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Abstract

This paper proposes multiple network topology prediction algorithms which can be used for
Mobility-Aware Multi-Objective Task Allocation (M-MOTA) within wireless sensor networks
with mobile nodes. The algorithms all predict future network topology so that M-MOTA can
optimize task deployment for possible network states. To this end, a scenario where cars drive
around a smart city, acting as mobile nodes in a network, was thought of to create a wireless
sensor network with high mobility. Multiple task allocations which were optimized using the
prediction algorithms are evaluated in that scenario. The mobility data for this scenario is
provided by newly created mobility models, which are also introduced in this paper. Using
a simulation environment with the introduced mobility models, the prediction algorithms are
evaluated measuring Power Consumption, Latency and successful task execution. Multiple
approaches show promising performance in all three categories when compared to the theoretical
best.
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1 Introduction

The Internet of Things (IoT) is a rapidly spreading technological advancement within the sec-
ond and third decade of the 21st century. It describes group of physical objects equipped with
hardware to communicate with each other via the Internet [1], enabling information sharing
between devices on larger scale than before.
The range of applications the Internet of Things can help enhance is broad. Consumer applica-
tions like smart home devices, smart thermostats or lights [2] can increase the quality of life for
their consumers.
In industrial applications the Internet of Things can be used to monitor soil properties for more
e�ective farming [3] or to monitor the wear of heavy machinery [4] in order to increase safety
and cost e�ectiveness when replacing parts.
The public sector can use IoT systems for infrastructural monitoring in order to optimize the
maintenance and expansion of roads, monitoring the environment in hospitals [5] and enhancing
other critical infrastructure.
In smart cities [6], the Internet of Things can help reduce tra�c congestion [7], optimize parking
situations for cars, make roads safer with intelligent tra�c regulations and help lessen the burden
on the climate by intelligently switching tra�c lights [8] and improving public transportation.
Wireless Sensor Networks (WSNs) are closely connected to the IoT. The term describes a wire-
less network of nodes, each one monitoring the environment around it via a sensor and sharing
it with other nodes in a decentralized manner [9] . Usually, these nodes are cheap, small and
run via a low power battery, making them easy to replace.
WSNs can not only be achieved by scattering nodes throughout the environment, but also by
integrating them into things which are distributed over an area, for example in pipes, machin-
ery, cars and other things. It is assumed by [10] that the IoT will be so widespread in a few
years that entire cities will transform by connecting nearly every part of them to a big network,
transforming them into what we call smart cities .

1.1 Motivation

This work considers the scenario of a smart city. Its focus will be on the cars driving around in
the city, which are assumed to be part of the Internet of Things and act as mobile nodes in a
Wireless Sensor Network.
Given this scenario, trying to maximize the quality of the network is vital. A poor quality net-
work a�ects the communication among its nodes in a negative way, which gives rise to problems.
In our case a negative in�uence on node communication could interrupt tra�c. The cars in our
city are assumed to do IoT assisted route planning [7], whose interruption can result in tra�c
congestion in the streets. This in turn causes loss of time and money for the city inhabitants
and can even cause potentially dangerous tra�c situations because a higher car density makes
it more likely that accidents occur [11].
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In order to evaluate the quality of a Wireless Sensor Network, quality metrics which consider
the unique properties and problems a smart city WSN has need to be de�ned.
These quality metrics for Wireless Sensor Networks we de�ne are Reliability (R), Availability (A),
Latency (L) and Power Consumption (PC). The three metrics R, A and L were all used in [12]
and [13] and are generally applicable to measure the quality of a WSN. Additionally, a fourth
metric called Network Lifetime (NL) was introduced in [13], which we will be replacing with the
PC metric.
Since the cars considered in this scenario have high capacity batteries, the network lifetime
should not be a�ected by the Power Consumption of the WSN. Therefore it makes more sense
to consider Power Consumption directly instead.

The movement of the cars in a smart city introduces dynamic and frequent change of network
topology by frequently breaking existing connections between the cars, likely compromising the
quality of the network as de�ned by our metrics.
Considering that, a method to improve the network quality is desirable. One way to do that
is predicting future topology changes within the network and adapting to them before they
occur. One could for example reallocate tasks within the network using the predicted topol-
ogy changes, thereby lessening the negative impact introduced by the high mobility of the
nodes.

1.2 Goals

1.2.1 Mobility Models

In order to create a prediction method for topology changes within a Wireless Sensor Network
spread throughout a smart city, data with which to evaluate the quality of the prediction and
the resulting network quality is needed. Since real data traces for many connected cars in a
smart city are very time-intensive to collect, we aim to introduce a mobility model within a
simulation of a Wireless Sensor Network which produces similar data instead. This synthetic
data can then be used instead of real traces to evaluate the predictions.
Approximating a smart city, the mobility model will have characteristics of a Manhattan model,
whose topography approximates many cities in the real world. The classical Manhattan mobility
model however has nodes moving around randomly within its topographic constraints, which
makes the data generated suboptimal when trying to predict future actions.
The cars in our scenario do not drive around randomly, deciding where to turn anew at every
intersection but instead follow predictable patterns. Said patterns are created by the dynamic
routing [7] introduced by the cars being connected to the Internet of Things. Therefore our
�rst goal is to introduce a new mobility model whose aim is to produce data which follows
a predictable pattern approximating the real life behaviour of cars. This will then make the
prediction of future node positions and network topology within a simulation using this mobility
model meaningful.

1.2.2 Prediction Methods

The prediction methods introduced in this paper have the goal of providing prediction data
which can be used by the Mobility-Aware Multi-Objective Task Allocation (M-MOTA) algo-
rithm. Said algorithm distributes tasks to nodes, optimizing for the quality metrics of Wireless
Sensor Networks mentioned before and will be slightly modi�ed in order to optimize for Power
Consumption instead of Network Lifetime.
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The Mobility-Aware Multi-Objective Task Allocation algorithm, which considers node mobility
when allocating tasks, is an extension of Multi-Objective Task Allocation (MOTA). By consid-
ering future node positions, it can better allocate tasks throughout a WSN than the original
MOTA algorithm, but in turn it needs a predictor for the future network topology. The task
allocation in a WSN featuring high mobility, like the smart city scenario we use here, should be
improved when using the prediction methods introduced in this paper.
The goal is to come up with multiple prediction algorithms using di�erent established techniques
and comparing them with each other in order to determine which one is best suited for use with
M-MOTA.
Additionally, other criteria will be introduced in order to evaluate and compare the prediction
techniques other than the performance of each predictor in combination with M-MOTA. These
criteria include:

ˆ The accuracy of the prediction method for the position of each node.

ˆ The accuracy of the prediction method for the topology.

ˆ The accuracy decrease of the prediction method depending on the length of the look-ahead
into the future.

The accuracy of the prediction for each node and for the whole topology will make it possible
to evaluate how the absolute accuracy of a prediction a�ects the performance of the M-MOTA
algorithm and will also provide an overview of how good a prediction method is without looking
at the quality of the task allocation.
Additionally, the accuracy decrease when increasing the look-ahead time will be a useful evalu-
ation tool in order to see if di�erent algorithms might be useful for di�erent types of Wireless
Sensor Networks and di�erent kinds of use cases, depending on how far the look-ahead time
needed is.

1.3 Thesis Outline

In Chapter 2 all fundamentals required to understand the algorithms and concepts introduced
in later chapters can be found.
Chapter 3 discusses related works such as the Availability-Aware Multi-Objective Task Alloca-
tion (A-MOTA) algorithm which is another variation of the original MOTA, as well as work
predicting car positions based on their previous GPS data.
The new mobility model and prediction methods mentioned above will be introduced in Chap-
ter 4.
The newly created mobility models and prediction methods will be evaluated in Chapter 5, after
which the conclusion and possible future work will be discussed in Chapter 6.
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2 Prerequisites

This chapter describes concepts that are necessary to understand the remaining chapters of
this thesis. Readers that are already familiar with the topics may skip ahead at their own
discretion.

2.1 The Internet of Things and Smart Cities

The Internet of Things is a term for a set of technologies, systems and a vision to connect things
in our physical environment via the internet [14]. It is about remotely monitoring, controlling
and automating things by equipping them with sensors and means of communication [1], en-
abling them to interface and interact with one another via the internet.
This means that the internet will change from its form today primarily consisting of human to
human communication. In an IoT future, the primary communication in the internet will be
Machine to Machine (M2M) [15] with human to human communication only making up a small
part of the whole.
The primary enablers of the rise of IoT systems have been the miniaturization of electronic de-
vices, as well as Radio Frequency Identi�cation (RFID) and other wireless technology becoming
cheap enough to be included in many things [16].
In the future, entire cities will potentially turn into a part of the Internet of Things known as
smart cities . These smart cities make use of the Internet of Things by collecting and analyzing
data in order to improve their infrastructure, public services and general quality of life for their
inhabitants [17].

Examples for the applications of IoT solutions in a smart city include:

Smart utility meters and grids [17] These tools allow citizens to manage points of
high energy consumption in their households and
give energy providers the possibility to manage
energy �ow throughout a city, which is especially
important with the rise of green energy solutions
and their decentralized and �uctuating power gen-
eration.

Smart transportation methods [17] These methods include public transport innova-
tions which let citizens see the location and ar-
rival time of public transport ahead of time, as
well as connected cars and tra�c lights making
tra�c �ow more smoothly and helping to prevent
accidents.

Smart waste management solutions [10] Smart waste management solutions help plan the
routes of waste managements services, making
them more e�cient.
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Smart air quality monitors [10] Smart air quality monitors can alert people of
unsafe pollutant levels in parts of a city and help
identify and eliminate choke points with high pol-
lution.

Smart emergency response systems [9] Smart emergency response systems can help iden-
tify the areas most a�ected by emergencies like
natural disasters or �res and optimize response
time and e�ectiveness of emergency services.

Although these examples already cover a wide variety of use-cases, there are many more being
explored [18]. Smart car sharing services [19] for example can help lessen the huge tra�c
problems many modern cities face by providing an easy way to access a car without owning one,
thereby decreasing the space required in a city for parking. This, combined with self driving
cars, one of the most well known examples of IoT technology, can change the way transportation
works fundamentally.
Widely spread, IoT assisted driving or fully self driving cars can exchange their positions with
each other, making tra�c in a city fully transparent for every participating machine. This in
turn can be used to predict where heavy tra�c will happen and makes adaptive rerouting [7] in
order to avoid tra�c jams possible. These connected cars combined with smart tra�c lights [8],
which would also know the positions of cars in advance, could also be used to adapt red-green
cycles at intersections, signi�cantly improving upon one of the most common choke points in
tra�c, thereby increasing the tra�c �ow overall and improving tra�c safety [20].
The Internet of Things however does not only present new opportunities. In [21] many challenges
that have to be addressed in order for the Internet of Things to ful�ll its potential are pointed
out. For the Internet of Things to work, internet has to be made available everywhere and at no
cost. Additionally, power generation and storage have to be available for all devices connected.
Security issue concerns also arise, as critical IoT will increasingly come into the focus of malicious
hacking groups. With the rise of M2M communication, magnitudes of data never seen before
will have to be exchanged and processed as well. One big new source of data will be wireless
sensor networks.

2.2 Wireless Sensor Networks

Wireless Sensor Networks are an emerging type of wireless network that contain distributed and
independent sensor devices which monitor physical or environmental conditions around them [9].
They consist of small-scale, cheap sensor nodes that communicate with each other, exchanging
the information each of them obtains. The strength of WSNs arises from the huge number of
interconnected nodes that can be employed simultaneously [9], making the failure of an individ-
ual one noncritical and replacement cheap.
The main di�erence between the sensor nodes used in WSNs and devices in classical wireless
networks is that the sensor nodes are small, cheap devices, usually only powered by a small bat-
tery. This makes energy usage a new problem that is not present in other wireless networks [22].
Arising from this problem are di�erent mitigations and solutions to make these networks last
longer. One important thing is the invention of many low-power network protocols . These
protocols include ZigBee, Bluetooth LE, 6LoWPAN , RFID , NFC [23] and many more examples
widely used in current IoT applications, which all include speci�c design decisions that facilitate
low power consumption.
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To not only decrease the consumption of energy but actually gain back depleted energy over
time, energy harvesting techniques are also being researched and deployed [24]. These techniques
include the conversion of solar, wind, tidal and geothermal energy to electricity in order to keep
a node from running out of power.
Wireless Sensor Networks are integral to the Internet of Things in many cases, for example in
weather monitoring [25], soil quality monitoring [26], battle�eld surveillance [27], tracking of hu-
man and animal movement [9], and monitoring of equipment condition [28].

The main applications of WSNs can be split into three categories:area monitoring , entity
monitoring and the combination of both, area-entity monitoring [22]. Di�erent circum-
stances make WSNs important for all these use cases.
For area speci�c applications like weather or soil quality monitoring [25][26], a large area has
to be monitored. A WSN created by scattering sensors over a wide range makes it possible
to gather many data points for the whole area and send them all back to a base station to be
processed and create a big picture view. This can also facilitate the early detection of natural
disasters like hurricanes or wild�res by combining many data points over a wide-spread area in
order to detect anomalies [9].
For entity speci�c applications like animal monitoring [29], a WSN can be employed in order to
observe large scale migrations and other behaviour. By using a large amount of sensors, more
animal behaviour and movement data can be gathered than any group of humans could ever
reasonably collect manually and without the need for a group of humans to interact with the
ecosystem.
Additionally, WSNs can be employed to spread out sensors in areas otherwise not easily acces-
sible to humans, for example to observe ocean currents or animal behaviour, or to collect data
from a battle�eld [27] or area devastated by a natural disaster [9] in order to deploy humanitarian
aid more quickly and e�ciently.

2.2.1 Task Allocation

Because Wireless Sensor Networks contain a large number of decentralized nodes, sending raw
data out of the network is undesirable due to the fact that wireless data transmission often is
more resource intensive than local computation [30]. One can reduce the power consumption by
aggregating and processing the information gained from the nodes inside the network, making
it the better alternative [30].
If one considers a typical WSN scenario as laid out in the examples above, data is collected by
sensor nodes throughout some area and needs to be made available at central sink nodes where
it is further processed. In many such cases, the data collected by di�erent sensors can be jointly
processed while being forwarded towards the sink [31], which is where in-network aggregation
and processing comes into play.
How this in-network data processing is executed (i.e. which tasks are allocated to which node)
has signi�cant impact on the energy consumption and overall network e�ciency due to the
increase or reduction of the number of data transmissions and length of individual packets de-
pending on the allocation [31].

A complication with optimal task allocation for WSNs is that it is an instance of the generalized
assignment problem. This kind of problem has been proven to be NP-hard[32], making �nd-
ing the optimal solution by classical means unviable given a non-trivial amount of nodes and
tasks [33].
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To see why that is the case, one can consider an example network [13] of homogeneous nodes
N =

n
N0; : : : ; N i ; : : : ; N jN j� 1

o
of size jN j to which a set of tasksT =

n
T0; : : : ; Ti ; : : : ; TjT j� 1

o

of sizejT j are assigned. We can calculate the total number of possible assignments to bejN j jT j .
If all tasks are independent of one another, this gives us a time complexity ofO(jN j � jT j ) to
distribute all tasks optimally, because the best node for each task can be selected individually.
However, as soon as soon as there exist some sub-tasks of a single global task, the search space
increases exponentially, making �nding the optimal solution impossible in a reasonable amount
of time if jT j is big enough.
These circumstances make heuristic algorithms necessary to approximate good solutions for
task allocation instead [33]. Examples of meta-heuristic algorithms which can and have been
employed to �nd solutions for task allocation problems include genetic algorithms like Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) [12] and Particle Swarm Optimization
(PSO) [33].
The following, more formal problem formulation was introduced in [12] and [13].

A WSN and its nodes can be modelled as an undirected graphGNet = ( N (t); ECom (t)) . Each
node N i 2 N has a position~xi (t) and energyE i (t) at any given time t.
Every node also has an inherent node latencyl i given by the function L i (pj ), which depends on
the processing cost for a given task, as well as an inherent power consumptionci given by the
function Ci (pj ) which also depends on the processing cost for the task. Two nodes that share an
edgeeij 2 ECom (t) are able to communicate with each other with a certain amount of latency
l ij (t) between them using a speci�c amount of energyE ij (t).

The global task and its dependent sub-tasks can be represented as a Directed Acyclic Graph
(DAG) GT ask = ( T ; ET ask ) with each vertex in the graph being a taskTi 2 T and each edge
being eij 2 ET ask being a dependency between the two tasksTi and Tj .
Additionally, each vertex has a weight pi which represents its associated processing cost and
each edgeeij has a weight wij which represents the cost to exchange information between the
two tasks Ti and Tj if they are being executed on di�erent nodes in the network. Finally, each
task may also have a constraintSi which restricts the space it has to be executed in.

The task allocation itself can be represented by a functiona : T ! N (t) which maps each vertex
in task graph to a vertex in the network graph at a speci�c time t while ful�lling the constraint
that any node executing a task needs to be connected to all nodes executing directly connected
tasks.
The goal when allocating tasks is to �nd a series of valid allocationsA = ( a0; a1; : : : ; an ) with
associated start timeststart

i and end timestend
i , that maximizes a certain set of quality parame-

ters for the network.

2.2.2 Quality Metrics

The performance of a WSN can be impacted by bad task allocation, degradation of its physical
components over time and other internal and external in�uences temporarily or permanently
disabling nodes in the network or disrupting communication between nodes. To measure the
quality of a network in these circumstances, multiple metrics can be used. Metrics which are
needed for this work will be de�ned in this chapter.
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Network Lifetime (NL) is de�ned by Equation 2.1. It is the time between the �rst and last
valid allocations of tasks within a WSN.

NL (A) = tend
n � tstart

0 (2.1)

Power Consumption (PC) of an allocation seriesA , as seen in Equation 2.2 is equal to the
sum of the Power Consumption of all allocations within the series. The Power Consumption
PC(at ) of one allocation at is de�ned as the sum of the Power Consumption of all connected
tasks.
The Power Consumption E ij needed between two tasksTk ; Tl is the sum of all the power con-
sumed along the pathPkl (at ) plus the inherent power consumptionck .

PC(A) =
X

at 2A

2

4 max
Tk ;Tl 2 VT asks

X

eij 2 Pkl (at )

E ij + ci

3

5 (2.2)

The Availability (A) is the fraction of time a network is working on a global Task T. It is
de�ned by Equation 2.3.

A(A) = 1 �

Rtend
n

tstart
0

e(A ; t)dt

NL (A)
(2.3)

with e(A ; t) being a boolean function on whether the network has encountered an error, as shown
in Equation 2.4.

e(A ; t) =

(
0; ai is valid; tstart

i � t < t end
i

1; otherwise
(2.4)

The Reliability (R) , as shown in Equation 2.5 is the time a network needs until encountering
its �rst fault terror

A = argmin
t

(e(A ; t) = 1) , at which point it can no longer work on the global

task T.

R(A) =
terror
A

NL (A)
(2.5)

Finally, the Latency (L) of an allocation seriesA is the maximum latency of all allocations
within the series. The latency L(at ) of one allocation at is de�ned as the maximum latency of
all connected tasks. The latencyl ij between two tasksTk ; Tl is the sum of all latencies along
the path Pkl (at ) plus the inherent node latencieslk . All of this combined is represented by
Equation 2.6.

L (A ) = max
at 2A

2

4 max
Tk ;Tl 2 VT asks

X

eij 2 Pkl (at )

l ij + l i

3

5 (2.6)
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2.3 Mobility Models

Mobility models describe the movement behaviour of entities over time and attempt to mimic
the real life behaviour of those entities [34]. This can either be done by recording and playing
back movement of entities that were actually observed, or by building a synthetic model which
attempts to recreate real movement patterns without the use of traces [34].
The former approach has the advantage of perfectly representing real life movement behaviour,
but can only ever cover the data points that were actually traced. For use-cases which require
more data than can be acquired by traces, or if acquiring traces is not desirable for other reasons,
synthetic models are needed.
Recreating movement with synthetic models has the advantage of being able to generate any
amount of data, but comes with the the downside of synthetic models usually only being imple-
mented as simple random tra�c generators [35]. More advanced models require more time to
develop, as well as more resources to execute.
Synthetic mobility models can broadly be split into two distinct categories [36]: Homogeneous
and Heterogeneous models. Additionally, they can be further divided by their properties in
order to more easily �nd a suitable model for a desired use-case.

Bai et al. [37] classify models by their basic mobility characteristics:

Random models Entities in these models move randomly. The mod-
els can be subdivided further by the degree of ran-
domness.

Models with temporal dependency In these models, future movement is in�uenced by
past movement.

Models with spatial dependency Here, entities are in�uenced by each other and move
in a correlated manner.

Models with geographical restrictions These models present constraints like streets, roads,
obstacles, etc., that hinder the movement of nodes
in some way.

Roy [38] provides an alternative classi�cation, dividing models into seven groups:

Individual mobility models The movement for each entity is calculated individ-
ually, making entities act independent from one an-
other.

Group mobility models The movement for a group of cooperative entities is
calculated, making them move in a correlated man-
ner.

Autoregressive mobility models The mobility patterns are correlated with the mo-
bility states.

Flocking and swarm mobility models These models imitate self-organizing swarms (like
birds, ants, etc.) in nature.

Virtual game-driven mobility models Interaction with all other entities within a network is
taken into consideration when calculating the move-
ment behaviour of a node.
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Non-recurrent mobility models Here, it is assumed that the network permanently
changes its topology over time, making entities move
in ways that are not correlated to previous move-
ment patterns at all.

Social-based mobility models For these models, the entities within it are consid-
ered as a community of groups within a society.

Furthermore, speci�c metrics which can be used to measure the properties of any given mobility
model exist more exactly as well [39]:

Network diameter By modeling a network as a graph, the graph diameter, i.e. the
maximum distance in hops between two nodes, can be measured.

Neighborhood instability The neighborhood instability can be estimated as the number of
radio link appearances and disappearances.

Node distribution When representing the node density in some small surface areas,
the geographical nodes distribution can be measured.

Repetitive behavior A quantitative metric related to the property of a node to exhibit
the same movement after a given time.

Clustering coe�cient The clustering coe�cient is the ratio of the radio links among
neighbors and the number of neighbors.

Using all of these classi�cations and metrics, a suitable mobility model for any given problem
can be chosen based on its characteristics.
An important thing to note, however, is that a trade-o� must be made every time a synthetic
model is chosen. Less complicated models tend to generate synthetic data approximate real data
less accurately, but more complex models have other problems that might not make it desirable
to use them.
For one, the more complex a model is, the more computational time is needed in order to
simulate the movement of the nodes within the model. Secondly, developing a more complex
model explicitly designed for a speci�c use-case needs time which could be used to trace real
data instead, which might make a complex synthetic model the worse option. Thirdly, even
using an already existing more complex model requires tuning many parameters to generate
data suitable for the desired use-case, again making it a time and e�ort trade-o� versus using a
simpler model or collecting real data traces.
This means that a more accurate model might not always be the correct choice even though it
generates data that more closely approximates real life movement. Each use-case therefore must
always be evaluated beforehand in order to �nd what quality of data is needed before choosing
a speci�c model.

2.3.1 Homogeneous Models

Homogeneous models are based on having a group of cooperating entities all generally moving
as a group according to the speci�c model [36]. Within the general group, each node then has
smaller individual �uctuations for its movement. An example for an application making use of
a homogeneous models would be a �ock of birds migrating.
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This category primarily includes Bai et al.'s [37] Models with spatial dependencyand Roy's [38]
Group mobility models, Flocking and swarm mobility models, Virtual game-driven mobility mod-
els and Social-based mobility models. In addition some models might fall into other categories
of Bai et al. [37], as they are not mutually exclusive.

Important models in this category are:

Reference point mobility [40] In this model each node belongs to a group in which
every node follows a group leader who determines the
group's movement behavior. The nodes in a group are
usually randomly distributed around the group leader
and then use their own mobility model to calculate smaller
individual �uctuations.

Group force mobility [41] Each node in this model evaluates what action it should
take based on the properties of its neighbors. For all
neighboring nodes which are located within a certain
range, the node determines if it belongs to the same
group or di�erent group and then calculates a repulsion
or attraction force.

Autoregressive group mobility Here, the movement of nodes is calculated using an au-
toregressive model [42]. This means real-life training
data is used, from which a model is generated by using
autoregression.

Swarm group mobility [43] This is not a single model, but a group of models which
all aim to emulate di�erent kinds of swarms. Each model
simulates one type of swarm, which consist of animals,
soldiers, cars on a highway, or other things behaving in
a swarm-like way.

Community based mobility [44] This model groups nodes together in a way that is based
on social relationships among them. This grouping is
then mapped to a topographical space, with movements
in�uenced by the strength of social ties.

Orbital based mobility [45] Nodes in this model are moving in an orbit, mostly rep-
resenting satellites.

Virtual game driven mobility [38] In virtual game-driven mobility models, a group of mo-
bile nodes based on player strategies are mapped from
the real world to virtual agents.

2.3.2 Heterogeneous Models

In heterogeneous models, every entity moves independently from any other entity that exists.
Thus, as opposed to homogeneous models, entities are not cooperating as a group and can
generally be seen as fully autonomous individuals. This category includes every category of Bai
et al. [37] that is not spatially dependent and primarily includes Roy's [38] Individual mobility
models.
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Notable models in this category are:

Random walk mobility [38] Each movement in the Random Walk Mobility Model
occurs in either a constant time interval or a con-
stant distance traveled, after which a new direction
and speed are chosen from a prede�ned lower and up-
per bound for the speed and a randomly chosen angle.

Random waypoint mobility [34] In the Random Waypoint Mobility Model, a node chooses
a random destination in the simulation area and a
speed that is uniformly distributed between a prede-
�ned lower and upper bound. The node then travels
toward the chosen destination at the selected speed.
Upon arrival, the node pauses for a speci�ed time pe-
riod before starting the process again.

Gauss-Markov mobility [46] The Gauss�Markov Mobility Model was designed to
adapt to di�erent levels of randomness via one tuning
parameter. Each node is initially assigned a speed and
direction. At �xed intervals of time, the speed and
direction of each node is updated in accordance to a
Gauss-Markov model.

Geographic constraint mobility [47] This model introduces obstacles and other geographic
constraints that limit how nodes can move.

Graph-based mobility [48] In this model, nodes move in accordance to a graph.
A node may only move from one vertex on the graph
to another vertex connected to it via an edge. The
vertices therefore represent points of interest nodes can
move to and the edges represent the paths they can
take.

Fluid �ow mobility [38] The movement of nodes is modeled like a �uid, creating
smooth non random trajectories and smooth continu-
ous velocity for all nodes.

Manhattan mobility Explained in further detail below.

2.3.3 Manhattan Mobility Model

The name of the Manhattan Mobility Model is, just like the name of the Manhattan norm
(otherwise known asl1 norm), inspired by the grid-like street layout of the island of Manhattan.
The model assumes a topology of a grid of equidistant streets, giving every intersection four
equally distant neighbouring intersections.
The model can take on two di�erent forms, either repeating itself in�nitely by making nodes
reappear at the opposite end of the model when leaving the bounds on one side, or by having
hard model boundaries where intersections have three neighbours at the edges and two neigh-
bours at the corners.
Every node within the model initially gets assigned a random starting point at an intersection
within the model boundaries, as well as a randomly chosen starting direction within the topo-
graphic constraints. The starting speed for each node is also randomly chosen within prede�ned
upper and lower bounds [49]. Each of those random starting parameters is generally generated
using a uniform distribution.
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Given its start parameters, each node then starts moving in a straight line until it enters an
intersection. After entering an intersection, a random choice is made as to where the node will
turn. The chance to continue straight at any given intersection is 50%, while turning either left
or right have a 25% chance each [49].
When using hard boundaries, a node has an equal probability to turn left or right when encoun-
tering an intersection at an edge and no choice where to turn at a corner, since nodes can not
turn around at an intersection in this model.
The model can be tuned to have nodes that ignore each other completely, or to simulate nodes
that can not overtake each other and instead decrease their speed as long as they move behind
another node.
A visualization of how nodes in a Manhattan mobility model move can be seen in Figure 2.1.

Figure 2.1: Example of a Manhattan Model

Using the classi�cation [36] above, this model is heterogeneous, since its nodes do not move in
a cluster or are otherwise cooperating in a group.
Using Bai et al.'s [37] classi�cation, this is a random model with geographical restrictions where
movement has temporal dependence. Depending on whether nodes can slow down for each other
or ignore one another when overtaking, there also is a degree of spatial dependence in the model.
Using Roy's [38] classi�cation, this would be an individual mobility model because the movement
for each node is calculated individually.
The Manhattan mobility model can be used very e�ectively to model nodes moving around in
urban environments, because it approximates the geographical restrictions urban environments
impose on its mobile actors [36].
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2.4 Data Forecasting

Data forecasting describes the act of predicting future data a system will produce as accurately
as possible using all information that is known about it [50]. In order to do that, all information
available can be used, including known information about the inner workings of the system and
historical data produced by it.
There exist two main data forecasting methods, one being qualitative forecasting and one be-
ing quantitative forecasting. Qualitative forecasting describes the act of trying to forecast data
without having information about the past available, while quantitative forecasting is employed
to derive predictions about future data from information about the past and the system pro-
ducing the data.
Following from here, only quantitative data forecasting will be further explained and will simply
be referred to as data forecasting [50].
Examples of data forecasting include predicting future weather data, economic data, positional
data, and many others. Resulting from that are many kinds of methods used for data forecast-
ing, which can be used depending on how much historical data exists and what is known or
assumed about the system generating the data. In the following, two methods relevant for this
work will be explained.

2.4.1 Markov Chains

A Markov model is a stochastic model describing a process that experiences transitions from
one state to another by following a set of probabilistic rules [51]. The de�ning characteristic of
any Markov model is that the possible future states are only dependent on the current state of
the process, no matter how it arrived at its present state, which is called the Markov property.
Markov chains are the simplest type of Markov model. They model the state of a system with
a random variable that changes over time. Since the Markov property is assumed to hold true,
this implies that the distribution for this variable depends only on the distribution of a previous
state.
If the process moves from one state to another in discrete timesteps, it results in a Discrete-Time
Markov Chain (DTMC), whereas a continuous time process is called a Continuous-Time Markov
Chain (CTMC) [51]. A visual example of a simple, three state Markov chain can be seen in
Figure 2.2. In the example, every state has a transition probability of0:5 to transition to each
of the other two states and no state can transition to itself.

Figure 2.2: Example of a simple Markov chain [52]
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The transition between states for a markov chainX at a given time t can be represented by a
transition matrix Pt . Given an ordering of a matrix's rows and columns by the state spaceS, the
(i; j )th element of the matrix Pt is given by the Equation 2.7 [51]:

(Pt ) i;j = P(X t+1 = j jX t = i ) (2.7)

Each row of this matrix is a probability vector, and the sum of its entries is one.
If data is produced by a system which can be described by a Markov chain, one can predict
future data by considering the most probable future state of the system, which is easily achieved
by using the transition matrix, to predict the next data points.

Other types of Markov models with di�erent use-cases exist as well, for example:

Hidden Markov Models [54] Hidden Markov Models are Markov chains in which the
system of the model has unobservable states.

Markov Decision Processes [53] Markov decision processes model decision making in dis-
crete, stochastic, sequential environments which an agent
inhabits. The environment changes state randomly in re-
sponse to action choices made by the agent. The state of
the environment a�ects a reward obtained by the agent
and the probabilities of future state transitions.

Markov Random Fields Markov Random Fields are random �elds that satisfy the
Markov property. A random �eld is the representation
of the joint probability distribution for a set of random
variables [55].

The main weakness of Markov models is that the states of a system have to be identi�ed
beforehand in order to model it, which gives rise to the desire for a method which requires less
human e�ort.

2.4.2 Neural Networks

Arti�cial neural networks have been used for a wide variety of things, one of them being data
forecasting. An arti�cial neural network in its essence is an imitation of the way the human
brain processes data [56]. It consists of arti�cial neurons which are inspired by real biological
neurons, taking in data and processing it. These neurons are also linked to each other, exchang-
ing information, again inspired by the way a real human brain has its neurons connected.
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Perceptrons

One of the most basic arti�cial neurons is called a perceptron. Perceptrons are the building
block of nearly all neural networks employed today. A perceptron unit works in the following
way [57], as can also be seen in Figure 2.3:

ˆ A perceptron gets real inputs ~x =
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ˆ ~x � ~w is computed and compared to the threshold� of the unit. If the result is equal to or
greater than � , the output of the cell is 1, otherwise it is 0.

Figure 2.3: Perceptron

In addition, in many cases it is more convenient to always use 0 as a threshold and add an addi-
tional edge with the weight � � , whose input is always one. This does not a�ect the functionality
of the perceptron and is only done for convenience [57].

In essence, a perceptron separates input data into 2 categories, which can also be represented
in a geometric sense.

Figure 2.4: AND and OR functions, each separated by a Perceptron
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As can be seen in �gure Figure 2.4, the input data for the OR-function and AND-function gets
separated by a boundary into two categories, making it possible to map each input to the correct
output. The boundary is given by the weights w1; w2; :::; wn and can vary, sincex1 and x2 are
binary inputs which makes multiple boundaries valid for separation. Additionally, an important
thing becomes clear when looking at Figure 2.4: The input gets separatedlinearly .
Any linearly separable task can be modeled by a perceptron given the right weights [57]. This
is what allows for logical functions like the OR-function and AND-function to be modelled.
The algorithm to �nd said weights is called the perceptron learning algorithm, which will not
be discussed here further.

Multilayer Perceptrons

A single perceptron can separate input data linearly, as was elaborated above. Unfortunately,
there are functions whose input space can not be separated in such a way. One of those functions
is the basic XOR-function. The reason as to why it can not be separated in such a way becomes
apparent when represented visually, like in Figure 2.5.

Figure 2.5: Geometrical Representation of the XOR-problem

Functions like these are known as non linearly separable functions and can not be separated by
a single perceptron. One way to deal with these functions is by combining multiple perceptron
units in multiple layers [57] .

Figure 2.6: Example of a Multi-Layer Perceptron for the XOR-Function [57]
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When combining multiple units like in Figure 2.6 , a region of space can be isolated, making prob-
lems like classifying the XOR-function solvable, which can be seen in Figure 2.7.

Figure 2.7: Solution to the XOR-Problem [57]

These networks of perceptrons are called multi-layer perceptrons and are one of the simplest
types of arti�cial neural networks [57]. They consist of one input layer, one output layer and
zero or more hidden layers (an example can be seen in Figure 2.8), each consisting of at least
one perceptron unit. One important thing to note is that the data �ows through the layers only
in one direction, giving the network a clear hierarchy of layers. These multi-layer perceptrons
are able to approximate any continuous function [57] and can therefore solve problems which
are not linearly separable.

Figure 2.8: Example Layout of a Multi-Layer Perceptron [58]
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Finding the correct weights for a multi-layer perceptrons to solve a given problem is harder
than �nding the weights for a single perceptron unit. The algorithm to �nd the weights for
a whole perceptron network is called backpropagation. Backpropagation works by introducing
a loss function with respect to the networks weights, which represents the error between the
classi�cation the network does for a given input and an expected output.
By computing the loss function for an input-output pair, the weight �nding becomes an opti-
mization problem where minimizing the cost function optimizes the weights. Minimizing the
loss function can be performed by calculating the gradient and then applying a gradient descent
method.
The speci�cs for all of these features will not be discussed here, as there are various implemen-
tations and modi�cations that can and have been employed to optimize the backpropagation
algorithm.

Activation Functions

The classical method of calculating~x � ~w and comparing the result to the threshold of a percep-
tron is outdated and rarely used anymore. The reason is that comparing the result against a
threshold and using only zero or one as the output of the perceptron essentially corresponds to
a Heaviside step function, which provides no useful gradient to use for backpropagation.
Instead, after calculating ~x � ~w, a so calledactivation function is applied to the result. The
output of the activation function is then used to determine how active a unit is. This is done
because it allows for better training of the network and because the activation functions com-
monly used have usable gradients, unlike the classical method [59].
Commonly used are the sigmoid function (shown in Figure 2.9), the Recti�ed Linear Unit (ReLU)
activation function (shown in Figure 2.10) and the tanh function.

Figure 2.9: Sigmoid function [60] Figure 2.10: ReLU function [61]

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural network that are commonly used to
work with and predict sequential data or time series data [62]. They are employed because they
have a sort of �memory�, taking information from prior inputs to in�uence the current input and
output. This means that unlike in other neural networks, data does not �ow linearly through
them.
To train Recurrent Neural Networks (RNNs) a variant of the normal backpropagation algorithm
called backpropagation through time [62] is used in order to determine the gradients. Backprop-
agation through time di�ers from the original algorithm in that it sums errors at each timestep,
which is not needed in non-recurrent neural networks.

23



Because of this RNNs run into two problems [62]: Exploding and vanishing gradients. Both
issues arise due to the size of the gradient. When the gradient is too small, it continues to
become smaller, updating the weight parameters until they become so close to zero that they
can not be worked with.
Exploding gradients on the other hand are the exact opposite of this. For this problem the gra-
dient becomes too large, creating an unstable model. The weight parameters grow so large that
they eventually "explode" and become virtually in�nite, again breaking the model.

Long Short-Term Memory

One solution for the vanishing gradient problem are Long Short-Term Memory (LSTM) net-
works. LSTM networks are a special kind of RNN capable of learning long-term dependencies.
They were introduced by Hochreiter and Schmidhuber in [63].
A LSTM contains cells which can store data outside the normal �ow of an RNN. This happens
via three gates: An input gate, an output gate and a forget gate. The inner workings of a LSTM
cell can bee seen in Figure 2.11.

Figure 2.11: The LSTM cell [64]

The following is a short explanation on how LSTM cells function [65]. The main addition here
is the cell state, represented by the the horizontal line running through the top of the �gure.
The �rst step in the cell is to decide what information is being left out from the cell state. This
decision is made by the leftmost layer and is called the forget gate. It looks at the output of
the network connections to the cellht � 1 and at the input x t and decides on how much to keep
in the cell state via a sigmoid function.
In the next step it is decided upon how much new information is going to be stored in the cell
state. This consists of two parts. First, a layer called the input gate decides which values are
going to be updated using a sigmoid function. Next, a layer using a tanh function creates new
candidate values that could be added to the state. Then the output of the two functions get
multiplied to update the cell state.
In the �nal step the output of the cell is calculated. This output is based on the cell state, but
will be �ltered. First, an output gate using a sigmoid function decides which part of the cell are
going to be the output. Then, using a tanh activation function, the cell state decides how active
each output is. This is then multiplied with the output of the output gate.
The addition of the cell state enables LSTM networks to easily classify, process and make
predictions based on time series data.
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3 Related Work

This chapter provides an overview of the original MOTA algorithm and its variations, A-MOTA
and M-MOTA.
It also provides an overview of a paper using Markov Chains to successfully predict where cars
will turn at intersections.

3.1 Multi-Objective Task Allocation (MOTA)

The Multi-Objective Task Allocation algorithm proposed in [12] is a task allocation algorithm
based on the genetic algorithm NSGA-II [66].

Genetic algorithms are metaheuristics inspired by the process of natural selection. They encode
di�erent solutions to an optimization problem into strings of binary numbers, real numbers or
similar representations and treat them as individuals in a population. Each individual is assigned
a �tness , which is a function approximating how good the solution solves the given problem.
algorithm 1 is an example of how genetic algorithms work in general, based on [67].

Algorithm 1: Genetic Algorithm Example

Input: maxGen; popSize; ne; nc; mc;
currentGen = 0 ;
pop= initializePop( popSize) ;
while currentGen < maxGen do

newPop= selectBestSolutions( ne) ;
for i = 0 to nc do

X a; X b = randomlySelectTwoPops() X new = crossOver( X a; X b) ;
X new = mutate( X new ; mc) ;
newPop+= X new ;

pop= newPop;
currentGen += 1;

return bestIndividual( pop) ;

initializePop randomly initializes a number of individuals given by the popSize, which then
form the initial population pop.
After that, the steps inside the loop are repeated until the termination condition is ful�lled. In
this case, the algorithm runs for a number of generations maxGen. Alternatively the algo-
rithm could run for a �xed time or until another condition is ful�lled.
First, the ne best solutions of the population are preserved for the next generation innewPop
using the selectBestSolutions. The best solutions are always those with the highest �tness.
Then, nc new individuals are created. Each new individual has two "parents" randomly chosen
by randomlySelectTwoPops. Those two individuals are then merged into the new individual
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using a crossOver operation, of which there exist many widely used ones [68].
After that, the newly created individual gets mutated with a certain probability mc in the
mutate function. Mutation operations transform a speci�c individual randomly, without using
a second individual [69]. Finally, the new individual is added to the generation.
After all new individuals have been added to the new generation, the populationpop gets up-
dated to be the new generationnewPopand the process begins anew.
After the termination condition is ful�lled, the individual with the highest �tness gets selected
as the winner in bestIndividual and gets returned as the output of the algorithm.

In the MOTA algorithm, each individual in the population represents an allocation A . Within
each allocation, every task gets assigned a node of the WSN.
An encoded solution is a list of Integers representing which entry in it is assigned to which task,
as can bee seen in Equation 3.1.

I = ( x0; x1; : : : ; xn jx i 2 [0; jVnodesj � 1]) (3.1)

Each entry I i = N j indicates the nodeN j to which the task Ti will be assigned. The crossover
operator is a variation of a simulated binary crossover, to which a �nal calculation step was
added in order to adapt it to an integer-based solution encoding. The �nal calculation step
rounds to the nearest integer.
Mutation is performed by randomly reassigning genes with a certain probability on each gene
of the individual. This means that with a certain probability an existing assignment of a task
is replaced with a random new assignment. In the original work, a crossover rate ofpc � 0:9, a
mutation rate of pm = 0 :5 along with crossover and mutation distribution indices of � c = � m = 20
were chosen.
The �tness of each individual is evaluated by performing a simulation with the corresponding
task allocation in a modi�ed variant of the NS-3 network simulator, which provides the metrics
required for calculation.
The goal of the original MOTA algorithm is to optimize the metrics Latency (L) and Network
Lifetime (NL), as can be seen in more detail in Equation 3.2.

minimize
A

(� NL (A); L (A )) (3.2)

Each allocation experiences packet loss due to packet collision and interference. This might
a�ect the results, as fewer received packages result in less energy costs due to the removed re-
transmission and actuation costs. In order to counteract that, a penalty term proportional to
the percentage of missed packages was introduced.
The basic concept of the algorithm is to start the genetic algorithm, initialize the population,
let each individual be evaluated by letting the NS-3 simulation run until a node in the network
is depleted, then let the genetic algorithm run its course.
The winner is chosen after the genetic algorithm has reached the desired amount of generations.
It is selected by applying cone-domination to all non-dominated solutions. In the original work,
a population of size 100 was chosen and the genetic algorithm was run for 200 generations.
Afterwards, a stopping condition checked: All nodes whose energy is depleted are removed from
the network and the resulting network is checked for connectivity.
If all nodes in the network can still be reached from all other nodes, the algorithm is restarted
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on this new network. If the network is no longer fully connected, it is considered dead and the
algorithm stops and outputs the quality metrics obtained.

The original work compares its results against the DTAS algorithm [70], which is a single-
objective approach and was chosen due to the lack of multi-objective state-of-the-art approaches.
The results for a grid setup with distances assigned to generate 4-neighbourhood communication
links can be seen in Figure 3.1 and Figure 3.2. Evaluated was a grid size of 9x9 and two kinds of
task setups: A Single-Sink setup consisting of 10 non-constrained sensing tasks connected to a
single actuating (sink) task, which is constrained to a 3x3 grid located in the centre of the Grid
network and a Sink-Source setup for which the sensing tasks are constrained to the left half of
the grid while the actuating tasks are constrained to the right half of the grid - both including
the central column.

Figure 3.1: Network Lifetime for the Grid Network for the di�erent task setups [12]

Figure 3.2: Latency for the Grid Network for the di�erent task setups [12]

The MOTA algorithm slightly outperforms the DTAS algorithm for Network Lifetime and no-
ticeably outperforms it for Latency, as can be seen in the �gures.

3.1.1 Mobility-Aware Multi-Objective Task Allocation (M-MOTA)

M-MOTA is a variation of the original MOTA algorithm and was introduced in [13]. All things
not mentioned here are therefore unchanged from the original algorithm.
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The main change of the M-MOTA algorithm is that it incorporates a prediction mechanism
to optimize for future node positions, instead of only optimizing for the current network state.
This allows the algorithm to optimize ahead of time.

The M-MOTA algorithm is initialized by running the original MOTA algorithm for a number
of generations in order to initialize an allocation and population. The algorithm then makes a
prediction about the network state a certain amount of time � t ahead.
For that, algorithm supplies the current network state to a predictor, which returns the predicted
node positions. Using those positions, a network graphGpred can be generated.
During the �tness evaluation of the individuals a part is then evaluated on Gpred instead of
the current network graph Gnet . The size of this set is proportional to the con�dence of the
prediction, with a minimum of 20% of the total population.

Another change of M-MOTA are the quality metrics used to evaluate the �tness of an individual.
The quality metrics optimized for this algorithm can be seen in Equation 3.3.

minimize
A

(� NL (A); L (A ); � A(A ); � R(A)) (3.3)

For the actual �tness evaluation, only NL and L are used directly, while A and R are estimated
by the number of packets that did not reach their sink task.

For evaluation purposes in the original work, the network topology chosen was based on a
Manhattan grid. A set of static nodes were placed along a grid pattern in the network area,
with mobile nodes moving along roads between the static nodes. The static nodes were spaced
in a way that results in a 4-neighborhood for direct communication. This setup can be seen
in Figure 3.3, with the static nodes shown in orange, their communication links black and the
mobile node �roads� in light grey.
The task setup evaluated was a Sink-Source setup again. This time, two di�erent numbers of
tasks, namely 19 and 55, were used for evaluation.
The mobility models used for the moving nodes were the ones which will be introduced in this
work here. The nodes were able to move at a speed between 2 m/s and 7 m/s, with the roads
being 100 m apart from one another.
The network always had 81 �xed nodes and either no mobile nodes, 30 mobile nodes or 50 mobile
nodes for the evaluation.
As prediction methods a hypothetical perfect predictor, as well as a predictor speci�cally made
for the mobility model given were used.

Figure 3.3: The Network Layout [13]
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Figure 3.4 show the results obtained for the network lifetime, Figure 3.5 shows the latency and
Figure 3.6 shows how many packages were missed.

Figure 3.4: The Network Lifetime [13]

The network lifetime is actually inversely correlated with the amount of tasks being able to be
executed, which explains why the A-MOTA algorithm has the highest network lifetime. For
A-MOTA the lowest amount of tasks get executed, resulting in less power consumption.
This continues for the other two predictors, with the perfect predictor being able to help create
an allocation that executes the most amount of tasks and therefore has the highest power
consumption and lowest overall network lifetime.

Figure 3.5: The Network Latency [13]

The latency shrinks the better the prediction is, as can be seen in the �gure.
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Figure 3.6: The Packets missed [13]

A better prediction also results in a lower amount of packets lost.

Overall, this work clearly shows that taking movement into account and predicting the future
state of the network based on the movement results in higher quality metrics obtained for a
WSN.

3.1.2 Availability-Aware Multi-Objective Task Allocation (A-MOTA)

Availability-Aware Multi-Objective Task Allocation [71] is another variation of the original
MOTA algorithm.
One of the most important features introduced in algorithm has to do with the re-optimization
of the task allocation after a node failure. In order to facilitate said task allocation, a diversity-
based archiveM is introduced here. Said archive retains solutions based on a new similarity
metric, f s, which is de�ned as follows.
Each solution a is assigned a similarity value determined by the number of unique nodes used
in the solution's allocation that are already used by other solutions I 2 M in the archive, as
shown in 3.4.

f s(a) =
X

I 2 M

jset(a) \ set(I )j (3.4)

The intended purpose is to only retain solutions with the smallest similarity values. Once the
archive reaches a predetermined size, only new solutions with a smaller similarity value than
the solution with the maximum similarity value in the archive are added to it, by replacing the
least unique solution.
This way, the algorithm is able to keep a set of solutions using a more diverse set of nodes, which
should provide additional options whenever a node in the currently optimal allocation fails.
The archive can then always be used to seed the population when re-optimizing. When a node
failure is detected, a new solution can immediately be chosen from the archive. If the archive
contains no feasible solutions, a valid allocation is constructed from the current allocation by
exchanging faulty nodes with other nearby nodes.
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An evaluation on how well this method performs in comparison to the M-MOTA algorithm can
be seen in Figure 3.4, Figure 3.5 and Figure 3.6 further above.
It is clear that A-MOTA performs worse than M-MOTA. The algorithms are however not mutu-
ally exclusive and can be used in combination with each other.

3.2 A Markov Model for Driver Turn Prediction

In the paper A Markov Model for Driver Turn Prediction [72], an algorithm for making short-
term route predictions for vehicles using their GPS data is described.
In the work, each trip made by a car is represented as a connected sequence of road segments
with no adjacent repeats. Said sequence is used as the basis to create a Markov model.
The prediction of a vehicles near-term future route its based on it near term past route. The
sequence of traversed road elements is modeled asX (i ) with i being a discrete time variable and
X (i ) being a road segment represented by an Integer.
The sequence of traversed road segments for a vehicle on a trip is denoted by
f : : : ; X (� 2); X (� 1); X (0); X (1); X (2); : : : g. X (0) represents the road segment at the current
time, all Integers in the sequence before that represent past road elements and all elements
in the sequence afterX (0) represent unknown future road elements that are to be predicted.
P[X (i + 1)] denotes a discrete probability distribution over all the road segments for which road
segment will be encountered afterX (i ).

The work asserts that for each road segment, a histogram of which road segments were encoun-
tered immediately after can be build and normalized to get a discrete probability distribution.
Using that, a �rst order Markov model can be built.
Continuing with the same logic, a second order Markov model can be built by creating histogram
over all two-element, ordered sequences.
If one does want to predict further ahead into the future, for example the road element two time
steps into the future one can use the distribution over the road segments after the next one,
given the current one.
The work then generalized that a nth order Markov model can be built to predict the mth next
encountered segment, which can be represented by Equation 3.5.

Pn [X (m)] = P[X (m)jX (� n + 1) ; X (� n + 2) ; : : : ; X (0)] (3.5)

It is noted here that the probabilistic prediction has a measure of its own uncertainty that can
be usefully reported to in-vehicle applications.

The results obtained by the work were obtained by observing 100 drivers for a total of 12.21
days and using said data to train the model. This was done via leave-one-out testing, meaning
that all but one trip was used to train the model and the remaining trip was used to test how
well the model performs. This was then done once for each trip to obtain an average accuracy
over all trips.
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Figure 3.7: Accuracy for predicting the next segment. [72]

The results can be seen in Figure 3.7 and show that the prediction accuracy starts out around
60% when only observing one previous road segment and then rapidly increases when observing
more, capping out at an accuracy of around 90%.
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4 Mobility Models and Predictors for M-MOTA

4.1 Overview

Inspired by the traditional MOTA algorithm and the improvement of it when incorporating
prediction of future topologies as shown in [13], we aim to �nd general prediction methods for
cars in a smart city scenario.
In order to accomplish that goal, data on which the prediction methods are to be evaluated is
needed. However, real traces of �eets of cars driving in a city for a signi�cant amount of time
in multiple instances are di�cult and time consuming to acquire, which leaves synthetic models
as the best option available to us.
The �rst part of this chapter, therefore, will elaborate why we chose the Manhattan mobility
model as a baseline for our data generation and why and how we extend it in order to generate
data that is suitable for our use-case.
After establishing the synthetic models, we then introduce the actual prediction methods in the
second part of this chapter and elaborate why each of those methods was chosen as a potential
candidate.

4.2 The Mobility Models

As laid out above, a mobility model that produces data on which the di�erent prediction meth-
ods can be evaluated is needed. The classical Manhattan mobility model, as already described
in further detail in Chapter 2 was chosen as a baseline for these predictors. It already provides
topographic constraints which are approximating the topography of real cities, which immedi-
ately makes it a potential candidate as a synthetic model.
Cars in an actual smart city can be assumed to act independently of each other, each one with
its own target in the city which is chosen by each individual. The route to a chosen target
can be assumed to be calculated by an IoT-connected GPS system similar to [7]. This imme-
diately rules out any homogeneous mobility model as a potential candidate, as cars clearly act
as individuals and not in any kind of cooperating manner. Taking a closer look at the already
established heterogeneous models, either a geographic constraint mobility model, a graph-based
model or a Manhattan mobility model are the closest to a potential real world smart city from
a topographic perspective.
Random walk, random waypoint and Gauss-Markov models can immediately be ruled out, as
the high amount of randomness for node movement and the lack of topographical restrictions
do not generate data that approximates our scenario in any meaningful way. The lack of to-
pographical restrictions and the general �uidlike movement in �uid �ow mobility models rule
those out as well.
A geographic constraint mobility model incorporates obstacles of arbitrary shapes and pathways
between said obstacles [47], making the Manhattan mobility model essentially a sub-type of ge-
ographic constraint model, since a geographic constraint model could be set up in a way that
imitates a Manhattan mobility model. This poses the question which of the two is better suited
for the following task.
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While a general geographic constraint model can be set up to imitate any one speci�c city, what
we are looking for is an approximation of a generic smart city. The Manhattan model has been
deemed a good approximation for general high density urban areas before [73][74][75], which
is why it was deemed to be a good enough choice as opposed to building a custom geographic
constraint model.
Graph-based models were ruled out on the same basis, as they are also generalizations of Man-
hattan models, if one models the intersections as vertices and the streets as edges.
The Manhattan mobility model however produces insu�cient data when it comes to evaluating
di�erent methods of predicting the future topology of a network with nodes in our scenario.
In the classical model, nodes choose the direction they move in randomly at each intersection.
While the 50% forward, 25% left and 25% right ratios when it comes to turning at an inter-
section give nodes a slight preference in the way they move, it is still not at all representative
of the clear driving patterns our scenario would have. Driving patterns in smart cities should
have a clearly de�ned target, as well as a predetermined path to said target calculated by a
GPS connected to the Internet of Things [7]. This should lead to a very di�erent movement
behaviour than the one in a Manhattan mobility model.
Since any time series prediction relies on patterns in the data that makes it possible to predict
future states in the �rst place, a variation of the classical Manhattan mobility model which
incorporates patterns that approximate the real world is needed.
In order to achieve that, assumptions about the movement patterns in our scenario are laid out
below.

ˆ Cars moving in our scenario are driven from a starting pointA to an endpoint B , both of
which are known at the time the cars begins to move.

ˆ In our scenario, path�nding will always be done by an IoT powered GPS system [7], which
will compute the route with the fastest time to a target location.

ˆ The travel time to a target location is only in�uenced by the path, the tra�c and the
speed at which the driver chooses to travel.

Using these assumptions, there are multiple variations of the Manhattan model that can be cre-
ated in order to increase the suitability of the data for our task.

4.2.1 Manhattan Target Model

For the �rst extension, we primarily consider the way a car would always move to a speci�c end
point guided by a GPS system and combine that concept with the already existing Manhattan
model. The speed with which nodes in a Manhattan model move is intrinsic, meaning di�erent
streets segments have no in�uence on it. Not considering any tra�c, the fastest travel time
therefore always is achieved by calculating the shortest path to the target location.
Using that knowledge, a model can be created which modi�es node movement to include a target
location.

34



Every node in this model moves according to the algorithm shown in algorithm 2.

Algorithm 2: Manhattan Mobility Target Model

Input: pos; spd;� t;
while simulationRunning() do

target = generateNewTargetLocation() ;
dir = directionLeadingToShortestPath( pos; target) ;
while targetNotReached( pos, target) do

if atIntersection( pos) then
dir = directionLeadingToShortestPath( pos; target) ;
pos= crossIntersection( pos; spd; dir; � t)

else
pos= pos+ dir � spd� � t;

The three input variables to the algorithm are the initial position pos at an intersection of a
node, the initial speed spd of the node and the time � t that elapses with each step of the
simulation. � t is always assumed to be a small enough simulation step so that precision errors
errors do not a�ect the algorithm.
As long as the simulation is running, the simulationRunning function will return true and the
nodes move by the instructions within the loop.
First, a new target gets created for each node by the functiongenerateNewTargetLocation .
This function chooses an intersection within the bounds of the simulation and returns an Integer
representing the chosen intersection.
Using the generated intersection, thedirectionLeadingToShortestPath function gets invoked
and searches for the shortest path from the current position of the node to the intersection.
Then the direction in which the node has to move can easily be calculated and gets returned as
the output of the function.
The algorithm then goes into a loop with the targetNotReached function as its exit condition,
which checks if the current position of the node is within the bounds of the target intersection.
If that is the case, the loop ends and the algorithm continues from there.
If the node is not yet at its target intersection, it �rst gets checked if the current position of the
node is within the bounds of any intersection.
If that is not the case, the atIntersection function returns false and the position gets updated
using the equation seen in algorithm 2.
Alternatively, if the node is within the bounds of an intersection, its direction gets updated us-
ing directionLeadingToShortestPath again. After that the node chooses the exit at which to
leave the intersection using the new direction calculated. This is done incrossIntersection ,
which then also advances the position of the node towards the chosen exit of the intersection
and returns its new position.

One notable thing about the calculation of the shortest path is that if the two points between
which the shortest path calculation on the Manhattan grid is done are not connected by a
straight line multiple shortest paths exist, making multiple directions valid.
It can be chosen if this should always result in a speci�c path being taken, or if the path taken
should be randomized.
Another thing that can be varied is by what distribution the targets for each node should be
generated, or if they should not be random at all. By default the targets are generated with a
uniform distribution, but many more generation methods are possible here.
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Overall, this extension of the Manhattan mobility model should improve the similarity between
synthetic and real data. It also gives the generated data a clear pattern, making prediction of
future data more meaningful than in the original model.

4.2.2 Manhattan Target Highway Model

Based on the newly created model above, further modi�cations can be made. The general as-
sumption of cars moving to a target location will not change in this variation, but another part
of the assumptions made above will be incorporated.
In the Manhattan mobility model, the speed of a car is completely detached from the road
segment it is on. This is a simpli�cation of reality, where each section of a road has speed limits
and physical circumstances which in�uence the speed at which a car is driving.
Using that knowledge, a model can be created which uses the Manhattan Mobility Target Model
as a baseline and incorporates some kind of in�uence of road segments on the speed with which
a node moves.
In our case the outer ring of the Manhattan grid was chosen to be a highway. This means that
the outermost road segments of the grid allow for an increased movement speed of the nodes.
This an abstraction of the way certain highways can connect to cities in the real world, where
they are sometimes built at the edges of a city and connect to the lower speed inner city roads
via ramps.
The fundamental algorithm used to calculate the movement of each node does not change signi�-
cantly from the Manhattan Mobility Target Model, as can be seen in algorithm 3.

Algorithm 3: Manhattan Mobility Target Model with Highways

Input: pos; spd;� t;
while simulationRunning() do

target = generateNewTargetLocation() ;
dir = directionLeadingToPathWithShortestTravelTime( pos; target) ;
while targetNotReached( pos, target) do

if atIntersection( pos) then
dir = directionLeadingToPathWithShortestTravelTime( pos; target) ;
pos= crossIntersection( pos; spd; dir; � t)

else
pos= pos+ dir � spd� � t;

Instead of simply calculating the shortest path towards the target location of each node, we now
calculate which path would have the shortest travel time in the
directionLeadingToPathWithShortestTravelTime function. To represent which roads have a
higher or lower travel speed each road segment can simply be given a weight.
The increased highway travel speed in our case is implemented as a multiplier of the base travel
speed which is generated for each node. This means that nodes use a multiple of their originally
generated travel speed when travelling on a highway, giving every node a distinct travel speed
even when using the highways.
A customization of this model might be the way in which the speed of each node gets a�ected.
Possibilities could for example include a set travel speed for all nodes while on highways or
di�ering multipliers for individual nodes.
Other variations may include more or even every road segment in the grid having di�erent
movement speed in�uences on the nodes, instead of only the outermost layer.
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This extension of the Manhattan Mobility Target Model should increase the similarity between
real world and synthetic data again by introducing roads which a�ect the speed of cars.
Additionally, it can be used to compare how di�erent generation methods in�uence the accuracy
of the prediction methods used in the next step.

4.3 Future Topology Predictors for Wireless Sensor Networks

As explained in Chapter 1, the ultimate goal of the prediction methods below is to be used
with the M-MOTA algorithm by creating algorithms which can predict the future topology of
a WSN in our smart city scenario. This means that in theory only the future topology and not
the speci�c positions of the nodes need to be predicted.
In reality, predicting topology without predicting the speci�c position of each node in the net-
work is quite di�cult because the topology emerges from the positions of all nodes in relation
to each other. Therefore the goal of the prediction methods will be to predict the position of all
nodes in the network, which then allows for us to make a prediction about the topology.
Predicting future positions of moving nodes can and has been done in di�erent ways using the
predictions methods in Chapter 2, one such example being the work shown in Chapter 3, where
the movement of cars was predicted using Markov models.
Speci�cally for our scenario, predicting the future positions of nodes becomes more doable than
for other use cases of Wireless Sensor Networks. Firstly, cars, unlike drones or other types of
nodes which might be part of a WSN, are bound to the ground. Therefore, with the notable
exception of tunnels or bridges, they can not move over or underneath each other.
This means that the vertical positions of the nodes can mostly be disregarded for our scenario,
as it can not make a signi�cant di�erence in the topology of the network.
Furthermore, the nodes in our network are bound by topographic constraints our scenario gives
us in the form of streets, making them move in a straight line whenever they are not at an
intersection. This means that whenever a node does not come across an intersection its future
position can be predicted easily as long as its current velocity is known and no acceleration or
deceleration occurs.

4.3.1 Node Predictor

Using the constraints mentioned and also the assumptions made about the general movement
of cars in a smart city, an initial idea for a prediction method can be formed.
When not at an intersection, a node should move at a constant speed in one direction. When at
an intersection, a node should change to or stay on a path with the shortest travel time towards
its target location.
Considering this, the assumption can be made that the future decision of a node at an intersec-
tions is most likely similar to its past decisions. Given a nodeN which has taken the decisions
to cross an intersection straight FN number of times, has turned left L N number of times and
has turned right RN number of times recently, a naive way to predict its future decision would
be to assume that it will do what it has done in the past the most amount of times.
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Given the current position pN , current direction dN and current velocity vN and us wanting to
predict the future position of the node a certain time spant ahead, this naive way of prediction
can be modeled by the following algorithm shown in algorithm 4.

Algorithm 4: Naive prediction method

Input: pN ; dN ; vN ; L N ; RN ; FN ; t;
while t � 0 do

if notAtIntersection( pN ) then
d = distanceToIntersection( pN ; dN ) ;
� t = d=vN ;
t = t � � t;
/* Early exit if t gets negative */
pN = pN + dN � vN ;

else
dN = mostLikelyDirection( L N ; RN ; FN ) ;
t = t � intersectionCrossingTime( vN ) ;
/* Early exit if t gets negative */
pN = positionAfterCrossingIntersection( pN ; dN ) ;

return pN ;

In the algorithm, we enter a loop while our look-ahead timet has not reached zero.
First, we check if the node is within the bounds of an intersection or not.
If it is not, we calculate the distance to the next intersection within the direct path of the node
using distanceToIntersection . Using that distance and the velocity at which the node is
moving we can then determine the time it needs to reach said intersection. We then subtract
that time from the original look-ahead time and advance the node position.
If the node is at an intersection when performing the check, we invoke themostLikelyDirection
function. For this algorithm, the function only compares the number of times our node crossed
an intersection straight, has turned left and has turned right. It looks at which of the three
things the node has done most often and picks that to be the choice of exit the node will make
at the current intersection. This choice is then used to calculate the direction in which the
node will move in and the node position is advanced towards the chosen exit of the intersection
using the positionAfterCrossingIntersection function. We then calculate the time the node
has needed to cross the intersection based on its velocity inintersectionCrossingTime and
subtract that from the original look ahead time.
This is done until t reaches zero, at which point the prediction has reach the desired look-ahead
point in time and returns the predicted position.
Both cases within the loop have an early exit condition if t is calculated to be negative after
moving, as indicated by the two comments. Should that happen the fraction of the distance
which is needed to gett to exactly zero is calculated and the position is then updated accordingly,
after which the loop ends.

This algorithm gives an innate con�dence for its predictions. At each intersection, the con�dence
that the chosen exit is correct is equal to the number of times the chosen exit was taken divided
by the total number of times the node has taken any exit.
Therefore, the total con�dence for a prediction made by this algorithm is the product of con�-
dences for predictions made at all intersections by the current node.
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The most important thing to choose in this algorithm is how many steps into the past we look.
Only the last decision of the node could be considered, all decisions a node has made in the past
could be considered, or any amount of decisions in between could be considered.
Regardless of how many steps are considered, it becomes obvious very quickly that this prediction
method will get the direction a node chooses at an intersection wrong in many cases. It will
always predict the exit a node will choose wrongly when its current decision di�ers from the
average of the decisions made in the past.
This prediction method, while not very sophisticated, can serve as a baseline and comparison
for more advanced ones.

4.3.2 Intersection Predictor

Trying to �nd a less naive approach than the one considered above, one could think of not simply
using the memory of a node to predict where it will turn at a future intersection. Instead each
intersection could be given a memory of how many nodes have chosen which exit when crossing
it.
This can be justi�ed by going back to our scenario. One can assume that in the given scenario,
the targets where cars drive to are not distributed equally, but that certain hot spots will be
present in any given city [75]. Also, certain path through a city are faster than others and will
be recommended more by GPS routing systems [7].
This could lead to intersections having preferred exits, which in turn can be used to predict
where future cars are more likely to exit.
Given an intersection I with a memory of how many nodes have crossed straightFI number
of times, have turned left L I number of times and have turned right RI number of times, and
the same nodeN and all its properties as de�ned in the last prediction method, the algorithm
algorithm 5 can be employed.

Algorithm 5: Prediction method using intersection memory

Input: pN ; dN ; vN ; L I ; RI ; FI ; t;
while t � 0 do

if notAtIntersection( pN ) then
d = distanceToIntersection( pN ; dN ) ;
� t = d=vN ;
t = t � � t;
/* Early exit if t gets negative */
pN = pN + dN � vN ;

else
dN = mostLikelyDirection( L I ; RI ; FI ) ;
t = t � intersectionCrossingTime( vN ) ;
/* Early exit if t gets negative */
pN = positionAfterIntersection( pN ; dN ) ;

return pN ;

The only change in this algorithm is the mostLikelyDirection function with which the exit
and therefore direction chosen at an intersection will be predicted, as explained above. While a
node is not at an intersection, the prediction of this method will therefore be exactly the same as
the naive prediction method and will only di�er after at least one intersection has been crossed
by a node.
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In this algorithm, the mostLikelyDirection function compares the number of times all nodes
at the speci�c intersection the current node is at have crossed straight, have turned left and have
turned right. It then picks the choice which was made most often in the past of the intersection
and picks that to be the choice of exit the current node will take as well. Based on that, the
new direction for the node can then be calculated.
This algorithm, just like the last, gives a con�dence for its predictions. At each intersection, the
con�dence that the chosen exit is correct is equal to to the number of times the chosen exit was
taken divided by the total number of times the intersection was visited.
Therefore, the total con�dence for a prediction made by this algorithm again is the product of
con�dences for predictions made at all intersections by the current node.
While this prediction method may seem more advanced in comparison to the naive prediction
method explained before, it still has �aws introduced by the assumptions made.
First, the assumption made about targets in a city being in certain hot spots and not being
distributed equally is not veri�ed to hold true in general for our scenario.
Second, intersections having preferred exits is reasonable when using static GPS routing, but
for our smart city scenario this might not hold true. With IoT assisted GPS systems like in [7],
tra�c will most likely be spread out more evenly in order to reduce travel time for all cars and
to reduce the burden on individual street segments. This in turn means that intersection exits
will be more evenly spread as well, reducing the e�ectiveness of this approach.
While this method will probably be more e�ective than the naive method in general, it still
uses too many assumptions made naively, which is why in the next steps models with di�erent
approaches will be used.

4.3.3 Markov Predictor

Inspired by the the general concept of Markov models and their successful usage in "A Markov
Model for Driver Turn Prediction" [72] as described in chapter Chapter 3, a prediction method
employing Markov chains can be thought of.
Modeling the sequence of traversed road segments of a node asX (t), with t being a discrete
time variable and X (t) being a road segment represented by an Integer, we can build an nth

order Markov model to predict the next road segment a node will chose to turn to, as was done
in the work that inspired this algorithm.

Pn (X (1)) = P(X (1)jX (� n + 1) ; X (� n + 2) ; :::; X (0)) (4.1)

Using the probability for the next road segment as shown in Equation 4.1, we can create the
Markov-based predictor by saving as many previously encountered road segments
X (� n + 1) ; X (� n + 2) ; :::; X (0) as needed for the nth order Markov model.
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Algorithm 6: Markov-based predictor

Input: pN ; dN ; vN ; t; X (� n + 1) ; X (� n + 2) ; :::; X (0);
while t � 0 do

if notAtIntersection( pN ) then
d = distanceToIntersection( pN ; dN ) ;
� t = d=vN ;
t = t � � t;
/* Early exit if t gets negative */
pN = pN + dN � vN ;

else
segment = getRoadSegmentWithMaxProbability( X (� n + 1) ; X (� n + 2) ; :::; X (0)) ;
dN = directionTowardsSegment( segment; pN ) ;
t = t � intersectionCrossingTime( vN ) ;
/* Early exit if t gets negative */
pN = positionAfterIntersection( pN ; dN ) ;
X (� n + 1) ; X (� n + 2) ; :::; X (0) = shiftSegmentsAndAddNewOne(segment) ;

return pN ;

The algorithm shown in algorithm 6 shows that again, there are only slight di�erences to the
other two predictors. In this predictor, when a node is at an intersection, the n previously
encountered road segments get fed into the nth -order Markov model in the
getRoadSegmentWithMaxProbability function. Said function then gets the transition matrix
which gives us the probabilities for the node to transition to each state (i.e. to end up on on
each road segment).
We can then pick the state/road segment with the highest probability and look up which exit
and by extension direction lead to said road segment indirectionTowardsSegment . As in [72],
we also know that all road segments that have a probability to be reached in the transition
matrix can physically be reached by our node.
After that, we add the segment of the street that the predictions leads us to as the latest element
in the sequence of segments and remove the oldest segment in order to have the sequence ready
for the next prediction that has to be made in the shiftSegmentsAndAddNewOnefunction.
The Markov model itself is trained in nearly the same way as it is in [72]. A notable di�er-
ence is that our scenario does not provide us with a �nite amount of data collected beforehand,
instead we can use data collected by running our simulation using the created mobility mod-
els.

For this algorithm, the transition matrix directly gives us the con�dence for a prediction at
each intersection. The total con�dence is the product of con�dences for predictions made at all
intersections for a node again.

A notable choice to be taken for this prediction method is what order of Markov model should
be used with a higher order model being expected to help �nd more accurate predictions [72].
Based on the accurate predictions achieved in [72], it is expected that this method to predict fu-
ture positions and by extension the future topology of the network performs well.
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4.3.4 Neural Network Predictor

A di�erent method for time series prediction is neural networks, which have been used to predict
di�erent kinds of driver actions before [76][77]. In the following, we will employ a Long Short-
Term Memory network, which has been successfully used for time series prediction in particular,
as described previously in Chapter 2.
One method to model our prediction problem using neural networks, would be to again use a
time series of road segments which can then be fed into a neural network instead of a Markov
model. We, however, decided to utilize the full extent of the capabilities of neural networks,
which is why we instead use a di�erent approach. Instead of using road segments as our se-
quence, for this approach we use the position~x(t) of each node, with ~x(t) being a positional
vector of our node at time t.
While this will make the model more di�cult to train, it should simultaneously allow it to
generalize more. Modelling the problem with this approach, the algorithm looks like algo-
rithm 7.

Algorithm 7: Prediction method an LSTM

Input: t; ~x(� n + 1) ; ~x(� n + 2) ; :::; ~x(0);
p = lstmPrediction( t; ~x(� n + 1) ; ~x(� n + 2) ; :::; ~x(0)) ;
return p;

Instead of making any assumptions about how the nodes move in general, we feed the network
a sequence of positions of a node and let it �gure out where the node should be next, making
the lstmPrediction give us a position directly.
Thus the algorithm also di�ers signi�cantly from the other methods in the sense that we do
not actually know what the algorithm is doing, we only know the sequence we give it and the
position it gives us. This makes the way the network was modeled and trained the most relevant
thing to know in order to understand the output of the network.
The model chosen was a simple LSTM model. It contains one input layer taking in the data
sequence, one LSTM-layer containing 128 units and one output layers returning two real values
representing the positional vector of a node.

The disadvantage of this approach is that any given prediction does not return a con�dence
score, which is why the accuracy for any prediction made by the neural network was chosen to
be the accuracy of the network when testing.

Overall, this approach is expected to provide good prediction results, as LSTM networks have
been found to produce meaningful results when predicting time series data.
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5 Evaluation

In this chapter we will evaluate the implemented algorithms using di�erent methods. First, every
predictor will be compared in terms of its prediction accuracy for node positions. After that, the
accuracy of prediction for the future topology will be compared, followed by the �nal comparison
which is done by using the M-MOTA algorithm with every predictor.

5.1 Test Setup and Parameter Overview

To generate test data for the predictors to use, the original Manhattan mobility model as well
as the two new ones are used to acquire an overview of the capacity of each prediction method.
All following simulations for the Wireless Sensor Network were done using a modi�ed version of
NS3 network simulator v.3.34 [78].

5.1.1 Setup for the positional and topological Comparison

Table 5.1: Parameters for the models for the position and topology evaluation

Category Parameter Value

Mobility

Minimum Speed (km=h) 30.0
Maximum Speed (km=h) 50.0
Road Distance (m) 100
Grid Size 10x10
Number of Mobile Nodes 100
Number of Static Nodes 100

Predictors

Look-Ahead Time {10,20,30,40,50,60}
Discrete Time Points predicted (per Simulation) 50
Simulation Runtime (s) 3000
# Simulations run (per Combination) 31

The parameters used for the mobility models and predictors to compare the general positional
and topological prediction accuracy can be seen in Table 5.1. The speed of the nodes was gen-
erated using a uniform distribution.
The simulation area for all experiments was chosen to have a hard limit, so the Manhattan
models all have an outermost ring of streets at the models bounds.
The starting and target locations were generated using a uniform distribution with every inter-
section in the Manhattan Grid being considered.
The speed of a node when driving on a highway was chosen to be three times its base speed,
giving nodes on a highway velocities from 90km=h to 150 km=h.
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In addition to mobile nodes, a set of static nodes are placed along a grid pattern in the network
area, as was done in the original evaluation of M-MOTA. For a visualization of the placement
of the static nodes see Figure 3.3. Data for every combination of previously introduced predic-
tors and mobility models, as well as the original Manhattan model was acquired for comparison
purposes.

5.1.2 Neural Network Training and Parameters

Table 5.2: Parameters for the Neural Network Training

Category Parameter Value

Neural Network

Optimizer Adam
Learning Rate 0.001
Loss function MSE
Batch Size 32
Epochs 5000
Sequence Length 20

Simulation
Runtime (s) 10000
# Simulations run (per Model) 10

The data required to train the model was acquired by simulating a WSN using all three variants
of the Manhattan mobility model. All of them were con�gured as described in Table 5.1.
The parameters used for training the neural network and the number of data points acquired
can be seen in Table 5.2.
In order to create usable data for the neural network, the position of every node was saved after
each second of the simulation. The data was then processed to create sequences of positions for
all nodes. The timesteps within the sequences correspond to the possible look-ahead times in
Table 5.1.
The network was trained to minimize the di�erence between the output of the network (i.e. the
predicted position of a node) and the actual position of the node.
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5.1.3 Setup for the Comparison using M-MOTA

Table 5.3: Parameter values used for the M-MOTA experiments

Category Parameter Value

Task Parameters
Processing Time (s) 0.5
Send Task Interval (s) 10
# of Tasks {19,55}

MOTA
Crossover ratepc 0.9
Mutation rate pm 0.5
Population size 100

Mobility

Minimum Speed (km=h) 30.0
Maximum Speed (km=h) 50.0
Road Distance (m) 100
Grid Size 10x10
Number of Mobile Nodes 100
Number of Static Nodes 100

To evaluate the performance on the M-MOTA algorithm, each test case was run eleven times.
The general setup for the mobility models is the same as for the other experiments above.
A task setup with two di�erent numbers of tasks and the goal of minimizing Power Consumption,
Latency and the amount of missed packets was evaluated. The amount of missed packets are the
number of packets sent by any source task but not received by the respective sink tasks. They
are used as an indicator for Availability and Reliability, as both of these metrics are heavily
in�uenced by packet loss.
We compare the results of all prediction methods with each other, as well as to a hypothetical
perfect predictor which can predict the future network topology perfectly. This is achieved by
letting the simulation continue for the length of the look-ahead time and then reading all node
positions.
The task setup chosen is similar to one of the setups used to evaluate the original MOTA
algorithm (see Chapter 3). It is a Single-Sink setup consisting of 10 non-constrained sensing
tasks connected to a single actuating (sink) task, which is constrained to a 4x4 grid located in
the centre of the Grid network. The simulation time when evaluating individual solutions is
restricted to 100 seconds in order to decrease the computing time for �tness evaluations and the
experiments as a whole.

5.2 Performance of the Predictors

5.2.1 Positional Accuracy

Predictability Di�erences of the three Mobility Models

First we look at the impact the di�erent mobility model variants have on the ability to predict
where a node will be. For that we will look at the prediction results 20 seconds, 40 seconds and
a full minute ahead into the future.
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