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Abstract

This thesis relates to constraint handling techniques for highly constrained opti-
mization. Many real world optimization problems are non-linear and restricted
to constraints. To solve non-linear optimization problems population-based meta-
heuristics are used commonly. To enable such optimization methods to fulfill the
optimization with respect to the constraints modifications are required. Therefore
a research field considering such constraint handling techniques establishes. How-
ever the combination of large-scale optimization problems with constraint handling
techniques is rare. Therefore this thesis involves with common constraint handling
techniques and evaluates these on two benchmark problems.
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1. Introduction and Motivation

As a result of growing influence of technology in everyday life our world becomes
more complex. With the widespread accessible information acquisition now more
complicate problems can be attacked. In particular, in the last decades developed
Optimization Method (OM) are going to be applied to new subject areas like chem-
istry, physics, insurance or automotive.

After the mathematical definition, optimization is the finding of the best global so-
lution. However by far not all problems provide a mathematical definition at which
the global optimum can be calculated either directly or iteratively by following a
gradient. Such problems have usually a nonlinear evaluation function.
In this cases meta-heuristics become valuable. Even if a found solution is not guar-
anteed to be the global optimum nevertheless it can be good enough related to some
criteria. Many widespread meta-heuristics are population-based and rely mostly on
Evolutionary Algorithms and Particle Swarm Optimization.

Common optimization problems with a nonlinear evaluation function come from the
field of Engineering Design. These are mostly Parameter Optimization. Thereby
the optimal parametrization of a product is asked. Such parameters may be the
thickness of the wall of a pressure vessel or the diameter of a gearwheel. Also the
ranges of values the parameters can assume are usually constrained. Constraints
in such scenarios are physical limitations, maximal possible values, withstanding
a certain force, the pressure for example by a pressure vessel, or preventing com-
ponents leaving a restricted design space, in case the diameter of the cogwheel of
a wristwatch should not be larger then the watch itself. Optimizing of all param-
eters of each component may span a huge search space. In addition fulfilling all
constraints increases the difficulty of the optimization process.

To handle constraints and direct an optimization process towards the feasible do-
main with a population-based meta-heuristic diverse methods have been developed
referred in the literature to as Constraint Handling Technique (CHT)
Over the last decades population-based meta-heuristics have become very popular
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1. Introduction and Motivation

and a massive diversity of different approaches based on them arise. With them
also the amount of CHT increases. Carlos A. Coello Coello collectes some of the
papers addressing CHT in a list online containing over 1400 entries to the time this
thesis is written1. Despite the seemingly great interest in this kind of research, the
holy grail of CHT has not yet been reached, which independently of the optimizer
or the problem, reaches the feasible domain and finds an optimal solution. Further-
more there is less research with bigger problems containing more constraints then
decision variables. Optimizations considering such unconstrained bigger problems
are referred to as large-scale optimization in the literature [60]. A combination of
large-scale optimization with CHTs is a rare research topic and will be investigated
by this thesis further.

1.1. Aim of this thesis

Due to the small number of investigations of high dimensional problems contain-
ing many decision variables with even more constraints, this work serves as a first
investigation step towards this direction. The objective function of the considered
optimization problems is uncontinuous and will be treated as a blackbox. In this
respect three research questions will be examined in more detail.

• How does known and popular CHT perform with such a kind of problems?

• How does different initialization technique influence the overall optimization
process?

• Which combination of CHT, initialization technique and optimization method
performs best and why?

To estimate how well a CHT performs on the considered problems some represen-
tatives of different concepts of CHT will be evaluated.

In addition each analyzed CHT will be tested with different initialization methods.
This may play a major role since exploration of the huge size of the search space
depends either on a well distributed starting population or the well balancing of the
OM between exploration and exploitation.

Furthermore the combination of CHT, OM and an initialization technique may op-
erate either synergistically or counterproductive[47].

1https://www.cs.cinvestav.mx/~constraint/
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1.2. Structure of this thesis

1.2. Structure of this thesis

Finally for this chapter the structure of this thesis will be presented containing the
chapter headline and a short description of their content.

Basics functions as an introduction to the subject of this thesis comprising some
theoretical basic knowledge starting with constrained optimization prob-
lems in general (Section 2.1) and going on to optimization methods (Sec-
tion 2.2). In particular classical (Section 2.2.1) and population-based opti-
mization methods (Section 2.2.2) are described briefly.

Related Work summarizes different constraint handling techniques for
population-based meta-heuristics into four categories (Penalty Methods
Section 3.1, Separatist approaches Section 3.2 and Hybrids & Others
Section 3.4). It also provides an overview of explicit examples associated
to the categories. The overview includes the number of dimensions and
constraints in the benchmark-problems of the presented papers.

Considered Class of Problems gives the exact definition of the problem in-
cluding its analysis and resulting characteristics (Section 4.1). It also de-
scribes the preprocessing steps before the given problem is optimized (Sec-
tion 4.2). Here two representative problem definitions are introduced which
are optimized by different approaches and evaluated in the following.

Approaches contains the investigated approaches. This includes the initial-
ization of the start-population (Section 5.1), the selected constraint han-
dling techniques (Section 5.2) and the population-based meta-heuristics (Sec-
tion 5.3).

Evaluation describes which test-cases per problem (Section 6.1.1 and 6.2.1) con-
sisting of an initialization method, a constraint handling technique and a meta-
heuristic for optimization are evaluated. In addition, Sections 6.1.2 and 6.2.2
present the results of the approaches per problem respectively in relation to
some predefined metrics. The last Section 6.3 compares the results of the
approaches per problem.

Conclusions and Future Work as the final chapter summarizes the results
(Section 7.1) and gives a hypothetical outlook about the topic of the presented
work that require further research (Section 7.2).
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2. Basics

This chapter describes basic knowledge needed for a clear understanding and as an
introduction of the considered topic in this thesis.

2.1. Constrained Optimization Problem

Optimization problems are the finding of an optimal best solution regarding a crite-
rion in a predefined variable space. A general description of constrained optimiza-
tion problem can be viewed in the Equation 2.1.

min/max
~x

f(~x)

subject to : hi(~x) = 0 i = 1, . . . , nh

gj(~x) ≤ 0 j = 1, . . . , ng

(2.1)

The criterion which is wished to be optimized has to be evaluable through an
objective function (f ), with f : Dnx → Rm, nx ≥ 1,m ≥ 1. Otherwise here
are no limitations for the definition of f . It can take any mathematically character-
istics, e.g. linear, convex, etc. or even used as a blackbox, as long as it assigns a
value out of the objective space Rm to a valid solution x ∈ Dnx .
In case of the objective space being Rm with m ≥ 2 the procedure is called a multi-
objective optimization and as single-objective with m = 1.
Valid solutions are elements in the variable space Dnx . The variable space can be
either discrete, continuous or a combination of these. The dimensionality of a valid
solution inside ot the variable space is ether fix or may vary depending on the prob-
lem.
The optimization problem is written down as a minimization or maximization of
f . Whereby each maximization can be transfered into a minimization problem by
multiplying f with −1 and vice versa. The global optimal solution ~x∗ is found if
f(~x∗) ≤ f(~x) ∀~x ∈ Dnx is met.

5



2. Basics

Many real world problems are not solvable by all solutions of the variable space.
Rather they are restricted to constraints. Therefore the definition of the optimiza-
tion problem may be expanded (see "subject to: hi(~x) and gj(~x)" in Equation 2.1).
Generally constraints are defined as equalities (hi) and inequalities (gi). These func-
tions (hi and gi) may take any mathematically expression. Solution satisfying all
constraints are denoted as feasible otherwise infeasible.
It is a common method to transfer the equalities into inequalities so that just one
kind of constraints has to be handled. One common way to redefine them is de-
scribed in Equation 2.2 [25].

h∗ = | h(~x) | − ε ≤ 0 (2.2)

Where ε is a small number implemented as a acceptable tolerance. Beside the math-
ematically characteristics also other properties are considered for a classification.
In case the feasibility of a solution can be computed before the evaluation by f the
constraints are a priori known. Otherwise the solutions feasibility will be checked
during the evaluation. In that case the constraints are only known posteriori. Exam-
ples for posteriori evaluable constraints can be simulations or artificial intelligences
playing a game and not allowed to die.

2.2. Optimization Method

To solve a given optimization problem there is a wide range of different methods
and algorithms. Depending on the characteristics of the given problem several ap-
proaches may perform worse then others or even are not able to find an optimal
solution.
An ideal case is if the optimal solution can be computed directly by mathematical
calculation. Since most problems are not solvable straightforward many methods
find optimal solution iteratively by means of an gradient of the objective function.
Such optimization methods are introduced shortly in the following subsection.
In some cases a gradient for the objective function does not exist. This may appear
if the objective function is not continuous or even handled as a blackbox. Never-
theless there exist a type of optimization methods which are less limited by specific
characteristics of the objective function. These kind of optimization methods are
meta-heuristics. In contrast to iterative methods or other optimization algorithms
they do not guarantee to find the globally optimal solution. A subcategory besides

6
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others of meta-heuristics are population-based optimization methods which are de-
scribed in more detail in the subsection after next and are also investigated in this
thesis regarding to the previously defined class of problems.

2.2.1. Classical optimization

Some subgroups of constrained optimization problems are already well investi-
gated. Two common and well researched subgroups are LP and QP. Since this
thesis focuses on blackboxed objective functions these subgroups are mentioned
only shortly. Further information are available by the references.
In the case that the objective function and the constraints are linear the subgroup
over this kind of optimization problems is called Linear Programming (LP) or
also referred to as Linear Optimization. Such a kind of problems can be solved
iteratively by optimization methods also called solvers. The most common solvers
for Linear Programming (LP) are Interior-Point methods [59] and Simplex Algo-
rithms [28].
Another well researched subgroup of optimization problems is Quadratic Program-
ming (QP). Hereby the objective function is quadratic. These are either linear con-
strained or unconstrained. The interior-point method can be adapted to solve QP
also. Other common solver are the Augmented Langragian methods [19].

2.2.2. Population-based Optimization Methods

The main idea of population-based optimization methods, also referred to as
population-based meta-heuristics, is to explore the search space not by a single
solution but rather with multiple candidates contained in a population. The search
is be guided by evaluating the current population. The guidance can be realized
by modifying, replacing or combining candidates. The number of population-based
optimization methods has been increasing during the last decades[54, 4]. Many of
them are nature-inspired that mimic some behavior of ants [16], bees [26], glow-
worms [33], fireflies [58], trees and seeds [31] or by the evolution itself [41].
Two common representatives are particle swarm optimization and evolutionary al-
gorithm. Both are described with their general declaration in the following.

7
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Particle Swarm Optimization

Particle Swarm Optimization (PSO) pertains to the category of swarm intelligence.
In this category each candidate is handled as a self-organized agent. They move
through the search space based on information about it gathered by themselves and
the population/swarm.
Since the introduction of PSO by James Kennedy and Russell Eberhart [29] in the
year 1995 many different variations have been developed [49]. This PSO is defined
in Equation 2.3.

~vi+1 = ω~vi + η1r1(~xi − ~xli) + η2r2(~xi − ~xgi )
~xi+1 = ~xi + ~vi+1

(2.3)

Each agent maintains its own memory. This consists of a position in the search
space ~xi and a velocity ~vi. Both are updated per iteration i. The point ~xli defines
the position with the best objective found by the particle so far. The best solution
~xgi in a certain neighborhood attracts the particle to another in case its objective is
better. This influence is also referred to as social component. The parameters ω, η1
and η2 are constants to control influences of the velocity and do not change during
the optimization. The variables r1 and r2 are random values between 0 and 1.

Evolutionary Computation

Evolutionary Computation is a class of algorithms related to stochastic meta-
heuristic optimization methods. This kind of approaches is inspired by the biologi-
cal evolution. Starting with an initial population of candidate solutions also referred
to as individuals in this context, a variety of biological operations are applied. These
operations include mechanisms like reproduction, mutation, recombination, selec-
tion and survival of the fittest. Those are iteratively applied to population, whereby
these iteration steps are also usually described as generations. Algorithm 1 shows a
general scheme of a Genetic Algorithm (GA).

8



2.2. Optimization Method

Algorithm 1: Generalized scheme of a genetic algorithm
Input: f as an objective function, S as a search space describing the set of

possible solutions
Output: ~x∗ as the best found solution

1 pop← initialize start-population in S
2 while termination criteria not fulfilled do
3 parents← selection(pop, f )
4 offspring ← recombination(parents)
5 offspring ← mutate(offspring)
6 fitness← evaluate(pop ∪ offspring with f )
7 pop← EnvironmentSelection(pop ∪ offspring, fitness)

8 return ~x∗ as best solution in pop

The first step of every genetic algorithm is the initialization of a start-population.
Thereby is each individual defined by its chromosome consisting of genes. There-
fore the population pop contains the individuals described by their genotype. After
this initialization step the optimization processes as long a termination criteria is
not fulfilled. This criteria can be a predefined maximal amount of generations, a
minimal change of the populations mean fitness or others. To evolve the next gen-
eration some parents out of the current population have bo be chosen by a selection
mechanism. Tournament-selection, Roulette-Wheel or simply selecting the better
individuals according to their fitness are some examples for such a selection mech-
anism. The fitness is evaluated on the decoded chromosomes of the individuals. All
the other operation are processed on the genotype of the individuals. This represen-
tation of the individuals is also referred to as the phenotype. An offspring is created
out of the selected parents by recombination. This recombination of parents to new
individuals can vary widely. It is also referred to as a crossover operation. Also it
depends on the explicit variation of the genetic algorithm. Exemplary Differential
Evolution (DE) takes three individuals as parents to create a single new individual
for the offspring. Thereby are two individuals merged to create modification vector
which is applied to the third picked parent. Detailed information about DE can be
viewed in [46]. After the offspring has been created by the recombination of their
parents its chromosomes are mutated by a predefined percentage. How this muta-
tion is implemented can also vary, either by a degree how many genes are going to
be mutated or an intensity how strong does a mutation change the gene. Afterwards
the population and its offspring are evaluated by the objective function f . With the
evaluated individuals again a selection is applied to reduce amount of individuals

9



2. Basics

for the next generation to certain amount and ideally keep better individuals in the
population. If the termination criteria is fulfilled the best individual ~x is returned as
the result of the optimization process.

Process an optimization satisfying all constraints is not a trivial task. Nevertheless
there exist methods tackling this issue. These are collected as Constraint Handling
Techniques (CHT). The next chapter deals with CHTs and its subcategories in detail.
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3. Related Work

Solving a given optimization problem which includes constraints increases the
complexity of the optimization process with regard to ensuring satisfaction of the
constraints. This chapter is meant to give an overview of different concepts of
Constraint Handling Technique (CHT), including examples of state-of-the-art ap-
proaches following these concepts. In the literature CHT are categorized in different
ways [44, 50, 25]. This work orients on the categorization similar to the four con-
cepts described in [13, 1]. The following sections describe each category with some
subcategories. There exists a wide range of different subcategories of CHT per cho-
sen category. Therefore only the main represented in the literature are mentioned in
subsections of the following sections.

The most common idea to handle constrained optimization problems is to trans-
fer them into unconstrained ones. This may be done by including the constraint
violation in the objective function. In this way infeasible solutions are penalized
depending on a degree of constraints violation. This kind of constraint-handling
technique is denoted as penalty functions methods and will be described in the next
section.

Alternatively the infeasible solutions are processed differently in comparison to the
feasible solutions. The CHT of separation of objective and constraints is referred
to as separatist method. An overview of different approaches following this idea is
given in Section 3.2.

Another concept is to keep the solutions inside the feasible domain. There are
approaches which implement this concept in different methods. Section 3.3 explains
the idea in detail and its subsections contain the different manners.

Beside these diverse concepts researcher developed and tested hybrid methods of
these. Also some techniques are not directly correlated to one of the presented
concepts. Some of these are mentioned in the section 3.4.
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The last section in this chapter (Section 3.5) gives an overview of several CHT with
their correlated concept and a few selected properties on the conducted benchmark
tests.

3.1. Penalty Methods

The concept of penalty methods is to decrease the fitness value of solutions depend-
ing on their position in the search space. There exist two types of penalty functions.
On the one hand there are interior penalty functions which intend to keep feasible
solutions inside the feasible domain by penalizing them if they get closer to the
borders. These are also referred to as barrier [52]. Such a type of penalty functions
require a feasible initialization and are not commonly used [2].
On the other hand there is the exterior paradigm which penalizes infeasible solu-
tions. This type allows starting positions outside of the feasible domain and attracts
the solutions towards the feasible domain. The implementation of these CHT is real-
ized by modifying the original cost function. Usually a penalty factor calculated by
a penalty function p(~x) is added to the original objective value (see Equation 3.1).
There are plenty ways to realize such a modification of the original cost function by
ϕ(~x).

min
~x

ϕ(~x) = f(~x) + p(~x) (3.1)

3.1.1. Static Penalty Functions

This category chooses a fixed strategy of how to penalize an infeasible solution. A
widespread static penalty function is the death penalty. Herein each solution violat-
ing any constraints is penalized by infinity. As a consequence infeasible solutions
are more likely to be eliminated by evolutionary algorithms during the optimization
process.
Another method is to penalize the solutions depending on their constraint violation.
Equation 3.2 shows a possible implementation for p~xwithGi(~x) = max {0, gi(~x)}.
This may exemplarily mean to set the weights cj in Equation 3.2 constant during
the optimization process. It has proved to be hard to set the weights ideal to achieve
a good performance of an optimization process.

p(~x) =
nc∑
i=1

ciGi(~x) (3.2)
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3.1.2. Co-Evolution Penalty Methods

To get rid of the concern adjusting the weights per constraint correctly the usage of
Co-Evolution becomes handy. By this method two different populations are evolv-
ing. One population contains the actual solutions of the constrained population with
a penalty function like defined in Equation 3.2. The other population contains the
weights (in this example ci) of the penalty functions. After a certain amount ef
evolved generations of the first population the second population evolves its next
generations and updates the weights [11].

3.1.3. Dynamic Penalty Functions

Dynamic penalty functions include the iteration or generation number in the penalty
function [39]. In this way infeasible solutions are more tolerated at the beginning of
the optimization process to achieve a more explorative search and the penalty factor
increases later on [22, 8].

3.1.4. Adaptive Penalty Functions

Adaptive penalty functions also include different statistics of the current population
into their penalty factor. This may either be the objective value of the worst or
best solutions or the mean, minimal or maximal constraint violation. The spectrum
of statistical values and their influence in the penalty function is huge. Barbosa,
Lemonge, and Bernardino give a detailed overview of some adaptive penalty meth-
ods [3].

3.2. Separatist approaches

Another concept of CHTs is the general distinction between the objective and the
constraints. By this concept either the objective and constraint violations or feasible
and infeasible solutions are separated by a differently.
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3.2.1. Multi-Objective Separatist

One option to realize such a separatist approach is to separate the constraint viola-
tion from the original objective by adding additional objectives.
Mezura-Montes and Coello Coello summarized these CHT in two main groups [37].
The first group of methods transforms the constrained optimization problem into an
unconstrained bi-objective problem which aims at minimizing the original objective
and the constraint violation (e.g. sum of constraint violation like in Equation 3.2).
The other techniques transforms the constrained optimization problem into a multi-
objective optimization problem where the original objective and each constraint vi-
olation are handled as additional objectives. Thereby they differentiate even further
between methods which use Pareto concepts as their selection criteria and methods
which use non-Pareto concepts but are mainly based on multiple populations.

3.2.2. Ranking

Another variation is to prefer feasible over infeasible solutions in case of a compari-
son. The implementation may be done by the tournament selection of an evolution-
ary strategy or an adaptation of a bubble sort1.
Many techniques have adopted and/or extended the approach by Deb [14]. This
approach applies the following rules for a pairwise comparison:

• If both individuals are feasible, the individual with the better fitness value
wins

• If an infeasible individual with a feasible one is compared, the feasible indi-
vidual wins

• If both individuals are infeasible, the individual with the smaller constraint
violation wins

These rules can also be implemented as an adaptive penalty function as follows:

ϕ(~x) =

{
f(~x) if ~x is feasible

fworst +
∑ng

i=1max(0, Gi(~x)) else
(3.3)

1Bubble sort is a sorting algorithm. It iterates over a list comparing each entries pairwise and
adjusting their order according the sort order. The iteration over the entries is repeated until no
adjustments are applied
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where fworst is the current worst fitness value of the population and Gj are the
inequality constraints(e.g. implemented in [12]).
Among other variations of Deb’s rules the stochastic ranking is one of the more
common [53]. Herein a bubble sort is applied. During its pairwise comparison
Deb’s rules are applied by a probability PF . In the case that both individuals are
feasible the probability is equal to 1 and the comparison is based on their fitness
values only; otherwise, the probability is set to PF if the individual with the better
fitness wins or not.

3.3. Feasibility Preserving

Depending on the constraints in case these are not stochastic and can be evaluated
a priori there exist methods to prevent the solutions of leaving the feasible domain.
This idea can be implemented in different ways.

3.3.1. Repair Methods

Repair methods are approaches which repair infeasible solutions by moving them
back into the feasible space. Methods which pull infeasible solutions on the con-
straint boundary of the feasible space lead a loss of population diversity. Otherwise
techniques which places the infeasible solutions randomly inside the feasible space
results in a loss of possible useful information gathered by this solution [47].

3.3.2. Special Operator

Slightly different are methods that use special operators. These need a completely
feasible start population. Their main idea is to adjust the steps of the optimization
process which bring up new solutions in a way that they stay inside of the feasible
domain.
The Simplex crossover is an example of this type of CHTs. Hereby number of
variables +1 parents are chosen to span a subspace by interpolating between the
parents randomly and thus creating a new feasible child [56].
A necessary condition for such an operator is a single convex feasible domain.
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3.3.3. Decoder

The basic idea of a decoder-method is to find an encoding for the genotype of so-
lutions/individuals which represents the entire feasible domain. In such a way the
decoded phenotypes are unable to leave the feasible domain. Thereby the optimiza-
tion process searches on the genotype of the solutions and the evaluation is calcu-
lated on their phenotype. The usability of this approach depends on the problem
constraints. As a consequence not every decoder is transferable to other problems.
One possible decoder homomorphous mapping was introduced by Koziel and
Michalewicz in the year 1999 [32]. Herein the feasible domain is mapped on a
hypercube with the range [−1, 1]nx .
Other techniques are based on riemann-mapping [30] or even on support vector
machine [7].

3.4. Hybrids & Others

Combinations of different CHTs, also referred to as hybrids, are also investigated.
An example of such a combinational approach is the ensemble by Mallipeddi, Das,
and Suganthan [36] in which the offspring of four separated populations each evolv-
ing with another CHT are evaluated and merged into each population based on its
CHT.
Another method is described in [9]. The authors use a modification on Deb’s rules
and a special operator for a crossover between two feasible solutions which pro-
duces only feasible solutions.

3.5. Overview

Finally for this chapter an overview of some CHT is given in the table 3.2. The table
contains the name of the authors of an implemented CHT, the maximal number of
variables and constraints of the benchmark problems the CHT is evaluated on.
In addition to the high amount of papers considering Constraint Handling Technique
(CHT) also a couple of surveys are published. Jordehi have different CHTs adapted
to PSO [25]. Mezura-Montes and Coello compared multi-objective based CHTs
[37] and collected CHTs for nature-inspired optimization methods [38]. Barbosa,
Lemonge, and Bernardino studied different adaptive penalty methods [3].
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3.5. Overview

As shown in table 3.2 the highest dimensionality of the benchmark problem is 24
and the highest amount of constraints is 38. There have not been further research
with higher dimensional problems with even more constraints. This underlines the
gap of investigations with CHT in higher dimensions. This thesis tries to initiate
further research by applying a reasonable amount of diverse CHTs on constrained
optimization problems of higher dimensions.
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Reference nx nc LI NI LE NE

penalty functions
Parsopoulos and Vrahatis[48] 4 7 3 5 - -
Homaifar, Qi, and Lai[21] 5 6 1 6 - -
Mezura-Montes and Flores-Mendoza[39] 24 38 9 34 8 12
Joines and Houck[23] 7 6 2 4 - 3
Nanakorn and Meesomklin[44] 10 12 12 - - -
Farmani and Wright[17] 13 9 9 6 - 3
Qiao[51] 13 9 9 6 - -
Montemurro, Vincenti, and Vannucci[42] 24 7 3 7 - 1
Wang, Cai, Zhou, and Fan[57] 20 27 9 27 - 3
Tessema and Yen[55] 20 38 9 34 3 5
Lin and Wu[35] 10 12 12 3 - -
Coello[11] 5 7 5 3 - -

separatists
Krohling and dos Santos Coelho[34] 12 9 9 5 - -
Mezura-Montes and Coello Coello[37] 10 8 6 6 - 1
Deb[14] 13 38 9 38 - 3
Poole, Allen, and Rendall[50] 24 38 9 34 8 12
Costa, Santo, and Oliveira[12] 24 38 38 19
Karaboga and Basturk[27] 12 9 9 6 - 5
Runarsson and Yao[53] 13 9 9 6 - 3

feasibility preserving
Kim[30] 2 3 2 2 - -

hybirds & others
Chehouri, Younes, Perron, and Ilinca[10] 5 7 3 6 - -
Muñoz Zavala, Aguirre, and Villa Diharce[43] 12 9 9 6 - 5

reviews and surveys
Michalewicz and Schoenauer[40] 13 9 9 6 - 3

Table 3.2.: Dimensionality of benchmark problems in papers CHT: nx: number
of parameters, nc: amount of constraints, LI: linear inequalities con-
straints, NI: non-linear inequalities constraints, LE: linear equality con-
straints, NE: non-linear equality constraints. Each number is the maxi-
mal amount of a benchmark problem evaluated in the reference. Because
the references may contain multiple benchmark problems the mentioned
numbers do not automatically pertain to the same benchmark problem.
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4. Considered Class of Problems

This chapter contains the definition of the considered class of problems in this the-
sis. Beside the mathematical definition, some resulting properties are mentioned.
Additionally the processing of a given problem is described. How it is handled
and reformulated correspondingly to its explicit declaration. Also some alternative
reformulations methods not implemented are mentioned at the end of the second
section.
In the last section of this chapter two explicit example problems out of the consid-
ered class of problems are described. These two problems are regarded as represen-
tatives and are used in the following for evaluation purposes of different test-cases
which are described in the following chapters.

4.1. Class of Problems

The equation 4.1 shows the class of problems dealt with in this thesis. The given
fitness function f has to be minimized and is treated as a blackbox. Therefore no
additional information like derivatives and further information such as continuity
and number of local optima is available. Furthermore the evaluation of a solution
by f is computationally intensive.

min
~x

f(~x)

s. t. ~xmin ≤ ~x ≤ ~xmax

~cmin ≤A~x ≤ ~cmax

(4.1)

The Search Space (S) of this optimization problem is is continuous, ~x ∈ Rnx , and
only limited by box-constraints, ~xmin, ~xmax ∈ Rnx . Where nx is the number of con-
sidered dimensions. In the following the box-constraints to the search space will be
referred as boundaries.
The Feasible Domain (F ) as a subspace of S is restricted by linear constraints
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4. Considered Class of Problems

~cmin ≤ A~x ≤ ~cmax with A ∈ Rnc×nx , nc > nx. The matrix A containing the
coefficients for the linear constraints is sparse. Since the constraints consist only
of linear inequalities, F as a subspace of the search space satisfying all linear con-
straints has to be a convex polytope. Figure 4.1 illustrates the convex polygon F
inside S for a simplified two-dimensional example.

xi

x
n

S

F

Figure 4.1.: Simplified two-
dimensional S (box-
constrained) and F (as
a polygon inside of S)

xi

x
n

S

F

Figure 4.2.: Reduced S with the
adjusted boundary for
xi,max

4.2. Problem Reformulation

Since a high amount of variables and constraints is considered by the problem these
will be analyzed and reformulated to get a uniform formulation or even reduce some
complexity in the best case.

4.2.1. Constraints Transformation

First the formulation of the constraints will be translated in a more common way
used in the literature. Equation 4.2 shows the reformulation of the constraints.[

A

−A

]
~x+

[
−~cmax

~cmin

]
≤ 0 (4.2)

In the following the constraints definition will be substituted and referenced as de-
scribed in Equation 4.3.

A~x+~b ≤ 0 (4.3)
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4.2. Problem Reformulation

Single inequalities are referenced as gi(~x) defined in Equation 4.4 where Ai is the
i-th row of A and bi the i-th entry of~b.

gi(~x) = Ai~x+~bi ≤ 0 (4.4)

Furthermore, all restrictions combined (Equation 4.5) are referenced in the follow-
ing of the thesis as described in Equation 4.6. AI

−I

 ~x+
 ~b

−~xmax

~xmin

 ≤ 0 (4.5)

A†~x+~b† ≤ 0 (4.6)

4.2.2. Removing fixed Variables

In some cases the boundaries for a variable xi can be equal, ~xmax,i = ~xmin,i. These
variables xi are fixed and therefore it is ignored by the optimization method.

4.2.3. Removing Infinity Inequalities

Beside fixed variables, also some constraints are always satisfied. Therefore the
evaluation if these constraints are satisfied or not can be ignored saving unneces-
sary computational time. Always satisfied constraints occur if ~b contains negative
infinity entries. These entries can be simply deleted with their related row in A.
Thus the number of constraints is reduced and computing effort is saved.

4.2.4. Adjust Boundaries

Since the feasible domain is restricted by constraints it may appear that F does not
even touch a boundary of the search space. Therefore the boundaries restricting S
may be adjusted to minimize S down to a reasonable volume. In such a case the
optimization method may explore an unnecessary huge infeasible space. To counter
this scenario each border will be checked, if it is reachable from the feasible domain
or not. Linear Programming is used for this purpose. The algorithm to adjust the

21



4. Considered Class of Problems

boundaries is described in Algorithm 2. "solveLP" in line 4 and 8 solves the lin-
ear optimization problem as described in Equation 4.7 with the passed ~c. Since ~c
corresponds to a unit-vector in the direction of an axis the optimum of the LP is
the maximal or minimal feasible solution in this direction depending on the sign
of ~c. The solver used for the LP is from the CVXOPT-package [6]. The default
LP-Solver in CVXOPT uses the interior-point method. Since the solver moves in
the direction of the gradient ~c and continuously nears the borders, it does not neces-
sarily have to land exactly on the border and can abort its optimization process just
before. Therefore a tolerance is defined to check if the boundary is reached or not.
The tolerance tol is set to 1e−7.
Figure 4.2 illustrates the adjustment of a boundary for a xmax,i within a two-
dimensional example. As a consequence of adjusting the box-constraints alias
boundaries F touches at least with a corner point a facet of the hypercube defined
as S.

Algorithm 2: Adjusting boundaries of the search space
Input: ~xmin and ~xmax defining the boundaries of the search space
Output: ~xmin and ~xmax adjusted boundaries

1 for i← 1 to nx do
2 ~c← zero-vector(nx)
3 ~c [i]← 1

4 ~x← solveLP(~c )
5 if ~x[i]− ~xmin[i] > tol then
6 ~xmin[i]← ~x[i]

7 ~x← solveLP(−~c )
8 if ~xmax[i]− ~x[i] > tol then
9 ~xmax[i]← ~x[i]

10 return ~xmin, ~xmax

min
~x

~c T~x

A†~x+~b† ≤ ~0
(4.7)
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4.2.5. Normalization of the constraints

For some CHT it comes handy to know the degree of violation of a constraint. To
calculate the violations of the constraints evenly, these are normalized. For this
purpose the normals of each hyperplane defined by the raws in A are normalized to
a unit length of 1. Accordingly~b is also normalized.
The benefit of normalizing the normals of the hyperplanes is that the violation of a
constraints matches the minimal euclidean distance from the infeasible solution to
the hyperplane. As an example to contrary the inequalities could be multiplied by
a scalar z(A†~x + ~b†) ≤ ~0 which in case of violating constraints would increase the
degree of violation by the factor z.

4.2.6. Rejected reformulations

Since the feasible domain has the geometrical structure of a convex polytope the
search-space could be examined by an interpolation of at least nx+1 chosen corner
points of the polytope. This can be realized only by a lower amount of variables to
the time of preparation of this theses since the memory-usage to calculate the corner
points is immense. For instance the amount of corner points of a hypercube can be
computed as 2nx , whereby a problem with 50 dimensions already needs 16×106Gb
at an accuracy of 64-bit float per value saved. Such a hypercube consists of 2× nx

faces. Hypothetical randomly chosen hyperplanes defining a polytope like defined
by A and ~b can even consists more corner points than a hypercube within the same
dimensions.

4.3. Considered Problems

For a more detailed investigation, two representative problems of the previously
described problem class are made up artificially, P1 and P2. Table 4.1 shows the
amount of variables and constraints per problem before and after the problem refor-
mulation. It also shows the percentage of S after the adjustment of the boundaries.
The problem P1 has no fixed variables and S can not be reduced by the adjust-
ment of the boundaries. Different with the second problem P2 which has one fixed
variable and S can be reduced down to approximately 20% of the original volume.
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Equation 4.8 shows the calculation of the percentage where ~xmax and ~xmin are the
original and ~xmax and ~xmin are the adjusted boundaries.

nx∏
i=1

~xmax,i − ~xmin,i

~xmax,i − ~xmin,i

(4.8)

Since these representative problems are made up artificially the global optimum for
each one is known. In both cases the fitness of each optimum is 0. The Figures
4.3 and 4.4 show plots of the respectively optima. The chosen representations are
parallel-coordinates. In parallel-coordinates the axis for each dimension are placed
in parallel and therefore the x-axis of the plots represents the index of the corre-
sponding dimension. The top plot represents along the x-axis the index per variable
xi inside S and the bottom plot has the index of per constraint gi(x) along the x-axis.
The y-axis represents the value per variable or satisfaction/violation per constraint
respectively. Due to the parallel placed axis a point appears as a line in parallel-
coordinates.
The first plot in each case shows the optimum inside S. The values corresponding
to the y-axis are normalized from [~xmin, ~xmax] to [0, 1] to achieve a more convenient
representation filling up the whole plot. The second plot shows the optimums con-
straint violation as well in parallel-coordinates.
As can be seen from the plots the optimum of P1 is rather at the edge of Search
Space (S) and Feasible Domain (F ) (Figure 4.3), whereas for the second problem
P2 it is rather a little bit far away from the borders(Figure 4.4). This may play a
role by the optimization process in case whole S, the area close to the borders or
the inner region of F is preferred to be explored by an approaches or not.

This kind of plots is also used in the following of this thesis as representation of
solutions. As an orientation the optimum is always plotted on top as a blue dot-
ted line. The colouring of solutions outside the optimum corresponds to the two
shown colourbars, Feasibility for feasible solutions and Infeasibility for infeasible
solutions. The degree of Feasibility is calculated as the squared root of the sum of
constraint satisfaction. The degree of Infeasibility is calculated as the squared root
of the sum of constraint violation.

24



4.3. Considered Problems

Figure 4.3.: Global optimum of problem P1

Figure 4.4.: Global optimum of problem P2
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Problem
original reformulated S

#-vars #-cons #-vars #-cons

P1 30 43 * 2 = 86 30 43 100%
P2 135 431 * 2 = 862 134 631 ca. 19.58%

Table 4.1.: This table contains the number of variables (#-vars) and constraints
without the box-constraints (#-cons) per test-problem before (original)
and after the reformation (reformulated). The last column represents the
percentage of the Search Space (S) after the adjustment of the bound-
aries.
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In this chapter several approaches to solve the problem described in the previous
chapter are presented. An approach describes an optimization process which is
a combination of three elements, an Initialization (INIT), a Constraint Handling
Technique (CHT) and a Optimization Method (OM).Algorithm 3 shows the general
structure of an approach containing these three parts terminating by a limit of fitness
evaluations. This type of terminating the optimization process is chosen because the
fitness evaluations of the defined problems are computationally expensive and their
usage is limited in respective to computing time.
Each part of the optimization process is realized in different ways. The following
sections describe several variations of each of these parts which are implemented
and evaluated in this thesis. Before that details of the implementation are explained.

Algorithm 3: General structure of an optimization process
Input: In - Initialization; CHT - Constraint Handling Technique; OM -

Optimization Method
1 pop← init via In
2 while limit of fitness evaluations reached do
3 pop←evolve next population via OM and CHT

The programming part for this thesis is realized in python. The packages scipy [24]
and numpy [45] provide necessary datastructures for processing and storing data. To
prevent a reimplementation of the chosen population-based optimization algorithms
an existing framework containing them is elected. The scientific library pagmo [5]
offers a wide range of population-based optimization algorithms. Pagmo is written
in C++ and is built up to provide massively parallel optimization. Due to the high
dimensionality of the considered problems, the efficency through the parallelization
is a benefit for the calculations during the testcases. The corresponging python
version of this free/libre opensource software is called pygmo. This library is mainly
build up with wrappers arround the underlying C++ library.
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5.1. Start Population

The first step of each approach is the initialization of the first population from which
population-based meta-heuristic begin. The performance of the meta-heuristics can
vary depending on the used start population. A main criteria is a good diversity
at the beginning of the optimization process. Four out of a wide range of differ-
ent initialization techniques are chosen as representatives and are described in the
following. The first initialization is a naive method by sampling randomly inside
S . The other three produce feasible solutions only. The second and third create
feasible solutions randomly whereby the fourth method generates the same initial
solutions since this method is deterministic. Conclusively a paragraph gives a short
overview of the initialization methods on two-dimensional examples.

5.1.1. Random Initialization

A naive initialization technique is to chose the individuals of the start-population
randomly. Since the chosen framework pygmo already provides such an initializa-
tion it is adapted and not modified further. Figures 5.1 and 5.2 show one thousand
randomly initialized individuals for each problem respectively. The representation
of the solutions by their constraints violation/satisfaction emerges peaks. This effect
appears by P1 more intense then by P2 since P1 has less constraints and therefore
the distance between each constraint violation is larger in the visualized plot. This
peaks emerge due to the definition of the linear constraints. Because the linear
equation A~x have to yield values between ~cmin and ~cmax the solutions automati-
cally satisfy one border by violating the other.
It is to mention that all random initialized solutions are infeasible. Even one million
randomly initialized solutions does not seed a single feasible solutions. This leads
to a small F in ratio to S since it is improbable to initiate a feasible solution ran-
domly. This INIT is referred to as Ramdom Initialization (RaI) in the following of
this thesis.

5.1.2. Repairing Initialization

Since initializing feasible solutions completely random is improbable it may im-
prove the optimization process by starting with a feasible population. Therefore
three different techniques are chosen for this purpose. The first presented technique
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5.1. Start Population

Figure 5.1.: One thousand randomly initialized solutions for P1

Figure 5.2.: One thousand randomly initialized solutions for P2
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initializing feasible solutions only is Repairing Initialization. This initialization
method consists of two steps. First, random solutions like described previously are
generated. Second, the infeasible solutions ~x will be repaired by moving them to
their nearest feasible position ~y. The point ~y fulfills all constraints and has the min-
imal euclidean distance to ~x. This criteria of minimal distance can be defined as
a quadratic optimization problem with subject to the same constraints as the ori-
gin problem. Eq. 5.1 shows the resulting problem definition. The fitness function
minimizes the distance ||~y − ~x||2. The calculation of the distance can be rewritten
as (~y − ~x)(~y − ~x)T without taking the root. Omitting the root may influence the
distance but not the resulting nearest feasible point ~y. Afterwards this formulation
can be written out as ~y T~y − 2 ~xT~y + ~xT~x. The last summand ~xT~x can be ignored
for the quadratic optimization problem because it is constant and therefore does not
influence the resulting optimal ~y.

min
~y

~y T~y − 2 ~xT~y

A†~y +~b† ≤ 0
(5.1)

Herein, ~x is the infeasible solution which needs to be repaired. ~y is the resulting fea-
sible solution closest to ~x. The linear constraints are the same like the constraints
of the corresponding problem. To find a reasonable solution of this quadratic opti-
mization problem (Equation 5.1) the default QP-Solver from CVXOPT is used.

For each problem one thousand solutions randomly initialized and repaired after-
wards are plotted in Figures 5.3 and 5.4. As it can be seen the repaired solutions
seem to concentrate more to the center of S than to the boundaries. At the problem
P2 this characteristic is much more significant.
Such an initialization seems to produce a start-population closer to the global op-
timum inside F . At P1 the global optimum is nearly surrounded completely by a
feasible start-population. Where at P2 the solutions are rather distanced from the
global optimum. This INIT is referred to as Repaired Initialization (ReI) in the
following of this thesis.

5.1.3. Initialization via Gibb’s sampling

The third initialization method used in this thesis is based on the Gibbs-Sampling
Algorithm firstly introduced by Geman and Geman in the year 1987 [18]. The
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Figure 5.3.: One thousand randomly initialized solutions for P1 and repaired after-
wards.

Figure 5.4.: One thousand randomly initialized solutions for P2 and repaired after-
wards.
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implemented method is described as pseudo code in Algorithm 4. First a feasible
solution as a starting point is needed. For this a randomly chosen solution is repaired
(lines 3, 4). This sample is then modified nx times for each variable separately.
Thereby the range how the sample can be modified according to one variable is
calculated via the Algorithm 5. This calculates the furthest feasible point staring
from a feasible point ~s into a direction ~d. After the maximal feasible points are
calculated along an axis in positive and negative direction the sample is updated
by interpolating between these maxima randomly (lines 6− 8). When all variables
in the sample are modified it is added to the start-population and the procedure is
repeated until the wanted amount of feasible solutions is reached. In Figure 5.5 this
initialization method is illustrated on an simplified two-dimensional example.
Figure 5.6 shows an initialization via Gibb’s Sampling with 60 samples for P1 and
Figure 5.7 with 268 samples for P2. The solutions of the resulting start-populations
do not spread widely but rather close to each other. Therefore, the start-popularions
appear as bands in the corresponding figures. This INIT is referred to as Gibb’s
Sampling (GS) in the following of this thesis.

Algorithm 4: Gibbs Sampling Algorithm
Input: nv amount of solutions to be initialized
Output: pop feasible starting population

1 pop← empty list
2 ~s←random solution
3 ~s←repair(~s)
4 while pop.size < nv do
5 foreach column ~c in I do
6 ~smax ←get_furthest_feasible_point(~s,~c)
7 ~smin ←get_furthest_feasible_point(~s,−~c)
8 r ← random(0, 1)
9 ~s← ~smin + r(~smax − ~smin)

10 pop.append(sample)

11 return pop
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5.1. Start Population

Algorithm 5: Get furthest feasible point

Input: ~s as a feasible reference point and ~d as the direction to look for
Output: ~p as the farest feasible point starting from ~s in the direction ~d

1 ~z ← element-wise division −A
†~s+~b†

A†~d
2 remove all values less or equal to zero in ~z
3 m←MinimumOf(~z)
4 ~p← ~s+m ~d

5 return ~p

5.1.4. Initialization on Boundaries

As a counterpart to the repaired solution-initialization method this initialization
method spawns solutions on the boundaries instead on the linear constraints. This
method works similar to the approach adjusting the boundaries (see Agorithm 2,
22). However, instead of adjusting the boundary using the maximal feasible point
(~x in line 4 of Algorithm 2) in one direction by a comparison, it is saved into the
population (Agorithm 6). The method s̈olveLP" in the lines 4 and 5 solves the linear
optimization problem as described in Equation 4.7 with the passed ~c like in Algo-
rithm 2. The LP-Solver is as well the interior-point method provided by CVXOPT.
The resulting populations for P1 and P2 are shown in the Figures 5.8 to 5.11. Fig-
ures 5.8 and 5.10 show solutions at the lower boundaries for P1 and P2 and Fig-
ures 5.9 and 5.11 at the upper boundaries respectively.
Since the LP-Solver calculates the optimum deterministic the solutions of the start-
population initialized by this method are always the same. It is also to mention that
the amount of initialized solutions by this methods is always two times nx. For a
varying amount of initialized solutions further research in modifying this method is
necessary. This INIT is referred to as on boundaries (OB) in the following of this
thesis.
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Figure 5.5.: Gibb’s Sampling for a two-dimensional example.
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Figure 5.6.: Initialization via Gibbs Sampling with 60 samples for P1

Figure 5.7.: Initialization via Gibbs Sampling with 268 samples for P2
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Figure 5.8.: Initialization on minimal boundaries of P1.

Algorithm 6: Spawn feasible solutions on boundaries
Output: pop feasible starting population on the boundaries

1 for i← 1 to nx do
2 ~c← zero-vector(nx)
3 ~c [i]← 1

4 pop.append(solveLP(~c ))
5 pop.append(solveLP(−~c ))

6 return pop

Overview Initialization
The first initialization shows the difficulty entering F randomly. This allows the
suggestion that F seems to be small in ratio to S. Since the boundaries of S are ad-
justed to be minimized and enclose F (see Adjust Boundaries 4.2.4) each boundary
of S is touched by F by at least a corner point. This leads to the conclusion that the
shape of the convex polygon F is to narrow and diagonally aligned.
Figure 5.12 illustrates two-dimensional examples of the presented initialization
methods. Thereby the same effects like in the problems are observable. The ran-
domly initialized solutions are infeasible, the repaired solutions concentrate to the
center per axis and the Gibb’s sampling results in adjacent solutions.
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5.1. Start Population

Figure 5.9.: Initialization on maximal boundaries of P1.

Figure 5.10.: Initialization on minimal boundaries of P2.
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Figure 5.11.: Initialization on maximal boundaries of P2.

5.2. Constraint-Handling Technique

In this section some CHTs for each category of CHT presented in Chapter 3 are
explained in detail. They are also implemented and evaluated for P1 and P2 in the
following chapter. It is also explained how they interact with Optimization Method
(OM) described in last section of this chapter.

5.2.1. Used Penalty Approaches

Two static and one adaptive penalty methods are chosen as representatives of
penalty methods.

5.2.1.1. Static Penalty

Both static penalty methods extend the objective function f by p (Equation 5.2).
Hereby the OMs have to minimize ϕ.

ϕ(~x) = f(~x) + p(~x) (5.2)

One static static penalty method adds the amount of violated constraints. The cal-
culation of the penalty is shown in Equation 5.3. The function gi(~x) calculates the
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Figure 5.12.: Overview of the described initialization methods with a simplified
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violation/satisfaction of the i-th constraint (see Equation 4.4). Since the penalty fac-
tor is the sum of violated constraints the resulting landscape emerges with plateaus
containing whole numbers as penalty (see Figure 5.13). In the following this CHT
is referred to as avcp.

p(~x) =
nc∑
i=1

{
1 gi(x) > 0

0 else
(5.3)

The other static penalty methods adds the norm of constraint violations defined in
Equation 5.4. The landscape of this penalty is continuous inside the infeasible space
(see Figure 5.14). It may be interpreted as the shortest distance to F mistakenly.
This CHT will be referred to as ncvp in the following of this thesis.

p(~x) =

√√√√ nc∑
i=1

{
gi(x)

2 gi(x) > 0

0 else
(5.4)

x1

x
n

S

F

0.0 0.5 1.0 1.5 2.0 2.5 3.0

p(x)

Figure 5.13.: Landscape of p(x)

with the amount of
violated constraints

x1

x
n

S

F

0.0 0.1 0.2 0.3 0.4 0.5

p(x)
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5.2.1.2. Adaptive Penalty

Since adaptive penalty methods are common as CHTs one of these is also evaluated.
The framework pygmo offers such a technique developed by Farmani and Wright
[17]. Thereby factors like the fitness value of best and worst solutions influence
the penalty for infeasible solutions. In addition they introduce a measurement for
infeasibility ι(~x) (see Equation 5.5) which also take part at the penalization.

ι(~x) =
1

nc

nc∑
i=1

max(0, gi(~x))

gi,max

(5.5)

Hereby the infeasibility is calculated by the solution’s constraint violation (
max(0, gi(~x))) which is normalized according to maximal violation occurred in
the population ( gi,max ).
The modified objective function ϕ is defined as shown in Equation 5.6 in case the
population holds infeasible solutions. Otherwise the optimization processes on the
original fitness function.

ϕ(~x) = f(~x) + ι̇(~x)(f(~xh)− f(~xworst)) (5.6)

Where ~xh is the highest objective of the population. ~xworst is the solution with the
highest infeasibility value. ι̇(~x) is calculated as follows:

ι̇(~x) =
ι(~x)− ι(~xbest)

ι(~xworst)− ι(~xbest)
(5.7)

Where ~xbest is the "best" solution in the current population. If there exist feasible
solutions it is the solution with the lowest objective. In case all solutions in the pop-
ulation are infeasible the "best" solution is the solution with the lowest infeasibility
value.
For further information on how this adaptive penalty method works with the factors
influencing the penalty and how it is implemented to work with an OM, refer to read
their paper and the source code of pygmo. In the following this CHT is referred to
as Farmani and Wright (F&W).

5.2.2. Used Separatist Approaches

As representative of the CHT-category separatist three techniques are chosen.
Twice the constrained optimization problem is reformulated in multi-objective un-
constrained optimization problems and other time Deb’s rules are implemented.
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5.2.2.1. Multi-Objective Separatist

When reformulating in unconstrained multi-objective problems both times it is de-
scribed as bi-objective problems (see Equation 5.8).

min
~x

ϕ(~x) = ( f(~x), p(~x) ) (5.8)

One bi-objective transformation uses the amount of violated constraints (p(~x) like
in Equation 5.3) as the second criterion and the other uses the norm of constraint
violation (p(~x) like in Equation 5.4). These are referred to as avcs and ncvs respec-
tively in the following.

5.2.2.2. Deb’s rules

The third separatist method is the technique introduced by Deb [14]. The ranking is
implemented via an adaptive penalty fuction like introduced in Equation 3.3 where
fworst is updated before the OM evolves the next population. Algorithm 7 shows
the implementation of evolving the next population by an OM in combination with
this CHT (Agorithm 3, line 3). This CHT is referred to as Deb’s rules (DR) in the
following.

Algorithm 7: Optimization process with Deb’s rules
Input: pop containing solutions; OM optimization method
Output: pop next population

1 fworst ← calc worst
2 ϕ(~x)← update objective function with fworst

3 pop← evolve next population with OM and updated ϕ(~x) as fitness-function
4 return pop

5.2.3. Used Feasibility Preserving Approaches

As representatives for the category Feasibility Preserving are two CHTs selected.
These two CHTs are described in the following.
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5.2.3.1. Repair

The first Feasibility Preserving-CHT is a repair-technique. Herein any infeasible
solution evolved in the next population by an OM is mapped back to the nearest
point in the Feasible Domain (F ). The repair technique is the same as the method
by the initialization process Repairing Initialization 5.1.2. The implementation of
this repair method in combination with an OM is shown in Algorithm 8. This kind
of implementation may differ from other repair-technique from the literature since
the repairing operation is realized afterwards the

Algorithm 8: Optimization process with repair method
Input: pop containing solutions; OM optimization method
Output: pop next population

1 pop← evolve next population with OM
2 foreach solution x in pop do
3 if x is infeasible then
4 x← repair(x)

5 return pop

5.2.3.2. Decoder

The other selected Feasibility Preserving method is a Decoder. Hereby, like pre-
viously mentioned in Chapter 3, the solutions are encoded in such a way that they
are not able to leave F . The method of Koziel and Michalewicz is implemented for
this purpose [32]. Thereby a hypercube (H) [−1, 1]nx is transformed on F . Con-
sequently the transformation T maps each point ~x0 in F to a point ~y0 in H . The
OM searches inside the hypercube instead of whole Search Space (S). The ori-
gin ~0 of H corresponds to a chosen center point ~r0 in F . As the center point the
Chebyshev Center is selected. It describes the circle center of the largest possible
hypersphere inside of a polytope which F is. Figure 5.15 shows the schema of T .
The transformation calculates the direction from ~0 to the point ~y0 and its maximal
possible distance to the border ofH . The relative distance from~0 to ~y0 in relation to
the maximal possible is transfered to the relative distance in F from ~r0 in the same
direction to its maximal possible distance.
To integrate this CHT into an OM the search space of the OM is H . By the fitness

evaluation each solution is decoded and then evaluated by the origin f .
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Figure 5.15.: Homomorphous Mapping[32, p. 6]: left the decoded solution ~x0 in-
side the feasible domain and right the encoded counterpart ~y0 in the
hypercube

5.3. Used Optimization Methods

In this last section of this chapter considers the selected OMs. Different single
objective optimization methods are chosen since the most CHTs transform the con-
strained optimization into a single objective unconstrained optimization problem.
For the two CHT transforming the problem into bi-objective unconstrained opti-
mization problems is one multi-objective optimization method selected. All chosen
optimization methods are used from the framework pagmo and are described in the
following briefly.

5.3.1. Single-Objective Optimization Methods

Because most selected CHTs work with single-objective OM the most common
population-based meta-heuristics are chosen. This includes Particle Swarm Opti-
mization (PSO), GA and DE. For comparison Random Walk (RW) is also included
if the other optimization methods fulfill their purpose to guide the population to-
wards a optimum or a simple randomly guided local search outperform them.

The offered PSO by pygmo1 does not remember the particles local memory and the
global best by interrupting the optimization process after every single generation.
Therefore this PSO optimizes as a fresh start again and again. The particles memory
about its own best and the global best loses its influence by becoming initialized

1https://esa.github.io/pagmo2/index.html
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each generation freshly.
Therefore this PSO can not be used for this purpose and should be reimplemented.
Considering the limited time for this thesis and the amount of other comparable
OMs no PSO will not be tested with the implemented CHTs.

The scheme of Genetic Algorithm (GA) is originally established by Holland [20].
It equals the description in Algorithm 1 in Section 2.2.2. Since this OM do not
require any information about the previous generation except the solutions itself it
can be used in this thesis without any modifications. The framework pygmo offers
an implementation of such an optimization method which is used in this thesis. The
framework names it simple Genetic Algorithm.

The Differential Evolution (DE) offered by pygmo fulfills the criteria to work prop-
erly evolving single generations. Therefore this OM is used in combination with
the introduced CHT. Its implementation matches the original described by Otieno,
Adeyemo, Abbass, Sarker, Amir, Fisher, Rakesh, Babu, Babu, Jehan, et al. [46].
DE bases on Evolutionary Algorithms similar to the GA. The characteristic of DE
is its special crossover technique. Thereby are three parents required. A difference
vector is computed out of two of the selected parents. Then this difference vector
is multiplied by a predefined weight and added onto the third selected parent. Af-
terwards a mutation on the newly created solution is applied. Otherwise different
selection methods can be used in combination with the DE.

The last single-objective OM used in this thesis is Random Walk (RW). This tech-
nique takes a solution, randomly modifies it and compares it with the other solu-
tions. In case that the newly produced solution is better than the previously found
solutions it will replace it. This is equivalent to an uncontrolled local search since
the modifications applied to a selected solutions do not create a completely new one
but rather changes just a part. The implementation of pygmo’s Simple Evolutionary
Algorithm matches a RW. Thereby per generation the current best solution out of
the population is selected, modified and compared with the current worst solution.
In case the new solution is better than the worst solution of the population the new
solution replaces the worse solution.

5.3.2. Multi-Objective Optimization Method

As a multi-objective OM the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) of pygmo is selected. This OM is adapted from by Deb et. al [15].
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This OM follows the scheme of a Genetic Algorithm. The only characteristic is by
the environment selection since simply comparing the fitness value is not practica-
ble with multiple objective anymore. Therefore pareto fronts are generated. In case
that individuals from the same pareto front are compared the individual with the
larger crowding distance wins. Further information what a mentioned step means
and does in detail can be read in the related paper [15].
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This chapter involves the description of the conducted experiments and their results.
The first section deals with the setup of the experiments and their results of problem
P1 and the next section with P2. Finally the results of the CHTs are summarized in
the last section of this chapter.

6.1. Evaluation of P1

In this section the experimental setup for the problem P1 and their results are de-
scribed in detail.

6.1.1. Experimental Setup for P1

This subsection describes the experimental setup. This consists out of the combi-
nations of the elements of an approach (the following subsection 6.1.1.1) and the
parametrization of the chosen OMs. Also the metrics for the evaluation of the ex-
periments are described and how the logging of these is implemented.

6.1.1.1. Experimental combinations

An experiment is equivalent to an approach described in the previous chapter. It
consists of a combination of an Initialization (INIT), a Constraint Handling Tech-
nique (CHT) and an Optimization Method (OM). The combinatorial approaches
are visualized in Figure 6.1. Every INIT is combined with every CHT and the ap-
propriate OM, except ReI with the RC. This combination is excluded since it does
not differ from the RaI because in both cases the same repairing technique is applied
to the population.
Obviously the CHTs transforming the single objective constrained optimization

47



6. Evaluation

Randomly

Repaired

Gibb’s
sampling

On
boundaries

avcp

ncvp

F. & W.

Deb’s rules

repair

decoder

avcs

ncvs

DE

GA

RW

NSGA-II

CHT OMInit

Figure 6.1.: Combinatorial components of the test-cases for P1

problem to a unconstrained multi-objective problem require a multi-objective op-
timization method. Therefore these CHT are combined with multi-objective opti-
mization method and the others are tested with the single objective optimization
methods.
All combinations together equals a total an amount of 77 approches to be evaluated.
To estimate the performance of an approach each one is conducted 21 times.

6.1.1.2. Parametrization of the OMs

The population size for each combination is twice nx after the preprocessing of the
problem. For P1 it is 60. The introduced OMs from the previous chapter are all pro-
vided by the framework pygmo. Since this thesis concentrates on CHTs the default
configuration of the OMs by pygmo are used and are not further modified.
The Differential Evolution (DE) offered by pygmo matches the original introduced
one in [46]. The default values for weight coefficient is 0.8, the crossover probabil-
ity is 90% and the mutation variant is rand/1/exp. Further information, what these
settings mean and how they influence the optimization process, are available on the
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homepage of pygmo1 and can be read in [46].
The simple Genetic Algorithm by pygmo follows the scheme of the originally estab-
lished genetic algorithm by Holland [20]. The default in pygmo for crossover type
is exponential with a probability of 90%, for the selection schemes is a tournament
selection with two randomly chosen individuals and the mutation type is polyno-
mial. For further information, the reader is also referred to the homepage of the
framework.
The last single-objective OM used in this thesis is Random Walk (RW). The OM
simple Evolutionary Algorithm provided by pygmo corresponds to RW. Its im-
plementation is equivalent to a (N+1)-Evolutionary Algorithm. Thereby the best
solution of the current generation is chosen, uniformly mutated and inserted back
into the population whereby the worst individual will be replaced. Since this imple-
mentation matches with a Random Walk, whereby the local area is explored and in
case of discovering a better solution it is memorized.
As a multi-objective OM the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) of pygmo is selected. This OM is adapted from by Deb, Pratap, Agarwal,
Meyarivan, and Fast [15]. As with the other OMs, the default settings are used for
this one as well. Another special case is the INIT OB in combination with NSGA-II.
Thereby S defined by box-constraints is shrunken by 0.1% along every axis. The
shrunken boundaries are moved by 0.05% of the range towards the center of S. In
this way the Initialization on boundaries spawns solutions not on the boundaries but
rather short before these. The optimization process itself performs on the original
S. For clarification Figure 6.2 shows such an initialization in a shrunken S by a
factor of 10% so that the effect is easier to recognize.

6.1.1.3. Metrics

The following paragraphs describe six chosen metrics to estimate the behavior and
performance of the test-cases. For each of the metrics different statistical represen-
tation per population are evaluated. There the mean, median or minimal values of
the metric per corresponding population are recorded during the experiments. The
value of a metric is recorded after at least one thousand fitness evaluations. This
can vary per test-case. For example the OM RW requires the fitness evaluation of a
single individual to evolve the next generation. Therefore is the loop checking the
termination criteria (see lines 2 and 3 in Algorithm 3) per fitness evaluation. It is

1https://esa.github.io/pagmo2/index.html
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Figure 6.2.: INIT on boundaries within a shrunken S by 10% of P1

different with the combination of the GA with the Hereby this OM requires nx fit-
ness evaluations to generate the next population plus the fitness evaluations in case
of infeasible solutions with are repaired afterwards.

Amount of violated constraints (avc)
In the case of infeasible solutions it will be useful to have a measurement to compare
the infeasibility of the population. A simple metric to fulfill this information gap is
the amount of violated constraints. It is calculated like described in Equation 5.3.
Hereby the median of the respective population recorded. In contrast to the mean
the median is more likely stable against outliers.

Norm of constraint violations (ncv)
Because the metric avc captures just how many constraints are violated and not how
strong the constraints are violated avc can be misleading in term of evaluating infea-
sibility. Therefore a second metric to measure infeasibility is chosen. Consequently
the euclidean norm of the constraint violations will be recorded. It is calculated like
described previously in Equation 5.4. As a representational value for the population
also the median is recorded during the optimization process.
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Objective (obj)
To observe how well a test-case performs the objective of the original problem will
be also tracked. Hereby is the mean objective of the solutions of the correspond-
ing population logged. In this way the overall performance of an approach can be
monitored. If it converges towards minima (may it be local or global) or not.

Distance to the optimum (d2o)
Because the toy-problems are artificially made up the global optimum is known.
To monitor if a test-case reaches the global optimum by a lucky initialization close
to the optimum or if it is able to converge towards the global optimum by its own
the euclidean distance of the population to the global optimum is recorded. Since
reaching the global optimum is the main goal to achieve the minimal distance of a
solution to the global optimum is logged. In this way it is evaluable if the approach
is appropriate for the considered problems.

Distance between the solutions (dbs)
In case of identical solutions in the population valuable fitness evaluations are con-
ducted unnecessarily. To observe this situation the mean distance between the in-
dividuals of the population is also tracked. This metric is also an indicator for the
diversity of the current population.

Percentage of feasible solutions inside the population(%_f)
To track if an the specific testcase leaves the feasible domain with some individuals
or is it possible to get them back into the feasible domain the percentage of feasible
solution inside the current population will be captured.

6.1.2. Results for P1

This section considers the results of the approaches mentioned in the previous sec-
tion. An analyzed approach consisting of the three elements INIT, CHT and OM
is referenced as such a triple. With respect to the high amount of experiments the
results are analyzed grouped by their CHT.
Concerning the 21 runs per approach only a representative run is analyzed and com-
pared with the other approaches. Therefore the runs of an approach are sorted re-
garding to the minimal d2o in the final population. Afterwards the median of this
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sorting is chosen as a representative for its approach. The progress for each metric
of the representatives is plotted. Along the x-axis is the amount of function evalua-
tions of f .

Static Penalty: amount of violated constraints (avcp)
Figure 6.3 shows the progress of the optimization processes with the CHT avcp.
The found results of the mean of objective values vary below 1 (Figure 6.3,
plot obj_mean). Since avcp penalizes by full numbers only any infeasible solu-
tion becomes automatically worse than a feasible one.
According to the avc which is in this case also the penalty factor it is recognizable
that it is continuously decreasing. Also the obj decreases in nearly all approaches.
Only by RaI initialized approaches with RW and GA as their OM seem to increase
the mean obj (Figure 6.3, plot obj_mean). This effect appears simultaneously when
avc has a jump to a smaller value (Figure 6.3, plot avc_median). Since obj does
not differ between feasible and infeasible solutions it means that these approaches
found worse solutions compared by their obj but with a smaller amount of violated
constraints (Figure 6.3, plot obj_mean).
Another interesting observation is that this CHT keeps nearly all feasible solution
in case it is initialized with them (Figure 6.3, plot %_f). Only DE reaches F by
initialization via RaI (Figure 6.3, plot %_f).
DE keeps independent of the INIT the highest diversity between the solutions (Fig-
ure 6.3, plot dbs_mean). But this CHT does not converge towards the global opti-
mum whereby the approaches with DE become closest (Figure 6.3, plot d2o_min).

Static Penalty: norm of constraint violation (ncvp)
The other static penalty is ncvp. Figure 6.4 shows the appropriate plots of its
optimization processes. Similar to avcp also the approaches with DE keep the
highest diversity and become closest to the optimum (Figure 6.4, plot dbs_mean
and d2o_mean). But this CHT converges faster towards F than avcp. This is
observable by the sharply decreasing ncv and avc (Figure 6.4, plot avc_median
and ncv_median).
In consideration to %_f all randomly initialized approaches reach F (Figure 6.4,
plot obj_mean). Furthermore some feasible initialized approaches in combination
with RW and GA leave F with the whole population (Figure 6.4, plot obj_mean).
This can be explained that infeasible areas close to F result in such a small penalty
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factor thus the penalized fitness value stays better than the objective of feasible so-
lutions.

Adaptive Penalty: Farmani and Wright (F&W)
By F&W not any randomly initialized approach reaches F (Figure 6.5,
plot obj_mean). All approaches with infeasible populations stay in the infeasible
space and do not find F . Furthermore only approaches with RW stay mostly feasi-
ble by a initialization inside of F (Figure 6.5, plot obj_mean).
Although DE keeps in combination with this CHT also the highest diversity the
mean dbs is smaller than by the static penalties (Figure 6.5, plot dbs_mean).
The best objective is reached by RaI-F&W-GA (Figure 6.5, plot obj_mean). How-
ever, it must be taken into account that the measured obj is the mean of the popula-
tion and this approach compared by its dbs seem to result with similar solutions in
the population (Figure 6.5, plot dbs_mean). Also this approach has the highest avc
and ncv (Figure 6.5, plot avc_median and ncv_median) Compared by d2o this ap-
proach is the second worst. Therefore it can be assumed that this approach emerges
similar or even several equal infeasible solutions. This effect is let assume that this
CHT can stuck in a local optimum in the infeasible space.
Also this CHT does not converge towards the global optimum (Figure 6.5,
plot d2o_min).

Separatist: Deb’s rules (DR)
The representative progresses of Deb’s rules (DR) implemented as an adaptive
penalty is plotted in Figure 6.6. The approaches combined with DE differ from the
others by d2o, obj and dbs (Figure 6.6, plot dbs_mean, d2o_min and obj_mean).
Although these result the worst obj they get closer to the global optimum compared
with the others.
All approaches with this CHT are not able to keep their population inside of F (Fig-
ure 6.6, plot %_f). %_f falls by all combination below 50%. This may be due to
the implementation of DR. Thereby after each generation f is updated according
to current worst found objective in the population. By this way only new found so-
lutions get the modified objective and not the already evaluated solutions from the
last generation which are kept in the population.
Furthermore it is observable that ncv fluctuates compared to the continuous decreas-
ing values by the previous CHTs (Figure 6.6, plot ncv_median).
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6.1. Evaluation of P1
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6. Evaluation

Separatist: Bi-objective (avcs and ncvs)
Unlike the other CHT the separatist-CHTs which transfers the constrained optimiza-
tion problem into bi-objective unconstrained problems are plotted together shown
in Figure 6.7. Since only one OM, NSGA-II, is evaluated with these CHTs avcs and
ncvs are combined in one figure distinguished by color.
According to the second objective these two separatist approaches differ by avc and
ncv (Figure 6.7, plot ncv_median and avc_median). Both approaches lose feasible
solutions (Figure 6.7, plot %_f). This is due to the fact that NSGA-II tries to reach a
population balancing both objectives. Since the second objective requires infeasible
solutions to result a diversity the OM evolves a combination of feasible and infeasi-
ble solutions inside the population as long as infeasible solutions have a better obj
than feasible solutions.
The approaches initialized by RaI do not reach F (Figure 6.7, plot %_f). Feasible
initialized approaches are able to keep feasible solutions whereby the percentage by
avcs is higher than by ncvs.
The d2o seems to be stuck after ca. 50.000 objective evaluations (Figure 6.7,
plot d2o_min).

Feasibility Preserving: repair (RC)
Compared to the other CHTs the measured metrics of RC do not fluctuate that much.
Since the this CHT is listed to feasibility preserving avc and ncv are constant zero
and %_f is fix by 100% (Figure 6.8, plot avc_median, avc_median and %_f).
The approaches consisting DE keep a higher diversity and seem to perform a bit
better according to d2o (Figure 6.8, plot d2o_min and dbs_mean). Nevertheless the
resulting obj is worse than by the other OMs. However this could also be induced
by the mean of obj and the lower diversity (Figure 6.8, plot dbs_mean).

The results of feasibility preserving CHT-Decoder (DC) are not presented because
they are invalid. The optimization processes yielded infeasible solution which
should not be possible by its definition. Which is due to the assumption that the
implementation resulted in inaccuracy or consisted a bug. However due to the re-
stricted processing time for this master thesis this CHT will not be analyzed further
and therefore can be conducted for future work. Nevertheless the invalid results of
DC can be viewed in the appendix.
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6.2. Evaluation of P2
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Figure 6.9.: Combinatorial components of the test-cases for P2

6.2. Evaluation of P2

6.2.1. Experimental Setup for P2

The experimental setup of the approaches for P2 is similar to the combination for
P1 except DC. This CHT is omitted completely. Figure 6.9 visualizes the evaluated
approaches for P2. The parametrization of the OMs is the same like by P1. Only
the population size is increased twice nx up to 268. The logging process is also the
same with the equal metrics. The termination criteria of the optimization processes
is also reaching 100.000 function evaluations of f .

6.2.2. Results for P2

The analyses of the results of the approaches with P2 are equal to the analyses
with P1. The results are grouped by their CHT except the bi-objective separatist
CHT which are plotted together since they are combined only with the only chosen
multi-objective OM.
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6. Evaluation

Static Penalty: amount of violated constraints (avcp)
Figure 6.10 shows the progress of the approaches with avcp as their CHT for P2

along the amount of function evaluations of f . Equal to the smaller problem the
mean objective per population of the found results varies below 1.
This CHT also keeps feasible solutions in case it is initialized with feasible solu-
tions (Figure 6.10, plot %_f). If avcp is initialized via RaI it is not able to reach F
though it moves towards F . This can be observed by the decreasing of avc and ncv
(Figure 6.10, plot avc_median and ncv_median). Reaching F may be possible in
case the termination criterion would be a higher amount of function evaluations of
f .
The approaches uses DE as OM seem to stuck in combination with INITs
which produces feasible solutions only (Figure 6.10, plot d2o_min, dbs_mean and
obj_mean). This effect can be explained that in case of producing solutions these
are worse than the already found. Since creating also feasible solutions with DE
requires that the modification vector applied on the third parent (see Section 5.3.1
describing DE) does not point outwards F .
Compared by the reached obj the approaches using RW perform best with this CHT
(Figure 6.10, plot obj_mean). But they also have the lowest diversity (Figure 6.10,
plot dbs_mean).

Static Penalty: norm of constraint violation (ncvp)
According to the penalty factor ncv decreases sharply by the approaches which are
initialized via RaI (Figure 6.11, plot ncv_median).
The approaches with DE seem to be stuck like by avcp and change over the amount
of function evaluations of f only slightly (Figure 6.11, plot d2o_min, dbs_mean
and obj_mean). This effect can also be explained only by the technique DE uses
to create new solutions. Thereby the new solutions have to be rejected since their
objective is worse than the objective of the current population.
No approach initialized via RaI reaches F (Figure 6.11, plot %_f). The other ap-
proaches do not necessary their feasible solutions and accept infeasible solutions
in exchange. Nevertheless overall the mean of obj decreases continuously (Fig-
ure 6.11, plot obj_mean). This observation can be explained like already described
by P1 with the same CHT. Infeasible solutions with a low penalty factor may be
preferred by the OM with the modified objective function over feasible solutions.
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6.2. Evaluation of P2

Adaptive Penalty: Farmani and Wright (F&W)
The approaches with this CHT leave F except for these which are initialized with
feasible solutions only and use RW as OM (Figure 6.12, plot %_f). This is ex-
pectable since F&W is also attracted by infeasible local optima.
F&W in combination with RW and RaI does not reaches F (Figure 6.12, plot %_f).
Nevertheless it performs as the best according to its d2o and obj (Figure 6.12,
plot d2o_min and obj_median). This approach could reach the global optima if
it could optimize with a higher amount of function evaluations of f . Also DE in
combination with RaI seems to converge towards the global optima (Figure 6.12,
plot d2o_min).
Unexpected the GA with RaI converges away from F (Figure 6.12, plot avc_median
and ncv_median). This behavior suggests that P2 has preferable local optima out-
side of F .

Separatist: Deb’s rules (DR)
By this CHT the approaches seem to be stuck similar like avcp and ncvp (Fig-
ure 6.13, plot d2o_min, dbs_mean and obj_mean).
But other than this CHT with P1 can keep feasible solution and the percentage of
them in the population does not fluctuate like by P1 (Figure 6.13, plot %_f).
RW performs according to obj better than the other approaches (Figure 6.13,
plot obj_mean). Only GA initialized via OB can keep up. Whereby the diversi-
ties of these are also the smallest (Figure 6.13, plot dbs_mean).

Separatist: Bi-objective (avcs and ncvs)
The bi-objective separatist approaches do not perform in such clustered structure
with P2 like with P1 according to avc and ncv (Figure 6.7 and 6.14, plot ncv_median
and avc_median). The outlier is RaI-avcs-NSGA-II which performs as the worst ac-
cording to avc.
Apart from that the random initialized approaches perform well according to their
obj and d2o (Figure 6.14, plot obj_mean and d2o_min). Whereby these two ap-
proaches do not reach F (Figure 6.14, plot %_f).

Feasibility Preserving: repair (RC)
In comparison to RC with P1 the results of this CHT with P2 are more diverse (Fig-
ure 6.8 and 6.15, plot d2o_min and obj_mean).
According to obj the approaches using DE performs worst (Figure 6.15,
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6.3. Discussion

plot obj_mean). However it is to mention that obj is the mean of the population
and can be misleading by a high diversity which in fact is the case (Figure 6.15,
plot dbs_mean). It is also recognizable that the approach OB-RC-DE performs with
RW initialized via RaI and GS as the best with this CHT regarding to d2o (Fig-
ure 6.15, plot d2o_min).

6.3. Discussion

This section discusses the results as in their entirety. All approaches can be com-
pared according their minimal distance to the global optimum in the final popu-
lation. The Tables 6.3 and 6.3 show d2o_min for each approach. In addition the
related interquartile ranges are also listed in the tables. The best approach with re-
spect to d2o for P1 is OB-DR-DE. Closest to the optimum by P2 is OB-RC-DE.
Even if for both problems the initialization OB and the optimization method DE
performs best, other approaches get close to it also.

As a main point is to mention that the metric measuring the distance to the global
optimum can be realized just with the artificial problem where these are well known.
Comparing the performance of the approaches by obj instead of d2o leads to another
valuation because in some cases the approaches perform only on one metric well
and not always on both simultaneously.
Another weakness of the metrics regarding a detailed interpretation is the chosen
statistical measurement of a metric. As an example it would be more helpful to
know the minimal instead of mean of obj. Also the ranges of reached avc and ncv
(minimal and maximal reached value in the corresponding population) could be
useful to estimate an infeasibility of the population.
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6. Evaluation
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6.3. Discussion

INIT OB GS RaI ReI
median (iqr) median (iqr) median (iqr) median (iqr)

CHT OM

Deb’s rule
DE 1.870156 (0.169954) 2.330155 (0.199864) 2.115940 (0.161415) 2.574563 (0.311259)
GA 4.294767 (0.128412) 3.300492 (0.393890) 3.332714 (0.714005) 3.153674 (0.394895)
RW 4.297686 (0.099889) 3.139116 (0.221705) 3.192407 (0.345274) 3.027026 (0.318638)

F. & W.
DE 3.695380 (0.364233) 3.350555 (0.273938) 3.369001 (0.233995) 3.309202 (0.485816)
GA 3.917548 (0.210818) 3.250433 (0.294835) 4.032919 (0.273619) 3.184976 (0.257554)
RW 4.366054 (0.193001) 3.151881 (0.403630) 3.610285 (0.401857) 3.238251 (0.521583)

avcp
DE 2.011611 (0.109959) 2.213998 (0.216002) 2.068443 (0.270744) 2.322658 (0.417265)
GA 4.351348 (0.048871) 3.245890 (0.274313) 3.337875 (0.494168) 3.076622 (0.629833)
RW 4.373237 (0.175876) 3.173634 (0.490469) 3.240757 (0.492786) 3.145980 (0.798206)

ncvp
DE 2.591299 (0.158101) 2.584288 (0.243631) 2.595641 (0.166314) 2.216237 (0.165777)
GA 4.367195 (0.098893) 3.192956 (0.316287) 3.100893 (0.356695) 3.152999 (0.374363)
RW 4.354097 (0.121592) 2.995953 (0.546249) 3.018735 (0.501634) 3.079392 (0.360221)

repair
DE 3.219966 (0.166493) 3.230011 (0.042632) 3.220210 (0.069773) / ( / )
GA 3.473521 (0.207684) 3.436151 (0.130645) 3.471572 (0.105667) / ( / )
RW 3.523204 (0.159955) 3.570538 (0.148446) 3.523210 (0.148992) / ( / )

ncvs NSGA-II 3.702016 (0.072450) 3.225980 (0.192829) 3.373823 (0.136364) 2.904464 (0.213291)
avcs NSGA-II 3.950870 (0.101732) 3.023598 (0.242568) 3.964708 (0.220457) 3.053741 (0.314362)

Table 6.1.: In this table are the median over the runs of the minimal distance to the
global optimum (d2o) in the final population for each approach with
P1 (which are a combination out of Initialization (INIT), Constraint
Handling Technique (CHT) and Optimization Method (OM))

INIT OB GS RaI ReI
median (iqr) median (iqr) median (iqr) median (iqr)

CHT OM

Deb’s rule
DE 2.030231 (0.013528) 2.301663 (0.252272) 2.426906 (0.125487) 1.783722 (0.096033)
GA 2.722293 (0.070727) 2.501691 (0.346559) 2.897723 (0.329872) 1.954037 (0.322937)
RW 2.717994 (0.014745) 2.201443 (0.249164) 2.636207 (0.444659) 1.920535 (0.247987)

F. & W.
DE 2.604283 (0.213890) 2.359871 (0.530070) 1.638078 (0.182085) 1.876712 (0.202442)
GA 2.695234 (0.227511) 2.429077 (0.369383) 2.888929 (0.566553) 1.958166 (0.260840)
RW 2.672183 (0.025045) 2.338320 (0.299585) 0.860458 (0.165476) 1.974788 (0.259091)

avcp
DE 2.029736 (0.013822) 2.357182 (0.332791) 2.856477 (0.105896) 1.777750 (0.061697)
GA 3.037586 (0.009410) 2.448514 (0.315756) 3.553626 (0.510720) 2.052433 (0.239424)
RW 2.510802 (0.073231) 2.227708 (0.428315) 2.043080 (0.459468) 1.929993 (0.165972)

ncvp
DE 2.029468 (0.033474) 2.320798 (0.485104) 2.394165 (0.171982) 1.795515 (0.112706)
GA 2.540535 (0.133500) 2.567751 (0.320107) 2.328379 (0.705556) 2.034269 (0.330933)
RW 2.539735 (0.013252) 2.124747 (0.318995) 2.442881 (0.467947) 1.979082 (0.247898)

repair
DE 0.341344 (0.020819) 1.447894 (0.233602) 1.194498 (0.055515) / ( / )
GA 1.241550 (0.095377) 0.669446 (0.062972) 0.630981 (0.096590) / ( / )
RW 0.731198 (0.150310) 0.360903 (0.029524) 0.362036 (0.033121) / ( / )

ncvs NSGA-II 2.422386 (0.090795) 2.041589 (0.310443) 0.787285 (0.066565) 1.724724 (0.175936)
avcs NSGA-II 2.273643 (0.152831) 2.096857 (0.243741) 0.996765 (0.101500) 1.801495 (0.173736)

Table 6.2.: In this table are the median over the runs of the minimal distance to the
global optimum (d2o) in the final population for each approach with
P2 (which are a combination out of Initialization (INIT), Constraint
Handling Technique (CHT) and Optimization Method (OM))
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7. Conclusions and Future Work

As the final chapter of this thesis the conclusion out of the experiments answering
and possible further research in Future Work are presented.

7.1. Conclusions

A couple of common Constraint Handling Technique (CHT) from the literature
are implemented, run and analyzed on two artificial large-scale problems. They all
performed differently depending on the combination with an Initialization (INIT)
and Optimization Method (OM). Some get close to the global optimum whereby
others kept their distance or even increased it. Therefore to answer how does the
chosen CHT perform with the introduced problems is not trivial. It may happen that
with a higher amount of allowed function evaluations of f more approaches could
reach the neighborhood of the global optimum or even find it. Therefore are more
experiments required with different positions of the global optimum regarding its
distance to the box-constraints and linear constraints. Also a more detailed analysis
of the runs are needed. It could be helpful to find out in which scenarios which
approach get stuck or is mislead and processes wrongly.
The second research question dedicates to the influence of the initialization method
to the performance of an approach. It can be answered with yes. Depending on the
position of the global optimum the ideal chosen INIT can give be a benefit. But
with the addition that the OM and CHT take advantage of the INIT.
The last question which approach consisting of an INIT, a CHT and OM performs
best and why can not be answered clearly because the approaches perform dif-
ferently regarding the considered problem. The best approach for P1 OB-DR-DE
performs moderate on P2. The best approach for P2 OB-RC-DE performs also
moderate on P1. Since a real given problem should not be optimized by several
approaches and evaluated further research considering this topic is necessary to find
an approach which performs on several problems similar well.
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7. Conclusions and Future Work

7.2. Future Work

Since the topic of this thesis combining large-scale optimization with Constraint
Handling Technique is a rather unexplored field this thesis serves as a first step to-
wards it. Although different CHT are chosen many more are already developed.
Therefore several other in the literature introduced can be applied on the mentioned
problems.
Also the used CHT in this thesis can be investigated further. For example they
could recombined since all CHTs are evaluated separately. Furthermore they can be
tweaked to reduce the amount of function evaluations of the original f . It could be
only evaluated if feasibility is guaranteed. Thus some approaches could process a
couple of generations longer and consequently maybe terminate with better results.
Another technique to reduce the amount of function evaluations of f is to use sur-
rogate models. Thereby is a model trained which approximates the original f and
evaluate only after a predefined amount of function evaluation on the original f
again which also updates the surrogate modal.
Furthermore the geometry could be investigated in more detail. To that abstract
polytopes may be used. With a larger knowledge about F the optimization methods
could be guided to explore F more efficiently.

74



Bibliography

[1] Bahriye Akay and Dervis Karaboga. Artificial bee colony algorithm for large-
scale problems and engineering design optimization. Journal of Intelligent
Manufacturing, 23(4):1001–1014, August 2012. ISSN: 1572-8145.

[2] Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Handbook of evo-
lutionary computation. CRC Press, 1997.

[3] Helio J. C. Barbosa, Afonso C. C. Lemonge, and Heder S. Bernardino. A
critical review of adaptive penalty techniques in evolutionary computation.
In Evolutionary Constrained Optimization. Rituparna Datta and Kalyanmoy
Deb, editors. Springer India, New Delhi, 2015, pages 1–27.

[4] Zahra Beheshti and Siti Mariyam Shamsuddin. A review of population-based
meta-heuristic algorithm. International Journal of Advances in Soft Comput-
ing and Its Applications, 5:1–35, March 2013.

[5] Francesco Biscani, Dario Izzo, Wenzel Jakob, Marcus Märtens, Alessio
Mereta, Cord Kaldemeyer, Sergey Lyskov, Sylvain Corlay, Benjamin
Pritchard, Kishan Manani, and et al. Esa/pagmo2: pagmo 2.10, January 2019.
DOI: 10.5281/zenodo.2529931.

[6] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, March 2004.

[7] Jörg Bremer and Michael Sonnenschein. Constraint-handling with support
vector decoders. In International Conference on Agents and Artificial Intel-
ligence, pages 228–244. Springer, 2013.

[8] Susan E Carlson and Ron Shonkwiler. Annealing a genetic algorithm over
constraints. In Systems, Man, and Cybernetics, 1998. 1998 IEEE Interna-
tional Conference on, volume 4, pages 3931–3936. IEEE, 1998.

[9] Adam Chehouri, Rafic Younes, Jean Perron, and Adrian Ilinca. A constraint-
handling technique for genetic algorithms using a violation factor. arXiv
preprint arXiv:1610.00976, 2016.

75

https://doi.org/10.5281/zenodo.2529931


Bibliography

[10] Adam Chehouri, Rafic Younes, Jean Perron, and Adrian Ilinca. A constraint-
handling technique for genetic algorithms using a violation factor. arXiv
preprint arXiv:1610.00976, 2016.

[11] Carlos A Coello Coello. Use of a self-adaptive penalty approach for engineer-
ing optimization problems. Computers in Industry, 41(2):113–127, 2000.

[12] Lino Costa, Isabel Espıérito Santo, and Pedro Oliveira. An adaptive
constraint handling technique for evolutionary algorithms. Optimization,
62(2):241–253, 2013.

[13] Rituparna Datta and Kalyanmoy Deb. Evolutionary constrained optimiza-
tion. Springer, 2014.

[14] Kalyanmoy Deb. An efficient constraint handling method for genetic algo-
rithms, 2000.

[15] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, T Meyarivan, and A
Fast. Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197,
2002.

[16] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE Com-
putational Intelligence Magazine, 1(4):28–39, November 2006. ISSN: 1556-
603X.

[17] Raziyeh Farmani and Jonathan A Wright. Self-adaptive fitness formulation
for constrained optimization. IEEE Transactions on Evolutionary Computa-
tion, 7(5):445–455, 2003.

[18] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images. In Readings in computer vision,
pages 564–584. Elsevier, 1987.

[19] Ronald Glowinski and Patrick Le Tallec. Augmented Lagrangian and
operator-splitting methods in nonlinear mechanics, volume 9. SIAM, 1989.

[20] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73,
1992.

[21] Abdollah Homaifar, Charlene X Qi, and Steven H Lai. Constrained optimiza-
tion via genetic algorithms. Simulation, 62(4):242–253, 1994.

76



Bibliography

[22] Jeffrey A Joines and Christopher R Houck. On the use of non-stationary
penalty functions to solve nonlinear constrained optimization problems
with ga’s. In Evolutionary Computation, 1994. IEEE World Congress on
Computational Intelligence., Proceedings of the First IEEE Conference on,
pages 579–584. IEEE, 1994.

[23] Jeffrey A Joines and Christopher R Houck. On the use of non-stationary
penalty functions to solve nonlinear constrained optimization problems
with ga’s. In Evolutionary Computation, 1994. IEEE World Congress on
Computational Intelligence., Proceedings of the First IEEE Conference on,
pages 579–584. IEEE, 1994.

[24] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: open source scien-
tific tools for Python, 2001–. URL: http://www.scipy.org/.

[25] A Rezaee Jordehi. A review on constraint handling strategies in particle
swarm optimisation. Neural Computing and Applications, 26(6):1265–1275,
2015.

[26] Dervis Karaboga. An idea based on honey bee swarm for numerical opti-
mization, technical report - tr06. Technical Report, Erciyes University, Jan-
uary 2005.

[27] Dervis Karaboga and Bahriye Basturk. Artificial bee colony (abc) optimiza-
tion algorithm for solving constrained optimization problems. In Interna-
tional fuzzy systems association world congress, pages 789–798. Springer,
2007.

[28] Howard Karloff. The simplex algorithm. In Linear Programming. Birkhäuser
Boston, Boston, MA, 1991, pages 23–47.

[29] J. Kennedy and R. Eberhart. Particle swarm optimization. 4:1942–1948 vol.4,
November 1995. DOI: 10.1109/ICNN.1995.488968.

[30] Dae Gyu Kim. Riemann mapping based constraint handling for evolutionary
search. In Proceedings of the 1998 ACM symposium on Applied Computing,
pages 379–385. ACM, 1998.

[31] Mustafa Kıran. An implementation of tree-seed algorithm (tsa) for con-
strained optimization. In volume 5. January 2016, pages 189–197.

[32] Slawomir Koziel and Zbigniew Michalewicz. Evolutionary algorithms, ho-
momorphous mappings, and constrained parameter optimization. Evolution-
ary computation, 7(1):19–44, 1999.

77

http://www.scipy.org/
https://doi.org/10.1109/ICNN.1995.488968


Bibliography

[33] KN Krishnanand and Debasish Ghose. Glowworm swarm based optimiza-
tion algorithm for multimodal functions with collective robotics applications.
Multiagent and Grid Systems, 2(3):209–222, 2006.

[34] Renato A Krohling and Leandro dos Santos Coelho. Coevolutionary particle
swarm optimization using gaussian distribution for solving constrained op-
timization problems. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 36(6):1407–1416, 2006.

[35] C-Y Lin and W-H Wu. Self-organizing adaptive penalty strategy in con-
strained genetic search. Structural and Multidisciplinary Optimization,
26(6):417–428, 2004.

[36] Rammohan Mallipeddi, Swagatam Das, and Ponnuthurai Nagaratnam Sug-
anthan. Ensemble of constraint handling techniques for single objective con-
strained optimization. In Evolutionary Constrained Optimization, pages 231–
248. Springer, 2015.

[37] Efrén Mezura-Montes and Carlos A. Coello Coello. Constrained optimiza-
tion via multiobjective evolutionary algorithms. In Multiobjective Problem
Solving from Nature: From Concepts to Applications. Joshua Knowles, David
Corne, Kalyanmoy Deb, and Deva Raj Chair, editors. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2008, pages 53–75.

[38] Efrén Mezura-Montes and Carlos A Coello Coello. Constraint-handling in
nature-inspired numerical optimization: past, present and future. Swarm and
Evolutionary Computation, 1(4):173–194, 2011.

[39] Efrén Mezura-Montes and Jorge Isacc Flores-Mendoza. Improved parti-
cle swarm optimization in constrained numerical search spaces. In Nature-
inspired algorithms for optimisation, pages 299–332. Springer, 2009.

[40] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary algorithms for
constrained parameter optimization problems. Evolutionary computation,
4(1):1–32, 1996.

[41] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cam-
bridge, MA, USA, 1998. ISBN: 0262631857.

[42] Marco Montemurro, Angela Vincenti, and Paolo Vannucci. The automatic
dynamic penalisation method (adp) for handling constraints with genetic
algorithms. Computer Methods in Applied Mechanics and Engineering,
256:70–87, 2013.

78



Bibliography

[43] Angel E Muñoz Zavala, Arturo Hernández Aguirre, and Enrique R Villa Di-
harce. Constrained optimization via particle evolutionary swarm optimiza-
tion algorithm (peso). In Proceedings of the 7th annual conference on Ge-
netic and evolutionary computation, pages 209–216. ACM, 2005.

[44] Pruettha Nanakorn and Konlakarn Meesomklin. An adaptive penalty func-
tion in genetic algorithms for structural design optimization. Computers &
Structures, 79(29-30):2527–2539, 2001.

[45] Travis Oliphant. NumPy: a guide to NumPy. USA: Trelgol Publishing, 2006–
. URL: http://www.numpy.org/.

[46] FAO Otieno, JA Adeyemo, HA Abbass, R Sarker, I Amir, FM Fisher, A
Rakesh, BV Babu, BV Babu, MM Jehan, et al. Differential evolution: a sim-
ple and efficient adaptive scheme for global optimization over continuous
spaces. Trends in Applied Sciences Research, 5(1):531–552, 2002.

[47] Nikhil Padhye, Pulkit Mittal, and Kalyanmoy Deb. Feasibility preserving
constraint-handling strategies for real parameter evolutionary optimization.
Computational Optimization and Applications, 62(3):851–890, 2015.

[48] Konstantinos E Parsopoulos and Michael N Vrahatis. Unified particle swarm
optimization for solving constrained engineering optimization problems,
Springer, 2005.

[49] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimiza-
tion. Swarm Intelligence, 1(1):33–57, June 2007.

[50] Daniel J Poole, Christian B Allen, and Thomas CS Rendall. A generic
framework for handling constraints with agent-based optimization algo-
rithms and application to aerodynamic design. Optimization and Engineer-
ing, 18(3):659–691, 2017.

[51] Bingqin Qiao. Hybrid particle swarm algorithm for solving nonlinear con-
straint optimization problems. In 2012.

[52] Singiresu S Rao. Engineering optimization: theory and practice. John Wiley
& Sons, 2009.

[53] Thomas P. Runarsson and Xin Yao. Stochastic ranking for constrained evo-
lutionary optimization. IEEE Transactions on evolutionary computation,
4(3):284–294, 2000.

79

http://www.numpy.org/


Bibliography

[54] Nazmul Siddique and Hojjat Adeli. Nature inspired computing: an overview
and some future directions. Cognitive Computation, 7(6):706–714, Decem-
ber 2015.

[55] Biruk Tessema and Gary G Yen. An adaptive penalty formulation for con-
strained evolutionary optimization. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 39(3):565–578, 2009.

[56] Shigeyoshi Tsutsui, Masayuki Yamamura, and Takahide Higuchi. Multi-
parent recombination with simplex crossover in real coded genetic algo-
rithms. In Proceedings of the 1st Annual Conference on Genetic and Evo-
lutionary Computation-Volume 1, pages 657–664. Morgan Kaufmann Pub-
lishers Inc., 1999.

[57] Yong Wang, Zixing Cai, Yuren Zhou, and Zhun Fan. Constrained optimiza-
tion based on hybrid evolutionary algorithm and adaptive constraint-handling
technique. Structural and Multidisciplinary Optimization, 37(4):395–413,
2009.

[58] Xin-She Yang. Firefly algorithm, stochastic test functions and design optimi-
sation. International Journal of Bio-inspired Computation, 2, March 2010.
DOI: 10.1504/IJBIC.2010.032124.

[59] Yinyu Ye. Interior Point Algorithms: Theory and Analysis. John Wiley &
Sons, Inc., New York, NY, USA, 1997.

[60] Heiner Zille, Hisao Ishibuchi, Sanaz Mostaghim, and Yusuke Nojima.
A framework for large-scale multiobjective optimization based on prob-
lem transformation. IEEE Transactions on Evolutionary Computation,
22(2):260–275, 2018.

80

https://doi.org/10.1504/IJBIC.2010.032124


Declaration of Authorship

I hereby declare that this thesis was created by me and me alone using only the
stated sources and tools.

Andreas Petrow Magdeburg, March 22, 2019





A. Appendix

83



A. Appendix

0
20000

40000
60000

80000
100000

0.00

0.05

0.10

0.15

0.20

0.25
ncv_m

edian

0
20000

40000
60000

80000
100000

1.0

1.5

2.0

2.5

3.0

3.5
d2o_m

in

0
20000

40000
60000

80000
100000

0 1 2 3 4 5
dbs_m

ean
DEGARW

0
20000

40000
60000

80000
100000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

avc_m
edian

0
20000

40000
60000

80000
100000

10
1

obj_m
ean

0
20000

40000
60000

80000
100000

0 20 40 60 80

100
%

_f

random
repaired
gibbs
bounds

Figure
A

.1.:Feasibility
Preserving

feasibility
preserving

C
H

T-D
ecoder

(D
C

)applied
to
P
1 ;coloring

ofthe
lines

im
plies

the
used

O
M

and
the

linestyle
the

IN
IT

84


	List of Figures
	List of Tables
	List of Acronyms
	Introduction and Motivation
	Aim of this thesis
	Structure of this thesis

	Basics
	Constrained Optimization Problem
	Optimization Method
	Classical optimization
	Population-based Optimization Methods


	Related Work
	Penalty Methods
	Static Penalty Functions
	Co-Evolution Penalty Methods
	Dynamic Penalty Functions
	Adaptive Penalty Functions

	Separatist approaches
	Multi-Objective Separatist
	Ranking

	Feasibility Preserving
	Repair Methods
	Special Operator
	Decoder

	Hybrids & Others
	Overview

	Considered Class of Problems
	Class of Problems
	Problem Reformulation
	Constraints Transformation
	Removing fixed Variables
	Removing Infinity Inequalities
	Adjust Boundaries
	Normalization of the constraints
	Rejected reformulations

	Considered Problems

	Approaches
	Start Population
	Random Initialization
	Repairing Initialization
	Initialization via Gibb's sampling
	Initialization on Boundaries

	Constraint-Handling Technique
	Used Penalty Approaches
	Used Separatist Approaches
	Used Feasibility Preserving Approaches

	Used Optimization Methods
	Single-Objective Optimization Methods
	Multi-Objective Optimization Method


	Evaluation
	Evaluation of P1
	Experimental Setup for P1
	Results for P1

	Evaluation of P2
	Experimental Setup for P2
	Results for P2

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix

