this approach, based on the logical op-
eration connecting goals, can achieve consensus between different preferences
(with the logical and operation).

21



3 Related Work

3.2 Maximising Consensus for Decision Makers
in Multi-Objective Problems

For creating consensus for the preference of multiple DMs for MOOPs, some
research exists in MCDM-literature, however not necessarily in the same
sense as this work tries to pursue. Some efforts have been made towards
consensus based on fuzzy preferences, but only little research has been done
in the field of MCDM, as to the author’s knowledge, with regards to achieving
consensus, namely that all DMs’ preferences are considered to some degree,
during optimisation. Additionally, partial DM preferences, as presented in
this thesis, appears to be a novel concept, without any prior research available.

Baek et al. [1] propose an algorithm to help multiple DMs choose a consensus,
non-dominated solution, by assigning preference information in the form of
membership functions, which quantifies how much a solution is accepted by
the DM, and through the usage of a heuristic for searching weight values for
the optimisation process. The algorithm is semi-interactive, iterating over
values and asking the DMs if the found solution is acceptable or if to continue.
Minimising the average membership function deviation from target values,
the algorithm searches for a consensus between all DMs.

Emmerich et al. [7] describe a method to model consensus on decisions
for multiple DMs. This is not explicitly an algorithm to search for solu-
tions looking for a high consensus, but rather another way of modelling
said consensus. Preference information is given in the form of desirability
functions, which describe the probability of a DM to accept a given solution.
Consensus is the cumulative probability of all DMs to accept the solution at
hand, from which the expected number of DMs to accept the solution can
be approximated through the use of a Monte Carlo Method. The authors
give examples of how the proposed preference model can be used in the
selection process in databases, but also mention how a demanding DM with
an acceptance probability of 0 immediately discards the solution, regardless
how well accepted it is by other DMs.

Pfeiffer et al. [18] emphasize that previous attempts at integrating multiple
DM preference into EAs where lacking, especially in regards to not finding a
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real consensus between DMs. To elleviate this, the authors test several modi-
fications of the existing reference point algorithm by Deb et al. [5] (see 3.1) to
better solve for multi-DM-consensus. Two approaches are suggested: A rank-
ing based approach, which copies the original ranking, based on the distance
to the reference points, but modifies it to assign different values (maximum or
average instead of minimum) as the crowding distance. The second approach
does away with the ranking portion of the original’s niching operator and
only considers the maximum / average Euclidean distances towards reference
points. Concluding, this approach is a modification to the original algorithm
that now includes consensus between the multiple reference points, by trying
to minimise the distance towards each.

As for another approach integrating consensus into the optimisation process,
Xiong et al. [25] point out that it’s difficult for DMs to express their prefer-
ences precisely. The authors integrate DM-preference through the means of
fuzzy numbers and suggest to measure solution robustness to lessen the im-
pact of change in DM-preferences. To optimise final solution selection towards
both consensus (fuzzy distance sum) and robustness (minimum transition cost
in decision space, if solution is changed in objective space), NSGA-II is used
in a modified way. In addition to regular rank assignment, after assigning
ranks based on dominance (see 1), all ranks are increased by one and solu-
tions from the original first rank are placed in the new first rank, if they are
also non-dominated with respect to consensus and robustness. As only lit-
tle comparison to other algorithms with integrated DM-preferences is drawn,
the performance of the algorithms in comparison to others is left unexplored.
Resulting Solutions focus on the area indicated by reference points, however
without consensus between DM-preferences, focussing more on areas near each
of the reference points.

3.3 Multi-Agent Pathfinding

Multi-Agent Pathfinding (MAPF) is a topic of high relevance, as automated
robotic paths are highly important in e.g. warehouse-like application and
therefore also one of a lot of research.

Traditionally, search-based solvers are widely used in MAPF, as there exist
a lot of optimal solvers, as shown in the survey of Felner et al. [9]. They
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define the MAPF problem to include multiple agents with starting and goal
positions, with a conflict occuring if two agents are on the same vertex at the
same time and the objective being either to minimise the sum of costs or the
maximum cost (time) of all paths in a solution, but it is also mentioned that
makespan (path length) is also a commonly used objective value. Whle sub-
optimal solvers are also shown, optimal solvers include reduction-based solvers,
which reduce the NP-hard problem of MAPF to another NP-hard problem and
then solve that with an appropriate solver, Another type of solvers are ones
based on the A*-algorithm, with the drawback of an exponential increase in
time based on the number of agents, increasing cost tree search, or conflict
based search approaches. The authors conclude that instead of creating new
solvers, existing ones should be examined for possibilities of new optimisations,
as these are already shown to perform well.

3.3.1 Decision-Making and Multi-Agent-Pathfinding

As for the crossover of both the fields of Multi-Agent Pathfinding and Decision-
Making, most typically the decision makers are agents in the pathfinding
problem and try to find compromises to achieve a high solution quality. Less
common, Decision-Making in regard to Multi-Objective Pathfinding is also
present in the field.

In the master thesis of Wolters [24] an algorithm is suggested to, through
collective Decision-Making of the multiple agents, search for paths with a
highway layout. Such a layout includes a highway, which is a path that the
agents agreed upon to be fit for their own preferences and does not need
to be individually changed by each agent. The Decision-Making process
includes each agent voting on parts of the highway-layout, their votes based
on a modified A∗-algorithm to find their preferred next segment of the highway.

The bachelor thesis of Partes [17] deals with Decision-Making for pathfinding
as a MOOP, defining an a priori algorithm to further narrow down a larger set
of pareto-optimal solutions. Three approaches are suggested to better choose
from the larger set: The first approach solely in objective space, utilising
pareto-dominance (see 2.1), another in decision space, utilising clustering and
finally a combination of the other two approaches.
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3.3.2 Multi-Objective Multi-Agent Pathfinding

The benchmark problem in this work is the Scalable Multi-Objective Multi-
Agent Pathfinding problem, which integrates Multi-Objective Optimisation
with Multi-Agent Pathfinding, by including multiple, instead of, as is done
traditionally, only one, of the typical objectives for optimisation.

In the work of Weise et al. from the [23] the original scalable MOMAPF
problem is defined. It stands in contrast to most other MAPF problems
as it optimises for multiple objectives instead of a single one, namely path
flow-time, the average length of the agent’s paths, makespan, the time
needed until the last task is finished and the number of collisions. The last
objective is traditionally a constraint on the optimisation problem, only
solutions without collisions are typically considered valid [9], the inclusion as
an objective however leads to the algorithm being able to explore different
degrees of "invalidness", with partially good solutions not being discarded for
being invalid. The search space for paths is restricted by a small number of
waypoints, of which the encoded solutions (as a genotype) consist of (see 2.4).

Later on, in the work of Mai and Mostaghim [14], new concepts get introduced,
in both scenario and agent vehicle models. The scenario of this work is defined
through the agents being placed evenly on both sides of a square map with
obstacles on it and the agents having to navigate from their starting position
on the one side to their goal position on the other (see 1.1). Several vehicle
models are introduced, the main ones being:

• Straight, the waypoints connect by linear movements

• Rotate Translate Rotate, the agent can turn in place, moves linearly to
the waypoint and rotates afterwards

• Dubins, the agent always moves forward in straight lines and circle seg-
ments

• Reeds-Shepp, similar to dubins the agent can however change direction

The unpublished work of Mai [15] defines the MOMAPF-Vehicle-Model prob-
lem, which is a combination of both the MOMAPF problem and the previously
defined vehicle models [14] together with additional extensions. In addition to
the previously defined vehicle models, adaptive versions of both Dubins and
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Reeds-Shepp are introduced, which adapt the circle segment radius to the speed
of the agent. The author also introduces velocity profiles as a new factor to
optimise for, as now agents can navigate in different speeds. The objectives
to optimise for are average path length, average travel time (which can be
different to the average path length due to velocity profiles) and risk (based
on the number of collisions and distances to obstacles).

3.4 Fairness and Gain in Evolutionary
Multi-Objective Optimisation

Fairness in regard to the preferences of multiple DMs has, as to the author’s
knowledge, not been explored before the report from the Dagstuhl Seminar
20031 [8] in this particular way. There has been exploration towards Multi-
DM consensus (see 3.2), that is however similar but not the same as fairness,
as traditional preference is not concerned with the inequality in how each DM’s
preference is fulfilled. Fairness in different contexts has been used as an overall
goal of optimisation, e.g. for optimising the fairness of electric vehicle charging
pricing [13] or for optimising the fair distribution of water [22], or as a concept
in optimisation procedures, e.g. for a fair approach to create offspring in EA
[12], but not as an explicit goal in the algorithm itself.

3.4.1 Reference Points and NSGA-II for Teams

The report of the Dagstuhl Seminar 20031 [8] explores the concept of fairness
and gain as a method to better integrate multiple DM’ preferences into EAs.
The authors use the concept of pareto regret (see 2.3), the loss to the ideal
value, in combination with reference points to both express the DM’s preference
and the DM’s loss in regards to their preference. Fairness and Gain are defined
as the Average Pareto Regret and Inequality in Pareto Regret (see 2.3) between
DMs. Based on fairness and gain, the algorithm Non-Dominated Sorting Al-
gorithm II for Teams (NSGA-II for Teams) (see 2) is described, which uses
NSGA-II in combination with a fairness-and-gain-based sorting. The authors
conclude through a small example benchmark that the described algorithm
does work as expected, but needs further testing.
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3.4.2 Adaptive NSGA-II for Teams

The master thesis of Djartov [6] further explores Fairness, Gain and
NSGA-II for Teams, and further extends the algorithm. The author extends
NSGA-II for Teams with reference points (named preference points) that wan-
der into the direction of the pareto front (Adaptive NSGA-II for Teams), as
he found that, given non-ideal reference points, the algorithm was incentiviced
to converge in the neighbourhood of these reference points and not towards
the pareto front (see 4.1). The algorithms were tested on benchmark functions
and compared with NSGA-II, coming to the conclusion that, while better for
converging on a specific, preferred area, the algorithms, by the nature of their
design, were worse for overall solution diversity. The author encourages that
the algorithms were tested on more (practical) benchmark problems, as to fur-
ther test their usability in the field, which this work also tries to accomplish
(see 5.2).
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For this work’s methodology, first the groundlaying algorithms
(NSGA-II for Teams and Adaptive NSGA-II for Teams) by Djartov [6]
are described and examined (and slightly adapted), then the motivating
problem and, based on that, a new categorisation for optimisaton problems is
described in detail and then, finally, the algorithmic extensions and the new
algorithms, Win-Win NSGA-II for Teams, it’s Adaptive variant and Cosine
Pareto Regret, are described.

4.1 NSGA-II for Teams

The Non-Dominated Sorting Algorithm II for Teams (NSGA-II for Teams) is
the algorithm adapted for this work, to better include individual preferences
in partitionable MOOPs (see 4.2), by using different fairness and gain equa-
tions. This facilitates a better match of interest or preferences in only a part
(e.g. a single agent’s travel time, see 1.2) of the objective value, instead of
operating on aggregated objective values (see 1.1). The algorithm is originally
described in Djartov’s master thesis from 2021 [6] (and to a lesser extent in
the report from the Dagstuhl seminar 20031 [8]), it is designed to guide the
Evolutionary Algorithm (EA) towards an area of fair but good (in terms of ful-
fillment of any DM’s preference) for all participating Decision Makers (DMs)
using their preference information, specified as reference points R (named pref-
erence points in the master thesis) in objective space. NSGA-II for Teams is
strongly based on NSGA-II, it however adds a fairness filter taking place be-
fore sorting solutions into fronts (see 2). The filter first computes the fairness
and gain values (originally only apr and ipr, as in 2.3) of all individuals in the
input set, ranks them with fast non-dominated sorting from NSGA-II [4] and
then generates the filtered set using the same approach as NSGA-II (including
fronts and including some individuals using crowding distance, see 1), but now
based on fairness and gain values instead of the individuals’ fitness.

29



4 Methodology

Algorithm 2 NSGA-II for Teams, adding fairness_filter (3) to NSGA-II[6]
1: PAg ← parent_select(Pg) ▷ Select parent individuals
2: Og ← generate_offspring(PAg) ▷ Generate offspring
3:

Sg ← fairness_filter(Pg ∪Og, R) ▷ Filter using reference points
4: F ← fnds(Pg) ▷ Use FNDS to sort into fronts
5: while |Pg+1| < npop ∧ |Pg+1|+ |Fi| ≤ npop do
6: Pg+1 ← Pg+1 ∪ Fi ▷ Add fronts until
7: i← i+ 1 ▷ population would grow too large
8: CD ← cd(Fi) ▷ Calculate crowding-distances for last, partially included

front
9: Fi ← sort_by(Fi, CD) ▷ Sort front by crowding-distances

10: Pg+1 ← Pg+1 ∪ Fi[1 : (npop − |Pg+1|)]

In the original algorithm, the filter would reduce the input set of individuals to
the original population size npop, effectively side-stepping the original NSGA-II
environment selection mechanism. This work adapts NSGA-II for Teams’s
fairness_filter to include a filter rate rfilter for reducing the input set’s size
|S| to nout = max(|S| · rfilter, npop) (0 < rfilter ≤ 1), as seen in algorithm 3.

This filter rate is utilised with the goal to reach a higher convergence rate
towards the Pareto Front, as the NSGA-II selection procedure, using fnds

and crowding-distance, is not side-stepped this way and can apply selection
pressure and elitism to the population without solely relying on good reference
points to guide the approximated front. An example as to how the filter rate
affects convergence, using the simple TNK benchmark-problem (see 2.5), can
be seen in 5.1.

Adaptive NSGA-II for Teams

A problem with NSGA-II for Teams observed by Djartov is the reliance on
good reference points in regards to finding the true Pareto Front. As can be
seen in figure 4.1, if reference points are chosen sub-optimally, solutions can
potentially never converge on the true Pareto Front, as the algorithm only
wants to satisfy the supplied DM’s preferences and not necessarily find an
approximation of the Pareto Front.
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Algorithm 3 fairness_filter, operating on a set of individuals S, used in
NSGA-II for Teams (2) [6], with a novel filter rate rfilter to control the output
size
1: S - set of solutions, R - set of reference poitns

gain = apr, fairness = ipr

2: Sf , PR,G, FA← ∅ ▷ Initialise filtered set, pareto regret, gain and fairness
3:

nout = max(|S| · rfilter, npop) ▷ Amount of output solutions
4: for s ∈ {1, . . . , |S|} do
5: for r ∈ {1, . . . , |R|} do
6: PRs,r ← pr(Ss, Rr)

7: Gs ← gain(Ss, PR)

8: FAs ← fairness(Ss, PR)

9: FG← {(G1, FA1), . . . , (G|S|, FA|S|)} ▷ Zip together the respective fairness
and gain values for each s

10: F ← fnds(S, FG) ▷ Use fnds with values based on FG to sort S into
fronts

11: i← 1

12: while |Sf < nout ∧ |Sf |+ |Fi| ≤ npop do
13: Sf ← Sf ∪ Fi ▷ Add fronts until
14: i← i+ 1 ▷ population would grow too large
15: Sf ← Sf ∪ Fi[1 : (nout − |Sf |)]
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4 Methodology

Figure 4.1: A problematic situation for NSGA-II for Teams, as it’s reference
points are chosen in a way that it can’t converge to the true Pareto
Front [6]

As DMs typically want to approximate the true Pareto Front but reference
points are difficult for a DM to evaluate a-priori, which leads to reference
points with unintentional emphasis on certain regions, Djartov [6] describes
an extension to NSGA-II for Teams to reposition reference points during algo-
rithm execution. The extended algorithm is the Adaptive NSGA-II for Teams,
as seen in algorithm 4, which can reposition reference points at specified num-
bers of passed generations.

Solutions are ranked and sorted using fnds and solutions from which to select
the reference points are selected from the first few fronts. The solutions with
the smallest distance to the old reference points are selected as the new refer-
ence points and the regular algorithm continues.
Adaptive NSGA-II for Teams has been adapted in this work to not reposition
at only specific numbers of passed generations, but rather to reposition in a
specified interval ngen_repos of generations to better guide the approximated
front towards the true Pareto Front, as can be seen in algorithm 5.

4.2 Partitionable Multi-Objective Optimisation
Problems and Egoistic Pareto Regret

In order to evaluate individual aspects of a solution, aggregating objective
functions, which generate objective values by aggregating several other values,
are unfit, as they take away important detail for each aspect of that solution
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4.2 Partitionable Multi-Objective Optimisation Problems and Egoistic Pareto Regret

Algorithm 4 Adaptive NSGA-II for Teams is an extension to the regu-
lar algorithm (2) [6], adding a repositioning step for reference points with
reference_reposition

1: PAg ← parent_select(Pg) ▷ Select parent individuals
2: Og ← generate_offspring(PAg) ▷ Generate offspring
3:

R← reference_reposition(R,Pg ∪Og) ▷ Reposition reference points
based on generation

4:
Sg ← fairness_filter(Pg ∪Og, R) ▷ Filter using reference points

5: F ← fnds(Pg) ▷ Use fnds to sort into fronts
6: while |Pg+1| < npop ∧ |Pg+1|+ |Fi| ≤ npop do
7: Pg+1 ← Pg+1 ∪ Fi ▷ Add fronts until
8: i← i+ 1 ▷ population would grow too large
9: CD ← cd(Fi) ▷ Calculate crowding-distances for last, partially included

front
10: Fi ← sort_by(Fi, CD) ▷ Sort front by crowding-distances
11: Pg+1 ← Pg+1 ∪ Fi[1 : (npop − |Pg+1|)]

Algorithm 5 reference_reposition used in Adaptive NSGA-II for Teams
([6], named Preference Repositioning), modified for repeated repositionings
based on ngen_ repos

1: D,F,RN ← ∅ ▷ Initialise distances, fronts and new reference points
2: FNDS ← fndsS ▷ Get non-dominated solutions from S

3: i← 1

4: while |F | < |R| do ▷ Add more than the first front
5: F ← F ∪ FNDSi

6: i← i+ 1

7: if (g modngen_repos) = 0 then
8: for f ∈ {1, . . . , |F |} do
9: for r ∈ {1, . . . , |R|} do

10: Dr,f ← dist(Ff , Rr) ▷ Compute all distances for R and F

11: for r ∈ {1, . . . , |R|} do
12: RNr ← F [argmin(Dr)] ▷ Possible reference points by shortest dis-

tance
13: if RNr ≻ Rr then ▷ Replace if RNr dominates Rr

14: Rr ← RNr
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4 Methodology

(e.g. average travel time of a set of agents vs. the travel time of a single
agent), where it can e.g. smooth away outlier values for a specific aspect.
Partitionable Multi-Objective Optimisation Problems (MOOPs) are MOOPs
with aggregating objective functions for each objective value σi, which are used
to generate the objective value from sets of base values Φi. These base values
can be obtained and used in algorithms, which makes the problem partitionable,
it is possible to take the original, partial (base) objective values and include
them in the optimisation process.

Partitionable Multi-Objective Optimisation Problem:
minimise f(x) = (σ1, . . . , σm)

σi = aggi(Φi) = aggi({ϕi,1, . . . , ϕi,n})
(4.1)

An example of a partitionable MOOP would be the Multi-Objective Multi-
Agent Pathfinding (MOMAPF) problem (see 2.4). The solution to a
MOMAPF problem with 3 agents (2.6), which considers only fR and fT
consists of two objective values: Risk (fR) and time (fT ) (see 2.4). Both risk
and time are objective values which have been aggregated from other, partial
objective values for each agent. Risk is (in a simplified way) the minimum
distance at any time-step of all three agents to either an obstacle or another
agent, in a simplified way the aggregation here is min() and the partial
objective values are each the minimum distance of the agent. Time on the
other hand is the average of all agents’ travel times and the partial objective
values are each agent’s travel time.

If a DM is only interested in the risk and travel time of a specific agent,
the aggregation is detrimental to how the DM can express their preference
regarding a specific reference point in objective space. Therefore this work
presents a novel version of Pareto Regret, named Egoistic Pareto Regret (epr)
due to the egoistic nature of the DM, as they only care about their own,
specific aspect of the solution.. It is defined on partial objective values instead
of regular objective values which were aggregated of partial objective values.
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4.3 Win-Win NSGA-II for Teams

epr(f(x), Ri) = epr({σ1, . . . , σm}, Ri)

= epr({(ϕ1,1, . . . , ϕ1,i, . . . , ϕ1,n), . . . , (ϕm,1, . . . , ϕm,i, . . . , ϕm,n)}, Ri)

=
m∑
j=1

(ϕj,i −Ri,j) (4.2)

|R| = n

Egoistic Pareto Regret now represents the distance of each DM’s preference
to their respective aspect of the objective, or partial preference, e.g. a specific
agent for MOMAPF, of the objective vector.

4.3 Win-Win NSGA-II for Teams

As to now include the DM’s partial preference in the optimisation process,
a modification to NSGA-II for Teams is applied, to now calculate pareto re-
gret based on partial objective values using epr, therefore named Win-Win
NSGA-II for Teams. Egoistic Pareto Regret replaces Pareto Regret in both
filter_fairness as well as in apr and ipr as fairness and gain (see 2.3 and
3). Therefore apr becomes aepr, ipr becomes iepr, therefore aepr replaces the
gain and iepr the fairness function (see 6).

Algorithm 6 winwin_fairness_filter Win-Win NSGA-II for Teams re-
places pr and the fairness and gain functions in the regular fairness_filter

(see 3) [6]
S - set of solutions, R - set of reference points
gain = aepr, fairness = iepr

. . .

for s ∈ {1, . . . , |S|} do
for r ∈ {1, . . . , |R|} do

PRs,r ← epr(Ss, Rr)

. . .

. . .
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The new winwin_fairness_filter replaces fairness_filter in
NSGA-II for Teams (2) to form the new algorithm Win-Win
NSGA-II for Teams.

Win-Win Adaptive NSGA-II for Teams

Adaptive NSGA-II for Teams is adapted the same way as NSGA-II for Teams,
epr replaces pr, aepr replaces apr as gain and iepr replaces ipr as fairness
in filter_fairness. This adaption is therefore named Win-Win Adaptive
NSGA-II for Teams.

4.4 Cosine Pareto Regret

In a similar vein to Egoistic Pareto Regret, Cosine Pareto Regret is a
modification to Pareto Regret, it is however not focussed on partial objective
values. The goal of Cosine Pareto Regret is to replace the need for the
repositioning step of Adaptive NSGA-II for Teams, as it can lead to a change
in the DM’s preferences, as the DM’s reference point might be replaced by
the closest non-dominated reference point, which could nonetheless have a
different weighting of objective values (which might be undesired). Cosine
Pareto Regret aims to solve this by depending on the DM to pick a reference
line which represents the "weighting trajectory" on which the reference points
of the DM can be imagined to be located. Additionally, this would lessen the
problem of picking a specific reference point to an unknown problem topology,
where the DM is unsure what dimensions of objective values are fitting to
their preferences. By defining the weighting trajectory between objectives,
the DM only has to understand how much they prefer one objective over the
other.
The reference line is picked by the DM by specifying weights
W = {w1, . . . , wn|wi ≥ 1.0}, indicating how important one solution is
to them in relation to other objectives, which get inverted to form the
reference line R = { 1

w1
, . . . , 1

wn
}.

Similarity of a solution to a reference line is calculated by calculating the line
the solution’s objective values are on and then calculating cosine similarity
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4.4 Cosine Pareto Regret

(the cosine of the angle α of both lines) between the two lines. To use cosine
similarity in a minimisation context, it is subtracted from 1.

cpr(f(x), Ri) = 1− cos(α) = 1− f(x) ·Ri

||f(x)|| · ||Ri||
(4.3)

Cosine similarity is chosen to create a variant of Pareto Regret, as the angle
between both the reference line and the solution vector is inherently a similarity
in terms of solution trajectory during optimisation. Analogous to Egoistic
Pareto Regret and aepr and iepr (see 4.2), acpr and icpr are both the Average
Cosine Pareto Regret and Inequality in Cosine Pareto Regret.

Cosine NSGA-II for Teams

Again, analogous to Egoistic Pareto Regret and Win-Win NSGA-II for Teams,
Cosine NSGA-II for Teams represents the adaptation of NSGA-II for Teams
for cpr instead of pr. The same way epr is integrated into Win-Win
NSGA-II for Teams, cpr (and acpr and icpr) are integrated into Cosine
NSGA-II for Teams by integrating them into a new cosine_fairness_filter

(see 6).

Figure 4.2 shows an example for applying Cosine NSGA-II for Teams to the
TNK benchmark problem (see 2.5) with three reference lines, with evenly
spaced DM-preferences. Solutions are converging towards the true front and
lie in-between the three reference lines, but the population center is slanted
towards the centroid of the tree lines in the second example.
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4 Methodology

Figure 4.2: Visualisation of Cosine NSGA-II for TNK (see 2.5), shown lines
are the reference lines of the DMs, solutions are coloured in based
on their dominance rank
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5 Experiments

This chapter explains the different experiments that are conducted to evaluate
and compare the different methods presented. First (5.1), algorithm (and)
parameter choices for the employed algorithms are presented. The second
section (5.2) deals with experiment scenarios and why the Multi-Objective
Multi-Agent Pathfinding (MOMAPF) (and the TNK) problem were chosen for
algorithm benchmarking. After that (5.3), the chosen metrics to compare the
algorithms with are explained and the rationale for choosing them is presented.
Lastly (5.4), the chosen libraries and programming languages for implementing
the theory are described.

5.1 Algorithm and Problem Parameter Choices

The compared algorithms are NSGA-II, as a non-reference respecting baseline,
NSGA-II for Teams and Adaptive NSGA-II for Teams as the original Pareto
Regret fairness algorithms to compare against, Win-Win NSGA-II for Teams
and Win-Win Adaptive NSGA-II for Teams to focus on partial objective values
for fairness and Cosine NSGA-II for Teams, as a novel approach to Pareto
Regret definition. For the optimisation using the different algorithms, the
same base parameters are chosen between all of them:

• npop = 64 - the population size

• ngen = {250, 200} - the number of run generations, less generations were
chosen for TNK, as it is a simpler problem

• ntournament = 2 - the number of participants in a tournament, chosen as
defined by the authors [4], therefore binary tournament selection

• Several default parameters used in MOMAPF - These were chosen in
accordance with the MOMAPF-paper [15], an example being crossover
and mutation probabilities
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5.1.1 Adaptive Variants

As the slightly adapted version of Adaptive NSGA-II for Teams includes a
repositioning interval, it is also described here. As proven effective in prior
testing, the interval after which the Adaptive algorithms repositions the refer-
ence points, ngen_repos, is set to 25.

5.1.2 Filter Rate

For the fairness_filter method (see 3), a filter rate rfilter needs to be chosen.
This influences how many solutions from the population are filtered based on
their respective fairness and gain values.

Figure 5.1: Different filter rates rfilter for fairness_filter (see 3), from top left
to bottom right: rfilter = 0.5, 0.75, 1.0 on TNK
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5.2 Scenarios

Figure 5.1 shows the benchmark problem TNK (see 2.5) with 4 different filter
rates of 0.5, 0.75 and 1.0, which shows that on lower filter rates fairness and
gain are considered and the pull from the DMs’ reference points, or "consensus
pressure", is the greatest, and convergence is higher, while diversity is a lot
lower. On higher filter rates however, lower to none consensus pressure occurs
during optimisation, which is why the filter rate for this work’s experiment is
set to rfilter = 0.75, which in prior testing proved to be a good middle-ground.

5.2 Scenarios

The main benchmark problem on which the presented algorithms are com-
pared, is the Multi-Objective Multi-Agent Pathfinding (MOMAPF) problem,
as described in the basics chapter at 2.4. This problem is chosen due to it’s
real-world application in e.g. logistics and it’s good fit as a Partitionable
MOOP that is easy to understand, as each agent has it’s own preference. For
objective functions, fR and fT are chosen (risk and time, see 2.4), as they
represent an interesting and conflicting combination of objectives. The chosen
vehicle model is Adaptive Dubins, as it most closely resembles real world
vehicles. Possible map scenarios for MOMAPF are shown in figure 2.7.

Chosen scenarios include an empty map as a best-case scenario where obstacle
interference does not interfere with the preference based optimisation, as to
which e.g. a "Raw Eggs Agent" can evade other agents to navigate on a less
risky path. Two double_gap maps are included with respectively ngaps = 2, 3

and no bar representing real-world navigation scenarios. Finally a doublegap

with ngaps = 2 but with a bar with length 90 (on the default 200× 200 map)
is also included as a "curve test" to easily qualitatively determine whether
partial preferences are met, e.g. if one, risky, agent takes the inner curve and
the other opts for the safer path on the outer curve.

5.2.1 Decision Maker Preferences and Number of Agents

As briefly explained in the introduction (see 1.2), the goal is to represent
different agents with different preferences and therefore reference points R (as
each DM represents a single agent). For each map scenario, 6 different nagents

(representing the number of agents) scenarios are run.
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• nagents = 2: R = {(70, 200), (95, 100)}

• nagents = 2: R = {(70, 200), (95, 100), (80, 150))}

• nagents = 2: R = {(70, 200), (95, 100), (80, 150), (60, 250)}

• nagents = 2: R = { (60, 250), (60, 250), (70, 200), (70, 200),

(80, 150), (95, 100), (95, 100)
}

• nagents = 2: R = { (60, 250), (60, 250), (60, 250), (70, 200), (70, 200),

(80, 150), (80, 150), (95, 100), (95, 100), (95, 100)
}

There are only two higher agent count scenarios, as testing beforehand con-
cluded, that convergence on these scenarios would not be high on any of
the tested algorithms, therefore these mostly serve as an example as to how
MOMAPF with higher agent counts is a bigger challenge to optimisation and
how fairness is harder to achieve with many DMs (in regards to MOMAPF).
For each number of agents, 3 different types of agents are considered (as shown
in 1.2):

• The slow but safe agent, or Raw-Egg-Agent (REA)

• The compromising agent, or Bread-Agent (BA)

• The fast and risky agent, or Cut-Avocado-Agent (CAA)

For the higher numbers of agents, a lot of agents share their type, to simplify
the optimisation problem.

For Cosine NSGA-II for Teams different values are utilised, as the computation
of the reference lines are different from the reference points (see 4.4). However,
the logic behind the value distribution is the same as with the reference points:

• nagents = 2: W = {(1, 3), (1, 1)}

• nagents = 3: W = {(1, 3), (1, 1), (1, 2)}

• nagents = 4: W = {(1, 3), (1, 1), (1, 2), (1, 4)}

• nagents = 7: W = { (1, 4), (1, 4), (1, 3), (1, 3),

(1, 2), (1, 1), (1, 1)
}

• nagents = 10: W = { {(1, 4), (1, 4), (1, 4), (1, 3), (1, 3),
(1, 2), (1, 2), (1, 1), (1, 1), (1, 1)

}
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5.2.2 TNK

The last experiment scenario is an outlier experiment which is not a Partition-
able MOOP like MOMAPF, but is a benchmark problem with a known Pareto
Front, TNK (see 2.5). This problem is used to showcase especially the Cosine
NSGA-II for Teams variant, as it’s simple nature makes it easy to show the
impact of different reference points (or lines). Because it is not a partitionable
MOOP however, it can not be used to showcase the Win-Win adaptations of
both NSGA-II for Teams variants. 4 sets of reference points are utilised in the
comparison:

• R = {(0.4, 0.9), (0.9, 0.4)}

• R = {(0.4, 0.9), (0.9, 0.4), (0.75, 0.75)}

• R = {(0.4, 0.9), (0.9, 0.4), (0.75, 0.75), (0.5, 0.8)}

• R = {(0.4, 0.9), (0.9, 0.4), (0.75, 0.75), (0.5, 0.8), (0.8, 0.5)}

And for Cosine NSGA-II for Teams (again note that these are weights, not
reference points):

• W = {(1, 2), (2, 1)}

• W = {(1, 2), (2, 1), (1, 1)}

• W = {(1, 2), (2, 1), (1, 1), (1, 1.5)}

• W = {(1, 2), (2, 1), (1, 1), (1, 1.5), (1.5, 1)}

5.3 Evaluation and Metrics

For quantitative evaluation several metrics are utilised to compare the
algorithms’ performances. The metrics chosen are the Hypervolume (HV)
Indicator and the coverage (or cardinal) metric (C-Metric). These metrics
were chosen, as they do not require the knowledge of the problem’s true
Pareto Front, as for both MOMAPF and the fairness-gain space the true
Pareto Front is unknown.

The Hypervolume Indicator is used to compare the algorithms in objective
space, in accordance with research question 1. HV is both a metric for
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diversity and quality of solutions and therefore is widely used to compare
algorithms [26]. The reference point for Hypervolume, (100, 800), is taken
from the MOMAPF paper [15].

To measure the performance of algorithms in the fairness and gain objective
space, a metric that does not require any prior information is needed, as the
objective space is entirely unknown and strongly dependent on the reference
points. The C-Metric indicates how high the domination percentage of one
set of individuals to another is. This is not an absolute measure of how much
better one algorithm performs than another, but it is an indicator as to how
diverse (and to a lesser extent of what quality) the solutions of one algorithm
in comparison to the other are, without any prior needed information.
C-Metric is utilised to compare algorithms both in "regular" fairness and gain
objective space and in partial fairness and gain objective space, as to indicate
quantitatively how well the algorithms perform in respecting both regular as
well as partial DM preference.
Both HV and C-Metric are calculated the first front of the population by
using fnds [4].

Aside from quantitative evaluation, a qualitative approach is also taken to-
wards evaluation, as especially with regard to solution spread and the fulfill-
ment of DM intention in choosing their reference points (e.g. the Raw Eggs
Agent to actually drive safer), metrics are not sufficient to look at.

5.3.1 Hypervolume Indicator

The Hypervolume (HV) Indicator is defined by the hypervolume spanned by
an (approximated) Pareto Front F and the chosen reference point rhv.

hv(F ) = V ( ∪
∀i∈F

volume(xi, rhv)) (5.1)

As the area spanned up increases with both solution quality (closer to real
Pareto Front) and diversity (less crowded solutions as crowding adds less area),
HV is a hybrid metric (also see 5.2).
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Figure 5.2: Visualisation of the Hypervolume Indicator

5.3.2 Coverage Metric

The coverage metric indicates how much of another non-dominated solution
set Y a non-dominated solution set X covers (or dominates) ([10] as Cardinal
Metric). It is defined as the percentage of all solutions in front Y that are
covered by solutions from X.

c(X, Y ) =
|{y ∈ Y |∃x ∈ X : x ≻ y}|

|X|
(5.2)

This means that the value is "asymmetric" as that both a solution set X and
a set Y can have coverage percentages that do not sum up to 100% (see 5.3).

The C-Metric gives a rough idea as to how far one non-dominated solution set
dominates another.

5.4 Tools, Libraries and Frameworks

The source code for implementation of the algorithms of this work (and those
it is based on) are written in Python and mainly use deap [3] for implementing
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Figure 5.3: Visualisation of the Coverage-Metric (C-Metric), represented by
the rate of solutions one front dominates of the other, here
c(blue, red) = 1

3
and c(red, blue) = 2

3

the Evolutionary Algorithm and numpy for calculations. The underlying work
for implementing the MOMAPF-problem was taken from the work by Mai and
Mostaghim [15], also written in Python.
While working on this thesis, the extendable framework EABench was written.
It aims to Implementing and comparing new algorithms for Evolutionary Algo-
rithms using this framework takes little code and provides high extendability.
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The experiments (each scenario combination) were run 3 times each to ensure
a degree of result consistency. Shown are mostly results from the map scenario
curve, as it proved to be the most obvious in terms of qualitatively analysing
in how far a "win-win" consensus, so that the solution fullfills each Decision
Maker (DM)’s partial preference, has been found by the algorithms.
As the adaptive versions of both the regular Pareto Regret and the Egoistic
Pareto Regret NSGA-II for Teams are very similar to the base algorithms,
they produce very similar results, if the reference points are close to the true
Pareto Front or are not close to being approximated by the algorithm with
the given parameters, as can be seen in figure 6.1.

Figure 6.1: Similarity of the Pareto Front of Adaptive and regular
NSGA-II for Teams, when choosing reference points near the
Pareto Front

Similarly, Cosine NSGA-II for Teams qualitative results are very similar to
those of regular NSGA-II for Teams, observable in figure 6.2.

As such, the results of the Adaptive versions and Cosine NSGA-II for Teams
are not shown for qualitative inspection.
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Figure 6.2: Similarity of the Pareto Front of regular and Cosine
NSGA-II for Teams when choosing reference points near the
Pareto Front

6.1 Objective Space Performance

Performance in objective space is evaluated by Hypervolume (HV) Hypervol-
ume (see 5.3.1) of each algorithm, sorted by map and nagents scenario.

As can be seen in figure 6.3, overall, while there is some variation, the
hypervolume decreases with a higher number of agents, which is expected, as
the problem’s difficulty increases at the same time, which can also be seen in
figure 6.6 for NSGA-II, as to that solutions for problems with higher agent
numbers get increasingly more complicated and for both ntextagents = 7, 10

solutions generated are either very risky or not valid (include collisions), as
all algorithms do mostly not find valid solutions within the set ngen. The
increasing problem difficulty can also be seen when looking at the generated
approximated Pareto Fronts in figure 6.4 and figure 6.5, which show that with
increasing nagents the Pareto Front found by NSGA-II are positioned more in
direction of risk, even mostly in invalid (fR ≥ 100) space for nagents = 7, 10,
while those found for both regular and Win-Win NSGA-II for Teams are also
further away from the reference points.
Interestingly, which algorithm performs the best in terms of HV is dependent
on the map scenario. NSGA-II is the best for each map scenario, which is
expected as it tries to approximate the whole Pareto Front, which leads to
much higher HV. For empty and curve, the Win-Win algorithms are the
second highest performing algorithms, while for double_gap and triple_gap,
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Figure 6.3: Hypervolumes of algorithms on the MOMAPF problem, on dif-
ferent map scenarios (left-to-right, top-to-bottom): empty, curve,
double_gap and triple_gap

the gap between algorithms is much smaller or, while on triple_gap, they get
outperformed by Adaptive NSGA-II for Teams.
As for Cosine NSGA-II for Teams, the hypervolume is a lot lower than the
other algorithms, which is due to the stronger effect of the DMs’ preferences,
from here known as consensus pressure, also observable for TNK in figure 6.2,
where the only solutions generated are in the "most fair" region of the Pareto
Fronts. As the diversity is lower, Hypervolume will always be lower for Cosine
NSGA-II for Teams.

For qualitative inspection of how well the algorithms respect the stated refer-
ence points, the Pareto Fronts shown in figure 6.5 (and figure 6.2 for Cosine
NSGA-II for Teams) show that both regular NSGA-II for Teams as well as
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Figure 6.4: Pareto Fronts of MOMAPF, nagents = 2, 4, 7, 10, on curve, gener-
ated by NSGA-II, different colours represent different fronts, loop-
ing from red to purple

Win-Win NSGA-II for Teams respect the DMs’ reference points, with solu-
tions positioned in-between them.

Win-Win NSGA-II for Teams does not optimise for regular fairness and gain,
which means that in the case of the MOMAPF problem, solutions that are fair
in the regular sense and therefore in-between the reference points in objective
space, are also fair to some degree in respect to the partial preference. It
can be seen in figure 6.5 however, that the found solutions are positioned
differently than in NSGA-II for Teams, both less safe (higher fR) and with less
speed (higher fT ), which also is expected, as, if a "win-win" situation is found,
a solution both encompasses (multiple) REAs, which lead to higher average
travel time, and CAAs, which lead to a lower minimum distance across agents,

50



6.1 Objective Space Performance

Figure 6.5: Pareto Fronts of MOMAPF, nagents = 2, 4, on curve, gener-
ated by reference point respecting algorithms (top-to-bottom):
NSGA-II for Teams and Win-Win NSGA-II for Teams, different
colours represent different fronts, looping from red to purple

leading to higher risk values. This makes it all the more interesting, that,
while achieving solutions with win-win situations, diversity and therefore HV
still is generally higher than for regular NSGA-II for Teams, which then seems
to experience more consensus pressure, only focussing on the small optimal (in
regards to the reference points) part of the Pareto Front.
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Figure 6.6: Solutions with nagents = 2, 4, 7, 10, on curve, generated by NSGA-II

6.2 Regular Fairness and Gain

As can be seen in the confusion matrices from figure 6.7, like for HV,
the resulting C-Metric values vary on different nagents, however, a trend
is discernable. Regular fairness and gain based algorithms ((Adaptive)
NSGA-II for Teams and Cosine NSGA-II for Teams) dominate the field, while
the presented Win-Win adaptations stay behind.
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Figure 6.7: C-Metric confusion matrices based on regular fairness and gain
of MOMAPF of all algorithms on curve, (left-to-right, top-to-
bottom) nagents = 2, 3, 4, shows the C-Metric of row versus column,
cm(row, column)

These results are expected, as the Win-Win adaptations do not optimise for
regular fairness and gain, however, as the partial preferences line up in the
objective space to some extent, as discussed in section 6.1, the algorithms still
are performant in terms of regular fairness and gain.
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Figure 6.8: Line plots of C-Metric values for regular fairness and gain fronts of
all algorithms on the MOMAPF problem, averaged over all nagents

on all map scenarios (left-to-right, top-to-bottom): empty, curve,
double_gap and triple_gap

This strongly depends on both the aggregation function utilised in calculating
the regular objective values and the reference points set, as, like when calculat-
ing the risk using fR, e.g. the minimum is calculated from the partial objective
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values, the reference point with the lowest value (or for fR highest) strongly
influences the solution’s position in objective space, which on the other hand
influences Pareto Regret, regular fairness and gain and the C-Metric values.
The unexpected performance of NSGA-II can be explained due to the set ref-
erence points being close to the found Pareto Front, as NSGA-II aims for a
diverse solution set across the front, solutions with high fairness and gain are
bound to be included.
In the line plots from figure 6.8, the average C-Metric c-metric values across
all nagents are shown, indicating, again, differences across the different map
scenarios. The general trend mirrors the confusion matrices’ results, as
both (Adaptive) NSGA-II for Teams and Cosine NSGA-II for Teams per-
form well above both NSGA-II and (Adaptive) Win-Win NSGA-II for Teams.
Some exceptions are present however, both NSGA-II and Adaptive Win-Win
NSGA-II for Teams perform a lot better in triplegap. While NSGA-II’s per-
formance increase likely occured due to the map scenario making it easy to find
consensing solutions due to the three gaps, as Win-Win NSGA-II for Teams
does not exhibit the same performance increase, the Adaptive variant just
experiences some variance.

6.3 Partial Fairness and Gain

To quantitatively analyse the performance with regards to finding solutions
with high partial fairness and gain, figure 6.9 shows the confusion matrices of
the C-Metric values on the partial fairness and gain front, which show again
that results vary based on different values of nagents. The trend here is however
that both Win-Win based algorithms do perform better than the other algo-
rithms, however, interestingly not necessarily everwhere, as there are spots
for nagents = 3 where for example neither NSGA-II for Teams nor Win-Win
NSGA-II for Teams dominate each other meaningfully. NSGA-II for Teams
does dominate it’s Adaptive variant, which on the other is not dominated as
much by Win-Win NSGA-II for Teams, leading to the conclusion that in this
specific scenario NSGA-II for Teams and the Win-Win adaptations represent
different parts of the approximated Pareto Front in fairness and gain space.
Additionally, while it does perform well with regards to regular fairness and
gain, Cosine NSGA-II for Teams does not perform well with regards to partial
fairness and gain, which is expected, as it only explores a small front due to
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high consensus pressure.

Figure 6.9: C-Metric confusion matrices based on partial fairness and gain
of MOMAPF of all algorithms on curve, (left-to-right, top-to-
bottom) nagents = 2, 3, 4, shows the C-Metric of row versus column,
cm(row, column)

As for exploring the algorithms’ performance across all map scenarios,
figure 6.10 shows the C-Metric values averaged across all nagents, showing
that for partial fairness and gain values vary across different map scenarios
as well. Remarkable is that, while not optimsing for it, both (Adaptive)
NSGA-II for Teams and Cosine NSGA-II for Teams perform rather well across
the different map scenarios, which is explained by their high performance for
higher number of agents (nagents = 7, 10), where Win-Win NSGA-II for Teams
falls off, as optimisation for win-win situations with a lot of agents is
significantly more difficult.
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Figure 6.10: Line plots of C-Metric values for epr-based fairness and gain fronts
of all algorithms on the MOMAPF problem, averaged over all
nagents on all map scenarios (left-to-right, top-to-bottom): empty,
curve, double_gap and triple_gap

Figure 6.11 gives insight into why the partial fairness and gain performance of
non-Win-Win algorithms is so high, as it showcases an "accidentally fair" so-
lution, where the left solution does not respect the partial preference (the blue
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agent is a REA, the orange agent is a CAA), the right one clearly does. Both
were taken from the fronts ranked first respectively using fnds, which makes
it clear that finding solutions with high partial fairness and gain is accidental
for the algorithms not presented in this work. While NSGA-II, (Adaptive)
NSGA-II for Teams and Cosine NSGA-II for Teams do not optimise for
partial fairness and gain, they can however find well-performing solutions,
and, due to the closeness in objective space of solutions with high regular
fairness and gain and those with high partial fairness and gain, as explained
in section 6.1, these can also be performant in terms of partial fairness and gain.

Figure 6.11: Showcase of accidentally found solutions with high partial fair-
ness and gain on curve with nagents = 2, generated by
NSGA-II for Teams and NSGA-II

To explain the unexpectedly weak performance of (Adaptive) Win-Win
NSGA-II for Teams, considering that the algorithms specifically optimise for
partial fairness and gain, a methodical flaw is observable due to the placement
of solutions in objective space, as seen in figure 6.5. While for computing the
C-Metric of regular fairness and gain it is sensible to choose the solutions from
the best ranked front using fnds, as the distance is computed in objective
space, performing well in objective space does not necessarily equal perform-
ing well on the partial fairness and gain front. As explained in section 6.1,
well performing solutions for both are close to each other in objective space,
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6.3 Partial Fairness and Gain

however they are not necessarily on the approximated Pareto Front.
Looking at figure 6.11 showcase qualitatively whether (Adaptive) Win-Win
NSGA-II for Teams is able to achieve solutions with win-win situations, it is
clear that these are solutions with actual win-win situations. You can see that
in the top left the REA cuts the corner, as the CAA takes a safer detour, or
that in the bottom left the CAA comes very close to the obstacle, the REA
dodges it and the BA finds a compromise.
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Figure 6.12: Showcase of solutions with high partial fairness and gain generated
by (Adaptive) Win-Win NSGA-II for Teams (left-to-right, top-
to-bottom): curve, nagents = 2; curve, nagents = 3; doublegap,
nagents = 3, triplegap, nagents = 4
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In this work two novel adaptations of the original Non-Dominated Sorting
Algorithm II for Teams (NSGA-II for Teams) were presented.
The first adaptation deals with the problem of Paret-Regret and "regular"
objective functions being too general and loosing information valuable to
the Decision Maker’s decision. To handle this, a new type of problem is
introduced: A Partitionable Multi-Objective Optimisation Problem, which is
defined by it’s objective values being composed of multiple aggregated partial
objective values. The adapted algorithm, Win-Win NSGA-II for Teams and
it’s Adaptive counterpart deal with the Decision Maker preferring not a
certain aggregated solution, but rather only caring for one aspect of that
solution, partial objective values, which is not possible to specify in a regular
reference point based on regular, aggregated, objective values. The measure
with which to compute similarity based on partial objective values is named
Egoistic Pareto Regret and is strongly akin to regular Pareto Regret, but
considers distance of the respective aspect of a solution vector instead of the
whole solution vector when computing distance to the reference point.
The second algorithm deals with the major problem for choosing reference
points, the reliance on the DM to choose reference points on or near the un-
known true Pareto Front. For NSGA-II for Teams this problem was addressed
with a reference point repositioning, which can lead to the DM’s original
preference to be lost. The presented algorithm, Cosine NSGA-II for Teams
deals with this problem through the use of reference lines instead of reference
points, weights get chosen by the DM and a line through objective space
is generated. The Pareto Regret of NSGA-II for Teams is replaced through
the use of cosine similarity between the solution vector and the generated
reference line. This version of Paret-Regret is named Cosine Pareto Regret.
Both algorithms (and the first algorithm’s Adaptive version) were
tested and compared with NSGA-II, NSGA-II for Teams and Adaptive
NSGA-II for Teams on the scalable Multi-Objective Multi-Agent Pathfind-
ing (MOMAPF) Problem with 4 different map scenarios, each with 5 different
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values for nagents, describing the amount of agents in the optimisation
problem. The problem was chosen as it is close to real world use cases for
specifying preference in regards to a specific aspect of a solution, in this case
the objective values of a specific agent, disregarding the other agents. For
MOMAPF specifically this means that each DM corresponds to one agent and
it’s individual performance in regards to both time of fligt fT and risk fR.
The second algorithm was also tested (and compared with the non-Win-Win
algorithms) on the benchmark problem TNK to demonstrate the advantages
and differences of the algorithm on a known and simple objective space
topology.

The experiment results show that both the novel Win-Win algorithms as well
as Cosine NSGA-II for Teams are promising for different use cases.
The presented Win-Win algorithms are shown to compare favorably to the
existing algorithms in terms of Hypervolume (HV), as they achieve the
same or even higher performance in that space, while qualitatively also
converging to a similar front as (Adaptive) NSGA-II for Teams. Similar to
NSGA-II for Teams however, they do not compare favourably to NSGA-II,
which is expected, as they do not intend to approximate the whole Pareto
Front. As for Cosine NSGA-II for Teams, it is shown to not perform well in
terms of regular objective space or HV, as it explores a much narrower front
due to a stronger effect of the Decision Makers’ preferences, coined "consensus
pressure". It also experiences little convergence due to the non-convergent
nature of Cosine Pareto Regret in direction of the Pareto Front, which for
regular NSGA-II for Teams is not a problem, as it’s front converges towards
the reference points, which are supposed to be chosen close to the Pareto
Front.
In terms of regular, Pareto Regret based fairness and gain fronts, compared
to the other algorithms and their performance measured by the C-Metric,
(Adaptive) Win-Win NSGA-II for Teams are shown to not perform as well,
which is expected, as it does not optimise for regular fairness and gain. Cosine
NSGA-II for Teams is shown to perform very well with regards to regular
fairness and gain, often out-performing regular NSGA-II for Teams, as it does
not exhibit a lot of convergence however, the solutions’ quality is lacking.
Regarding partial, Egoistic Pareto Regret based fairness and gain fronts,
again compared to the other algorithms and the performance measured using
C-Metric, the Win-Win adaptations fare a lot better than with regards
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to regular fairness and gain. These results are flawed however, as the
computation of C-Metric inherits a flaw at choosing the solution set, as the
first front as ranked by fnds is not necessarily the best set of solutions with
regards to partial fairness and gain, which indicates that the real performance
is a lot higher. Regular (Adaptive) NSGA-II for Teams does perform better
than expected for partial fairness and gain in some map scenarios, which is
mainly due to good performance at higher numbers of agents, where solutions
with win-win situations are a lot harder to optimise for. NSGA-II for Teams
however can find these accidentally by optimising for regular objectives, as
solutions with win-win situations and solutions with high regular fairness and
gain performance are close to each other for the MOMAPF problem with the
chosen reference points. Cosine NSGA-II for Teams is shown to not perform
particularly well for partial fairness and gain aside from higher number of
agents, similar to regular NSGA-II for Teams.
By qualitative inspection, partial preferences are shown to be well respected
by the Win-Win adaptations of NSGA-II for Teams in the solution phenotype,
mostly exhibiting win-win situations as preferred by the DMs.

The results of this thesis indicate some arguments to further research both
partial preferences for a "Win-Win" consensus as well as reference lines and
vector-like preferences to deal with the problem of specifying reference points
near an unknown true Pareto Front.
As to improve on the results of this thesis, a longer evaluation with a much
higher sample count of each scenario-combination with more and more different
reference points would be able to solidify the results and conclusions drawn
here,also, as mentioned in chapter 6, the testing methodology of this thesis
encompasses some weaknesses regarding the chosen individuals for computing
metrics, which could be improved upon in future works. Additionally, once
a good approximation to the true Pareto Front of the MOMAPF problem is
known, different metrics like generational distance or inverse generational dis-
tance can be used to further inspect the algorithms’ performances. Regarding
the MOMAPF problem in general, the impact of the chosen map scenario and
the number of agents on the ability to find fair and partially fair solutions is
another subject of future research, as these results showed strong variations
based on the combinations of scenarios.
Concerning the adapted Win-Win algorithms more research is needed to re-
move a limitation of this work’s implementation, namely that each DM focusses
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on only one partial aspect of the aggregated objective values, as per the used
benchmark problem MOMAPF on one agents fitness. For future research,
possible avenues would be to allow DMs to state multiple preferences and ag-
gregate or rank these for fairness and gain, as this would make it possible to
partly respect a DM’s preferences, e.g. fully respecting the second and third
preference but not the first. A problem discovered in this work is the ability to
achieve partial objective value consensus, as per the MOMAPF problem some
maps showed more ability to achieve a consensus regarding agents’ fitnesses,
while others did less so. Potentially adapting the DMs’ preferences to the
scenario and having a DM compromising on their own, potentially unfeasible,
preferences would be, in addition to measuring the ability to achieve (partial)
consensus, opportunities for more future research.
As for the Cosine NSGA-II for Teams algorithm, more research is needed re-
garding the concept of consensus pressure, of how the different measure un-
derlying fairness and gain reflects on the diversity of solutions after filter-
ing for fairness and gain. Contrary to the high consensus pressure, Cosine
NSGA-II for Teams showed low convergence to the true Pareto Front of the
benchmark problem TNK, which is another possible area of future research to
improve on the presented algorithm. Additionally, Cosine NSGA-II for Teams
as presented is not able to optimise for partial preferences of DMs.
Less specifically, as this work is an example of, novel approaches to both adap-
tations of Pareto Regret or metrics with the same goal of modifying the fairness
and gain approach are topics of research that still have further improvements
to be made.
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