
Christian Wustrau

Search-based Procedural Content
Generation with Rolling Horizon
Evolutionary Algorithm for
Tile-based Map Generation

Intelligent Cooperative Systems
Computational Intelligence

Search-based Procedural Content Generation
with Rolling Horizon Evolutionary Algorithm

for Tile-based Map Generation

Master Thesis

Christian Wustrau

August 23, 2022

Supervisor: Prof. Dr. Sanaz Mostaghim

Advisor: Dr. Christoph Steup

Christian Wustrau: Search-based Procedural Content Generation
with Rolling Horizon Evolutionary Algorithm for Tile-based Map
Generation
Otto-von-Guericke Universität
Intelligent Cooperative Systems
Computational Intelligence
Magdeburg, 2022.

Abstract

The generation of content for video games falls within the realm of human
creativity and therefore poses an interesting challenge for computer methods
to emulate this process. Procedural Content Generation in Games is a pop-
ular and well-studied general approach to this mentioned challenge and has
originated many different forms to address this, most notably Search-based
Procedural Content Generation (SbPCG). Rolling Horizon Evolutionary Al-
gorithm (RHEA) are a subclass of Evolutionary Algorithms (EAs) capable of
online decision making, which means they search for the best action to take
during the game in a limited short amount of time. By combining Search-based
Procedural Content Generation and fundamental ideas from Rolling Horizon
Evolutionary Algorithms to enable online content generation with fairness,
this work presents a novel approach to map generation that is applied to a
tile-based open-source game as a proof of concept.

I

Contents

List of Figures V

List of Tables VII

List of Acronyms IX

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 3
1.3 Thesis Structure . 3

2 Background and State of the Art 5
2.1 Procedural Content Generation 5

2.1.1 Categories . 8
2.2 Evolutionary Algorithms . 11

2.2.1 Building Blocks of Evolutionary Algorithms 14
2.2.2 Rolling Horizon Evolutionary Algorithms 19
2.2.3 Search-based Procedural Content Generation 20

2.3 Tile-based Games . 23
2.3.1 Hexagonal Grids . 24
2.3.2 The Battle for Wesnoth 28

3 Content Generation Rolling Horizon Evolutionary Algorithm 33
3.1 Concept and Overview . 33

3.1.1 Concept . 33
3.1.2 Desirable properties . 34
3.1.3 Overview . 36

3.2 Content Representation . 38

III

Contents

3.3 Fitness Functions . 39
3.3.1 Differential Tile Fitness 40
3.3.2 Layout Entropy Fitness 44
3.3.3 Village Fitness . 45
3.3.4 Weighted Sum . 48

3.4 Rolling Horizon Evolutionary Algorithm 48
3.4.1 Evolutionary Algorithm 48
3.4.2 Rolling Horizon . 50

4 Evaluation 53
4.1 Hypotheses . 53
4.2 Experimental Setup . 53

4.2.1 Data Acquisition . 53
4.2.2 Game Setup . 54
4.2.3 Metrics and Hyperparameters 54

4.3 Experiments . 56
4.4 Results . 58

4.4.1 Hyperparameter Sets . 58
4.4.2 Hyperparameter Performance 63
4.4.3 Turn-based Performance 65
4.4.4 Generation-based Performance 67
4.4.5 Speed Analysis . 69
4.4.6 Fairness . 71

4.5 Discussion . 73

5 Conclusion 75

Bibliography 77

IV

List of Figures

2.1 Visualization of the basic process of Evolutionary Algorithms. . 13
2.2 Comparison of hexagonal alignment of vertical columns and hor-

izontal rows. 24
2.3 Overview of hexagonal coordinate system layouts. 25
2.4 Cube and axial coordinate system. 26
2.5 First and second level neighborhood with N1 = {1,2,3,4,5,6}

and N2 = {7,8,9...,17,18} . 27
2.6 The Battle for Wesnoth . 28

3.1 Comparison of hexagonal tile patches of size 1x1, 2x2 and 3x3 . 39
3.2 Involved tiles in the one second-level differential quotient. 43

4.1 Distribution of fitness values for the assigned mutation chance
values. 59

4.2 Distribution of fitness values for the assigned population size
values. 60

4.3 Distribution of fitness values for the assigned mating size values. 61
4.4 Distribution of median fitness values for the assigned weighted

sum value sets. 62
4.5 P-values of all parameter set combinations for the Mann-

Whitney U test. 64
4.6 Fitness values and average score over all turns. 66
4.7 Minimum, average and maximum fitness values over all turns. . 67
4.8 Fitness values and average score over all generations. 68
4.9 Distribution of horizon-time ratio values over all turns. 69

V

List of Figures

4.10 Time and average time frame over all turns. 70
4.11 Village count and total number of villages for both sides over

all turns. 71
4.12 Village difference and average difference over all turns. 72

VI

List of Tables

3.1 Height value ranges and corresponding terrain representations. . 38

4.1 Hyperparameters and their respective assigned values. 55
4.2 Median and standard deviations for the fitness values of each

hyperparameter. 63
4.3 Mann-Whitney U test tournament results. 65

VII

List of Acronyms

EA Evolutionary Algorithm

PCG Procedural Content Generation

SbPCG Search-based Procedural Content Generation

RHEA Rolling Horizon Evolutionary Algorithm

CGRHEA Content Generation Rolling Horizon Evolutionary Algorithm

IX

1 Introduction

1.1 Motivation

Procedural generation represents a generic term for computing methods that
can be summarized as the automated process of media content creation. As a
branch of media synthesis this can apply to all forms of media and data such
as landscapes, 3D objects, textures, meshes, models, character designs, ani-
mations, or non-player character dialogue and even more. Therefore, the area
of application for procedural generation extends from mathematics, computer
graphics, modeling to animation, video games and electronic music. The algo-
rithmic generation of digital content opens up a theoretically infinite, unique
set of design possibilities and results with less expenditure compared to the
effort required to manually design all these possibilities by humans.

In reality, the creation of handcrafted media can never be automated or re-
placed by the creative process of human designers. But algorithmic approaches
to this problem are definitely able to find reasonable solutions in less time and
claim less maintenance cost for the development process. Therefore, the main
benefit of procedural generation is the possible removal of human artists or
designers in the content creation process to save time and resources [66]. This
work focuses on Procedural Content Generation in Games, or often just abbre-
viated as PCG. The context of game content generation necessitates consider-
ation of the design, mechanics, and constraints of the game itself [61]. This is
a distinguishing feature from other types of procedural generation, such as in
computer graphics or generative art, which do not necessarily have to consider
constraints from external systems.

By using Procedural Content Generation in Games, video games theoretically
can be shipped with an integrated designer. As the computer can run the
content generation simultaneous to the game itself, there is no more necessity
for a game to end as more and more content can be generated on the run

1

1 Introduction

to be explored by the player. The game itself will never be fully explored.
This of course calls for high quality generated content and therefore a very
expressive generation algorithm. Because the content has to keep up with
the ever-growing desire for more interesting content to appear to the player,
because the player can loose interest or get bored if he has seen one type of
content multiple times already. This poses quite a challenge for the design
of generation algorithms especially due to limitations of expressions via game
assets as they are usually a limited set or most of them have a special context
in which they have to be used. But procedural generation is also possible for
game assets itself, so this challenge can be tackled as well but causes even
more complex problems as this is even lower level content than a game map
for example and would have to be generated on the fly as well.

Running a Procedural Content Generation algorithm along the game itself,
enables access to the current game state and therefore reaction to the game-
play and not only to the state of the game before the start. This opens up
the possibility to consider the needs and desires of a player from a game state
aspect during the game being played. The generation then can focus on new
critical aspects for video games: fairness for competitive rounds, fun for ca-
sual entertaining rounds or keeping up interest when exploring. An impor-
tant step towards these critical aspects is the incorporation of the fact that
a game’s map is not just a simple visual representation, but also an impor-
tant game component that greatly influences gameplay, outcome and difficulty.
The most beautiful game world cannot entertain a player if there is no chal-
lenge throughout the game. Therefore, map generation plays a crucial role
in a game’s difficulty design process. Taking this a step further, a continu-
ously generated map as the game is played can dynamically adjust the game’s
difficulty level and make the game more exciting or fair. This would enable
reactive game content creation based not only on preferences set prior to the
game being played, but also on the previous actions performed by players or
AI. As mentioned, this requires online generation of the game content, opti-
mized based on the previous game states and executed in a reasonable time so
that the gameplay is not interrupted for the content generation. Procedural
Content Generation (PCG) offers a search-based approach that uses Evolu-
tionary Algorithms (EAs) to search for an optimal map, but this is usually
done offline before the game is played because the process of searching for the
optimal map layout is time-consuming. In the field of EAs, the Rolling Hori-
zon evolutionary algorithm Rolling Horizon Evolutionary Algorithm (RHEA)

2

1.2 Research Questions

is an online optimization approach, which in its original form serves to evolve
action sequences with time constraint at each game tick [8]. This work aims
to address the problem of continuously generating a map that dynamically
adjusts by presenting a search-based online generation algorithm that uses a
modified RHEA approach to evolve a short map sequence presented to the
player as he progresses through the world.

1.2 Research Questions

The main research question of this thesis is whether a Rolling Horizon Evo-
lutionary Algorithm can be used to generate a playable, believable and fair
map for a turn-based game. In search of this answer we design, implement
and evaluate a map generation algorithm for the strategy game The Battle
for Wesnoth [58] that combines Search-based Procedural Content Generation
with a Rolling Horizon Evolutionary Algorithm. Consequently, this thesis to
answer the following research questions that arise along with the central re-
search question:

• Can the map be generated within a fixed amount of time, which is ac-
ceptable for players?

• Can this online generation be used for dynamic difficulty adjustment
during the game?

• Is the algorithm able to generate playable maps?

• Is the algorithm able to generate believable maps?

• Is the algorithm able to generate fair maps?

1.3 Thesis Structure

The next chapter, 2, covers three main background topics: Procedural Con-
tent Generation, Evolutionary Algorithms and Tile-based Games used in the
context of this thesis. The Procedural Content Generation section provides
basic theoretical background and typical content generation approaches. The
Evolutionary Algorithms section gives insight into different accomplishments
in the field of EAs, describes Search-based Procedural Content Generation in

3

1 Introduction

detail and then focuses on the Rolling Horizon Evolutionary Algorithm specifi-
cally. The last section covers tile-based games, hexagonal grids, and The Battle
for Wesnoth game used in our implementation. Chapter 3 covers the general
concept, structure and detailed architecture of our proposed algorithm. In
Chapter 4, we report the setup, metrics and scenarios for our experiments.
Additionally, we present and evaluate the experiment results and discuss them
in context with the previous chapter. The paper concludes with a summary
and discussion about future work and in Chapter 5.

4

2 Background and State of the
Art

This chapter provides an overview of Procedural Content Generation, Evolu-
tionary Algorithms, and tile-based games. Each section provides an insight
into the fundamental principles and state of the art of each research area,
focusing on the topics relevant to this work.

2.1 Procedural Content Generation

Procedural content generation addresses the problem of generating game con-
tent using a formal algorithm with limited or indirect user input. More gener-
ally, the abstract goal of PCG is to recreate human creativity in the context of
game design [52]. These abstract definitions and views on PCG result from the
fact that game content can be found in a wide variety of representations, which
are associated with a wide variety of requirements and open up many possible
solutions. Implementations are subject to almost no restrictions in terms of al-
gorithmic generation, and accordingly many approaches from a wide variety of
scientific fields are united under the term Procedural Content Generation. The
term game content usually refers to representations of the game world such as
maps, levels or scenarios, any form of interactive or collectible objects called
items, and any form of textual narration such as stories, quests or characters.
But game content encompasses almost anything a game can contain, including
textures, music, effects or animations, and even extends to game rules that
define the principles and mechanics for the game itself. Additionally, generat-
ing behavioral policies for agents can be viewed as part of Procedural Content
Generation in a broader context [33].

To differentiate PCG from other research areas of general procedural genera-
tion and to clarify the context of generated game content, we use the Proce-

5

2 Background and State of the Art

dural Content Generation Wiki’s definition [47] "Procedural Content Genera-
tion (PCG) is the programmatic generation of game content using a random
or pseudo-random process that results in an unpredictable range of possible
game play spaces." This limitation of PCG to ranges of possible game spaces
allows us to consider only video game content that affects the gameplay in a
meaningful way and will further on only be considered in this thesis context.

The problem of algorithmic game content generation encompasses a wide field
of problems that can require very distinct solutions that can end up being
strongly contrasting from each other. A list of desirable properties is intro-
duced by Togelius et al. [61] to provide a common basis for discussing the
characteristics of Procedural Content Generation:

Speed [61, p.6] "Requirements for speed vary wildly, from a maximum gen-
eration time of milliseconds to months, depending on (amongst other
things) whether the content generation is done during gameplay or dur-
ing development of the game."

Reliability [61, p.6] "Some generators shoot from the hip, whereas others are
capable of guaranteeing that the content they generate satisfies some
given quality criteria. This is more important for some types of content
than others, for example a dungeon with no exit or entrance is a catas-
trophic failure, whereas a flower that looks a bit weird just looks a bit
weird without this necessarily breaking the game."

Controllability [61, p.7] "There is frequently a need for content generators to
be controllable in some sense, so that a human user or an algorithm (such
as a player-adaptive mechanism) can specify some aspects of the content
to be generated. There are many possible dimensions of control, e.g. one
might ask for a smooth oblong rock, a car that can take sharp bends and
has multiple colours, a level that induces a sense of mystery and rewards
perfectionists, or a small ruleset where chance plays no part."

Expressivity and Diversity [61, p.7] "There is often a need to generate a
diverse set of content, to avoid the content looking like it’s all minor
variations on a tired theme. At an extreme of non-expressivity, consider
a level “generator” that always outputs the same level but randomly
changes the colour of a single stone in the middle of the level; at the
other extreme, consider a “level” generator that assembles components
completely randomly, yielding senseless and unplayable levels. Measur-
ing expressivity is a non-trivial topic in its own right, and designing

6

2.1 Procedural Content Generation

level generators that generate diverse content without compromising on
quality is even less trivial."

Creativity and Believability [61, p.7] "In most cases, we would like our con-
tent not to look like it has been designed by a procedural content gen-
erator. There is a number of ways in which generated content can look
generated as opposed to human-created."

When considering these desirable properties for PCG, it becomes clear that
these properties are usually not metrically measurable in a meaningful way.
For example, speed is highly dependent on the application context, since on-
line generation needs to be completed faster than offline generation. Other
categories like creativity or reliability have no concrete definition at all that
can be expressed metrically. It should also be mentioned that most of the
time they cannot all be satisfied at the same time, especially not by a single
algorithm. Speed, for example, is a requirement that is at odds with creativity,
since more creative results typically require more computation or search time
during generation. Therefore, a reasonable trade-off between these properties
is required to get worthwhile results from the creation process [61].

Multi-objective Optimization Game content creation often involves more
complex problems that typically cannot be described as a basic optimization
problem with a single objective to optimize. In these scenarios with more than
one objective, called multi-objective optimization, the overall task is to choose
from a set of solutions that meet multiple objectives to varying degrees [24].
Furthermore, multi-objective problems are often non-trivial, meaning that due
to the contradictory nature of the objectives, no single solution can optimize
every objectives. Such is the case with desirable properties for Procedural
Content Generation. Because of this trade-off characteristic or contradictory
nature among the objectives, there may not exist a single solution that min-
imizes (or maximizes) every objective within the feasible range [57]. Instead,
multi-objective optimization algorithms seek to determine the Pareto optimal
solution set, a set of solutions that are non-dominated with respect to each
other, meaning that no improvement in one objective can be achieved without
deterioration in others [22].

Optimization problems are closely related to another type of computation
problems, search problems. Without loss of generality, a search problem is
a problem in which, for a given input, the best possible solution x∗ is sought

7

2 Background and State of the Art

that satisfies all given constraints. In other words, this sometimes is associated
with finding the root of a given root-finding function g(x), where g(x∗) = 0.
Deviating from this terminology, an optimization problem does not look for
the best solution itself, but to optimize g(x). Optimizing for the minimum
possible value presents a minimization problem, but multiplying the value of
g(x) by −1 correspondingly transform any minimization into a maximization
problem. This thesis focuses on minimization and indirectly always includes
the equivalent maximization case as well when mentioning minimization. As-
suming that g(x) is a continuous function and the best solution found by an
optimization algorithm is an epsilon-optimal solution deviating by an arbitrary
small margin, we have an approximate solution of the search problem. In the
case of minimizing until the smallest possible value of g(x) = 0 is reached, the
optimization solves the search problem. Therefore, in certain aspects, search
and optimization problems are effectively equivalent [55]. In general, search
problems often deal with systems of equations and inequalities that represent a
non-differentiable class of functions, and hence direct search algorithms do not
have access to g(x). However, accessing g(x) directly is not mandatory, since
a black-box optimization is sufficient to find the best solutions or a solution
with a certain minimum quality needs to be found.

2.1.1 Categories

Procedural Content Generation algorithms can be categorized in many ways
and subdivisions. The following section presents the most common approaches
in this area, categorized according to the underlying main principle of gener-
ation.

Search-based The search-based approach to PCG relies on Evolutionary Al-
gorithms to solve the search problem of finding meaningful content represen-
tations in the search space of all possible content representations. Inspired by
natural Darwinian evolution, a population of solutions is created that is mod-
ified by selection and mating operators over several generations until a stop-
ping criterion for the search process is met. EAs and Search-based Procedural
Content Generation are explained in detail in their own separate subsequent
section 2.2.

8

2.1 Procedural Content Generation

Constraint-based Using logic programming, the constraint-based approach
describes the problem to solve through constraints as opposed to describing
how to solve the problem. The constraints are then passed to a constraint
solver such as in Answer Set Programming [51], which searches for solutions
that satisfy the problem described. Solvers typically represent a kind of black-
box optimizer, but are highly implementation-dependent and can vary greatly
in their functionality. In general, the search process consists of assigning each
variable a value in its range, so that in the end all the constraints are satisfied.
Therefore, the result is most often a single solution, but could also be a list of
feasible solutions that meet the desired criteria, which would require a further
decision-making process to choose the best one.

The constraints can allow faster convergence time to find solutions compared
to the search-based approach because they reduce the total search space of
the problem. However, suitable constraints require a great deal of knowledge
about the game, since otherwise the search space could be reduced in such
a way that important solutions are left out or invalid solutions are found by
omitting important constraints. Therefore, the computation time is strongly
affected by the quality of the constraints, but also has the potential to rapidly
generate levels that can meet the real-time specifications of human designers
[53].

Rewriting Systems Rewriting systems are a wide range of methods that
replace partial terms of a formula with other terms derived from the research
area of theoretical computer science. In a procedural generation context, they
enable deterministic or non-deterministic content creation, starting at a given
point and applying replacement rules.

One of the most popular rewriting systems is the L-system [30], inspired by
Chomsky’s [4] work on formal grammars and biological processes in cells.
While formal grammars apply replacement rules sequentially, L-systems work
in parallel and can even be extended to allow the generation of full road net-
works [38] or procedural geometric modeling of complex 3D models [35].

They are also most commonly used to generate fractals. Fractals describe
a wide range of geometric shapes that resemble naturally occurring branch-
ing patterns seen in plants or other cellular structures. While they appear
to mimic natural processes such as plant growth or erosion, their generative
nature allows them to contain detailed structure at arbitrarily small scales.

9

2 Background and State of the Art

This is a desirable property in Procedural Content Generation, since imita-
tions of naturally generated real-life structures appear to represent high quality
generated content. Additionally, games typically present content at different
scales, such as an overview of the entire world map, which is then split into
multiple low-scale levels based on the higher-level map. Fractals enable the
generation of exactly such content and find their most suitable use case in
these scenarios.

Constructive Approaches Similar to rewriting systems, constructive ap-
proaches also start at a given point, but then gradually generate content
instead of replacing it. This means that only one solution is generated per
run, typically via cellular automata or similar systems. A cellular automaton
is a discrete computational model consisting of an n-dimensional grid with a
number of cells in a finite state and a set of transition rules. By applying the
transition rules to all cells simultaneously, a new generation is created as each
cell is transitioned to a new state based on its own current state and the state
of all cells in its neighborhood. Hence, the neighborhood defines which cells
around a given cell will affect its future state.

The best-known example is Conway’s Game of Life [13], a two-dimensional
zero-player game that combines very simple programming with resulting emer-
gent and self-organized behavior. Cellular automata are widely used to model
environmental systems such as fluid flow, fire, rain or explosions in games and
are also capable of generating procedural terrain [18].

Noise Functions [25] "A noise is a stationary and normal random process.
Control of the power spectrum is provided, either directly, or through the
summation of a number of independent scaled instances of (typically band-
limited) noise".

Commonly understood in physics as a disturbance variable with a broad, non-
specific frequency spectrum, noise has applications in computer graphics and
PCG as a random and unstructured pattern that can be useful for pattern
generation or efficiently adding a source of rich detail to synthetic images.
Mathematically, noise can be understood as a multivariate random variable
generated by various stochastic processes. White noise, for example, can be
viewed as a combination of statistically independent random variables, each

10

2.2 Evolutionary Algorithms

component having a probability distribution with zero mean and finite vari-
ance.

In practice, noise is represented as a series of random numbers arranged in
an n-dimensional grid, typically as two- or three-dimensional matrices of real
numbers. These numbers can then represent the brightness of associated pix-
els or the elevation of a specific point in a height map. The research area
of computer graphics uses noise for procedural texturing to model complex
materials and objects such as terrains or shapes and can even be extended
to the animation of water surfaces, for example. Inspired by the observation
that natural systems appear noisy, the basic idea of creating natural lookalikes
through procedural generation is to add noise to the content. However, noise
usually has to meet some properties, the most important of which is smooth-
ness, which means that local changes in noise should be gradual, while global
changes can be larger.

Perlin proposed the first known implementation of a gradient noise function
in 1985 [42]. The basic implementation involves three steps: creating a vector
grid and choosing pseudo-random gradient directions at the vertices, com-
puting the dot product between the gradient vectors and their offsets, and
smoothly blending between them to achieve smooth transitions. Typically,
multiple layers, called octaves, are combined in addition to create a better
fractal appearance in the end. Later, Perlin addressed problems of his original
noise function and designed an algorithm to reduce the computational com-
plexity of scaling to higher dimensions and reduce the visible lattice artifacts,
called simplex noise [43]. Implemented by default in most computer graphics
software packages today, procedural noise is still widely used, particularly in
video games, and continues to be researched [21], [2], [26].

2.2 Evolutionary Algorithms

Evolutionary algorithms are a class of population-based search algorithms that
belong to the stochastic, metaheuristic optimization methods. Fundamentally,
metaheuristics represent general computing techniques that are designed to
solve numerical and combinatorial optimization problems and provide a suffi-
ciently good solutions over several iterations [24]. The specific population and
search-based aspects of EAs are inspired by the Darwinian principle of evo-
lution to create simulated evolutionary optimization algorithms. The general

11

2 Background and State of the Art

assumption is that biological evolution is capable of solving challenging adap-
tation problems and providing complex solutions represented as life forms, and
therefore provides a working rationale for addressing optimization problems.
For a given optimization problem, the resulting algorithms apply evolutionary
principles such as mutation, selection, and reproduction to a population of
candidate solutions to produce offspring and thereby increase variation in the
population. Another selection operator, typically survival of the fittest, re-
duces the population back to its original size, reducing variation by dropping
the least fit individuals.

Based on the theoretical definition of optimization problems, the goal is to find
the single best solution from all feasible solutions, but as mentioned in Chapter
2.1 on multi-objective optimization, it is more reasonable to find the set of the
n-best solutions for the given problem. For these reasons, in the further course
of this work we always consider the general goal of Evolutionary Algorithms
to find the n-best solutions instead of the single best solution. Optimization
problems almost always have one or more constraints, a condition that the
solutions must satisfy. For this reason, among these n-best solutions, there
may be non-valid solutions that are less in conflict with the constraints than
others of higher quality. Constraints serve as a measure of feasibility, and not
conflicting with constraints means preserving feasibility, since feasible parents
produce feasible offspring, which is a desirable trait. In order to find these
n-best solutions, the most promising intermediate candidates are successively
improved over several generations, using the evolutionary principles already
mentioned. The incorporation of previous knowledge about the optimization
problems allows for the design of problem-specific evolutionary operators and
the integration of these in the search process to cope with the varying chal-
lenges of complex problems [1]. The aforementioned evolution process and
its structure can be better observed in Figure 2.1, which shows a graphical
symbolic representation of a generic evolution algorithm.

The search process begins with the typically arbitrary initialization of the pop-
ulation of individuals, each individual representing a search point in the space
of possible solutions to the given optimization problem. The generation cycle
is then started by decoding this population of search space points into their
solution space representation so that they can be evaluated in the environ-
ment, the solution space of the problem. This results in a quality information,
the so-called fitness value, being assigned to each search points to indicate a
ranking among the existing solutions. After each evaluation, the terminal con-

12

2.2 Evolutionary Algorithms

Initialisation

Reproduction

Selection

Stopping

Criteria

Environment

Selection

Evaluation

Mutation

Crossover

Initial

Evaluation

Figure 2.1: Visualization of the basic process of Evolutionary Algorithms.

dition is checked to verify if the optimal or sufficiently good n-best solutions
have been found. If that is not the case, the cycle continues by selecting favor-
able individuals to reproduce based on their fitness. These selected individuals
will create new solutions based on the recombination of their own search space
coding. These new individuals are additionally mutated, modified on a small
scale, to introduce independent innovations.

These new individuals are then integrated into the population and evaluated
to assign them a fitness value. From this larger population, individuals are
selected and sorted out in order to keep the population size constant over the
generation cycles. Since a growing population means longer running times, it
is generally not considered favorable to keep more potentially weaker solutions
at the expense of increased computation time. Afterwards, the generation
cycle is run through again until a termination condition is met after the fitness
assessment of the population. By recombination of favorable solutions and
only keeping candidates of reasonable quality in each generation cycle, the
algorithm eventually evolves the population into more desirable regions of the
search space to find the optimal n-best solutions [3]. Algorithm 1 shows the
general scheme of an EA and serves as a computational representation of the
common basic functionalities of Evolutionary Algorithms.

13

2 Background and State of the Art

Algorithm 1 General Scheme of an Evolutionary Algorithm by [24]
procedure evoalg;
begin

t← 0; (∗initialize the generation counter∗)
initialize pop(t); (∗create the initial population∗)
evaluate pop(t); (∗and evaluate it (compute fitness)∗)
while not termination criterion do (∗loop until termination∗)
t← t+ 1; (∗count the created generation∗)
select pop(t) from pop(t - 1); (∗select individuals based on fitness∗)
alter pop(t); (∗apply genetic operators∗)
evaluate pop(t); (∗evaluate the new population∗)
environmental selection (pop(t), pop(t - 1));
(∗ select individuals for the next population∗)
end

end

2.2.1 Building Blocks of Evolutionary Algorithms

The following section provides a brief depiction of the basic underlying mech-
anisms in the evolutionary search process, focusing on those aspects that are
most relevant to the concepts and ideas discussed in this work.

Encoding Again following natural inspiration, individuals are encoded via
chromosomes, which represent a sequence of computational objects such as
numbers, bits, or characters. For the sake of simplicity, in Evolutionary Al-
gorithms, individuals usually have only one chromosome, but with multiple
variables or computational objects represented by genes. Each variable has its
own variable domain expressed as possible alleles. The entire genetic repre-
sentation of an individual is referred to as a genotype or encoding and defines
the overall dimensions of the search space, the set of all possible genomes.
However, in order to evaluate all individuals in the population for the given
optimization problem, these variables must be mapped to implementable so-
lutions. These instances of the optimization problem lie in the solution space,
the environment of the problem. In the so-called genotype-phenotype map-
ping, encoded individuals are transformed into their decoded representation in
the solution space, the phenotype. This mapping, which connects search and
solution space, is typically performed with a decoding function.

14

2.2 Evolutionary Algorithms

If the encoding is too large or too complex, the search space becomes corre-
spondingly high-dimensional, which complicates the search process for the EA.
Optimal solutions are generally harder to find in larger search spaces, reducing
the overall effectiveness of the search as a whole [62], known as the "curse of
dimensionality". The genetic representation not only affects the efficiency of
the search, but also biases the search process towards different parts of the
search space. Even though individuals can be evolved to satisfy the same eval-
uation function and reach similar fitness, the results mapped to the solution
space can look very different. A desirable property for the encoding is locality,
which describes that similar genetic representations should result in similar
phenotypic proximity. Altering one gene on the chromosome should not lead
to a completely different solution.

Initial Population Mathematically, an Evolutionary Algorithm population
is a multiset of candidates because it is technically possible for identical so-
lutions to exist due to the expression limitation in the chromosome represen-
tation. Usually all individuals are generated as a random chromosome, but
it is possible to choose other methods if constraints on the representation of
individuals have to be satisfied or if the random initialization generates invalid
candidates that have to be discarded or repaired.

Fitness The fitness value of an individual is a measure of the quality of the
performance of this solution in the problem to be optimized. In most cases,
the function to be optimized and the fitness function are identical, or at least
the optimization problem provides a fitness function with which solution can-
didates are to be evaluated. But similar to the remarks on population initial-
ization, constraints can additionally be incorporated in the fitness function if
the problem requires these to be satisfied in order for a solution to be accepted.
In addition, the fitness function can be used in conjunction with constraints to
introduce a bias toward certain additional desirable properties of a solution.

This inclusion can also be expressed via multiple fitness functions, each of
which provides a measure of quality related to different aspects of performance
in the optimization problem. However, the classical selection operators require
a single value to rank the members of the population, which is why it is common
to design a combination of several fitness functions into one final result. A most
straightforward approach is to use a weighted sum across all fitness functions,

15

2 Background and State of the Art

but this requires careful tuning of these weights to account for the interaction
of different fitness values, as they may depend or even counteract each other.

Selection Selection is one of the three main genetic operators guiding the
Evolutionary Algorithm in its search for an optimal solution to a given opti-
mization problem. Based on the assumption that better performing individuals
produce offspring of higher quality by passing their own strong genes to their
children, selection operators should favor the highest ranked individuals for
reproduction based on fitness. Selection operators are an essential but com-
pletely independent part of the EA, since they operate on individuals and their
fitness regardless of the structure of the search space. The degree of impact
that fitness has on selection is called selective pressure. Selection should always
be proportional to fitness due to the aforementioned assumption and the fact
that selection without selective pressure, meaning without regard for fitness,
essentially degrades the search process to a random search that is unlikely
to find an optimal solution in reasonable time. On the other hand, directly
ranking and selecting individuals based on their fitness can lead to a domina-
tion problem. In this scenario, all other individuals are suppressed by a single
individual with a very high quality that will almost always be selected.

A specific selection operator to address the domination problem and control
selection pressure is tournament selection. Rather than rank and select in-
dividuals in direct proportion to their fitness, individuals must first win in a
tournament to be selected for reproduction. A tournament is a competition
between k individuals, uniformly drawn at random, with the winner then be-
ing determined based on fitness. Therefore, the solution with the best fitness
of those k competitors is selected and all contestants are then returned to the
draw pool for the next tournament. With this method, fitness only indirectly
contributes to reproductive success, since all individuals have an equal chance
of participating in a tournament and only the chance of winning a tournament
is determined by fitness.

The parameter k ∈ 2, 3, ..., |pop|, which represents the tournament size, is a
selective pressure control where larger tournaments also apply greater selective
pressure. This is exemplified by the example of the largest tournament with
size k = |pop|, which degenerates into direct fitness rank selection, selecting
only the best individual each time. Despite the obvious fact that the indi-
viduals with the highest fitness are the most likely to win a tournament, it is

16

2.2 Evolutionary Algorithms

not impossible for worse individuals to reproduce given the possibility of being
drafted into a tournament where all other contestants have a lower fitness score
than they possess. Especially with a small tournament size k, lower quality
individuals are more likely to encounter this scenario in the selection process.
The only individuals without any chance to win a tournament are the worst
k− 1 of the population. Conversely, larger tournaments increase the chance of
including one of the best individuals, nullifying less fit participants’ chances of
winning in the tournament.

The previous discussion of selection only focused on the selection of individ-
uals for reproduction, but once these solutions produce offspring, the popula-
tion grows and can noticeably slow computation time if the population simply
keeps growing with each generation. Here, environmental selection addresses
this issue by deciding which individuals to drop after a generation and which
individuals to advance to the next generation. Most commonly, the combined
population of existing individuals, their number is denoted by µ, and the newly
created offspring, denoted λ, is considered and exactly µ individuals are se-
lected for the next generation cycle. This approach has the advantage that
high quality solutions can last for generations, even if they may not produce
better offspring through reproduction, and is known as elitism. Elitism ensures
that the fitness already achieved by individuals through the search process does
not decrease from one generation to the next and leads to better convergence
properties in which local optima are consistently approached [23]. Converging
to local optima too fast and too early opens up the discussion about the use-
fulness of this approach with this disadvantage, but it has the advantage that
the quality of the n-best individuals never deteriorates over time.

Mutation and Crossover Besides selection, mutation and crossover are the
other two main genetic operators. Their main purpose is to modify and recom-
bine chromosomes to produce new candidate solutions that are similar to their
parents. A Crossover operator involves more than one parent solution, usually
two, and recombines their genes to produce offspring. Since the selection oper-
ator generally favors and selects the most suitable individuals for reproduction,
the crossover operator then shuffles the genetic information of these parents
in the expectation of creating an even better solution. Subsequently, the mu-
tation operator introduces more genetic diversity into the generated offspring
through small variations of their genes. The variations of a child solution are

17

2 Background and State of the Art

independent of their parents to prevent the pool of individuals from becom-
ing too similar over the course of evolution, and can be viewed as introducing
innovations into the gene pool.

As with other building blocks, it should be clear that the use of a reproduction
operator is only a general requirement for a working EA. Depending on the
problem and the chosen encoding, the genetic operators can be very generic or
highly problem-specific, and are usually chosen to closely match the individ-
ual’s chromosomal representation. The most well-known crossover operator is
the one-point crossover, in which a random intersection point is determined
and gene sequences on one side of the intersection are swapped between the
parent chromosomes. The two-point crossover works on the same principle,
but selects two intersections and swaps gene sequences between the two in-
tersections. This can be generalized to a variable number of crossover points
with the n-point crossover, in which there is an alternating swapping and non-
swapping of gene sequences between two consecutive intersections. The classic
example to elucidate a mutation operator involves individuals with their chro-
mosome encoded as a bit string, meaning that each gene in the sequence can
be expressed as either zero or one. The simplest operator, bit mutation, then
randomly flips alleles by turning a zero into a one and vice versa.

Termination Conditions The search process usually takes a relatively long
time, but should never take forever, which is why a termination condition is
essential for any EA. The overall goal is to find the final optimal solutions,
but the optimal points of the problem are not known beforehand, so other in-
termediate measures are used to prevent an unending search scenario. Typical
termination conditions involve a predefined quality that an individual must
achieve, a certain number of generation cycles that have been completed, a
measure of whether there is still visible progress in terms of fitness perfor-
mance, or a combination of these.

Hyperparameters Only touched on in this subsection, but still important to
mention: For a complete specification of an Evolutionary Algorithm, several
hyperparameters must be defined before starting the search process, such as
the population size µ, the number of offspring to be produced λ and all other
parameters required by the genetic operators. The search for the optimal set
of hyperparameters is a scientific research topic in itself [19], [7], but even with

18

2.2 Evolutionary Algorithms

less complex problems these cannot simply be assigned arbitrarily, but should
be determined with care and taking into account the problem specification.

2.2.2 Rolling Horizon Evolutionary Algorithms

Rolling Horizon Evolutionary Algorithms (RHEAs) are a subclass of Evolu-
tionary Algorithms that focus on planning and policy generation for game
agents under real-time constraints. Originally introduced by Perez et al. [29]
as a rival method to Monte Carlo tree search algorithms, a popular heuristic
search method for real-time decision making, they have become a similarly
popular and researched method in the context of General Video Game Playing
[28].

The obvious approach to addressing the problem of decision making in games
with EAs would be to pre-search for the best possible actions in an offline
model of the game and then train an agent to perform those actions during
gameplay. This is a relatively inflexible approach that does not allow dynamic
adjustment or reaction to new in-game situations, since the search process is
already complete. RHEAs integrate the search problem into the game itself
by evolving an action sequence for a short finite period of time, typically a
few milliseconds, online during the game in an internal model where actions
can be simulated and evaluated [8]. Then the best action found is carried out,
the change in the game state is observed and a new, short-lived search process
is started in order to find the subsequent best action for the new game state.
This process is repeated until the game is over.

The genetic representation of a Rolling Horizon Evolutionary Algorithm de-
pends on the possible action space of the game, but is always mapped to the
phenotype representation as an action sequence from an initial state to the last
considered action. Similar to EAs, the fitness function for evaluating actions
is kept general to avoid expressive limitations and places a general focus on
performing adequately to win the game overall. The termination criteria is not
tied to reaching a fixed number of performance score or even finding the most
optimal solution, but limited based on the search algorithm’s fixed exploration
range, called horizon, a limited look-ahead in the form of a time frame, but in
much smaller dimensions than the typical search process would take.

RHEAs have become a core component of General Video Game Playing frame-
work [9] and are constantly improved and modified in order to continuously

19

2 Background and State of the Art

improve their performance further [10], [11]. The general approach allows for
the application to a varying kind of games as they are designed with the goal
of general video game playing in mind [31], [49].

2.2.3 Search-based Procedural Content Generation

Search-based Procedural Content Generation covers Procedural Content Gen-
eration algorithms that use EAs or other stochastic optimisation algorithms
to search for and generate good game content. For a detailed explanation and
discussion of Evolutionary Algorithms, we refer the interested reader to Section
2.2. The term Search-based Procedural Content Generation is not limited to
EAs, but allows all forms of heuristic and stochastic optimization algorithms
[63]. However, within the context of this work, we mainly discuss the most
commonly used metaheuristic for SbPCG, Evolutionary Algorithms.

Mutation and crossover operators, essential components of an EA, are usually
chosen highly variably, since they always have to match the problem-specific
encoding. As the generation of game content covers a wide range of problems
and thus a large number of problem representations, the operators also vary
greatly. Unfortunately, little attention is paid in the scientific literature to the
specific implementation of these operators [59],[17],[12],[48].

The scholarly works have agreed on two central problems that have to be
addressed in the construction process of such an algorithm: the content rep-
resentation, which defines the search space of the problem, and the evaluation
function, to determine the quality of solutions [60]. Only a combination of ap-
propriate content presentation and a meaningful evaluation function enables
the evolutionary search to find interesting, diverse content in a reasonable
amount of time. These two central problems are discussed in more detail
below.

Content Representation Since solutions in Evolutionary Algorithms are en-
coded as a sequence of computational objects, they can take any form depend-
ing on the required application and the presupposed problem. In the context
of game context generation, the genotype-phenotype mapping typically con-
tains instructions for creating game content such as a level, maze, or map, and
the phenotype involves the visual representation of the actual content to be

20

2.2 Evolutionary Algorithms

generated for the game. Choosing the right encoding is of paramount impor-
tance as video games tend to have complex data structures for their content,
i.e. a graphical model represented as a mesh of triangles, or a map that spans
thousands of tiles, or the whole story as a text spanning several chapters [60].
Because the genetic representation of individuals is directly correlated with
the dimensionality of the search space, the chosen genotype influences the ef-
ficiency of the search process and the vastness of content that the algorithm
will be able to cover.

Evaluation Function The fitness function assigns a fitness score to each
solution as an indication of its quality and is the main guide in the search pro-
cess towards better solutions in the search space. Therefore, a badly designed
fitness function can prevent the entire evolutionary process from working as
intended and prevent high-quality solutions from being found. Crafting an
evaluation scoring function to map desirable content quality in a video game
context to a numeric value is an ambiguous task. This can depend heavily
on the desired type of content and its in-game functionality to be output [63].
The most popular example of this is the term fun, as this is a commonly
understood concept, but one that seems impossible to define and articulate
without leaving room for misinterpretation. For example, some players may
describe a challenging, competitive round as entertaining, while others prefer
more peaceful rounds that require less consideration and planning to achieve
a win in order to have fun.

In general, fitness functions are not subject to strong design restrictions and
one could come up with an almost infinite number of them, since they can
also be designed specifically for the problem. However, Togelius et al. [63]
distinguish between three key classes of evaluation functions in the context of
SbPCG, which are summarized below.

Direct Evaluation Functions evaluate content based on the content’s phe-
notypic representation in the game. As is customary in evolutionary
algorithm, solutions are decoded into the solution space and evaluated
directly in the problem-specific environment. Therefore, characteristics
of the generated content directly correlate with the associated quality.
These fitness calculations have the advantage of being fast to implement
and execute, and can provide a quality score at all times, including dur-
ing gameplay. The resulting disadvantage of this forward approach is

21

2 Background and State of the Art

that the connection between game content features and desired or asso-
ciated fitness is non-obvious. Because game content can interact with
the game and the player in various complex ways, the task of devising a
direct fitness function is very challenging.

Simulation-based Functions evaluate content based on calculated statistics
of on AI agent playing through the game. Agent behavior and the re-
sulting game states provide information on how generated game content
is to be evaluated. The most common are two types of assessment tasks
that also indirectly set the requirements for the AI agent, playability and
player experience. In the case of playability, the ability to reach the end
of the game or get as far as possible or last as long as possible are crucial
qualities that an agent has to exhibit. The subject of player experience
poses a very general but also difficult task, which in short is often tackled
with an AI agent capable of mimicking human behavior.

Interactive Functions evaluate content based on interaction with a human,
either implicitly or explicitly collecting data from the player. Implicit
data collection is based on assumptions and knowledge about the con-
nection between player behavior and content quality. As an example,
Hastings et al. [15] attributed the number of times a procedurally gener-
ated weapon was selected to the overall popularity of the content. Since
this method relies on implicit knowledge and assumptions, the results
are always bound to the incorporated understanding of game and design
mechanics. Explicit data collection takes into account direct decisions
about the quality of generated content, providing more insights and re-
liable information. But this usually requires a break in gameplay and
a change of focus for the player. Switching from gaming immersion to
evaluating gaming experience and decision making takes a longer time
overall. The general requirement of having a human integrated into the
process is on the one hand a challenge and another resource that needs to
be managed. But on the other hand, a useful decision maker and accu-
rate estimator of player experience for the game content design process.

These three different classes of fitness functions all have their advantages and
disadvantages. Which of these functions is generally most useful for Procedural
Content Generation cannot be decided in general terms. Fundamentally, the
design and application of a fitness function to an optimization problem is
always highly task-specific. For this reason, it can be beneficial to have more

22

2.3 Tile-based Games

than one fitness function to capture multiple aspects of fitness to account for
more than one strict definition [60]. This is consistent with the conclusions
drawn in Section 2.1 on the subject of multi-objective optimization.

2.3 Tile-based Games

Tile-based video games represent their playable game world on the screen as
a grid of tiles. While tiles are compact polygonal graphical entities, mostly
triangles, squares, rectangles, or hexagons, the set of possible images that can
be displayed by the game is called a tile set. Dating from the earlier days of
video game development, when computers were limited in their computational
capabilities and ability to display rich textures, running a game and displaying
graphical information at the same time required careful game design. Com-
pared to always rendering the entire frame at once, tiled rendering reduces
memory, bandwidth, and processing time, making it possible to conserve these
resources in times when video games, for example, had to fit into cartridges.
Today, the hardware of modern computers allows for more resource-intensive
graphics display, and tile rendering is only visually used as a design choice for
its highly recognizable visual appearance.

From a game world-structuring and interaction perspective, hexagonal grids
have clear advantages over the traditional square grid counterpart. First,
neighbouring tiles always share a common edge, which means that no two
cells touch at just a single corner, compared to squares. Second, all neighbor-
ing tiles in the grid are equidistant from each other because the distance from
the center of one tile to the center of the six adjacent tiles is always the same.
In a square grid, the distance from the center to the four diagonal neighbors is
skewed by a factor of

√
2 compared to the distance to the adjacent vertical and

horizontal neighbors. Hex grids are most often considered in strategy games
due to the influence that the equidistant property and additional neighboring
tile have on tactical gameplay. Circular attacks and effects like explosions work
in a more natural radius, and unit movement is also more balanced compared
to square grids.

Tile-based Games in Science Tile-based games are often associated with
Procedural Content Generation, especially map generation, in scientific re-
search [33],[46]. They conveniently subdivide their content presentation into

23

2 Background and State of the Art

smaller, manageable pieces with local characteristics. Notwithstanding this
division, tiles provide enough functionality for endless possibilities in game
content creation [36],[14],[54].

2.3.1 Hexagonal Grids

A hexagon is a 6-sided polygon with 6 corners and if these are regular, i.e. all
sides are the same length, 120° interior angles in each corner. If the opposite
corners of a regular hexagon are joined together, the inner surface can be
represented by six equilateral triangles. The hexagon, along with the square
and equilateral triangle, is the only equilateral polygon that allows regular
tiling of a plane, that is, edge-to-edge tiling. In a plane tiled with a hexagonal
grid, each hexagon is connected to its neighbors by entire edges, and never just
by corners or portions of an edge. From another angle, one could say that each
corner of the grid is shared by 3 hexagons and each side by 2 hexagons. The
typical orientation for hexagons in a grid is either as horizontal rows shifted one
below the other, or as shifted vertical columns. Figure 2.2 show a comparison
between both possible hex grid orientations.

side

centercorner

side

center

corner

Figure 2.2: Comparison of hexagonal alignment of vertical columns and hori-
zontal rows.

24

2.3 Tile-based Games

Coordinate Systems When defining a hexagonal grid, not only the orien-
tation needs to be defined, but also how coordinates are assigned to each
tile, as there are several possible approaches. On his website [41], Amit Patel
presents a comprehensive compendium on this subject, which contains various
approaches, common formulas and algorithms for hexagonal grids, on which
the following section is based.

Offset coordinates

The most common approach is to offset every other column or row. You can
either offset the odd or the even column/rows, resulting in two variants for each
orientation of the hexagons in the grid. The resulting possible representations
are exemplary shown in Figure 2.3.

1,1

2,01,0

0,1

1,2 2,2

2,1 1,1

1,00,0

0,1

0,2 1,2

2,1

(a) Horizontal layout with odd and even offset

1,1

1,0

2,10,1

0,2

1,2

2,2

1,1

1,0

2,00,0

0,1

1,2

2,0

(b) Vertical layout with odd and even offset

Figure 2.3: Overview of hexagonal coordinate system layouts.

25

2 Background and State of the Art

Cube coordinates

Another way to look at hexagonal grid coordinates is to develop a coordinate
system with three main axes X, Y and Z, as opposed to the two we have for
square grids [16]. A point on the hex grid is thus described by three coordinates
(x, y, z). In this system, the hexagonal grid is actually a diagonal plane that
is a cut through a cube in 3D, described by x+ y + z = 0.

Depending on the chosen orientation of the grid, there is either a horizontal
axis or a vertical axis and the other two run symmetrically diagonally and
cross at the coordinate origin. Visually, in the vertical representation, the
X-axis refers to northeast/southwest movement on the grid, the Y-axis to
northwest/southeast movement, and the Z-axis to east/west movement. The
three axes are then traversed similarly to Cartesian coordinates, but moving a
hex tile changes two coordinates instead of one.

Axial coordinates

Axial coordinates are an extension of the cube coordinate system by incorpo-
rating the fact that the plane defining the X, Y and Z axes in cube coordinates
is constrained by x + y + z = 0. As can also be seen visually, points on the
Z axis always satisfy z = −x − y due to axial symmetry [32]. Therefore, the
z-coordinate is taken into account, but not stored for the coordinates of the
points, only calculated when needed. Figure 2.4 shows a comparison of cube
and axial coordinates in the case of a vertical column hexagonal grid.

x

yz

0

0

-1 1

2

1-1

-2

-2

-2

-1

-1

0

0

1

1

2

2

2 0

1 1

20

-1 2

0 1

1 0

2 -1

2 -2

1 -1

1 -2

0 -1

-1 1

-2 2

-2 1

-1 0

-1 -1

-2 0

0 -2

x

y

0

0

-1 1

2

1-1

-2

-2

-2

-1

-1

0

0

1

1

2

2

0

1

2

2

1

0

-1

-2

-1

-2

-1

1

2

1

0

-1

0

-2

Figure 2.4: Cube and axial coordinate system.

26

2.3 Tile-based Games

Neighborhoods Since access to single tiles and their surrounding neighbor-
ing hexes is crucial for map generation, we formally define the neighborhood
relations for the case of vertical offset coordinates as follows:

For a given hexagonal tile in the grid h the first level neighborhood N1 con-
tains all tiles ni that are in reach of one step from h, meaning N1(h) =

{ni|distance(ni, h) = 1}. For all tiles not lying on the edge of the grid there
exist six tiles in the first level neighborhood and index them starting from
one to six clockwise. Similarly we define the second level neighborhood as
N2(h) = {ni|distance(ni, h) = 2}. Figure 2.5 visualizes these relationships
again graphically. Specifically for this work, we further subdivide N2 into two
subsets, N2k and N2j. N2k contains all tiles in the second-level neighborhood
with an even index as N2k(h) = {ni|distance(ni, h) = 2 ∧ i mod 2 = 0}.
Accordingly, N2j(h) = {ni|distance(ni, h) = 2 ∧ i mod 2 = 1}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 2.5: First and second level neighborhood with N1 = {1,2,3,4,5,6} and
N2 = {7,8,9...,17,18}

27

2 Background and State of the Art

Figure 2.6: The Battle for Wesnoth

2.3.2 The Battle for Wesnoth

The Battle for Wesnoth is an open-source, turn-based, tactical, fantasy-themed
strategy game playable on a variety of platforms including MS Windows, Linux,
and MacOS X. A prominent representative of the turn-based strategy genre,
the game mostly revolves around planning and finding the best strategic ap-
proach to resource management, unit movement, and logistics against another
player.

Game Mechanics and Gameplay Two or more players play against each
other in a round of The Battle for Wesnoth, with the game allowing differ-
ent numbers of human and artificial intelligence players in single-player and
multiplayer modes. Players are referred to as sides in the game and each side
starts with a few units, one of which is a commander, a keep where units can
be recruited by the commander, and some gold, the main resource to recruit
units and pay for their upkeep. The main resources to fight for on the map
are villages, as they generate gold per turn when captured by one side, and
other keeps, as they allow for an accelerated increase in military presence at
strategic points by enabling recruitment at their place.

A typical round then revolves around building an army by recruiting new units
and gathering more resources while fending off the enemy forces from doing
the same. Winning against enemy forces requires either more or better units,

28

2.3 Tile-based Games

which requires more resources, but capturing and defending more resources re-
quires more or better units over time. This creates a constant circle of demand
between units and resources that keeps the game interesting and flowing as all
sides try to expand their own army and supplies, leading to constant confronta-
tions with other sides on the map and requiring strategic unit management for
battles over the resource sovereignty.

The game world is presented as a tile-based hexagonal map, with each hexagon
containing a string representing an overlay texture. An overlay texture is a two-
layer texture that contains a base layer, the graphics rendered at the bottom
of a terrain texture, e.g. the water under a bridge, and the overlay, a specific
top graphic for terrain such as bridges, forests or villages. The game ships
with an already implemented map editor that contains several map generation
algorithms, the parameters of which can be adjusted manually. Figure 2.6
shows a screenshot of the game map with the various terrains and tiles.

Ludii Categorization The Ludemic General Game System [44], Ludii for
short, is a general game system that allows for a human-understandable cate-
gorization and description of games. Originally designed to model historically
traditional strategy board games, the categorization principle is universally ap-
plicable. Games are presented as structured sets of ludemes, high-level com-
prehensible game concepts, or units of game-related information. Below we
provide a minimum description of The Battle for Wesnoth that results in a
legal Ludii game description.

(game "The Batt l e f o r Wesnoth"
(p l aye r s 2)
(equipment

{(board (hex Rectangle 40)) (p i e c e "Leader " Each)
)
(r u l e s

(play (forEach Piece))
(end

(i f (no P iece s P1) (r e s u l t P1 Loss))
(i f (no P iece s P2) (r e s u l t P2 Loss))

)
)

)

29

2 Background and State of the Art

The description follows the basic scenario of two players competing on a stan-
dard 40 by 40 hexagonal tile grid. First, the name of the game, the number of
players and the board with its shape and size are defined. In addition, since the
sides in The Battle for Wesnoth are represented by leader units, we define that
each player should have a piece named "Leader". Next, the minimum required
game rules, the playing and ending rules are defined. The simple playing rule
applied here merely describes that Ludii loops through all the pieces of a player
and extracts legal actions from the pieces to be executed. Equally basic, the
ending rule is defined as a rule that comes into effect when either player has no
remaining pieces and therefore loses the game. The actual players are denoted
here by P1 and P2. This description forms only the most minimal principle of
the game description for The Battle for Wesnoth, which generally allows for
much more complex customization and has more rules. Overall, The Battle
for Wesnoth is a zero-sum game as only one side can win which automatically
means the other side loses and is therefore a purely competitive game.

Wesnoth Markup Language The Battle for Wesnoth features a highly mod-
ifiable engine built on their own markup language called Wesnoth Markup Lan-
guage and the Lua programming language. The Wesnoth Markup Language is
used in all parts of the game, from creating new content to changing the game
scenarios, units, save files or even the interface layout. As a markup language,
Wesnoth Markup Language files are plain, human-readable text files that con-
tain a set of markup instructions, plus macros for extensive use that allow
Wesnoth Markup Language code to be stored in a macro variable that can
be called later, instead of writing the same code again. The Wesnoth Markup
Language contains two basic elements in its syntax: tags and attributes, where
attributes consist of keys and values. For example:

[tag]
key=value

[/ tag]

Tags partition information and serve as an identifier for any information unit,
such as the definition of a side or an event when the Wesnoth Markup Language
file is processed. Attributes contain data that are uniquely assigned by their
prefixed key, which, in addition to the actual content, also defines the type
of data. Since tags are the main level structure for the Wesnoth Markup
Language, they also allow tags within another tag to enable a child-parent

30

2.3 Tile-based Games

hierarchy. Additionally, the [lua] tag allows for custom code execution during
gameplay via the Lua programming language. Lua is a lightweight, imperative
scripting language that is primarily used embedded in other programs and is
notable for its extensibility and speed

The Battle for Wesnoth in Science The Battle for Wesnoth has garnered
a small amount of attention in scientific research across various scholarly do-
mains. Since it is an open source application, the game can be freely adapted,
modified or extended to meet the given requirements. Individual evaluation
methods can then be easily and modularly integrated. In addition, the game
not only provides a fairly strong artificial intelligence that can play the game,
but also allows it to be exchanged for any other artificial intelligence via the
Wesnoth Markup Language. These factors, combined with the ability to exe-
cute custom code, provide a reasonable testbed framework.

For social studies, the game has been incorporated as an application for study
cases on teaching methodologies [20], [27] or served as a platform for research
on human-computer interaction in the modding community [45]. The research
focus directly related to the game is in the area of computational intelligence
and revolves around the design and development of artificial intelligence [64],
[5]. Hybrid learning in particular has been the most successful method so far,
combining evolutionary learning and reinforcement learning to create a two-
tier approach to artificial intelligence decision making [65], [40], enabling agent
teams to play the game effectively [39], or even evolving strategies for a team
of agents [37].

31

3 Content Generation Rolling
Horizon Evolutionary
Algorithm

This chapter introduces the concept and implementation of our proposed al-
gorithm, the Content Generation Rolling Horizon Evolutionary Algorithm
(CGRHEA). The following sections first provide a general conceptual overview
of the task at hand. Thereafter, the design of all essential parts of our algo-
rithm and their integration into the turn-based strategy game The Battle for
Wesnoth are discussed.

3.1 Concept and Overview

The theoretical concepts behind CGRHEA and their discussion in the context
of the desirable properties for PCG are presented in this section. This allows
the classification of the algorithm and the derivation of design constraints for
the implementation based on the goals of this work.

3.1.1 Concept

Parts of the map need to be generated considering the current game state and
presented to the player, therefore the map is generated incrementally. Games-
tates can change significantly between turns and require new map sequences,
which is the reason why the algorithm adjusts its evolutionary search for the
best map accordingly. During this process, the necessary area of the game map
is constantly evolved in a short period of time. In order to keep up with speed
constraints and not disrupt gameplay for too long, the genome dimension of
individuals needs to be limited, as this reduces the calculations required by the

33

3 Content Generation Rolling Horizon Evolutionary Algorithm

algorithm. Consequently, the area necessary for generation is limited to the
number of tiles that a player’s units can reach and see in a single turn. The
considered approach constitutes an online Search-based Procedural Content
Generation algorithm.

3.1.2 Desirable properties

We discuss the fundamental properties mentioned in Section 2.1 for a PCG
algorithm in the context of our design decisions in order to categorize our
approach in the broader context generation characteristics.

Speed Normally, the player is used to being able to control their units as soon
as the other side has finished their turn. But with our online map generation,
we need to generate and update parts of the map between turns to avoid a
player exploring an area that hasn’t been generated yet without making the
player wait too long. Considering that Battle for Wesnoth is a turn-based and
not a real-time strategy game, players should generally be fine with waiting a
few seconds, while there is also a map scrolling animation once a side ends the
turn, but all longer than this should not be acceptable.

Generation must be completed in five seconds or less to avoid disrupting game-
play for too long. In addition, the time required must scale accordingly with
the horizon size, since fewer tiles to be generated result in fewer necessary
computations overall.

Reliability Our algorithm is search-based approach and uses the stochastic
metaheuristic of EAs, therefore the generated result is not deterministic. The
algorithm also takes into account the current state of the game being played,
which means that the result also depends on states that the algorithm cannot
influence. In terms of not producing content that negatively affects gameplay,
the selected tile set does not contain any tiles that would prevent the player
from playing the game.

The design ensures that only valid tiles and villages are placed by the generator
and therefore all generated maps are always playable.

34

3.1 Concept and Overview

Controllability As the Evolutionary Algorithm is strongly characterized by
its hyperparameters, this enables some control over the search process. How-
ever no reliable or deterministic control can be achieved due to the stochastic
nature of our process mentioned in the reliability section.

Because this work focuses on fairness and speed, rather than generating as
many different scenarios as possible, controllability is dropped to some extent
to ensure fairness. The hyperparameters of the EA should influence the gener-
ated results and make a difference, which represents a form of controllability.

Expressivity and Diversity Due to the fact that the algorithm only con-
siders a small part of the possible tileset that the game offers, diversity and
expressiveness of generated results is definitely limited. But the fitness func-
tion attempts to address this issue by discouraging small changes in local parts
of the map to avoid pure randomness, and encouraging large-scale changes to
keep the map interesting. As a consequence of the random initialization and
the non-deterministic nature of the search process, no map will look the same
as a previously generated one.

Full diversity is not achievable since not all possible maps can be generated
as non-playable maps are excluded by design. In theory, the Evolutionary
Algorithm would be able to do this, but constraints and fitness severely limit
this. Due to the stochastic nature of the search process, anything can be
generated and expressed within the limits of the constraints. Running the
algorithm on the same setup, i.e. the same hyperparameters, leads to different,
and therefore divers, results each time. In terms of the necessary limits from
the constraints and fitness, the algorithm is expressive and divers.

Creativity and Believability In terms of emulating human-designed content,
our generator produces very different content compared to a human, since the
focus of our work is on speed, reliability and flexibility based on the game
state. Humans usually design maps with an intention, because they have the
expected gameplay in mind. The Evolutionary Algorithm only reacts to the
gameplay, but does not predict it. In comparison, humans create a much wider
range of maps by having more constraints that are less restrictive than the EA.

The algorithmic creation of game maps of Evolutionary Algorithms represents
a creative process in a broader sense, as unexpected unpredictable solutions

35

3 Content Generation Rolling Horizon Evolutionary Algorithm

emerge, an essential aspect of creativity. The algorithm incorporates fitness
aspects by design to generate a map that, when examined visually, displays a
believable map.

3.1.3 Overview

The algorithm script is configured via Wesnoth Markup Language to call a
preloading routine to initialize all necessary computational objects, which is
the first initialization of the Evolutionary Algorithm and Rolling Horizon. This
happens before the round starts and the user sees anything on the screen. In
addition, the main script is executed waiting for the start of each turn of any
side running the EA with the Rolling Horizon in the start turn function. As
each side is treated separately, the main script first determines the current
playing side and whether the termination criterion that the entire map is gen-
erated is met. If this is not the case and the current rolling horizon is not
empty for the upcoming side’s turn, the evolutionary search process runs for a
set amount of generations, #generations. This includes the typical evolution-
ary processes of individual selection for reproduction, select population, the
application of recombination operators, crossover parents and mutate child,
fitness evaluation, compute fitness, and final selection for the next generation
via select environment. Thereafter, the best individual is selected and the map
tiles in the current horizon are updated based on the individual’s height map
encoding in update map. To make the map a bit more visually appealing, the
function generate overlay randomly creates forests in a certain height range
and a short road network. Map generation is then complete for the current
side’s horizon, but to prepare for the next turn change, we update the global
information of the farthest unit on the other side whose next turn it is in update
horizon, to predetermine the rolling horizon there. Moreover we update the
number of already generated tiles necessary for the Layout Entropy Fitness.
The current side’s player or AI then gains control and can play their turn, and
once the turn is ended, the previously described process is repeated for the
other side. Algorithm 2 displays these information in a short and compressed
form.

36

3.1 Concept and Overview

Algorithm 2 Content Generation Rolling Horizon Evolutionary Algorithm
procedure cgrhea;
begin

while game runs and generation not finished do
start turn
if not empty(current horizon) then

for #generations do
select population
crossover parents
mutate child
compute fitness
select environment

end for
update map
generate overlay

end if
update horizon

end while
end

37

3 Content Generation Rolling Horizon Evolutionary Algorithm

3.2 Content Representation

We represent the in-game map in The Battle for Wesnoth as a heightmap
in our algorithm because "Both textures and many aspects of terrains can
fruitfully be represented as two-dimensional matrices of real numbers" [66].
The heightmap is a discrete grid in which each cell stores its surface elevation
data, a value that is then mapped to a graphical representation in game. The
Battle for Wesnoth defines maps in its own map file format, which includes
metadata in the file’s header and raw map data as multiple lines of terrain
code strings. A line represents a row in the hex grid, and terrain code strings
are shorthands for the actual graphics that are loaded by the game engine and
displayed in the end. They contain two characters for the base terrain layer
and can contain two additional characters for the terrain overlay. The Battle
for Wesnoth provides easy-to-use map access and modification functions via
a Lua API, where map data can be accessed using simple two-dimensional
coordinates.

Inspired by the standard map generator in The Battle for Wesnoth, which uses
only a small palette of tiles, the height values are mapped to four different
possible terrain codes: Medium Shallow Water, Green Grass, Regular Hills,
and Regular Mountains. Additional overlays used in the application are "Vh"
for Cottage, which represents the default village, and "Fp" for Pine Forest.
Table 3.1 provides an overview of all possible height value ranges and the
resulting computational representation in the algorithm. The height ranges
are not split evenly to give the generated terrain a more natural look. Since
hills and mountain ranges are not intended to dominate the entire map, their
range and therefore frequency is reduced in favor of more grassland across the
map.

height range terrain name code string
0.0 - 0.3 Medium Shallow Water "Ww"
0.3 - 0.65 Green Grass "Gg"
0.65 - 0.8 Regular Hills "Hh"
0.8 - 1.0 Regular Mountains "Mm"

Table 3.1: Height value ranges and corresponding terrain representations.

For tile-based generation, the obvious approach is to use patches of multiple
tiles as they have a generally higher expressiveness and are easier to combine

38

3.3 Fitness Functions

to create interesting formations as less variation is possible. We justify our
decision of using 1 by 1 patches using the example of a map with 40 by 40
tiles, 1600 tiles in total, the same size as maps created by the built-in map
generator of The Battle for Wesnoth. Figure 3.1 shows a comparison of tile
patches of different sizes. A 3 by 3 patch covering 9 tiles would take up half
a percent of the map, resulting in less than 200 patches for the entire map
compared to 1600 tiles each for 1 by 1 patches. So increasing the patch size
by two in both dimensions, the total tiles to be generated will be reduced
by a factor of 8 in our example. Additionally, since the generated map will
dynamically expand even to latitude 1 or 2 if units only move that much,
larger patches could not be used for it, or at least require edge case coverage
for it. Furthermore, the Differential Tile Fitness already accounts for larger
neighborhoods for steepness and the mutation operator additionally changes
not only individual tiles but also tiles around them. Although the smallest unit
is a 1-to-1 patch, in many parts of the algorithm larger parts are considered
in terms of generation. However, maps with small patches are difficult to
generate, especially with larger creative structures, and are less resilient to
turbulence, requiring careful design of evolutionary operators. In any case,
our approach could include larger patches to address the previously mentioned
weaknesses of smaller patches, while also covering edge cases for smaller maps.
Nevertheless, our basic approach for the proposed algorithm as a proof of
concept only deals with the smallest possible unit tile of 1 by 1.

Figure 3.1: Comparison of hexagonal tile patches of size 1x1, 2x2 and 3x3

3.3 Fitness Functions

The following sections introduce the considered fitness functions for our pro-
posed algorithm, justify their application in the context of map generation,
and discuss the implementation aspects in detail. All fitness functions listed
should be minimized for optimization.

39

3 Content Generation Rolling Horizon Evolutionary Algorithm

3.3.1 Differential Tile Fitness

Inspiration Observable patterns in nature, for example leaf patterns or other
appearing to be random patterns, have a kind of smoothness property. Points
that are close together usually look very similar to each other, while points
that are far away can look highly different. This constitutes a relation linking
positional proximity to similarity where changes in the local environment are
gradual while a global scale they can be large. Applying this reasoning to
height maps, given their spatial proximity, a given tile should have the same
height as its neighbors Metaphorically, this can be compared to the steepness
of mountains. If you climb a mountain and walk a short distance at one point,
the path does not appear very steep, but the entire track still has incline and
the valley is at a lower elevation than the summit. In differential calculus,
the gradient, a generalized derivative of a multivariate functions, can be inter-
preted as local changes that describes the degree of slope or steepness. Inspired
by this analogy, we designed a fitness function to measure the steepness of our
heightmap, since it is a discrete multidimensional function where its gradient
can be approximated with finite differences. We consider the steepness prop-
erty in our context to be the magnitude of the gradient, meaning the magnitude
of the partial derivative vector. The Differential Tile Fitness should sensitize
the algorithm to smoothness at the local levels, therefore prioritize a map with
varying tile patches which are locally smooth.

Implementation As a measure of the steepness in our generated map, we
compute the Differential Tile Fitness over finite differences as an approximation
for the height gradient of each tile in the heightmap. For a hexagonal tile map,
each tile has six immediate neighbors, and for each of these six directions
we include the partial derivatives, plus second-level neighbors to cover larger
features and their smoothness in the map as the second order derivative. For
the second-level neighbors, six are located in the same direction as the first-
level neighbors and their derivative can be computed via differential quotients,
but this leaves six more between those to be treated separately. To account
for these, we simply take the average of the adjacent derivatives.

By definition, the heightmap is a discrete function, i.e. a function where the
domain and range are each a discrete set of values, rather than an interval in
R as for continuous functions. The difference quotient, inspiration for the Dif-
ferential Tile Fitness, is usually applied to continuous functions to define their

40

3.3 Fitness Functions

derivative. But the difference quotient is not limited to continuous functions,
which is why we apply this general principle to the two-dimensional discrete
function defined on a hex grid, the heightmap.

The standard definition of the difference quotient ϕ for a function f(x) and
two points x0 and x1 is as follows:

ϕ(x1, x0) =
f(x1)− f(x0)

x1 − x0

(3.1)

For continuous functions, the derivative for the function at a given point x0

is calculated by letting the difference h = x1 − x0 approach 0 by calculating
the limit limh→0 ϕ, this is called the differential quotient. Since we limit our
approach to height maps, in the following part we define a differential quotient
Df for two-dimensional hex grids and will refer to this definition below when
mentioning the differential quotient. Since the smallest possible limit in our
discrete function is one step towards the nearest neighboring tile, we define
the point x0 as the tile whose Differential Tile Fitness is determined and x1

as a point in its first-level neighborhood N1. This leads to six points that
meet this criterion, and therefore six differential quotients, two in each of
the three hexagonal dimensions. To combine these into one value, we take
inspiration from the Euclidean norm and consider the six differential quotients
as six variables of the gradient vector. Because a norm is a mapping that
associates a mathematical object with a number that is intended in some way
to describe the size of the object, this is sufficient for our purposes. In other
words, the norm of the differential quotient represents the magnitude of the
partial derivative vector in the hexagonal map. As the distance between x0

and its neighbors is indeed one, we always consider x1 − x0 to be one and can
omit the denominator in Equation 3.1, resulting in the following equation for
the differential quotient:

tDf (x1, x0) = f(x1)− f(x0) (3.2)

where f(x) represents the associated height of tile x in the heightmap. Then
the first order derivative fDT1 is the norm over all differential quotients of x0

in its first-level neighborhood N1, formulated as:

41

3 Content Generation Rolling Horizon Evolutionary Algorithm

fDT1 =

√√√√ |N1|∑
i=1

Df (xi, x0)
2 (3.3)

If a tile in the neighborhood of x0 is not part of the map, it will not be included
in the calculation, effectively setting its value to zero.

The basic differential quotient is designed for N1, but in a similar way to
how the approximation of the first-order derivative is calculated over a one
step forward finite difference, the approach can be extended to higher-order
derivatives. In this work, we consider the second-order derivative and therefore
include tiles in the second-level neighborhood N2 to calculate the steepness
of a given tile x0. We consider the second-order forward finite difference to
approximate the second-order derivative as follows:

ϕ2(h) =
f(x+ 2h)− 2f(x+ h) + f(x)

h2
(3.4)

where h is the step size between the previously given points x0 and x1, calcu-
lated as h = x1 − x0 and again limited to the smallest possible value. Again
the denominator vanishes because h2 = 12 = 1, resulting the second-order
differential quotient:

Df2(x) = f(x+ 2h)− 2f(x+ h) + f(x)

Df2(x2, x1, x0) = f(x2)− 2f(x1) + f(x0)
(3.5)

Since all hex tiles are equidistant from each other, the principle of h = x1−x0

leading to x1 = x0+h can be applied to the second-level tile x2 as h = x2−x1,
resulting in x2 = x1+h = x0+2h. Similar to the first order, the direct second
order norm is calculated as follows:

f̂DT2 =

√√√√ |N1|∑
i=1

Df2(xij, xi, x0)
2 (3.6)

42

3.3 Fitness Functions

where xij ∈ N2j is the tile in the uneven second-level neighborhood, which
is located in the direction from x0 to xi. This includes the six second level
neighbors mentioned above that are in the same direction as those of the first
level.

x0

x1
x1'

x2'

x2

Figure 3.2: Involved tiles in the one second-level differential quotient.

For the six remaining tiles, each lying in the even second-level neighborhood
N2k between two covered tiles, an ambiguous computation exists in the second-
order forward finite difference, since two tiles, x1 and x′

1, can both be taken
on the way from x0 to x2. In the following we refer to these intermediate tiles
as xik ∈ N2k, where each tile xij is associated with the tile xik clockwise next
to it. To account for this ambiguity, we calculate the average between the
norm for both possible finite differences Df2(xij, xi, x0) and Df2(xik, xi, x0).
The second order derivative fDT2 is calculated by including the second-order
forward finite difference for the remaining tiles xik ∈ N2k into the calculation
of equation 3.6, as shown in Equation 3.7, where xi and x′

i are the two tiles
lying on the path between x0 and xik. Figure 3.2 displays all involved tiles for
the calculation of one second-level differential quotient.

fDT2 =

√√√√ |N1|∑
i=1

Df2(xij, xi, x0)
2 +

Df2(xik, xi, x0)
2 +Df2(xik, x′

i, x0)
2

2
(3.7)

43

3 Content Generation Rolling Horizon Evolutionary Algorithm

For each tile, we define its steepness as the sum of the norm of the first and
second derivative in its neighborhood on the height map fDT = fDT1 + fDT2

and express this as a Differential Tile Fitness value. As the biggest possible
height difference between two tiles is one, the possible values for fDT1 range
from zero to

√
6 · 12 ≈ 2.45. Likewise, the largest possible value for fDT2 is√

12 · 22 ≈ 6.92 if x0 and all tiles in N2 have height zero and all tiles in N1

have height one, or vice versa. To constrain our fitness scores, we divide the
results by their maximum,

√
6+
√
48 ≈ 9.37, to preserve values in the range of

zero to one. To account for all generated tiles in the horizon, the Differential
Tile Fitness of an individual is the sum of the Differential Tile Fitness values
for all tiles divided by the number of generated tiles.

3.3.2 Layout Entropy Fitness

Inspiration As already mentioned that two distant points can look very dif-
ferent, this becomes a necessary property for map generation to satisfy variety
in the generated content. If every point on the map is smooth, meaning ren-
dered as the same tile, there is no point of interest to search for in the map,
and no need to continuously generate at all if everything looks the same from
start to finish. But by enforcing diversity on a larger scale, we can guide the
generation to create new structures that are not yet present on the map. In
a figurative sense, the smooth map described represents a high-order map,
since all points on the map are of the same type, because they are equally dis-
tributed. Mathematically, this can be expressed via entropy, a general measure
of order and distribution based on the observation model presented, here the
position of tiles in the map. To provide a counterforce against the smoothing
factors of the Differential Tile Fitness, we designed a Layout Entropy function
that needs to be minimized, since low positional entropy is achieved when we
have low order in the map, which means that the tiles of the same type are
distributed differently across the map. In the overall scheme, Layout Entropy
Fitness should guide the search algorithm to find solutions that have several
different areas of interest at larger scales.

44

3.3 Fitness Functions

Implementation The concept of entropy in information theory was intro-
duced by Shannon [50] in 1948. The entropy H of a discrete random variable
X with n possible values is defined as

H(X) = −
n∑

i=1

pi log2(pi) (3.8)

where pi is the probability of the value xi ∈ X. The maximum value of
entropy is log2 n when all probabilities pi are equal. In general, entropy is
an order metric, where high entropy corresponds to low order and vice versa,
but order and disorder are strongly dependent on the observation model. The
observation model defines the attributes to be observed and their quantization
and thus influences the weighting and appraisal of the observed parameters.

To determine the degree of order in the generated map, we need to mea-
sure whether all tiles are of the same type and equally distributed, which
would represent high order and low entropy. This case is not desirable for
our map, and since low fitness represents high quality for our EA, we need to
invert the computed entropy value used as the fitness score. Another neces-
sary adjustment is the scaling of possible entropy values, since we have four
possible tiles that can be generated, the maximum possible entropy would be
log2 4 = 2. To keep these entropy values in the zero to one range, we sim-
ply divide the calculated value by the maximum possible entropy. Equation
3.9 coherently represents these adjustments, where our Layout Entropy Fit-
ness fE is the inverse of the entropy for all tiles, represented as their count
ti ∈ {Water,Grassland,Hills,Mountains} in the current horizon, scaled in
the range from zero to one.

fLE = 1− −
∑4

i=1 ti log2(ti)

log24
(3.9)

3.3.3 Village Fitness

Inspiration Since villages are an important part of the game mechanics, driv-
ing the circle of demand between units and resources that keeps the game
interesting and flowing, the normal approach of offline generators is to place

45

3 Content Generation Rolling Horizon Evolutionary Algorithm

them reasonably evenly on the map. We chose to generate them each turn
along with the normal base terrain layers as this allows for a base form of
dynamic game adjustment. Due to the fact that an expanding map is linked
to the expansion of one side’s units, an abuse approach could be to move units
as far as possible in order to generate more map for their own side compared
to the enemy. Therefore, this side could dominate a larger part of the map
since it can capture the villages generated there and still have villages left near
its base that are also safe to capture. This would be the dominant strategy
compared to first securing the villages near the player’s keep. To keep multiple
exploration strategies viable for the game, our algorithm considers the expan-
sion of each side and places villages based on their ratio. In general, a player
with a larger explored area should have captured most of their villages, or at
least be confident of conquering them in the future, and therefore have more
resources on hand compared to a smaller explored area. This should result in
fewer villages being generated in the next turn for the player with the larger
exploration area and more for the other side. To try to keep the game fair,
the number of villages placed for each side needs to be monitored, especially
in the early stages. If one side gets significantly more villages, they are heavily
favored to win the match due to the self-reinforcing circle of demand. There-
fore, our established Village Fitness function favors individuals that represent
a balanced village distribution over all sides. The Village Fitness function rep-
resent the main driving force for a basic form of dynamic difficulty adjustment,
which is primarily focused on resource equity over the course of the game.

Implementation As aforementioned, the overall goal is to keep the game
balanced, which requires a balanced distribution of resources in the form of
villages on the map for all sides. The size of the generated tiles for each side
as a measure of their expansion is included in the fitness in addition to the
number of villages. Overall, Village Fitness assigns individuals low scores that
represent good quality when their proposed number of villages represents a
reasonable distribution in the context of the current game state. If one side
has explored a larger part of the map compared to the other, fewer villages
should be generated since we can assume that in previous horizons a sufficient
number of villages were already generated. For the other side of this scenario,
Village Fitness should favor individuals with comparatively more villages. We
express this as the absolute value of the distance between the village horizon

46

3.3 Fitness Functions

ratio, which represents the percentage of villages in the current horizon, and
the side area ratio, the inverse ratio of the generated areas.

First, the village horizon ratio vhr is calculated as the quotient of the scaled
number of villages k · nv in the current horizon and the size of the current
horizon ch. If the calculated fraction is greater than one, we limit the value to
a maximum of one. Similar to the map generator for The Battle for Wesnoth,
which generates a village roughly every 40 tiles or 2.5% of the map, the village
horizon ratio scales the number of villages by a factor of k = 10 to avert
placing too many villages. Therefore, the maximum value is already reached
when 10% of the horizon is covered with villages, which already represents an
above-average village density.

vhr = min

(
nv · k
|ch|

, 1.0

)
(3.10)

Second, the side area ratio sar is calculated as the number of generated tiles for
the opposite side divided by the sum of all generated tiles, meaning the current
gacs and opposite side. This inversion, where the area of the opposite side is
included in the dividend rather than that of the current side, accounts for the
fact that overall fitness should favor solutions with fewer villages, represented
by a lower village horizon ratio, when the opposite side has less generated tiles
than the current playing side.

vhr =
gaos

gacs + gaos
= 1− gacs

gacs + gaos
(3.11)

The resulting Village Fitness is calculated as:

fv = |vhr − sar| (3.12)

By taking the absolute value of the difference between vhr and sar, we achieve
the set design goal of balancing the number of villages for each side based on
each side’s explored area in the game. Regardless of whether too many or too
few villages are generated, we achieve overall higher fitness, which represents
a lower overall quality for the evaluated individual. Since the ratio of village
horizon and side area is in the range from zero to one, the resulting Village
Fitness does not have to be further scaled.

47

3 Content Generation Rolling Horizon Evolutionary Algorithm

3.3.4 Weighted Sum

As mentioned in Sections 2.1, 2.2.1 and 2.2.3, a single-objective fitness func-
tion is typically insufficient, particularly in the context of Procedural Content
Generation, where multiple criteria affect the perceived quality of the gener-
ated content. Following this line of reasoning, we decided to integrate several
fitness functions into a single fitness value via weighted sum combination. The
apparent and most popular multi-objective Evolutionary Algorithm is NSGA-
II [6], a fast non-dominated sorting approach that excels in efficiently solving
constrained multi-objective problems. Since the Lua interpreter in The Bat-
tle for Wesnoth does not allow the inclusion of external code modules, we be
required to reprogram the entire algorithm. Additionally, this approach is com-
putationally expensive and therefore time intensive, which is not best suited
to our fast and reactive approach to map generation. For these reasons, the
integration of NSGA-II was discarded in favor of a faster and simpler weighted
sum approach.

3.4 Rolling Horizon Evolutionary Algorithm

Battles on favorable terrain and careful planning of unit paths are extremely
important for the game, as multiple areas of terrain open up different paths to
strategically important objectives. But terrain tiles vary greatly in their strate-
gic value, as mountains and deep water, for example, are only beneficial to a
few unit types, while grassland tiles have the lowest movement costs, meaning
they can be traversed quickly. Therefore, the map defines the available re-
sources and their reachability by placing the villages directly on the map and
generating the tiles around them. Due to the circle of demand, precautions are
required for the placement of available resources for each side, especially if the
map is created as the game is played. Fairness should be a factor to consider,
otherwise one side will outclass the other due to the difference in available re-
sources, but one benefit of creating the map mid-game is the ability to adjust
earlier misplacements later in the game.

3.4.1 Evolutionary Algorithm

As this algorithm tries to find the best possible map in a short amount of
time, the population consists of a small number of individuals, represented

48

3.4 Rolling Horizon Evolutionary Algorithm

genetically as a heightmap and a list of villages. The height map is randomly
initialized, meaning that each tile is assigned a randomly assigned value be-
tween zero and one. Each tile has a 0.6% chance of getting a village placed on
it as an overlay. Their fitness is assigned based on the aforementioned weighted
sum of three fitness functions, differential, entropy and village based. Individ-
uals are selected via tournament selection with tournaments of size two to
reduce the dominance problem and encourage consideration of different types
of maps without making a full random selection.

For the crossover of two individuals we developed a special form of one-point
crossover that takes two previously selected individuals and produces two chil-
dren. Since we have expanding map circle pieces, the rolling horizon, we split
these at a random vertical point and switch between parents. This is to keep
the operator simple in a one point crossover manner, but still allow for clip-
ping out larger parts that are locally adjacent so as not to lose all effort on
local smoothing compared to randomly selecting the same number of tiles at
all possible locations in the horizon. Villages are copied from parents to their
children as they are mainly modified in the mutation operator.

Another problem-specific operator was developed for the mutation. When a
tile is randomly chosen to mutate, all other neighbors within a radius of two
are mutated. Basically, each adjacent tile is adjusted to the mutating tile, or
rather the difference in height between the mutating tile and the neighbor for
the inner circle with a factor of 50% and for the outer neighbors with 33%. Mu-
tation of just a single tile seemed counterintuitive for such large tile structures,
where the rolling horizon can consist of more than a hundred tiles, as it would
be an imperceptible change with overall mutation chances in the single-digit
percentage range. Increasing the mutation probability parameter would result
in only small local changes that are randomly distributed across the map and
could only tear apart the height map landscape as they do not depend on the
previous mutation. Therefore, in order to introduce a smoothing factor into
the map that takes local properties into account, we decided to reverse the
intuition that a tile is influenced by its neighbors and instead its neighbors are
affected by the selected tile. As this affects multiple tiles rather than just one
and is kept local, the mutation probability can also remain low, which satisfies
the commonly understood criteria for mutations and brings advances in the
generation process as smooth maps are favored in the Differential Tile Fitness
function. This operator does not necessarily have to be smoothing all the time,
considering that a single steep tile is picked in an otherwise smooth neighbor-

49

3 Content Generation Rolling Horizon Evolutionary Algorithm

hood, the mutation will levitate the smooth neighborhood to its own level,
reducing overall smoothness but potentially increasing entropy, as mountain
ranges can grow from grasslands, a scenario that keeps the map interesting
and is encouraged by the Layout Entropy Fitness.

In the same way a base layer tile can mutate, so can a village overlay but in this
case either a village is randomly added to a random tile, or an existing village
is deleted, or a randomly existing village changes its position. Since villages are
the main resource on the map, we consider their numerical balance to be more
important than their specific location. When a village is generated in the next
horizon, the horizon is usually not extremely wide, since the width is based on
the movement and view range of each side’s farthest unit, so a generated village
is always in acquiring range for the associated side, regardless of position. But
the total generated is of paramount importance as they heavily influence how
the game further progresses. An imbalance should be avoided when both sides
are on even ground, therefore the mutation operator only adds or removes one
village instead of several, since generating multiple villages with one mutation
for one side represents an instant economic boost for that side. This has to
be compensated for on the other side in future horizons, which could lead
to a general swing back and forth in compensation measures, which is not
desirable. For that reason, only incremental changes are made, while Fillage
Fitness tends to favor the most appropriate village spread for the current game
state.

3.4.2 Rolling Horizon

Inspired by the Rolling Horizon Evolutionary Algorithm principle presented in
Section 2.2.2, we derived our own rollout principle applicable to tile-based map
generation in the context of the game The Battle for Wesnoth. In the following
part, we briefly present the main differences between the original RHEA and
our proposed version.

Because turn-based strategy games do not require real-time input, players are
used to a slower game pace where they wait for their opponent to finish their
turn after taking actions themselves. Also, since the game pans to the other
side in an animation when a turn changes, there is no need to complete the
generation in milliseconds when playing, but a strong recommendation not to
take more than a few seconds so as not to keep the player waiting too long.

50

3.4 Rolling Horizon Evolutionary Algorithm

Now that our use case considers sequences of the map to be generated rather
than action sequences, we need to define our horizon and how much we want
to roll out with it. Since larger areas generate more computational effort,
we have opted for the minimum area with the lowest computational effort
for calculation and evaluation. The central reference point is the starting
keep for each side, since each side has its own separate rolling horizon that is
independent of the other. From that point, the farthest unit determines how
many tiles to generate in each direction, using the keep as the center of the
growing circle. To this distance dfu of the farthest unit we add its movement
and sight range. This includes any tiles that the player might see when moving
their furthest unit as far as possible in one turn, since more distant points are
obscured by the fog of war. We call this annulus the rolling horizon for each
side and calculate it before the start of each turn. By generating a growing
circle of tiles in each direction, we simplify the generation process to not miss
small tile spaces that are never visited by units during a turn. As players
explore farther from their keep for enemies to defeat and villages to capture,
this usually results in both sides meeting at some point in the middle of the
map when the keeps are on opposite sides placed on a square map. At this
point, both horizons have each covered almost half of the map, which almost
completes the map generation most times, ensuring that the game can then be
played as if a previously created map had been loaded. An advantage of map
generation compared to action sequence evolution is that tiles do not have to
be generated each time. Players usually have to take action each turn, but
if all units do not move further than the farthest unit has already gone, the
horizon does not expand as everything they might see is already covered by the
generated map, so no further computation needs to be done. When the map
generation is finished, usually before the round is even remotely finished, no
further search process needs to be started, therefore our algorithm only delays
the gameplay in the first few turns for adequate map sizes.

Originally designed to evolve action sequences with a strong focus on real-time
decision-making by limiting computation time to just a fraction of a second,
we derived a suitable version for map generation in turn-based games. This
version differs greatly from the original version in fundamental aspects. For
example, time is the most obvious factor, as we computing much longer, but
also the difference between action sequences and tile sequences. While we do
not have a game state as a sequence of actions that is updated iteratively, we do
have a map state for the game. For this map state, the algorithm continuously

51

3 Content Generation Rolling Horizon Evolutionary Algorithm

decides which tile is placed in the current map sequence. Therefore, sequences
of the map are transformed into each other by the respective action of defining
their tiles. There is no forward modeling involved as previous horizons cannot
be used to forward propagate a new map state for the next sequence. If the
map were forward modeled, all individuals would keep a larger sequence of
tiles and iteratively evolve them. Then, each round, the best individual would
decide on the next tiles for the necessary area of the player and optimize the
remaining tiles for the upcoming turns. This represents are desirable process
that is closer to the originally designed Rolling Horizon Evolutionary Algo-
rithm. But for all other individuals in the population, the forward-modeled
map is likely to deviate greatly from the best individual. In the original version,
they would just keep developing their own sequence, but actions are different
than tiles. Since smoothness and fairness rely on a map made up of coherent
parts, the previously decided map sequence would render all other individuals
as mismatches. Therefore, only the best individual and their offspring would
remain competitive in terms of fitness, which is tantamount to evolving only
a single individual through the entire search process. Evolving just a single
individual and effectively discarding the rest of the population each time seems
counterproductive and counterintuitive. For these reasons, we decided to dis-
card the forward model and have each individual genetically represented as
only the necessary map sequence for the next turn. Nonetheless, the fitness
functions are incremental and incorporate some form of back-coupling from the
previous generation, since prior decisions remain on the map and are also eval-
uated. Village fitness accounts for previously placed villages and Differential
Tile Fitness covers earlier placed tiles on the overlapping edges.

Although the original version and our derived version may differ greatly in cer-
tain theoretical aspects, the original version would not allow for efficient map
generation in our case. But since the general process was a great inspiration
and we kept our approach close to this principle, we decided to keep the name
Rolling Horizon Evolutionary Algorithm.

52

4 Evaluation

In this chapter, the basic parameter settings, various methods and metrics are
presented to evaluate the proposed Content Generation Rolling Horizon Evo-
lutionary Algorithm. A set of experiments is conducted to determine whether
the stated hypotheses are supported by the results in order to answer the
aforementioned research questions of this work.

4.1 Hypotheses

The goal of this chapter is to analyze the generation process statistically, to
determine and to evaluate the best set of hyperparameters for the algorithm.
The evaluation focuses on the following hypotheses:

• The algorithm has high sensitivity to hyperparameters in a sense that
small parameter changes lead to strongly varying results.

• The map will be generated each turn in no longer than 5 seconds.

• The algorithm generates fair maps.

4.2 Experimental Setup

All experiments and tests are carried out on a computer running with an AMD
Ryzen 9 3950X 16-Core Processor (2,2 GHz), a NVIDIA GeForce GTX 970
and 64GiB DDR4 RAM (2,4 GHz). The software runs on Ubuntu 20.04.4 LTS
(Focal Fossa) with The Battle for Wesnoth Version 1.16.2.

4.2.1 Data Acquisition

The Battle for Wesnoth Lua interpreter does not provide access to file ma-
nipulation due to security reasons but this is a vital feature for experiment

53

4 Evaluation

data acquisition. To get around this problem we made use of the logging and
error functionality that The Battle for Wesnoth offers. Instead of writing to
dedicated specially created files, the experiment results are thrown as error
because errors are logged in log files on Windows or in the terminal for the
Linux application where they can be written from to the disk.

4.2.2 Game Setup

The experiments are conducted in a standard The Battle for Wesnoth scenario
with two sides playing one against one. Each side is controlled by the stan-
dard artificial intelligence provided by the game itself. Similar to the included
"Random map" generator from the game, the map size is fixed at 40 by 40
tiles with set starting locations for each side in the top left and bottom right
corners of the map. An experiment run corresponds to a game round until the
entire map with 1600 tiles is generated. As the advancement of the generation
mechanism is based on units and their exploration, the same experiment can
take different numbers of turns to finish, since the artificial intelligence never
plays a round that is similar to the other. Because of this, experiments stop
at different points and do not have a fixed number of turns.

4.2.3 Metrics and Hyperparameters

Hyperparameter Evaluation The hyperparameter sensitivity of the algo-
rithms is to be investigated, which is why we determined the most influential
hyperparameters of the EA, namely the mutation chance, the population and
mating size and the weighted sum values. We chose these parameters be-
cause they are likely to have a strong impact not only on the generated result,
but also on the computation time and general incentive of the search process.
Starting from a hand-picked selection of values for these parameters, we mod-
ified them sensibly to obtain a set of rational parameters to examine their
influence, summarized in Table 4.1. This results in four parameters with three
values each, so in total 34 possible hyperparameter combinations with 31 runs
per parameter combination, i.e. a total of 2511 runs. Mating size values are
given as fractions, but the nominal resulting value for the algorithm is always
rounded to the nearest rational power of two. Values of the weighted sum ad-
dress the three fitness functions in order of Layout Entropy, Differential Tile,
and Village Fitness. The #generations for which the Evolutionary Algorithm

54

4.2 Experimental Setup

hyperparameter value 1 value 2 value 3
mutation chance 0.01 0.05 0.005

population size (µ) 20 10 30
mating size (λ) 1/8 1/4 1/2

weighted sum set (1/3, 1/3, 1/3) (0.15,0.7,0.15) (0.7,0.15,0.15)

Table 4.1: Hyperparameters and their respective assigned values.

runs each turn is fixed at 12. We define the fitness of one experiment run as
the average fitness over all turns of the game round where a horizon was rolled
out and tiles were generated. This excludes turns where no further generation
was necessary either because the whole map is generated or the furthest unit
and its movement plus vision range were not greater than the previous one.
The fitness of a single turn is represented by the fitness of the best individual
in the current population.

Mann–Whitney U Test The Mann-Whitney U test [34] is a nonparametric
test that is commonly used to test for difference in sampled random variables.
It was originally designed to test whether, for two populations X and Y, there
is an equal probability that a randomly selected value x from one population X
is greater or less than a value y chosen at random from the other population Y.
However, the test and its result are rarely interpreted in this exact way. Most
of the time, we interpret a significant p-value as meaning of differences between
the distributions or whether two independent samples originate from the same
distributions. In other words, the Mann-Whitney U test tests for differences
between two groups on a single, continuous, ordinal variable with no specific
distribution. Therefore, the formulation would now be that the distribution X
underlying sample set x is the same as the distribution Y underlying sample
set y. Consequently, under the null hypothesis H0 the distributions of both
populations are identical and the alternative hypothesis H1 is that the two
distributions are not equal. As with any other significance test, we assume
that H0 holds and that both distribution sample sets are equal if p > α.

In practice, the Mann-Whitney U test is applied as a nonparametric alternative
to the unpaired t-test [56] when its assumptions are not met. This is true when
the data to be tested is ordinally scaled, or generally when there is no prior
knowledge of the distribution of the data. This applies to the distributions of

55

4 Evaluation

fitness values from different hyperparameter sets for our proposed algorithm,
since EAs are strongly nonlinear due to the fitness function alone.

Horizon-time Ratio The above reasons for variations in turn lengths for the
experiments also cause horizon sizes to vary greatly per turn and per round. In
order to have meaningful discussions about the speed constraints, the horizon-
time ratio is briefly introduced here. We define the horizon-time ratio as the
quotient of the computing time for this turn and the number of generated tiles
per turn, the horizon size. This ratio is used as a measure to describe how
long the entire evolutionary search process spent searching and deciding on
each generated tile in the horizon.

4.3 Experiments

The following list of experiments is conducted to examine the performance
of CGRHEA and to test the hypotheses formulated in Section 4.1. A brief
overview of their intentions and approach is presented, while the results thereof
are shown and discussed in the following section.

Hyperparameter Sets To determine the optimal hyperparameter set, the
single best values for each hyperparameter are determined. By fixing a value
for one hyperparameter and varying all possible combinations for all others,
we get a distribution of fitness values defined by that hyperparameter. The
comparison of the median overall fitness of this distribution with the other pos-
sible values of the hyperparameter provides information about their influence
on the optimization process and their ranking among each other. The exper-
iment concludes with the determination of a best set of parameters, which is
further evaluated and explored in the subsequent experiments.

Hyperparameter Performance The median fitness performance determined
in the previous experiment is not meaningful enough to unequivocally deter-
mine the optimal hyperparameter set. It is important to examine whether the
fitness distribution of an optimal set is also an independent distribution com-
pared to other sets. The set is optimal if changing one or more hyperparameter

56

4.3 Experiments

values also leads to different fitness distributions. Then these specific hyper-
parameters have a significant impact on the quality of the generation. The
Mann-Whitney U test is applied in this experiment to verify this. The p-value
for determining whether the null hypothesis H0 is proven set to α = 0.05. Thus,
if two sets of hyperparameters achieve a p-value greater than or equal to 0.05,
their distributions are identical and therefore have no significant influence.

In a form of tournament, every possible combination of two sets of hyperpa-
rameters is tested with the Man-Whitney U-test and the resulting p-value is
assigned to them.This enables an overall ranking of all hyperparameter sets
based on the number of null hypotheses rejected versus another set and the
sum total of all assigned p-values throughout the tournament.

Turn-based Performance The algorithm runs over several turn and has
to output a sequence of the map almost every turn. Each output result is
valuable to gameplay as it affects the immediately following turns and persists
for the rest of the game. Due to these reasons, the assessment of the best
individual’s fitness progression over all turns is important. The experiment
determines whether the algorithm is able to consistently output high-quality
results or whether it fluctuates by monitoring the fitness of the best individual
over all turns for each turn. Additionally, the average fitness across the game
is provided as a measure of the expected performance by the algorithm. In
addition, the maximum and minimum fitness values achieved in each round are
displayed together with the average score to give an overview of the possible
fitness range of solutions.

Generation-based Performance This experiment extends the introspection
of the evolutionary search process and examines the fitness progress of each
generation in a single turn. For each experiment run of the best hyperparam-
eter set and each turn in that run, the fitness of the best individual in each
generation is measured. This metric provides insight into the search progress
and whether the algorithm is able to produce higher quality solutions with
more time or is stuck in a local optima. The fitness values and their average
are displayed analogously to the previous display, but over the course of all
generations.

57

4 Evaluation

Speed Analysis To verify the hypothesis that the map is generated in no
more than 5 seconds each turn, the experiment analyzes the speed of the
algorithm. First, the distribution of the horizon-time ratio is evaluated to
measure how long it takes to generate a single tile and whether that time differs
across the course of the game. Then the elapsed time for all experiments runs
over all turns compared to the constraint is displayed along with the average
time taken.

Fairness The village fitness function is the main part of the algorithm that
promotes fairness by ranking individuals based on the ratio of villages placed
to area generated for each side. The experiment checks whether the generated
villages of each round balance out for both sides playing the game. This is
visualized for a randomly selected example experiment run. In addition, the
total number of villages is added to give an overview of the development of the
village count over several turn for all experiment runs.

4.4 Results

In this section, the results and observations of the various experiments are
evaluated. The following sections cover each experiment and its results in detail
before summarizing all results in a final discussion to verify the hypotheses
formulated at the beginning of this chapter.

4.4.1 Hyperparameter Sets

The initial experiment compares the fitness score distribution for a given hy-
perparameter with different values. As shown in Figure 4.1 for the mutation
chance parameter, the foremost parameter value is 0.01 with a median of 0.128.
The other two values show poorer fitness performance and a wider interquar-
tile range, which represents the spread of the data. Notably, while 0.01 is the
best parameter, it also has the most outliers. A lower mutation chance for the
individuals leads to less change in the map compared to the initial random ini-
tialization of the height map. Therefore, map sequences appear random rather
than smooth, which is penalized by Differential Tile Fitness. The entropy lay-
out fitness that encourages changes in the map may only slightly offset this
disadvantage. On the other hand, a much higher mutation chance leads to the

58

4.4 Results

0.005 0.01 0.05
Mutation chance

0.05

0.10

0.15

0.20

0.25

0.30

0.35

fit
ne

ss

Figure 4.1: Distribution of fitness values for the assigned mutation chance val-
ues.

opposite scenario of a truly smooth map with low Differential Tile and high
Layout Entropy Fitness. The value 0.01 represents a middle ground between
these two scenarios, trying to balance smoothness and entropy. This can lead
to very different results, but if no middle ground can be found, neither Differ-
ential Tile nor Layout Entropy Fitness are satisfied at all. The large number
of outliers is a strong indicator for this assumption. In particular, the longer
upper and lower whiskers and larger quartiles overall indicate strongly differing
results in the map.

Figure 4.2 shows the results for the population size parameter. The distribu-
tions are very similar overall, almost the same in all terms. An increase in
population size appears to downshift fitness scores only slightly, but a signifi-
cant difference is difficult to verify. All medians are around 0.14 with similar
standard deviation, number of outliers, and spread of the data. The popula-

59

4 Evaluation

10 20 30
Population size

0.05

0.10

0.15

0.20

0.25

0.30

0.35

fit
ne

ss

Figure 4.2: Distribution of fitness values for the assigned population size val-
ues.

tion size results can be considered almost predictable due to the limited search
framework with a fixed number of generations that CGRHEA represents. With
Evolutionary Algorithms, a larger population size usually results in there be-
ing more average individuals that do not contribute to the search process. On
the contrary, they even prevent the algorithm from searching faster for better
results. Each indivdual needs to be evaluated by the fitness functions, which
typically takes the most computation time. More individuals may also reduce
the selective pressure for high-quality individuals. In this time-sensitive ap-
plication that needs to converge quickly and find high-quality solutions fast,
every superfluous individual can represent an impediment. Nevertheless, the
increase in population size can lead to better solutions, as the second experi-
ment shows only marginally.

60

4.4 Results

1/8 1/4 1/2
Mating size

0.05

0.10

0.15

0.20

0.25

0.30

0.35

fit
ne

ss

Figure 4.3: Distribution of fitness values for the assigned mating size values.

Analogous results are available for the mating size parameter, as can be seen in
Figure 4.3. Increasing mating size decreases the median fitness scores achieved
by the best individual. The impact of change on this parameter can be seen
more clearly, although the general distribution of the data does not change.
Larger mating sizes increase selection pressure and the overall chance of re-
taining more high-quality individuals for the next generation. In addition,
this leads to a broader search through the search space and ensures that out-
liers are reduced as the children produced can replace them in the population.
Overall, the parameter appears robust with similar quartiles, whiskers, and
outliers, but increasing mating size makes a noticeable difference compared to
population size.

The results for the last hyperparameter are displayed in Figure 4.4. The
weighting sum shows one of the most disparate results because it not only
greatly affects the resulting fitness, but drives the overall search in a certain

61

4 Evaluation

(1/3, 1/3, 1/3) (0.7, 0.15, 0.15) (0.15, 0.7, 0.15)
Weighted sum

0.05

0.10

0.15

0.20

0.25

0.30

0.35

fit
ne

ss

Figure 4.4: Distribution of median fitness values for the assigned weighted sum
value sets.

direction based on one fitness function being weighted differently than the
other. The jack-of-all-trades approach of weighting each fitness function 1/3

performs the worst in terms of median fitness, producing many outlier solu-
tions. In general, it is already difficult to satisfy three different criteria, but
optimizing all of them with the same importance seems almost impossible in-
tuitively. This is also visually represented in the results, either it works and a
robust solution is found in the interquartile range, or the solution is likely an
outlier and performs much worse. In comparison, the second value set, which
gives more weight to entropy and less weight to the other two, achieves lower
median fitness. However, this takes a toll on the robustness, since quartiles
are visibly larger and outlier solutions are just as worse as those of the first set
of values. Plotted with the highest standard deviation of 0.046, focusing on
entropy shows that a change in the map can lead to better or worse outcomes
than the first case, but does not express robust control over it. Only marginally

62

4.4 Results

worse in median fitness, but way upfront in terms of robustness, the final ap-
proach focuses on the different tile fitness. No outliers are generated and the
interquartile range is similarly close to the first set of values while also having
the shortest whiskers. Individuals may not achieve the same minimum fitness
scores as the second value set, but they remain competitively close to them in
all cases. This combination of low median fitness and standard deviation of
0.023 pushes it above the second value set in the ranking as the best weighted
sum parameter.

median ± standard deviation
hyperparameter value 1 value 2 value 3
mutation chance 0.151± 0.036 0.128± 0.03 0.15± 0.046

population size (µ) 0.144± 0.041 0.14± 0.039 0.137± 0.038

mating size (λ) 0.151± 0.041 0.142± 0.038 0.132± 0.036

weighted sum set 0.168± 0.027 0.116± 0.046 0.126± 0.023

Table 4.2: Median and standard deviations for the fitness values of each hy-
perparameter.

Table 4.2 displays the results for all hyperparameters again in a compact
overview. The median already shows an optimal value for two hyperparam-
eters, the mutation chance and mating size. Additionally, the standard de-
viations for these two are quite similar, so we choose 0.01 for the mutation
probability and 1/2 for the mating size as the most optimal parameters for
our algorithm. The remaining parameters are fairly close in terms of median
fitness. As previously mentioned, the weighted sum is determined by the sig-
nificantly better combination of median fitness and standard deviation. For
the population size, the standard deviations are also almost the same. The
decision is still quite ambiguous, but here we take the numerical best of 30 as
the optimal parameter. Therefore, the best hyperparameter set is set as [0.01,
30, 1/2, (0.7, 0.15, 015)].

4.4.2 Hyperparameter Performance

The results of the hyperparameter performance experiment are shown in Fig-
ure 4.5 as a heatmap. Accordingly, the results of the tournament held are
presented in Table 4.3. For the main diagonal, all values are 0.5 because the
Mann-Whitney U test identifies a set of parameters as coming from the same

63

4 Evaluation

distribution compared to itself. In addition, the heatmap is symmetric since
the results of testing a set of hyperparameters X vsersus Y are the same as
testing Y versus X. The heat map shows only a few clusters with values dis-
tinctly above the set value of α = 0.05, which accepts the null hypothesis H0.
Therefore, we can conclude that most sets appear to differ from each other in
terms of their distribution of fitness scores.

Parameter sets

Pa
ra

m
et

er
se

ts

0.0

0.1

0.2

0.3

0.4

0.5

Figure 4.5: P-values of all parameter set combinations for the Mann-Whitney
U test.

The resulting tournament winners show that our previously determined best
parameter set is represented in the top five but in second place, notably behind
first place. The first place set represents a combination of the most outlying
parameters in terms of fitness performance. Since the Mann-Whitney U test
only considers distributions, we can conclude that this set produces greatly
differing results and fitness scores, probably the overall worst. Another point
to note is that with 81 parameter sets in an all-vs-all tournament, the maxi-
mum number of wins possible would be 80 since a set can never win against

64

4.4 Results

itself. Parameters such as population and mating size have already been shown
to perform similarly with almost the same median fitness scores, regardless of
their assigned value. Therefore, it is not surprising that the tournament win-
ners still lost to sets with only different population and mating sizes, as they
have no overall impact on the fitness scores achieved. The Mann-Whitney U
test accounts for this by rendering them as stemming from the same distribu-
tion, resulting in a defeat.

parameter set count p-value sum
0.05, 10, 1/8, (0.7, 0.15, 0.15) 78 0.325
0.01, 30, 1/2, (0.15, 0.7, 0.15) 78 0.777
0.01, 10, 1/2, (0.15, 0.7, 0.15) 78 0.834
0.05, 10, 1/8, (1/3, 1/3, 1/3) 77 0.367

0.01, 20, 1/8, (0.15, 0.7, 0.15) 77 0.788

Table 4.3: Mann-Whitney U test tournament results.

Overall, one could determine the optimal set of hyperparameters based solely
on tournament results by counting the times a given hyperparameter is present
in the top five sets. Then the result would be almost the same since only the
population size would be different at 10, but again the population size decision
was previously ambiguous in terms of its lack of impact on fitness.

4.4.3 Turn-based Performance

The development of the average fitness of the best individual over the in-game
turns, observable in Figure 4.6, shows that the fitness is kept at almost the same
level. Remarkable differences are worth highlighting only at the beginning and
end of the game. In the first turn of the game, a vast area has to be generated
around each side’s starting keep, which represents a tougher challenge for the
algorithm and the reason that the fitness starts of higher. But as the game
progresses, the necessary horizons to be generated become smaller and the
fitness shows an adjustment of the algorithm towards more ordinary values.
Higher fitness peaks start to frequently set in in the later turns. As the map
sequence generation nears completion, only small chunks remain at the corners
of the map. Although small in size, they are surrounded by a large amount
of generated tiles that may not allow proper tile placement. For these cases
it is to be expected that the Layout Entropy and Differential Tile Fitness in

65

4 Evaluation

1 3 5 7 9 11 13 15 17 19
In-game turn

0.05

0.10

0.15

0.20

Fi
tn

es
s

Figure 4.6: Fitness values and average score over all turns.

particular are higher. In terms of fitness drift, we can see that it is kept within
a certain range for most of the game, while again spikes happen towards the
end, which seems acceptable considering it only affects the corners of the map.

The comparison of minimum, average, and maximum fitness over the same
turns, depicted in Figure 4.7, shows a similar trend for all three metrics. There
is overall nearly constant fitness with a downward trend for the minimum and
an upward trend towards the end for the maximum. Initially there are higher
deviations due to larger horizons to be generated in the first turns. In the first
half of the game, the graphs appear to be similar, only shifted to higher and
lower values from the average. Significant differences in the graphs only appear
towards the end, as the maximum fitness in particular seems to be heavily in-
fluenced by the ending scenarios for the last remaining tiles. Minimum fitness,
on the other hand, seems to be able to keep up longer while keeping the fitness
scores low. This indicates that there are ways to meaningfully solve the gener-

66

4.4 Results

1 3 5 7 9 11 13 15 17 19
In-game turn

0.05

0.10

0.15

0.20

Fi
tn

es
s

Maximum
Average
Minimum

Figure 4.7: Minimum, average and maximum fitness values over all turns.

ation for the final tiles, indicated by the minimum, but these may be hard to
find and it is generally more likely to generate worse solutions, indicated by the
maximum fitness. In summary, the graphic comparison confirms the previous
results, since a similar behavior can be observed. The plot starts with high
initial fitness, a steady downward trend thereafter and strongly fluctuating
fitness values at the end.

4.4.4 Generation-based Performance

The results of the fourth experiment, shown in Figure 4.8, represent an in-
teresting trend when compared to the average fitness results across all turns
in the previously shown experiments. In relation to the generations, a clear
downward and thus optimization progress can be observed. Due to the random
initialization of the heightmap, a very high fitness start for the individuals can
be expected at the beginning. Thereafter, fitness declines at a nearly constant

67

4 Evaluation

1 2 3 4 5 6 7 8 9 10 11 12
Generation

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Fi
tn

es
s

Figure 4.8: Fitness values and average score over all generations.

slope over each generation. It is important to note that these fitness scores are
averaged over each turn, meaning they include the data for the very differing
starting and final turns of the game. Nevertheless, the fluctuation range of
fitness score remains almost the same across all turns and all generations. The
observation that these fluctuations do not change much over all generations
could indicate that the Rolling Horizon-inspired approach of our proposed al-
gorithm is capable of improving any solution over the generations. The fact
that the slope is nearly constant shows that the algorithm can tackle the opti-
mization problem, but it clearly takes a certain number of generations to get
suitable results. In addition, there is still the option to generate higher quality
individuals when more resources or time are available.

68

4.4 Results

1 3 5 7 9 11 13 15 17 19
In-game turn

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

H
or

iz
on

tim
e

ra
tio

[s
/

til
e]

Figure 4.9: Distribution of horizon-time ratio values over all turns.

4.4.5 Speed Analysis

Figure 4.9 shows the distribution of the horizon-time ratio per turn and indi-
cates that the time required to generate a tile is kept relatively equal through-
out the game. Variations between turns only seem to appear on a lower scale,
while all turns have some outliers towards a higher horizon-time ratio. Most
of the data points are spread out at the bottom of the chart with a tiny down-
trend across in-game turns differing by just a few milliseconds. Outliers can
be subject to certain scenarios where the horizons can be larger and therefore
more data needs to be processed or more memory allocated. Overall, the per-
ception is that the average time per tile is stable with fluctuations within a
short range. With an average horizon-time ratio of 0.012 seconds per tile over
all turns, the algorithm takes 19.2 seconds to generate all 1600 tiles in the map.
Since the game can take up to 20 turns, 10 turns per side, until the generation
is complete, this results in about 1 second per turn for map generation. This

69

4 Evaluation

calculation only applies if all the necessary tiles were distributed evenly across
all turns, which is never the case in our scenario.

1 3 5 7 9 11 13 15 17 19
In-game turn

0

1

2

3

4

5

T
im

e
[s

]

Figure 4.10: Time and average time frame over all turns.

The 19.2 seconds are therefore spread differently over the turns, as Figure
4.10 already shows. Due to the aforementioned larger horizon size at the
beginning of the game, the generation runs considerably long in the first turns.
Afterwards, the time per turn decreases as units recruitment starts but units
cannot move in the turn they spawned on the map. Thereafter, each side
usually tries to capture the first villages near their keep without exploring far
into the map. The second spike reliably occurs around turns five through seven,
when units start exploration in search of further resources to claim, leading to
larger horizons and longer computing times. In the following turns, the time
decreases almost linearly, since the initial portion generated at the beginning
and the first exploration phase typically cover large parts of the map. The
rest is only slowly explored as these tiles are furthest away from the keeps on
either side, resulting in progressively lower average computing time per turn.

70

4.4 Results

The rest is only slowly explored as those lie furthest away from the keeps of
both side resulting in an ever going down average computation time per turn.
Spikes in the graphs can occur when units high long movement ranges decide
to explore as far as possible. As the horizon size for the next turn is determined
by the movement and vision range of the farthest unis, this can create a lot
of tiles to generate. The results clearly show that no run required more than
five seconds per turn, with the overall average remaining under three seconds
across all game rounds evaluated.

4.4.6 Fairness

1 2 3 4 5 6 7 8
In-game turn

0

5

10

15

20

25

30

V
ill

ag
e

co
un

t

Side one
Side two

Figure 4.11: Village count and total number of villages for both sides over all
turns.

The exemplary run of the fairness experiment in Figure 4.11 gives a telling
overview of the general procedure of village placement on the map, which
serves as the main factor for fairness. The horizon of side one is always the

71

4 Evaluation

first one generated, where the algorithm places an ordinary number of villages.
Thereafter, the second side starts the game at a disadvantage in generated
tiles and villages, since no map was previously generated for this side. To
compensate for this, the algorithm places more villages on the map sequence
of the second side. In the following turns, the difference in the total sum of
placed villages slowly balances out until they reach an almost equal state at
the end. The number of villages generated changes significantly between turns
and, the side that receives the most generated villages in each turns changes
several times.

1 2 3 4 5 6 7 8 9 10
In-game turn

0

5

10

15

20

25

V
ill

ag
e

di
ffe

re
nc

e

Figure 4.12: Village difference and average difference over all turns.

The village differences over all turns are kept small on average for both sides,
but are not zero as shown in Figure 4.12. Therefore, perfect numerical balance
is not achieved. Moreover, the first and last turns show fewer differences than
the turns in between. In the first turns, the horizons are fairly evenly sized and
there are not as many villages to place, making it less difficult for the algorithm.
The algorithm then has several rounds to balance the total number of generated

72

4.5 Discussion

villages for both sides and therefore ends up with a smaller difference in the
last round. The overall difference is between three and seven villages per
game, with more runs below average and only a few outliers with high village
differences pulling the average up.

4.5 Discussion

The series of conducted experiments provided thorough insights into the opti-
mization process of CGRHEA from a variety of aspects. The algorithm was
able to stay under the hard constraint of five second of generation time per
turn. Not a single evaluated run violated this limitation, with the overall av-
erage staying under three seconds. Nonetheless, the definition of acceptable
game break time for map generation remains debatable and highly application
specific. For the considered game scenario of a turn-based strategy game, the
times required for map generation are acceptable. However, coupling speed
constraints to design decisions remains a difficult task because the design of
recombination operators, and hyperparameter tuning in particular, do not al-
low for shorter or longer runs of the search algorithm. Not running long enough
or applying only a very small mutational chance will produce random results,
as the search process has been shown to require time and significant changes to
the initial encoding of individuals. This trade-off between time and resources
is typical for optimization problems, especially for online algorithms running
in a time-critical environment.

Regarding the hyperparameter sensitivity, we could show with the experimen-
tal results that the algorithm is sensitive for the considered parameters, but
not for all. Mutation chance and weighted sum parameters stand out as the
most influential, given their different results in performance depending on their
assigned values. Population size and mating size generally remain fairly inef-
fective, since generation occurs online in a short amount of time where greater
or lesser genetic diversity in the population and offspring cannot have much of
an impact. As the Man-Whitney U Test tournament showed, not all correla-
tions can be decoupled between the hyperparameter sets and a small fraction
of insensitivity remains. Nonetheless, the parameters are able to meaningfully
guide the search process toward higher-quality solutions and varied results that
are also able to satisfy the given constraints.

73

4 Evaluation

In competitive turn-based games, whoever makes the first move usually has an
advantage, which is compensated for in some games, but not all. Seeing the
oscillations in village placement, especially in the early turns of the game, could
be interpreted that way. But this behavior was not intended when the Village
Fitness function was designed. These fluctuations are probably the reason why
the total village difference is always non-zero during the evaluated rounds. A
difference in village count for one turn invokes a countermeasure in the next
that is unlikely to completely erase the difference. Therefore, the algorithm
applies a series of countermeasures that only stop once the map generation is
complete. This shows that fairness in games can have many different aspects
and that integrating intended fairness mechanisms into an optimization is a
difficult task, but even more difficult to unequivocally assess fairness. True
numerical balance in fitness would not even constitute fair play since not all
rounds are equal. In certain scenarios it is not desirable to have village balance,
but to favor the side that is at a disadvantage. The designed Village Fitness
function tries to take this into account by considering the generated horizon
sizes. The algorithm can keep the village count quite equal, but it remains
unclear and difficult to verify whether these differences were justified based on
the context of the game state or if they represent fluctuations that occurred
during the search process. Overall, the results show that the algorithm is able
to generate fair maps, albeit at a low level. In addition, the algorithm is able
to stay under five seconds of generation time per turn and is highly sensitive
to the hyperparameter values for mutation chance and weighted sum.

74

5 Conclusion

In this thesis, an online Search-based Procedural Content Generation algo-
rithm for tile-based map generation was designed. The algorithm enables the
continuous creation of map sequences during the game and reacts to changes
in the game state. It represents a combination of the search-based generation
approach combined with a novel rollout principle inspired by Rolling Horizon
Evolutionary Algorithms. In order to incorporate all requirements for mean-
ingful map generation in the optimization process, a combination of three
fitness functions, each with their own specific intent, was applied. Differential
Tile and Layout Entropy Fitness promote solutions that appear smooth locally
but vary on a larger scale as an aspect of interesting but believable maps. The
Village Fitness was designed in such a way that the generated map remains
fair as well.

Several experiments were carried out to determine whether the algorithm can
keep up with a given time limit, which hyperparameters influence the search
process to which extent and whether fairness aspects are represented in the
end. The results indicate that the algorithm generates maps in a reasonable
time. An optimal set of hyperparameters was determined, which expressed
the overall best performance in the evaluation. A low level of fairness was
ascertained in the map generation process, which represents a dynamic adjust-
ment to game state changes. The evaluation shows that focusing on the main
aspects seems superior to balancing all possible generation characteristics. In
a time-critical scenario, a trade-off has to be made between the resources al-
located for evolutionary search and the computation time. Since PCG defines
a list of multiple desirable properties, there is no limit to possible fitness fea-
tures to be incorporated that can promote these aspects. But the combination
and weighting of all these features constitutes the hardest challenge in this
context. Even simply combining multiple fitness functions into a single one
leads to its own set of problems, which again require a trade-off. In particular,
that some functions tend to be optimized at the expense of others. Instead,

75

5 Conclusion

one could apply a multi-objective approach that optimizes for multiple goals at
the same time and finds the set of non-dominated individuals that have unique
combinations of strengths. Nevertheless, the incorporation of these methods
usually weighs on the speed constraint, and it remains questionable whether
the benefits outweigh the costs in this case.

The Rolling Horizon-inspired approach to continuously generated sequences of
the map as ever-expanding circles around the starting points of the game is
the main reason online generation became possible in the first place. This line
of thought could be taken further to only generate patches around the farthest
unit, thereby reducing the considered tiles to be generated to the smallest
possible amount. Further computations would be required to determine these
areas at every turn, and improved edge case coverage by the fitness function
would be needed, but these extensions appear beneficial. As the time necessary
for the generation is not distributed evenly over the course of the game but is
centered on specific turns, the specified number of generations for which the
algorithm runs could be dynamically adjusted. This adjustment would allow
finding higher quality solutions for turns that can spare more time because they
have smaller horizons. For larger horizon, this could also be used to ensure
time constraints are not violated, but represents a trade-off in fitness scores.
The other hyperparameters could potentially be dynamically adjusted as well
to react more sensitive to game state changes and promote different generation
aspects in specific scenarios. The overall dynamic difficulty adjustment is an
aspect addressed only at a low level by our proposed algorithm. Nonetheless,
the general approach to the optimization problem and the game itself provide
more than enough opportunities to further address this issue. A more sophis-
ticated approach would include the specific positions of the captured villages
or villages in the capture range of units. In addition, the units of each side and
the gold flux can also be included, for example to model the current score in
terms of fairness. The limited number of possible tiles that can be generated
is also expandable as the game offers a long list of tiles to create more visually
appealing or interesting structures for the player. Since tiles additionally have
an impact on unit movement, this would address multiple problems at once,
but requires more than just smoothness and entropy as a factor for believable
maps. To conclude, the presented algorithm represents a novel search-based
map generation approach that can be used to generate a playable, believable,
and fair map for a turn-based game that dynamically adjusts to the gameplay.

76

Bibliography

[1] Thomas Bartz-Beielstein, Jürgen Branke, Jörn Mehnen, and Olaf Mers-
mann. Evolutionary algorithms. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 4(3):178–195, 2014.

[2] Robert Bridson, Jim Houriham, and Marcus Nordenstam. Curl-noise for
procedural fluid flow. ACM Transactions on Graphics (ToG), 26(3):46–49,
2007.

[3] Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algo-
rithms for parameter optimization. Evolutionary Computation, 1(1):1–23,
1993.

[4] N. Chomsky. Three models for the description of language. IRE Trans-
actions on Information Theory, 2(3):113–124, 1956.

[5] Martín Dans Cervero. Ia battle for wesnoth. Master’s thesis, Universitat
Politècnica de Catalunya, 2016.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[7] Agoston E Eiben and Selmar K Smit. Parameter tuning for configuring
and analyzing evolutionary algorithms. Swarm and Evolutionary Compu-
tation, 1(1):19–31, 2011.

[8] Raluca D. Gaina, Sam Devlin, Diego Perez-Liebana, and Simon M. Lu-
cas. Rolling Horizon Evolutionary Algorithms for General Video Game
Playing. arxiv:2003.12331, 2020.

[9] Raluca D. Gaina, Simon M. Lucas, and Diego Perez-Liebana. VERTIGO:
Visualisation of Rolling Horizon Evolutionary Algorithms in GVGAI. In
The 14th AAAI Conference on Artificial Intelligence and Interactive Dig-
ital Entertainment, pages 265–267, 2018.

77

Bibliography

[10] Raluca D. Gaina, Simon M. Lucas, and Diego Pérez-Liébana. Population
seeding techniques for rolling horizon evolution in general video game
playing. In 2017 IEEE Congress on Evolutionary Computation (CEC),
pages 1956–1963, 2017.

[11] Raluca D. Gaina, Diego Perez-Liebana, Simon M. Lucas, Chiara F. Sironi,
and Mark H.M. Winands. Self-adaptive rolling horizon evolutionary al-
gorithms for general video game playing. In 2020 IEEE Conference on
Games (CoG), pages 367–374, 2020.

[12] Alessio Gambi, Marc Mueller, and Gordon Fraser. Automatically Testing
Self-Driving Cars with Search-Based Procedural Content Generation, page
318–328. Association for Computing Machinery, 2019.

[13] Martin Gardner. Mathematical games: The fantastic combinations of john
conway’s new solitaire game “life”. Scientific American, 223(4):120–123,
1970.

[14] Ioseff Griffith. Generation, evaluation, and optimisation of procedural 2d
tile-based maps in turn-based tactical video games, 2016.

[15] Erin J Hastings, Ratan K Guha, and Kenneth O Stanley. Evolving con-
tent in the galactic arms race video game. In 2009 IEEE Symposium on
Computational Intelligence and Games, pages 241–248. IEEE, 2009.

[16] I. Her. A Symmetrical Coordinate Frame on the Hexagonal Grid for Com-
puter Graphics and Vision. Journal of Mechanical Design, 115(3):447–449,
09 1993.

[17] Vincent Hom and Joe Marks. Automatic design of balanced board games.
Proceedings of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, 3(1):25–30, 2007.

[18] Lawrence Johnson, Georgios N. Yannakakis, and Julian Togelius. Cellu-
lar automata for real-time generation of infinite cave levels. In Proceed-
ings of the 2010 Workshop on Procedural Content Generation in Games,
PCGames ’10. Association for Computing Machinery, 2010.

[19] Giorgos Karafotias, Mark Hoogendoorn, and Ágoston E Eiben. Param-
eter control in evolutionary algorithms: Trends and challenges. IEEE
Transactions on Evolutionary Computation, 19(2):167–187, 2014.

78

Bibliography

[20] Kaido Kikkas and Mart Laanpere. Playful cleverness revisited: open-
source game development as a method for teaching software engineering.
In Jürgen Münch and Peter Liggesmeyer, editors, Software Engineering
2009 - Workshopband, pages 267–272. Gesellschaft für Informatik e.V.,
2009.

[21] Theodore Kim, Nils Thürey, Doug James, and Markus Gross. Wavelet
turbulence for fluid simulation. ACM Transactions on Graphics (TOG),
27(3):1–6, 2008.

[22] Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective
optimization using genetic algorithms: A tutorial. Reliability engineering
& system safety, 91(9):992–1007, 2006.

[23] Rudolf Kruse, Sanaz Mostaghim, Christian Borgelt, Christian Braune,
and Matthias Steinbrecher. Elements of Evolutionary Algorithms, pages
255–285. Springer International Publishing, 2022.

[24] Rudolf Kruse, Sanaz Mostaghim, Christian Borgelt, Christian Braune,
and Matthias Steinbrecher. Introduction to Evolutionary Algorithms,
pages 225–254. Springer International Publishing, 2022.

[25] Ares Lagae, Sylvain Lefebvre, Robert L Cook, Tony Derose, George Dret-
takis, David S Ebert, John P Lewis, Ken Perlin, and Matthias Zwicker.
State of the art in procedural noise functions. Eurographics (State of the
Art Reports), pages 1–19, 2010.

[26] Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutré. Proce-
dural noise using sparse gabor convolution. ACM Transactions on Graph-
ics (TOG), 28(3):1–10, 2009.

[27] Haiyuan Lee. The integration of information technology into high school
english teaching in china. Master’s thesis, University of Wisconsin-
Platteville, 06 2018.

[28] John Levine, Clare Bates Congdon, Marc Ebner, Graham Kendall, Si-
mon M. Lucas, Risto Miikkulainen, Tom Schaul, and Tommy Thomp-
son. General video game playing. In Artificial and Computational Intelli-
gence in Games, Dagstuhl Follow-Ups, pages 77–84. Dagstuhl Publishing,
November 2013.

79

Bibliography

[29] Diego Perez Liebana, Spyridon Samothrakis, Simon M. M. Lucas, and
Philipp Rohlfshagen. Rolling horizon evolution versus tree search for nav-
igation in single-player real-time games. In GECCO ’13, 2013.

[30] Aristid Lindenmayer. Mathematical models for cellular interactions in
development ii. simple and branching filaments with two-sided inputs.
Journal of Theoretical Biology, 18(3):300–315, 1968.

[31] Jialin Liu, Diego Pérez-Liébana, and Simon M. Lucas. Rolling horizon co-
evolutionary planning for two-player video games. In 2016 8th Computer
Science and Electronic Engineering (CEEC), pages 174–179, 2016.

[32] Luczak and Rosenfeld. Distance on a hexagonal grid. IEEE Transactions
on Computers, C-25(5):532–533, 1976.

[33] Tobias Mahlmann, Julian Togelius, and Georgios N Yannakakis. Spic-
ing up map generation. In European Conference on the Applications of
Evolutionary Computation, pages 224–233. Springer, 2012.

[34] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other. The Annals
of Mathematical Statistics, 18(1):50 – 60, 1947.

[35] Jean-Eudes Marvie, Julien Perret, and Kadi Bouatouch. Fl-system : A
functional l-system for procedural geometric modeling. The Visual Com-
puter, 21:329–339, 06 2005.

[36] David Maung. Tile-based Method for Procedural Content Generation. PhD
thesis, The Ohio State University, 2016.

[37] Bentley Oakes. Practical and theoretical issues of evolving behaviour trees
for a turn-based game. Master’s thesis, McGill University, 2013.

[38] Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In
Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’01, page 301–308. Association for
Computing Machinery, 2001.

[39] Sanjeev Paskaradevan. A hybrid agent architecture for learning good
cooperative behaviours for game characters. Master’s thesis, University
of Calgary, 2012.

[40] Sanjeev Paskaradevan and Jörg Denzinger. A hybrid cooperative be-
havior learning method for a rule-based shout-ahead architecture. In

80

Bibliography

IEEE/WIC/ACM International Conferences on Web Intelligence and In-
telligent Agent Technology, volume 2, pages 266–273, 2012.

[41] Amit Patel. Hexagonal grids. https://www.redblobgames.com/grids/
hexagons/. Accessed: 2022-08-14.

[42] Ken Perlin. An image synthesizer. In Proceedings of the 12th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
’85, page 287–296. Association for Computing Machinery, 1985.

[43] Ken Perlin. Improving noise. In Proceedings of the 29th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’02,
page 681–682. Association for Computing Machinery, 2002.

[44] Eric Piette, Dennis J.N.J. Soemers, Matthew Stephenson, Chiara F.
Sironi, Mark H.M. Winands, and Cameron Browne. Ludii - the ludemic
general game system. In Conférence Nationale en Intelligence Artificielle,
July 2019.

[45] Giacomo Poderi and David J Hakken. Modding a free and open source
software video game:“play testing is hard work”. Transformative Works
and Cultures, 15(1), 2014.

[46] Mike Preuss, Antonios Liapis, and Julian Togelius. Searching for good and
diverse game levels. 2014 IEEE Conference on Computational Intelligence
and Games, pages 1–8, 2014.

[47] Procedural content generation wiki. http://pcg.wikidot.com/. Ac-
cessed: 2022-07-09.

[48] Sebastian Risi, Joel Lehman, David B D’Ambrosio, Ryan Hall, and Ken-
neth O Stanley. Combining search-based procedural content generation
and social gaming in the petalz video game. In Eighth Artificial Intelli-
gence and Interactive Digital Entertainment Conference, 2012.

[49] Konstantinos Sfikas and Antonios Liapis. Playing against the board:
Rolling horizon evolutionary algorithms against pandemic. IEEE Trans-
actions on Games, 2021.

[50] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3):379–423, 1948.

[51] Adam M. Smith and Michael Mateas. Answer set programming for pro-
cedural content generation: A design space approach. IEEE Transactions
on Computational Intelligence and AI in Games, 3(3):187–200, 2011.

81

https://www.redblobgames.com/grids/hexagons/
https://www.redblobgames.com/grids/hexagons/
http://pcg.wikidot.com/

Bibliography

[52] Gillian Smith. An analog history of procedural content generation. In
Proceedings of the 10th International Conference on the Foundations of
Digital Games, FDG 2015, Pacific Grove, CA, USA, June 22-25, 2015.
Society for the Advancement of the Science of Digital Games, 2015.

[53] Gillian Smith, Jim Whitehead, and Michael Mateas. Tanagra: Reactive
planning and constraint solving for mixed-initiative level design. IEEE
Transactions on Computational Intelligence and AI in Games, 3(3):201–
215, 2011.

[54] Sam Snodgrass and Santiago Ontañón. Experiments in map generation
using markov chains. In FDG, 2014.

[55] James C Spall. Introduction to stochastic search and optimization: esti-
mation, simulation, and control. John Wiley & Sons, 2005.

[56] Student. The probable error of a mean. Biometrika, 6(1):1–25, 1908.

[57] Hisashi Tamaki, Hajime Kita, and Shigenobu Kobayashi. Multi-objective
optimization by genetic algorithms: A review. In Proceedings of IEEE
international conference on evolutionary computation, pages 517–522.
IEEE, 1996.

[58] The battle for wesnoth. https://www.wesnoth.org/. Accessed: 2022-
07-22.

[59] Julian Togelius, Mike Preuss, Nicola Beume, Simon Wessing, Johan
Hagelbäck, and Georgios N Yannakakis. Multiobjective exploration of
the starcraft map space. In Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games, pages 265–272. IEEE, 2010.

[60] Julian Togelius and Noor Shaker. The search-based approach, pages 17–30.
Springer International Publishing, 2016.

[61] Julian Togelius, Noor Shaker, and Mark J. Nelson. Introduction, pages
1–15. Springer International Publishing, 2016.

[62] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne. Search-based procedural content generation. In Ap-
plications of Evolutionary Computation, pages 141–150. Springer Berlin
Heidelberg, 2010.

82

https://www.wesnoth.org/

Bibliography

[63] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne. Search-based procedural content generation: A tax-
onomy and survey. IEEE Transactions on Computational Intelligence
and AI in Games, 3(3):172–186, 2011.

[64] Daniel Wehr and Jörg Denzinger. Mining game logs to create a playbook
for unit ais. In 2015 IEEE Conference on Computational Intelligence and
Games (CIG), pages 391–398, 2015.

[65] Stephen Wiens, Jörg Denzinger, and Sanjeev Paskaradevan. Creating
large numbers of game ais by learning behavior for cooperating units. In
2013 IEEE Conference on Computational Inteligence in Games (CIG),
pages 1–8, 2013.

[66] Georgios N. Yannakakis and Julian Togelius. Generating Content, pages
151–202. Springer International Publishing, Cham, 2018.

83

Declaration of Authorship

I hereby declare that this thesis was created by me and me alone using only
the stated sources and tools.

Christian Wustrau Magdeburg,

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Research Questions
	Thesis Structure

	Background and State of the Art
	Procedural Content Generation
	Categories

	Evolutionary Algorithms
	Building Blocks of Evolutionary Algorithms
	Rolling Horizon Evolutionary Algorithms
	Search-based Procedural Content Generation

	Tile-based Games
	Hexagonal Grids
	The Battle for Wesnoth

	Content Generation Rolling Horizon Evolutionary Algorithm
	Concept and Overview
	Concept
	Desirable properties
	Overview

	Content Representation
	Fitness Functions
	Differential Tile Fitness
	Layout Entropy Fitness
	Village Fitness
	Weighted Sum

	Rolling Horizon Evolutionary Algorithm
	Evolutionary Algorithm
	Rolling Horizon

	Evaluation
	Hypotheses
	Experimental Setup
	Data Acquisition
	Game Setup
	Metrics and Hyperparameters

	Experiments
	Results
	Hyperparameter Sets
	Hyperparameter Performance
	Turn-based Performance
	Generation-based Performance
	Speed Analysis
	Fairness

	Discussion

	Conclusion
	Bibliography

