
Christian Wustrau

Search-based Procedural Content
Generation with Rolling Horizon
Evolutionary Algorithm for
Tile-based Map Generation

Intelligent Cooperative Systems
Computational Intelligence

Search-based Procedural Content Generation
with Rolling Horizon Evolutionary Algorithm

for Tile-based Map Generation

Master Thesis

Christian Wustrau

August 23, 2022

Supervisor: Prof. Dr. Sanaz Mostaghim

Advisor: Dr. Christoph Steup

Christian Wustrau: Search-based Procedural Content Generation
with Rolling Horizon Evolutionary Algorithm for Tile-based Map
Generation
Otto-von-Guericke Universität
Intelligent Cooperative Systems
Computational Intelligence
Magdeburg, 2022.

Abstract

The generation of content for video games falls within the realm of human
creativity and therefore poses an interesting challenge for computer methods
to emulate this process. Procedural Content Generation in Games is a pop-
ular and well-studied general approach to this mentioned challenge and has
originated many different forms to address this, most notably Search-based
Procedural Content Generation (SbPCG). Rolling Horizon Evolutionary Al-
gorithm (RHEA) are a subclass of Evolutionary Algorithms (EAs) capable of
online decision making, which means they search for the best action to take
during the game in a limited short amount of time. By combining Search-based
Procedural Content Generation and fundamental ideas from Rolling Horizon
Evolutionary Algorithms to enable online content generation with fairness,
this work presents a novel approach to map generation that is applied to a
tile-based open-source game as a proof of concept.

I

Contents

List of Figures V

List of Tables VII

List of Acronyms IX

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 3
1.3 Thesis Structure . 3

2 Background and State of the Art 5
2.1 Procedural Content Generation 5

2.1.1 Categories . 8
2.2 Evolutionary Algorithms . 11

2.2.1 Building Blocks of Evolutionary Algorithms 14
2.2.2 Rolling Horizon Evolutionary Algorithms 19
2.2.3 Search-based Procedural Content Generation 20

2.3 Tile-based Games . 23
2.3.1 Hexagonal Grids . 24
2.3.2 The Battle for Wesnoth 28

3 Content Generation Rolling Horizon Evolutionary Algorithm 33
3.1 Concept and Overview . 33

3.1.1 Concept . 33
3.1.2 Desirable properties . 34
3.1.3 Overview . 36

3.2 Content Representation . 38

III

Contents

3.3 Fitness Functions . 39
3.3.1 Differential Tile Fitness 40
3.3.2 Layout Entropy Fitness 44
3.3.3 Village Fitness . 45
3.3.4 Weighted Sum . 48

3.4 Rolling Horizon Evolutionary Algorithm 48
3.4.1 Evolutionary Algorithm 48
3.4.2 Rolling Horizon . 50

4 Evaluation 53
4.1 Hypotheses . 53
4.2 Experimental Setup . 53

4.2.1 Data Acquisition . 53
4.2.2 Game Setup . 54
4.2.3 Metrics and Hyperparameters 54

4.3 Experiments . 56
4.4 Results . 58

4.4.1 Hyperparameter Sets . 58
4.4.2 Hyperparameter Performance 63
4.4.3 Turn-based Performance 65
4.4.4 Generation-based Performance 67
4.4.5 Speed Analysis . 69
4.4.6 Fairness . 71

4.5 Discussion . 73

5 Conclusion 75

Bibliography 77

IV

List of Figures

2.1 Visualization of the basic process of Evolutionary Algorithms. . 13

2.2 Comparison of hexagonal alignment of vertical columns and hor-

izontal rows. 24

2.3 Overview of hexagonal coordinate system layouts. 25

2.4 Cube and axial coordinate system. 26

2.5 First and second level neighborhood withN1 = {1,2,3,4,5,6}

and N2 = {7,8,9...,17,18} . 27

2.6 The Battle for Wesnoth . 28

3.1 Comparison of hexagonal tile patches of size 1x1, 2x2 and 3x3 . 39

3.2 Involved tiles in the one second-level di�erential quotient. 43

4.1 Distribution of �tness values for the assigned mutation chance

values. 59

4.2 Distribution of �tness values for the assigned population size

values. 60

4.3 Distribution of �tness values for the assigned mating size values. 61

4.4 Distribution of median �tness values for the assigned weighted

sum value sets. 62

4.5 P-values of all parameter set combinations for the Mann-

Whitney U test. 64

4.6 Fitness values and average score over all turns. 66

4.7 Minimum, average and maximum �tness values over all turns. . 67

4.8 Fitness values and average score over all generations. 68

4.9 Distribution of horizon-time ratio values over all turns. 69

V

List of Figures

4.10 Time and average time frame over all turns. 70

4.11 Village count and total number of villages for both sides over

all turns. 71

4.12 Village di�erence and average di�erence over all turns. 72

VI

List of Tables

3.1 Height value ranges and corresponding terrain representations. . 38

4.1 Hyperparameters and their respective assigned values. 55

4.2 Median and standard deviations for the �tness values of each

hyperparameter. 63

4.3 Mann-Whitney U test tournament results. 65

VII

List of Acronyms

EA Evolutionary Algorithm

PCG Procedural Content Generation

SbPCG Search-based Procedural Content Generation

RHEA Rolling Horizon Evolutionary Algorithm

CGRHEA Content Generation Rolling Horizon Evolutionary Algorithm

IX

1 Introduction

1.1 Motivation

Procedural generation represents a generic term for computing methods that
can be summarized as the automated process of media content creation. As a
branch of media synthesis this can apply to all forms of media and data such
as landscapes, 3D objects, textures, meshes, models, character designs, ani-
mations, or non-player character dialogue and even more. Therefore, the area
of application for procedural generation extends from mathematics, computer
graphics, modeling to animation, video games and electronic music. The algo-
rithmic generation of digital content opens up a theoretically in�nite, unique
set of design possibilities and results with less expenditure compared to the
e�ort required to manually design all these possibilities by humans.

In reality, the creation of handcrafted media can never be automated or re-
placed by the creative process of human designers. But algorithmic approaches
to this problem are de�nitely able to �nd reasonable solutions in less time and
claim less maintenance cost for the development process. Therefore, the main
bene�t of procedural generation is the possible removal of human artists or
designers in the content creation process to save time and resources [66]. This
work focuses on Procedural Content Generation in Games, or often just abbre-
viated as PCG. The context of game content generation necessitates consider-
ation of the design, mechanics, and constraints of the game itself [61]. This is
a distinguishing feature from other types of procedural generation, such as in
computer graphics or generative art, which do not necessarily have to consider
constraints from external systems.

By using Procedural Content Generation in Games, video games theoretically
can be shipped with an integrated designer. As the computer can run the
content generation simultaneous to the game itself, there is no more necessity
for a game to end as more and more content can be generated on the run

1

1 Introduction

to be explored by the player. The game itself will never be fully explored.
This of course calls for high quality generated content and therefore a very
expressive generation algorithm. Because the content has to keep up with
the ever-growing desire for more interesting content to appear to the player,
because the player can loose interest or get bored if he has seen one type of
content multiple times already. This poses quite a challenge for the design
of generation algorithms especially due to limitations of expressions via game
assets as they are usually a limited set or most of them have a special context
in which they have to be used. But procedural generation is also possible for
game assets itself, so this challenge can be tackled as well but causes even
more complex problems as this is even lower level content than a game map
for example and would have to be generated on the �y as well.

Running a Procedural Content Generation algorithm along the game itself,
enables access to the current game state and therefore reaction to the game-
play and not only to the state of the game before the start. This opens up
the possibility to consider the needs and desires of a player from a game state
aspect during the game being played. The generation then can focus on new
critical aspects for video games: fairness for competitive rounds, fun for ca-
sual entertaining rounds or keeping up interest when exploring. An impor-
tant step towards these critical aspects is the incorporation of the fact that
a game's map is not just a simple visual representation, but also an impor-
tant game component that greatly in�uences gameplay, outcome and di�culty.
The most beautiful game world cannot entertain a player if there is no chal-
lenge throughout the game. Therefore, map generation plays a crucial role
in a game's di�culty design process. Taking this a step further, a continu-
ously generated map as the game is played can dynamically adjust the game's
di�culty level and make the game more exciting or fair. This would enable
reactive game content creation based not only on preferences set prior to the
game being played, but also on the previous actions performed by players or
AI. As mentioned, this requires online generation of the game content, opti-
mized based on the previous game states and executed in a reasonable time so
that the gameplay is not interrupted for the content generation. Procedural
Content Generation (PCG) o�ers a search-based approach that uses Evolu-
tionary Algorithms (EAs) to search for an optimal map, but this is usually
done o�ine before the game is played because the process of searching for the
optimal map layout is time-consuming. In the �eld of EAs, the Rolling Hori-
zon evolutionary algorithm Rolling Horizon Evolutionary Algorithm (RHEA)

2

1.2 Research Questions

is an online optimization approach, which in its original form serves to evolve
action sequences with time constraint at each game tick [8]. This work aims
to address the problem of continuously generating a map that dynamically
adjusts by presenting a search-based online generation algorithm that uses a
modi�ed RHEA approach to evolve a short map sequence presented to the
player as he progresses through the world.

1.2 Research Questions

The main research question of this thesis is whether a Rolling Horizon Evo-
lutionary Algorithm can be used to generate a playable, believable and fair
map for a turn-based game. In search of this answer we design, implement
and evaluate a map generation algorithm for the strategy game The Battle
for Wesnoth [58] that combines Search-based Procedural Content Generation
with a Rolling Horizon Evolutionary Algorithm. Consequently, this thesis to
answer the following research questions that arise along with the central re-
search question:

ˆ Can the map be generated within a �xed amount of time, which is ac-
ceptable for players?

ˆ Can this online generation be used for dynamic di�culty adjustment
during the game?

ˆ Is the algorithm able to generate playable maps?

ˆ Is the algorithm able to generate believable maps?

ˆ Is the algorithm able to generate fair maps?

1.3 Thesis Structure

The next chapter, 2, covers three main background topics: Procedural Con-
tent Generation, Evolutionary Algorithms and Tile-based Games used in the
context of this thesis. The Procedural Content Generation section provides
basic theoretical background and typical content generation approaches. The
Evolutionary Algorithms section gives insight into di�erent accomplishments
in the �eld of EAs, describes Search-based Procedural Content Generation in

3

1 Introduction

detail and then focuses on the Rolling Horizon Evolutionary Algorithm speci�-
cally. The last section covers tile-based games, hexagonal grids, andThe Battle
for Wesnoth game used in our implementation. Chapter 3 covers the general
concept, structure and detailed architecture of our proposed algorithm. In
Chapter 4, we report the setup, metrics and scenarios for our experiments.
Additionally, we present and evaluate the experiment results and discuss them
in context with the previous chapter. The paper concludes with a summary
and discussion about future work and in Chapter 5.

4

2 Background and State of the
Art

This chapter provides an overview of Procedural Content Generation, Evolu-
tionary Algorithms, and tile-based games. Each section provides an insight
into the fundamental principles and state of the art of each research area,
focusing on the topics relevant to this work.

2.1 Procedural Content Generation

Procedural content generation addresses the problem of generating game con-
tent using a formal algorithm with limited or indirect user input. More gener-
ally, the abstract goal of PCG is to recreate human creativity in the context of
game design [52]. These abstract de�nitions and views on PCG result from the
fact that game content can be found in a wide variety of representations, which
are associated with a wide variety of requirements and open up many possible
solutions. Implementations are subject to almost no restrictions in terms of al-
gorithmic generation, and accordingly many approaches from a wide variety of
scienti�c �elds are united under the term Procedural Content Generation. The
term game content usually refers to representations of the game world such as
maps, levels or scenarios, any form of interactive or collectible objects called
items, and any form of textual narration such as stories, quests or characters.
But game content encompasses almost anything a game can contain, including
textures, music, e�ects or animations, and even extends to game rules that
de�ne the principles and mechanics for the game itself. Additionally, generat-
ing behavioral policies for agents can be viewed as part of Procedural Content
Generation in a broader context [33].

To di�erentiate PCG from other research areas of general procedural genera-
tion and to clarify the context of generated game content, we use the Proce-

5

2 Background and State of the Art

dural Content Generation Wiki's de�nition [47] "Procedural Content Genera-
tion (PCG) is the programmatic generation of game content using a random
or pseudo-random process that results in an unpredictable range of possible
game play spaces." This limitation of PCG to ranges of possible game spaces
allows us to consider only video game content that a�ects the gameplay in a
meaningful way and will further on only be considered in this thesis context.

The problem of algorithmic game content generation encompasses a wide �eld
of problems that can require very distinct solutions that can end up being
strongly contrasting from each other. A list of desirable properties is intro-
duced by Togelius et al. [61] to provide a common basis for discussing the
characteristics of Procedural Content Generation:

Speed [61, p.6] "Requirements for speed vary wildly, from a maximum gen-
eration time of milliseconds to months, depending on (amongst other
things) whether the content generation is done during gameplay or dur-
ing development of the game."

Reliability [61, p.6] "Some generators shoot from the hip, whereas others are
capable of guaranteeing that the content they generate satis�es some
given quality criteria. This is more important for some types of content
than others, for example a dungeon with no exit or entrance is a catas-
trophic failure, whereas a �ower that looks a bit weird just looks a bit
weird without this necessarily breaking the game."

Controllability [61, p.7] "There is frequently a need for content generators to
be controllable in some sense, so that a human user or an algorithm (such
as a player-adaptive mechanism) can specify some aspects of the content
to be generated. There are many possible dimensions of control, e.g. one
might ask for a smooth oblong rock, a car that can take sharp bends and
has multiple colours, a level that induces a sense of mystery and rewards
perfectionists, or a small ruleset where chance plays no part."

Expressivity and Diversity [61, p.7] "There is often a need to generate a
diverse set of content, to avoid the content looking like it's all minor
variations on a tired theme. At an extreme of non-expressivity, consider
a level �generator� that always outputs the same level but randomly
changes the colour of a single stone in the middle of the level; at the
other extreme, consider a �level� generator that assembles components
completely randomly, yielding senseless and unplayable levels. Measur-
ing expressivity is a non-trivial topic in its own right, and designing

6

2.1 Procedural Content Generation

level generators that generate diverse content without compromising on
quality is even less trivial."

Creativity and Believability [61, p.7] "In most cases, we would like our con-
tent not to look like it has been designed by a procedural content gen-
erator. There is a number of ways in which generated content can look
generated as opposed to human-created."

When considering these desirable properties for PCG, it becomes clear that
these properties are usually not metrically measurable in a meaningful way.
For example, speed is highly dependent on the application context, since on-
line generation needs to be completed faster than o�ine generation. Other
categories like creativity or reliability have no concrete de�nition at all that
can be expressed metrically. It should also be mentioned that most of the
time they cannot all be satis�ed at the same time, especially not by a single
algorithm. Speed, for example, is a requirement that is at odds with creativity,
since more creative results typically require more computation or search time
during generation. Therefore, a reasonable trade-o� between these properties
is required to get worthwhile results from the creation process [61].

Multi-objective Optimization Game content creation often involves more
complex problems that typically cannot be described as a basic optimization
problem with a single objective to optimize. In these scenarios with more than
one objective, called multi-objective optimization, the overall task is to choose
from a set of solutions that meet multiple objectives to varying degrees [24].
Furthermore, multi-objective problems are often non-trivial, meaning that due
to the contradictory nature of the objectives, no single solution can optimize
every objectives. Such is the case with desirable properties for Procedural
Content Generation. Because of this trade-o� characteristic or contradictory
nature among the objectives, there may not exist a single solution that min-
imizes (or maximizes) every objective within the feasible range [57]. Instead,
multi-objective optimization algorithms seek to determine the Pareto optimal
solution set, a set of solutions that are non-dominated with respect to each
other, meaning that no improvement in one objective can be achieved without
deterioration in others [22].

Optimization problems are closely related to another type of computation
problems, search problems. Without loss of generality, a search problem is
a problem in which, for a given input, the best possible solutionx � is sought

7

2 Background and State of the Art

that satis�es all given constraints. In other words, this sometimes is associated
with �nding the root of a given root-�nding function g(x), where g(x �) = 0 .
Deviating from this terminology, an optimization problem does not look for
the best solution itself, but to optimize g(x). Optimizing for the minimum
possible value presents a minimization problem, but multiplying the value of
g(x) by � 1 correspondingly transform any minimization into a maximization
problem. This thesis focuses on minimization and indirectly always includes
the equivalent maximization case as well when mentioning minimization. As-
suming that g(x) is a continuous function and the best solution found by an
optimization algorithm is an epsilon-optimal solution deviating by an arbitrary
small margin, we have an approximate solution of the search problem. In the
case of minimizing until the smallest possible value ofg(x) = 0 is reached, the
optimization solves the search problem. Therefore, in certain aspects, search
and optimization problems are e�ectively equivalent [55]. In general, search
problems often deal with systems of equations and inequalities that represent a
non-di�erentiable class of functions, and hence direct search algorithms do not
have access tog(x). However, accessingg(x) directly is not mandatory, since
a black-box optimization is su�cient to �nd the best solutions or a solution
with a certain minimum quality needs to be found.

2.1.1 Categories

Procedural Content Generation algorithms can be categorized in many ways
and subdivisions. The following section presents the most common approaches
in this area, categorized according to the underlying main principle of gener-
ation.

Search-based The search-based approach to PCG relies on Evolutionary Al-
gorithms to solve the search problem of �nding meaningful content represen-
tations in the search space of all possible content representations. Inspired by
natural Darwinian evolution, a population of solutions is created that is mod-
i�ed by selection and mating operators over several generations until a stop-
ping criterion for the search process is met. EAs and Search-based Procedural
Content Generation are explained in detail in their own separate subsequent
section 2.2.

8

2.1 Procedural Content Generation

Constraint-based Using logic programming, the constraint-based approach
describes the problem to solve through constraints as opposed to describing
how to solve the problem. The constraints are then passed to a constraint
solver such as in Answer Set Programming [51], which searches for solutions
that satisfy the problem described. Solvers typically represent a kind of black-
box optimizer, but are highly implementation-dependent and can vary greatly
in their functionality. In general, the search process consists of assigning each
variable a value in its range, so that in the end all the constraints are satis�ed.
Therefore, the result is most often a single solution, but could also be a list of
feasible solutions that meet the desired criteria, which would require a further
decision-making process to choose the best one.

The constraints can allow faster convergence time to �nd solutions compared
to the search-based approach because they reduce the total search space of
the problem. However, suitable constraints require a great deal of knowledge
about the game, since otherwise the search space could be reduced in such
a way that important solutions are left out or invalid solutions are found by
omitting important constraints. Therefore, the computation time is strongly
a�ected by the quality of the constraints, but also has the potential to rapidly
generate levels that can meet the real-time speci�cations of human designers
[53].

Rewriting Systems Rewriting systems are a wide range of methods that
replace partial terms of a formula with other terms derived from the research
area of theoretical computer science. In a procedural generation context, they
enable deterministic or non-deterministic content creation, starting at a given
point and applying replacement rules.

One of the most popular rewriting systems is the L-system [30], inspired by
Chomsky's [4] work on formal grammars and biological processes in cells.
While formal grammars apply replacement rules sequentially, L-systems work
in parallel and can even be extended to allow the generation of full road net-
works [38] or procedural geometric modeling of complex 3D models [35].

They are also most commonly used to generate fractals. Fractals describe
a wide range of geometric shapes that resemble naturally occurring branch-
ing patterns seen in plants or other cellular structures. While they appear
to mimic natural processes such as plant growth or erosion, their generative
nature allows them to contain detailed structure at arbitrarily small scales.

9

2 Background and State of the Art

This is a desirable property in Procedural Content Generation, since imita-
tions of naturally generated real-life structures appear to represent high quality
generated content. Additionally, games typically present content at di�erent
scales, such as an overview of the entire world map, which is then split into
multiple low-scale levels based on the higher-level map. Fractals enable the
generation of exactly such content and �nd their most suitable use case in
these scenarios.

Constructive Approaches Similar to rewriting systems, constructive ap-
proaches also start at a given point, but then gradually generate content
instead of replacing it. This means that only one solution is generated per
run, typically via cellular automata or similar systems. A cellular automaton
is a discrete computational model consisting of an n-dimensional grid with a
number of cells in a �nite state and a set of transition rules. By applying the
transition rules to all cells simultaneously, a new generation is created as each
cell is transitioned to a new state based on its own current state and the state
of all cells in its neighborhood. Hence, the neighborhood de�nes which cells
around a given cell will a�ect its future state.

The best-known example is Conway's Game of Life [13], a two-dimensional
zero-player game that combines very simple programming with resulting emer-
gent and self-organized behavior. Cellular automata are widely used to model
environmental systems such as �uid �ow, �re, rain or explosions in games and
are also capable of generating procedural terrain [18].

Noise Functions [25] "A noise is a stationary and normal random process.
Control of the power spectrum is provided, either directly, or through the
summation of a number of independent scaled instances of (typically band-
limited) noise".

Commonly understood in physics as a disturbance variable with a broad, non-
speci�c frequency spectrum, noise has applications in computer graphics and
PCG as a random and unstructured pattern that can be useful for pattern
generation or e�ciently adding a source of rich detail to synthetic images.
Mathematically, noise can be understood as a multivariate random variable
generated by various stochastic processes. White noise, for example, can be
viewed as a combination of statistically independent random variables, each

10

2.2 Evolutionary Algorithms

component having a probability distribution with zero mean and �nite vari-
ance.

In practice, noise is represented as a series of random numbers arranged in
an n-dimensional grid, typically as two- or three-dimensional matrices of real
numbers. These numbers can then represent the brightness of associated pix-
els or the elevation of a speci�c point in a height map. The research area
of computer graphics uses noise for procedural texturing to model complex
materials and objects such as terrains or shapes and can even be extended
to the animation of water surfaces, for example. Inspired by the observation
that natural systems appear noisy, the basic idea of creating natural lookalikes
through procedural generation is to add noise to the content. However, noise
usually has to meet some properties, the most important of which is smooth-
ness, which means that local changes in noise should be gradual, while global
changes can be larger.

Perlin proposed the �rst known implementation of a gradient noise function
in 1985 [42]. The basic implementation involves three steps: creating a vector
grid and choosing pseudo-random gradient directions at the vertices, com-
puting the dot product between the gradient vectors and their o�sets, and
smoothly blending between them to achieve smooth transitions. Typically,
multiple layers, called octaves, are combined in addition to create a better
fractal appearance in the end. Later, Perlin addressed problems of his original
noise function and designed an algorithm to reduce the computational com-
plexity of scaling to higher dimensions and reduce the visible lattice artifacts,
called simplex noise [43]. Implemented by default in most computer graphics
software packages today, procedural noise is still widely used, particularly in
video games, and continues to be researched [21], [2], [26].

2.2 Evolutionary Algorithms

Evolutionary algorithms are a class of population-based search algorithms that
belong to the stochastic, metaheuristic optimization methods. Fundamentally,
metaheuristics represent general computing techniques that are designed to
solve numerical and combinatorial optimization problems and provide a su�-
ciently good solutions over several iterations [24]. The speci�c population and
search-based aspects of EAs are inspired by the Darwinian principle of evo-
lution to create simulated evolutionary optimization algorithms. The general

11

2 Background and State of the Art

assumption is that biological evolution is capable of solving challenging adap-
tation problems and providing complex solutions represented as life forms, and
therefore provides a working rationale for addressing optimization problems.
For a given optimization problem, the resulting algorithms apply evolutionary
principles such as mutation, selection, and reproduction to a population of
candidate solutions to produce o�spring and thereby increase variation in the
population. Another selection operator, typically survival of the �ttest, re-
duces the population back to its original size, reducing variation by dropping
the least �t individuals.

Based on the theoretical de�nition of optimization problems, the goal is to �nd
the single best solution from all feasible solutions, but as mentioned in Chapter
2.1 on multi-objective optimization, it is more reasonable to �nd the set of the
n-best solutions for the given problem. For these reasons, in the further course
of this work we always consider the general goal of Evolutionary Algorithms
to �nd the n-best solutions instead of the single best solution. Optimization
problems almost always have one or more constraints, a condition that the
solutions must satisfy. For this reason, among these n-best solutions, there
may be non-valid solutions that are less in con�ict with the constraints than
others of higher quality. Constraints serve as a measure of feasibility, and not
con�icting with constraints means preserving feasibility, since feasible parents
produce feasible o�spring, which is a desirable trait. In order to �nd these
n-best solutions, the most promising intermediate candidates are successively
improved over several generations, using the evolutionary principles already
mentioned. The incorporation of previous knowledge about the optimization
problems allows for the design of problem-speci�c evolutionary operators and
the integration of these in the search process to cope with the varying chal-
lenges of complex problems [1]. The aforementioned evolution process and
its structure can be better observed in Figure 2.1, which shows a graphical
symbolic representation of a generic evolution algorithm.

The search process begins with the typically arbitrary initialization of the pop-
ulation of individuals, each individual representing a search point in the space
of possible solutions to the given optimization problem. The generation cycle
is then started by decoding this population of search space points into their
solution space representation so that they can be evaluated in the environ-
ment, the solution space of the problem. This results in a quality information,
the so-called �tness value, being assigned to each search points to indicate a
ranking among the existing solutions. After each evaluation, the terminal con-

12

2.2 Evolutionary Algorithms

Figure 2.1: Visualization of the basic process of Evolutionary Algorithms.

dition is checked to verify if the optimal or su�ciently good n-best solutions
have been found. If that is not the case, the cycle continues by selecting favor-
able individuals to reproduce based on their �tness. These selected individuals
will create new solutions based on the recombination of their own search space
coding. These new individuals are additionally mutated, modi�ed on a small
scale, to introduce independent innovations.

These new individuals are then integrated into the population and evaluated
to assign them a �tness value. From this larger population, individuals are
selected and sorted out in order to keep the population size constant over the
generation cycles. Since a growing population means longer running times, it
is generally not considered favorable to keep more potentially weaker solutions
at the expense of increased computation time. Afterwards, the generation
cycle is run through again until a termination condition is met after the �tness
assessment of the population. By recombination of favorable solutions and
only keeping candidates of reasonable quality in each generation cycle, the
algorithm eventually evolves the population into more desirable regions of the
search space to �nd the optimal n-best solutions [3]. Algorithm 1 shows the
general scheme of an EA and serves as a computational representation of the
common basic functionalities of Evolutionary Algorithms.

13

2 Background and State of the Art

Algorithm 1 General Scheme of an Evolutionary Algorithm by [24]

procedure evoalg;
begin

t 0; (* initialize the generation counter*)
initialize pop(t); (*create the initial population*)
evaluate pop(t); (*and evaluate it (compute �tness)*)
while not termination criterion do (* loop until termination*)
t t + 1; (*count the created generation*)
select pop(t) from pop(t - 1); (*select individuals based on �tness*)
alter pop(t); (*apply genetic operators*)
evaluate pop(t); (*evaluate the new population*)
environmental selection (pop(t), pop(t - 1));
(* select individuals for the next population*)
end

end

2.2.1 Building Blocks of Evolutionary Algorithms

The following section provides a brief depiction of the basic underlying mech-
anisms in the evolutionary search process, focusing on those aspects that are
most relevant to the concepts and ideas discussed in this work.

Encoding Again following natural inspiration, individuals are encoded via
chromosomes, which represent a sequence of computational objects such as
numbers, bits, or characters. For the sake of simplicity, in Evolutionary Al-
gorithms, individuals usually have only one chromosome, but with multiple
variables or computational objects represented by genes. Each variable has its
own variable domain expressed as possible alleles. The entire genetic repre-
sentation of an individual is referred to as a genotype or encoding and de�nes
the overall dimensions of the search space, the set of all possible genomes.
However, in order to evaluate all individuals in the population for the given
optimization problem, these variables must be mapped to implementable so-
lutions. These instances of the optimization problem lie in the solution space,
the environment of the problem. In the so-called genotype-phenotype map-
ping, encoded individuals are transformed into their decoded representation in
the solution space, the phenotype. This mapping, which connects search and
solution space, is typically performed with a decoding function.

14

2.2 Evolutionary Algorithms

If the encoding is too large or too complex, the search space becomes corre-
spondingly high-dimensional, which complicates the search process for the EA.
Optimal solutions are generally harder to �nd in larger search spaces, reducing
the overall e�ectiveness of the search as a whole [62], known as the "curse of
dimensionality". The genetic representation not only a�ects the e�ciency of
the search, but also biases the search process towards di�erent parts of the
search space. Even though individuals can be evolved to satisfy the same eval-
uation function and reach similar �tness, the results mapped to the solution
space can look very di�erent. A desirable property for the encoding is locality,
which describes that similar genetic representations should result in similar
phenotypic proximity. Altering one gene on the chromosome should not lead
to a completely di�erent solution.

Initial Population Mathematically, an Evolutionary Algorithm population
is a multiset of candidates because it is technically possible for identical so-
lutions to exist due to the expression limitation in the chromosome represen-
tation. Usually all individuals are generated as a random chromosome, but
it is possible to choose other methods if constraints on the representation of
individuals have to be satis�ed or if the random initialization generates invalid
candidates that have to be discarded or repaired.

Fitness The �tness value of an individual is a measure of the quality of the
performance of this solution in the problem to be optimized. In most cases,
the function to be optimized and the �tness function are identical, or at least
the optimization problem provides a �tness function with which solution can-
didates are to be evaluated. But similar to the remarks on population initial-
ization, constraints can additionally be incorporated in the �tness function if
the problem requires these to be satis�ed in order for a solution to be accepted.
In addition, the �tness function can be used in conjunction with constraints to
introduce a bias toward certain additional desirable properties of a solution.

This inclusion can also be expressed via multiple �tness functions, each of
which provides a measure of quality related to di�erent aspects of performance
in the optimization problem. However, the classical selection operators require
a single value to rank the members of the population, which is why it is common
to design a combination of several �tness functions into one �nal result. A most
straightforward approach is to use a weighted sum across all �tness functions,

15

2 Background and State of the Art

but this requires careful tuning of these weights to account for the interaction
of di�erent �tness values, as they may depend or even counteract each other.

Selection Selection is one of the three main genetic operators guiding the
Evolutionary Algorithm in its search for an optimal solution to a given opti-
mization problem. Based on the assumption that better performing individuals
produce o�spring of higher quality by passing their own strong genes to their
children, selection operators should favor the highest ranked individuals for
reproduction based on �tness. Selection operators are an essential but com-
pletely independent part of the EA, since they operate on individuals and their
�tness regardless of the structure of the search space. The degree of impact
that �tness has on selection is called selective pressure. Selection should always
be proportional to �tness due to the aforementioned assumption and the fact
that selection without selective pressure, meaning without regard for �tness,
essentially degrades the search process to a random search that is unlikely
to �nd an optimal solution in reasonable time. On the other hand, directly
ranking and selecting individuals based on their �tness can lead to a domina-
tion problem. In this scenario, all other individuals are suppressed by a single
individual with a very high quality that will almost always be selected.

A speci�c selection operator to address the domination problem and control
selection pressure is tournament selection. Rather than rank and select in-
dividuals in direct proportion to their �tness, individuals must �rst win in a
tournament to be selected for reproduction. A tournament is a competition
betweenk individuals, uniformly drawn at random, with the winner then be-
ing determined based on �tness. Therefore, the solution with the best �tness
of thosek competitors is selected and all contestants are then returned to the
draw pool for the next tournament. With this method, �tness only indirectly
contributes to reproductive success, since all individuals have an equal chance
of participating in a tournament and only the chance of winning a tournament
is determined by �tness.

The parameter k 2 2; 3; :::; jpopj, which represents the tournament size, is a
selective pressure control where larger tournaments also apply greater selective
pressure. This is exempli�ed by the example of the largest tournament with
size k = jpopj, which degenerates into direct �tness rank selection, selecting
only the best individual each time. Despite the obvious fact that the indi-
viduals with the highest �tness are the most likely to win a tournament, it is

16

2.2 Evolutionary Algorithms

not impossible for worse individuals to reproduce given the possibility of being
drafted into a tournament where all other contestants have a lower �tness score
than they possess. Especially with a small tournament sizek, lower quality
individuals are more likely to encounter this scenario in the selection process.
The only individuals without any chance to win a tournament are the worst
k � 1 of the population. Conversely, larger tournaments increase the chance of
including one of the best individuals, nullifying less �t participants' chances of
winning in the tournament.

The previous discussion of selection only focused on the selection of individ-
uals for reproduction, but once these solutions produce o�spring, the popula-
tion grows and can noticeably slow computation time if the population simply
keeps growing with each generation. Here, environmental selection addresses
this issue by deciding which individuals to drop after a generation and which
individuals to advance to the next generation. Most commonly, the combined
population of existing individuals, their number is denoted by� , and the newly
created o�spring, denoted� , is considered and exactly� individuals are se-
lected for the next generation cycle. This approach has the advantage that
high quality solutions can last for generations, even if they may not produce
better o�spring through reproduction, and is known as elitism. Elitism ensures
that the �tness already achieved by individuals through the search process does
not decrease from one generation to the next and leads to better convergence
properties in which local optima are consistently approached [23]. Converging
to local optima too fast and too early opens up the discussion about the use-
fulness of this approach with this disadvantage, but it has the advantage that
the quality of the n-best individuals never deteriorates over time.

Mutation and Crossover Besides selection, mutation and crossover are the
other two main genetic operators. Their main purpose is to modify and recom-
bine chromosomes to produce new candidate solutions that are similar to their
parents. A Crossover operator involves more than one parent solution, usually
two, and recombines their genes to produce o�spring. Since the selection oper-
ator generally favors and selects the most suitable individuals for reproduction,
the crossover operator then shu�es the genetic information of these parents
in the expectation of creating an even better solution. Subsequently, the mu-
tation operator introduces more genetic diversity into the generated o�spring
through small variations of their genes. The variations of a child solution are

17

2 Background and State of the Art

independent of their parents to prevent the pool of individuals from becom-
ing too similar over the course of evolution, and can be viewed as introducing
innovations into the gene pool.

As with other building blocks, it should be clear that the use of a reproduction
operator is only a general requirement for a working EA. Depending on the
problem and the chosen encoding, the genetic operators can be very generic or
highly problem-speci�c, and are usually chosen to closely match the individ-
ual's chromosomal representation. The most well-known crossover operator is
the one-point crossover, in which a random intersection point is determined
and gene sequences on one side of the intersection are swapped between the
parent chromosomes. The two-point crossover works on the same principle,
but selects two intersections and swaps gene sequences between the two in-
tersections. This can be generalized to a variable number of crossover points
with the n-point crossover, in which there is an alternating swapping and non-
swapping of gene sequences between two consecutive intersections. The classic
example to elucidate a mutation operator involves individuals with their chro-
mosome encoded as a bit string, meaning that each gene in the sequence can
be expressed as either zero or one. The simplest operator, bit mutation, then
randomly �ips alleles by turning a zero into a one and vice versa.

Termination Conditions The search process usually takes a relatively long
time, but should never take forever, which is why a termination condition is
essential for any EA. The overall goal is to �nd the �nal optimal solutions,
but the optimal points of the problem are not known beforehand, so other in-
termediate measures are used to prevent an unending search scenario. Typical
termination conditions involve a prede�ned quality that an individual must
achieve, a certain number of generation cycles that have been completed, a
measure of whether there is still visible progress in terms of �tness perfor-
mance, or a combination of these.

Hyperparameters Only touched on in this subsection, but still important to
mention: For a complete speci�cation of an Evolutionary Algorithm, several
hyperparameters must be de�ned before starting the search process, such as
the population size� , the number of o�spring to be produced� and all other
parameters required by the genetic operators. The search for the optimal set
of hyperparameters is a scienti�c research topic in itself [19], [7], but even with

18

2.2 Evolutionary Algorithms

less complex problems these cannot simply be assigned arbitrarily, but should
be determined with care and taking into account the problem speci�cation.

2.2.2 Rolling Horizon Evolutionary Algorithms

Rolling Horizon Evolutionary Algorithms (RHEAs) are a subclass of Evolu-
tionary Algorithms that focus on planning and policy generation for game
agents under real-time constraints. Originally introduced by Perez et al. [29]
as a rival method to Monte Carlo tree search algorithms, a popular heuristic
search method for real-time decision making, they have become a similarly
popular and researched method in the context of General Video Game Playing
[28].

The obvious approach to addressing the problem of decision making in games
with EAs would be to pre-search for the best possible actions in an o�ine
model of the game and then train an agent to perform those actions during
gameplay. This is a relatively in�exible approach that does not allow dynamic
adjustment or reaction to new in-game situations, since the search process is
already complete. RHEAs integrate the search problem into the game itself
by evolving an action sequence for a short �nite period of time, typically a
few milliseconds, online during the game in an internal model where actions
can be simulated and evaluated [8]. Then the best action found is carried out,
the change in the game state is observed and a new, short-lived search process
is started in order to �nd the subsequent best action for the new game state.
This process is repeated until the game is over.

The genetic representation of a Rolling Horizon Evolutionary Algorithm de-
pends on the possible action space of the game, but is always mapped to the
phenotype representation as an action sequence from an initial state to the last
considered action. Similar to EAs, the �tness function for evaluating actions
is kept general to avoid expressive limitations and places a general focus on
performing adequately to win the game overall. The termination criteria is not
tied to reaching a �xed number of performance score or even �nding the most
optimal solution, but limited based on the search algorithm's �xed exploration
range, called horizon, a limited look-ahead in the form of a time frame, but in
much smaller dimensions than the typical search process would take.

RHEAs have become a core component of General Video Game Playing frame-
work [9] and are constantly improved and modi�ed in order to continuously

19

2 Background and State of the Art

improve their performance further [10], [11]. The general approach allows for
the application to a varying kind of games as they are designed with the goal
of general video game playing in mind [31], [49].

2.2.3 Search-based Procedural Content Generation

Search-based Procedural Content Generation covers Procedural Content Gen-
eration algorithms that use EAs or other stochastic optimisation algorithms
to search for and generate good game content. For a detailed explanation and
discussion of Evolutionary Algorithms, we refer the interested reader to Section
2.2. The term Search-based Procedural Content Generation is not limited to
EAs, but allows all forms of heuristic and stochastic optimization algorithms
[63]. However, within the context of this work, we mainly discuss the most
commonly used metaheuristic for SbPCG, Evolutionary Algorithms.

Mutation and crossover operators, essential components of an EA, are usually
chosen highly variably, since they always have to match the problem-speci�c
encoding. As the generation of game content covers a wide range of problems
and thus a large number of problem representations, the operators also vary
greatly. Unfortunately, little attention is paid in the scienti�c literature to the
speci�c implementation of these operators [59],[17],[12],[48].

The scholarly works have agreed on two central problems that have to be
addressed in the construction process of such an algorithm: the content rep-
resentation, which de�nes the search space of the problem, and the evaluation
function, to determine the quality of solutions [60]. Only a combination of ap-
propriate content presentation and a meaningful evaluation function enables
the evolutionary search to �nd interesting, diverse content in a reasonable
amount of time. These two central problems are discussed in more detail
below.

Content Representation Since solutions in Evolutionary Algorithms are en-
coded as a sequence of computational objects, they can take any form depend-
ing on the required application and the presupposed problem. In the context
of game context generation, the genotype-phenotype mapping typically con-
tains instructions for creating game content such as a level, maze, or map, and
the phenotype involves the visual representation of the actual content to be

20

2.2 Evolutionary Algorithms

generated for the game. Choosing the right encoding is of paramount impor-
tance as video games tend to have complex data structures for their content,
i.e. a graphical model represented as a mesh of triangles, or a map that spans
thousands of tiles, or the whole story as a text spanning several chapters [60].
Because the genetic representation of individuals is directly correlated with
the dimensionality of the search space, the chosen genotype in�uences the ef-
�ciency of the search process and the vastness of content that the algorithm
will be able to cover.

Evaluation Function The �tness function assigns a �tness score to each
solution as an indication of its quality and is the main guide in the search pro-
cess towards better solutions in the search space. Therefore, a badly designed
�tness function can prevent the entire evolutionary process from working as
intended and prevent high-quality solutions from being found. Crafting an
evaluation scoring function to map desirable content quality in a video game
context to a numeric value is an ambiguous task. This can depend heavily
on the desired type of content and its in-game functionality to be output [63].
The most popular example of this is the term fun, as this is a commonly
understood concept, but one that seems impossible to de�ne and articulate
without leaving room for misinterpretation. For example, some players may
describe a challenging, competitive round as entertaining, while others prefer
more peaceful rounds that require less consideration and planning to achieve
a win in order to have fun.

In general, �tness functions are not subject to strong design restrictions and
one could come up with an almost in�nite number of them, since they can
also be designed speci�cally for the problem. However, Togelius et al. [63]
distinguish between three key classes of evaluation functions in the context of
SbPCG, which are summarized below.

Direct Evaluation Functions evaluate content based on the content's phe-
notypic representation in the game. As is customary in evolutionary
algorithm, solutions are decoded into the solution space and evaluated
directly in the problem-speci�c environment. Therefore, characteristics
of the generated content directly correlate with the associated quality.
These �tness calculations have the advantage of being fast to implement
and execute, and can provide a quality score at all times, including dur-
ing gameplay. The resulting disadvantage of this forward approach is

21

2 Background and State of the Art

that the connection between game content features and desired or asso-
ciated �tness is non-obvious. Because game content can interact with
the game and the player in various complex ways, the task of devising a
direct �tness function is very challenging.

Simulation-based Functions evaluate content based on calculated statistics
of on AI agent playing through the game. Agent behavior and the re-
sulting game states provide information on how generated game content
is to be evaluated. The most common are two types of assessment tasks
that also indirectly set the requirements for the AI agent, playability and
player experience. In the case of playability, the ability to reach the end
of the game or get as far as possible or last as long as possible are crucial
qualities that an agent has to exhibit. The subject of player experience
poses a very general but also di�cult task, which in short is often tackled
with an AI agent capable of mimicking human behavior.

Interactive Functions evaluate content based on interaction with a human,
either implicitly or explicitly collecting data from the player. Implicit
data collection is based on assumptions and knowledge about the con-
nection between player behavior and content quality. As an example,
Hastings et al. [15] attributed the number of times a procedurally gener-
ated weapon was selected to the overall popularity of the content. Since
this method relies on implicit knowledge and assumptions, the results
are always bound to the incorporated understanding of game and design
mechanics. Explicit data collection takes into account direct decisions
about the quality of generated content, providing more insights and re-
liable information. But this usually requires a break in gameplay and
a change of focus for the player. Switching from gaming immersion to
evaluating gaming experience and decision making takes a longer time
overall. The general requirement of having a human integrated into the
process is on the one hand a challenge and another resource that needs to
be managed. But on the other hand, a useful decision maker and accu-
rate estimator of player experience for the game content design process.

These three di�erent classes of �tness functions all have their advantages and
disadvantages. Which of these functions is generally most useful for Procedural
Content Generation cannot be decided in general terms. Fundamentally, the
design and application of a �tness function to an optimization problem is
always highly task-speci�c. For this reason, it can be bene�cial to have more

22

2.3 Tile-based Games

than one �tness function to capture multiple aspects of �tness to account for
more than one strict de�nition [60]. This is consistent with the conclusions
drawn in Section 2.1 on the subject of multi-objective optimization.

2.3 Tile-based Games

Tile-based video games represent their playable game world on the screen as
a grid of tiles. While tiles are compact polygonal graphical entities, mostly
triangles, squares, rectangles, or hexagons, the set of possible images that can
be displayed by the game is called a tile set. Dating from the earlier days of
video game development, when computers were limited in their computational
capabilities and ability to display rich textures, running a game and displaying
graphical information at the same time required careful game design. Com-
pared to always rendering the entire frame at once, tiled rendering reduces
memory, bandwidth, and processing time, making it possible to conserve these
resources in times when video games, for example, had to �t into cartridges.
Today, the hardware of modern computers allows for more resource-intensive
graphics display, and tile rendering is only visually used as a design choice for
its highly recognizable visual appearance.

From a game world-structuring and interaction perspective, hexagonal grids
have clear advantages over the traditional square grid counterpart. First,
neighbouring tiles always share a common edge, which means that no two
cells touch at just a single corner, compared to squares. Second, all neighbor-
ing tiles in the grid are equidistant from each other because the distance from
the center of one tile to the center of the six adjacent tiles is always the same.
In a square grid, the distance from the center to the four diagonal neighbors is
skewed by a factor of

p
2 compared to the distance to the adjacent vertical and

horizontal neighbors. Hex grids are most often considered in strategy games
due to the in�uence that the equidistant property and additional neighboring
tile have on tactical gameplay. Circular attacks and e�ects like explosions work
in a more natural radius, and unit movement is also more balanced compared
to square grids.

Tile-based Games in Science Tile-based games are often associated with
Procedural Content Generation, especially map generation, in scienti�c re-
search [33],[46]. They conveniently subdivide their content presentation into

23

2 Background and State of the Art

smaller, manageable pieces with local characteristics. Notwithstanding this
division, tiles provide enough functionality for endless possibilities in game
content creation [36],[14],[54].

2.3.1 Hexagonal Grids

A hexagon is a 6-sided polygon with 6 corners and if these are regular, i.e. all
sides are the same length, 120° interior angles in each corner. If the opposite
corners of a regular hexagon are joined together, the inner surface can be
represented by six equilateral triangles. The hexagon, along with the square
and equilateral triangle, is the only equilateral polygon that allows regular
tiling of a plane, that is, edge-to-edge tiling. In a plane tiled with a hexagonal
grid, each hexagon is connected to its neighbors by entire edges, and never just
by corners or portions of an edge. From another angle, one could say that each
corner of the grid is shared by 3 hexagons and each side by 2 hexagons. The
typical orientation for hexagons in a grid is either as horizontal rows shifted one
below the other, or as shifted vertical columns. Figure 2.2 show a comparison
between both possible hex grid orientations.

Figure 2.2: Comparison of hexagonal alignment of vertical columns and hori-
zontal rows.

24

2.3 Tile-based Games

Coordinate Systems When de�ning a hexagonal grid, not only the orien-
tation needs to be de�ned, but also how coordinates are assigned to each
tile, as there are several possible approaches. On his website [41], Amit Patel
presents a comprehensive compendium on this subject, which contains various
approaches, common formulas and algorithms for hexagonal grids, on which
the following section is based.

O�set coordinates

The most common approach is to o�set every other column or row. You can
either o�set the odd or the even column/rows, resulting in two variants for each
orientation of the hexagons in the grid. The resulting possible representations
are exemplary shown in Figure 2.3.

(a) Horizontal layout with odd and even o�set

(b) Vertical layout with odd and even o�set

Figure 2.3: Overview of hexagonal coordinate system layouts.

25

2 Background and State of the Art

Cube coordinates

Another way to look at hexagonal grid coordinates is to develop a coordinate
system with three main axesX , Y and Z , as opposed to the two we have for
square grids [16]. A point on the hex grid is thus described by three coordinates
(x, y, z). In this system, the hexagonal grid is actually a diagonal plane that
is a cut through a cube in 3D, described byx + y + z = 0.

Depending on the chosen orientation of the grid, there is either a horizontal
axis or a vertical axis and the other two run symmetrically diagonally and
cross at the coordinate origin. Visually, in the vertical representation, the
X-axis refers to northeast/southwest movement on the grid, the Y-axis to
northwest/southeast movement, and the Z-axis to east/west movement. The
three axes are then traversed similarly to Cartesian coordinates, but moving a
hex tile changes two coordinates instead of one.

Axial coordinates

Axial coordinates are an extension of the cube coordinate system by incorpo-
rating the fact that the plane de�ning the X , Y and Z axes in cube coordinates
is constrained byx + y + z = 0. As can also be seen visually, points on the
Z axis always satisfyz = � x � y due to axial symmetry [32]. Therefore, the
z-coordinate is taken into account, but not stored for the coordinates of the
points, only calculated when needed. Figure 2.4 shows a comparison of cube
and axial coordinates in the case of a vertical column hexagonal grid.

Figure 2.4: Cube and axial coordinate system.

26

2.3 Tile-based Games

Neighborhoods Since access to single tiles and their surrounding neighbor-
ing hexes is crucial for map generation, we formally de�ne the neighborhood
relations for the case of vertical o�set coordinates as follows:

For a given hexagonal tile in the gridh the �rst level neighborhood N1 con-
tains all tiles ni that are in reach of one step fromh, meaning N1(h) =
f ni jdistance(ni ; h) = 1 g. For all tiles not lying on the edge of the grid there
exist six tiles in the �rst level neighborhood and index them starting from
one to six clockwise. Similarly we de�ne the second level neighborhood as
N2(h) = f ni jdistance(ni ; h) = 2 g. Figure 2.5 visualizes these relationships
again graphically. Speci�cally for this work, we further subdivideN2 into two
subsets,N2k and N2j . N2k contains all tiles in the second-level neighborhood
with an even index asN2k(h) = f ni jdistance(ni ; h) = 2 ^ i mod 2 = 0g.
Accordingly, N2j (h) = f ni jdistance(ni ; h) = 2 ^ i mod 2 = 1g

Figure 2.5: First and second level neighborhood withN1 = {1,2,3,4,5,6} and
N2 = {7,8,9...,17,18}

27

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Research Questions
	Thesis Structure

	Background and State of the Art
	Procedural Content Generation
	Categories

	Evolutionary Algorithms
	Building Blocks of Evolutionary Algorithms
	Rolling Horizon Evolutionary Algorithms
	Search-based Procedural Content Generation

	Tile-based Games
	Hexagonal Grids
	The Battle for Wesnoth

	Content Generation Rolling Horizon Evolutionary Algorithm
	Concept and Overview
	Concept
	Desirable properties
	Overview

	Content Representation
	Fitness Functions
	Differential Tile Fitness
	Layout Entropy Fitness
	Village Fitness
	Weighted Sum

	Rolling Horizon Evolutionary Algorithm
	Evolutionary Algorithm
	Rolling Horizon

	Evaluation
	Hypotheses
	Experimental Setup
	Data Acquisition
	Game Setup
	Metrics and Hyperparameters

	Experiments
	Results
	Hyperparameter Sets
	Hyperparameter Performance
	Turn-based Performance
	Generation-based Performance
	Speed Analysis
	Fairness

	Discussion

	Conclusion
	Bibliography

