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Abstract

This thesis presents Particle Swarm Contour Search: a Particle Swarm Opti-
mization inspired algorithm to �nd object contours in 2D environments. Cur-
rently, most contour-�nding technologies are based on image-recognition algo-
rithms, which require a complete overview of the search space in which the
contour is to be found. However, for real-world applications this would re-
quire a complete aerial or even satellite-based imaging, which may not always
be feasible or possible. The proposed algorithm removes this requirement as
only the local information of the particles is needed to accurately identify a
contour. Particles search for the edge of the object and then travel alongside
its contour using their last known information about positions in- and out-
side of the object. With regard to swarm robotics, this could enable a swarm
of robots to collectively identify object boundaries in the environment using
internal sensors without any need for additional imaging technologies. The
performed experiments show that the algorithm works, with the performance
lying within an order of magnitude of an image-processing based algorithm.
In summary, the Particle Swarm Contour Search algorithm showed promising
results suitable for further research and development.
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1 Introduction

1.1 Motivation

Contour search has been the subject of research for multiple decades, with most

work being done based on image-processing technologies, requiring complete

overview of the search space to apply mathematical operators to every pixel.

In some real-world applications however, such as the tracking of oil spills or

wild�res, a complete real-time overview using aerial or satellite imaging is

infeasible. Additionally, some hazards such as radiation or chemical spills and

vapours might not be detectable via imaging technologies and only via a local

sensor measurement.

This sensor measurement could be provided by an autonomous robot, with

advances in swarm intelligence and robotics providing an interesting alternative

to image-based technologies:

A swarm of agents able to correctly trace the contour of any object in the

environment using only internal sensors could potentially provide real-time

spread analysis in emergency situations as well as initiate actions to alleviate

the situation. Swarm algorithms have already been successfully applied to

problems such as collective search [8] [14] and obstacle avoidance [20].

The main di�culty applying a swarm algorithm such as Particle Swarm Op-

timization to the problem of contour search is that they are mostly suited to

numeric optimization and their performance dependent on the existence of a

non-zero gradient in a monotonic search space. In contour search, existence

of a gradient can not be guaranteed, with a search space consisting of in�nite

local minima or maxima and non-monotonic function value jumps from one

to the other. As such, the gradient will be zero for vast regions of the search

space. In such an environment, any numeric optimization based swarm algo-

rithm may quickly devolve into a random search. This thesis aims to adapt

existing Particle Swarm Optimization principles to search spaces frequently

encountered in contour search.
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1.2 Goals

Contour search using a swarm-based algorithm

The main goal of this thesis is to create a generic swarm algorithm ca-

pable of �nding the contour of a 2D object. The algorithm should be

capable of �nding and outlining the contour of a given 2D shape.

Evaluation under real-wolrd constraints

As the motivation is to create a swarm algorithm applicable in swarm

robotics, the performance under real-world swarm-robotics constraints

such as sensor noise must be evaluated to establish a basis for object

tracking using a swarm of robots.

Comparison with image processing

Image processing is the current state-of-the art of contour search. As

such, the results yielded by the algorithm are to be compared to the

output of an image-processing based contour search.

1.3 Outline

In chapter two the basics of Particle Swarm Optimization (PSO) as the inspi-

ration for this thesis is presented. This includes a basic background in PSO

as well as a description of the speci�c PSO algorithm adapted to the contour

search problem. Additionally the state of the art in image-processing based

contour search techniques will be outlined. The proposed algorithm is then

detailed in chapter three. Chapter four encompasses the experiments done to

evaluate the algorithm and a discussion of the results. Finally chapter �ve

concludes this thesis with an analysis of the usability of the algorithm and

potential for further research.
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2 Related Work

In this section, the background of Particle Swarm Optimization as an inspira-

tion for the developed algorithm is described and the basic concepts outlined.

Additionally, a basic understanding of the state of the art in image-processing

based methods of contour search will be given.

2.1 Particle Swarm Optimization

Particle Swarm Optimization is a nature-inspired paradigm of swarm intel-

ligence. The social behaviour in natural swarms, such as schools of �sh or

�ocks of birds, is mimicked to solve global optimization problems.

In Particle Swarm Optimization, each particle represents one member of the

swarm moving through the search space, searching for the minimum. This

concept was �rst introduced by Kennedy and Eberhardt in 1995 [11], after

studying the simulations of zoologists Heppner and Grenader about bird �ock-

ing [9].

Initially, each agent in the simulation only copied the velocity of its nearest

neighbour. While this led to a synchronous movement of the swarm, said

swarm also quickly adapted an unchanging direction and speed. In order to

combat this completely uniform behaviour, each iteration a random change

was done to the chosen velocities of each particle. This was called "craziness"

and served to give the simulation more "lifelike" qualities.

As a further improvement of the simulation, and to study birds' apparent

ability to �nd food based on the knowledge of other �ock members, a vector

serving as the memory of each agent was introduced. In this vector, the the

best position and the value of that position were stored. A second vector was

used to memorize the global best position any agent in the swarm had found.

3
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The personal best is called the cognitive experience and the experience ex-

changed across the swarm is referred to as social experience.

In the resulting model, each agent was attracted to both its personal best and

the global best of the swarm, which removed the need for both craziness and

velocity matching. This model was �rst referred to as Particle Swarm Opti-

mization (PSO).

The PSO concept has since been adapted and improved many times for nu-

merous applications [15] [17].

Any PSO algorithm maintains a swarm, or population, of particles. Each of

these particles can measure the value of the optimization function at its cur-

rent position and thus represents a potential solution in the search space. Each

iteration, the position of these particles is adjusted according to its own ex-

perience and that of the swarm - the particles are '�own' through the search

space.

Each particle i assigned a position ~xi(t) and velocity ~vi(t) at any given time

step t. Additionally, the particle possesses a memory of its own best position,

denoted ~yi(t) and called local best, and the best position ever attained by the

swarm, the so-called global best, ~yg(t). The di�erence between the position

and the global best, ~yg(t) − ~xi(t) is also called the social component ~vis(t),

while the di�erence in position and local best ~yi(t) − ~xi(t) is also called the

cognitive component ~vic(t).

The position of each particle, and thus the entire swarm, is then adjusted in

each time-step t according to the following equations:

~vi(t+ 1) = ω~vi(t+ 1) + c1~r1 ⊗ ~vic(t) + c2~r2 ⊗ ~vis(t) (2.1)

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1). (2.2)

The parameters r1 and r2 represent vectors of uniformly distributed random

variables in the range of [0, 1]. These are included to implement some ran-

domness in the direction of the velocity, increasing the diversity of the parti-

cle population and are combined with the individual velocity components via

element-wise multiplication ⊗. ω is called inertia weight and is used to control

the in�uence of previous speeds of the particle. The in�uence of the particles

own experience and that of the swarm are scaled by c1 and c2, respectively.
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2.1 Particle Swarm Optimization

Equation 2.1 consists of three basic terms, which will be described in the

following:

The previous velocity ω~vi(t) is simply a memory of the previous �ight direc-

tion. In physical terms it serves as momentum and prevents the particle

from drastic direction changes. With higher inertia weights, more bias

is given towards the current direction.

The cognitive component c1r1
(
~yi(t)− ~xi(t)

)
serves as an attractor to-

wards the previous best position the individual particle has attained

- the individual 'wishes' to return to a place it has previously found

satisfactory.

The social component c1r1
(
~yi(t)− ~xi(t)

)
evaluates the current perfor-

mance of the particle in relation to the entire swarm. In e�ect, this

draws each particle towards the best position found by the swarm. Over

time, this causes the swarm to converge to an optimum.

2.1.1 Charged Particle Swarm Optimization

One of the drawbacks of the basic PSO model is its inability to perform well

in dynamic or multi-modal environments. Once the swarm is converged to a

perceived optimum, it is very di�cult to adapt to changes in the optimized

function. For multi-modal problems, and especially contour search, the swarm

has di�culty navigating due to the monotony of the search space.

To improve the adaptability of PSO algorithms to changes in the environment,

Blackwell and Pentley proposed a new algorithm based on charged swarms

called charged PSO (CPSO) [4]. To prevent complete convergence to the

global best position, some particles are assigned a charge. All charged particles

experience a repulsive force from all other charged particles, while the neutral

particles behave as normal. This allows neutral particles to exploit the global

optimum, while the charged particles continue to explore around the optimum

due to the repulsive forces.
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~ai(t) =
∑
j 6=i

QiQj

(|~xi(t)− ~xj(t)))|3
(
~xi(t)− ~xj(t)

)
(2.3)

The new acceleration introduced by the charge is shown in Equation 2.3. Every

particle i is assigned a charge of magnitude Qi, with neutral particles being

assigned a charge of Qi = 0. The complete velocity update then changes as

shown in Equation 2.4

~vi(t+ 1) = ω~vi(t) + c1~r1 ⊗ ~vis + c2~r2 ⊗ ~vic + ~ai(t) (2.4)

In their experiments, Blackwell and Pentley were able to conclude that a mixed

swarm of charged and neutral particles - also called an atomic swarm - out-

performed a swarm consisting of only charged particles. Both versions were

able to consistently outperform the non-charged PSO algorithm in a dynamic

environment. Since then, more research has been conducted concerning the

application of PSO to dynamic environments [3] [2] [12].

2.1.2 Standard Particle Swarm Optimization

In 2011, an improved PSO algorithm, Standard Particle Swarm Optimization

2011 (SPSO 2011) was proposed by Zambrano-Bigiarini et al. [23]. This algo-

rithm is regularly used as a reference point for comparison with other optimiza-

tion algorithms, and yields improved performance on multi-modal functions.

~pi(t) = ~xi(t) + c1~r1 ⊗ ~vic(t) (2.5)

~li(t) = ~xi(t) + c2~r2 ⊗ ~vis(t) (2.6)

~gi(t) =
~xi(t) + ~pi(t) +~li(t)

3
(2.7)

~vi(t+ 1) = ω~vi(t) +Hi(~gi(t), ||~gi(t)− ~xi(t)||) (2.8)

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1) (2.9)

Instead of the velocity calculation given in equation 2.1, the velocity is chosen

randomly from a hypersphere constructed from the social and cognitive com-

ponent using equations 2.5 to 2.9. In their experiments, Zambrano-Bigiarini
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et al. found that SPSO 2011 achieved good performance on multi-modal and

multi-dimensional (up to 50) functions with fast convergence, while avoiding

stagnation, where all particles converge towards an optimum.

2.2 Edge and contour detection in image

processing

Edges in image processing are usually de�ned as maxima of the gradient value

of an image. These maxima represent large changes in pixel values and are

thus indicative of object boundaries. Object contours are therefore continuous

edges forming a closed loop, e.g. they ful�ll the additional constraint that their

�rst and last points are identical.

Several varying methods exist to identify edges in an image, based on two

main methods: Gradient based edge detection, which directly searches for gra-

dient maxima and laplacian based edge detection, which relies on on detecting

zero points in the second derivative of the image. Much research has been

conducted has been conducted into comparing and improving performance of

edge detection algorithms [1] [6] [22] [16], but the underlying technique of us-

ing kernels to smooth and obtain the image gradient described in this chapter

remain largely the same.

2.2.1 Kernel Convolution

Kernel convolution is a technique used in image processing for e�ects such

as blurring and sharpening as well as edge detection. A kernel is a convo-

lution matrix, or mask, that is applied to every pixel of the image. During

convolution, the pixel value is added with its neighbours according to the

weight provided by the kernel. This sum is then normalized by the total sum

of coe�cients of the kernel as to prevent brightening or darkening of the image.

The basic principle is shown in pseudo-code in algorithm 1. Examples for

simple kernels are given in �gure 2.2. If a pixel would be outside of the image

border, several methods can be used to get an appropriate pixel value: E.g the

nearest pixels could extended to match the size of the kernel, or the image can

be wrapped around, with values being taken from the opposite border.
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2 Related Work

Figure 2.1: Output of edge detection algorithms included in the OpenCV li-

brary [5]

KID =

0 0 0

0 1 0

0 0 0


a) Identitiy kernel

MBlur =

1 1 1

1 1 1

1 1 1


b) Box blur kernel

Figure 2.2: Examples of basic kernels: Sub�gure a) shows the basic identity

kernel, in which only the pixel retains its value and all others will

receive the weight of 0 in the summation. Sub�gure b) shows a

basic box blur kernel which simply averages all pixel values in a

3x3 grid
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2.2 Edge and contour detection in image processing

Algorithm 1 Kernel convolution principle

Input: image f(x, y), kernel k(x, y), output_image g(x, y)

\\ kernel has dimensions [−w,w] and [−h, h], sum of coe�cients Sk

for y = 0 to image.rows-1 do

for x = 0 to image.columns-1 do

sum = 0

for i=-h to h do

for j= -w to w do

\ \ sum up pixel values overlapped by kernel

sum+ = k(i, j) ∗ f(x− j, y − j)
end for

end for

\ \ normalize before output to prevent brightening/darkening
g(x, y) = sum

Sk

end for

end for

This kernel convolution technique can be used to detect edges by using sym-

metrical kernels with opposing sides being assigned di�erent signs and the

axis of symmetry being assigned 0. When this kernel overlays an edge, the

corresponding pixels will have signi�cantly di�erent magnitudes and thus the

convolution will result in a high value. Contrary, if the kernel overlays a

smooth region without large changes in the pixel values, both sides will cancel

each other out and result in a near-zero value. Edge detection kernels are

usually used in combination with smoothing kernels to remove noise from the

image and prevent false edge detections. The following section describes some

frequently used kernels for edge detection and image smoothing.

The sobel operator is an example of such a kernel used for edge detection

in images. Fig. 2.4 shows three example kernels. To get the complete

gradient two di�erent (rotated) operators are applied for each axis, re-

sulting in two distinct gradient measurements. These can be combined

to get the overall magnitude of the gradient by normalizing the vector

given by both gradient values ~g = (gx, gy).

9
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a) 2-D Gaussian distribution with

mean (0,0) and σ = 1.4

G =


2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 4 12 9 4

2 4 5 4 2


b)Gaussian kernel for �ltering out

noise by spreading pixel values

Figure 2.3: Gaussian distribution and gaussian kernel

The Laplacian operator is another technique used for edge detection. It is

based on the Laplacian of the image, ∆f(x, y) = δ2f
δx2

+ δ2f
δy2

. By reducing

the operator to the discrete case in image processing, it can be applied via

a single 2-D convolution kernel. No separation for the x and y dimension

is necessary because in a discrete 2D case the Laplace operator includes

the di�erences in both dimensions. Commonly used kernels are shown

in Fig. 2.5. A disadvantage of this kernel is that it is highly sensitive to

noise.

The Gaussian Filter is a widely used �lter for smoothing or blurring im-

ages and to get rid of noise. A kernel can be constructed by sampling

the 2D Gaussian function G(x, y) = 1
2πσ2 e

−x
2+y2

2σ2 . This function can be

integrated over each kernel pixel to obtain discrete kernel values. A vi-

sualization of this function is shown in Fig. 2.3, along with a suitable

kernel.

The Laplacian of Gaussian is a kernel convolution used to mitigate the

aforementioned sensitivity of the Laplacian operator to image noise. The

Gaussian function is combined with the Laplacian operator to reduce the

impact noise has on a purely Laplacian Kernel.

10



2.2 Edge and contour detection in image processing

Sx =

−1 0 1

−2 0 2

−1 0 1


a) Sobel operator for x-direction

Sy =

 1 2 1

0 0 0

−1 −2 −1


b) Sobel operator for y-direction

Sx =


−5 −4 0 4 5

−8 −10 0 10 8

−10 −20 0 20 10

−8 −10 0 10 8

−5 −4 0 4 5


c) (5 × 5) Sobel operator for x-

direction

Figure 2.4: Kernel operator overview: Kernels used for gradient detection in

images, applied for each the x-axis and the y-axis using kernel a)

and b), respectively, with a larger (5×5) example for the x-direction

in c)

L =

0 1 0

1 −4 1

0 1 0


a) Laplacian kernel

L =

1 1 1

1 −8 1

1 1 1


b) Laplacian including diagonals

Figure 2.5: Laplacian kernels used for second-order gradient detection in im-

ages. The high noise sensitivity stems from the high value of the

centre pixel, which could vary greatly from its surroundings due to

noise and therefore lead to false edge detection. [13]
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2.2.2 Canny Edge Detection

In 1986, John Canny proposed a new approach to edge detection called the

Canny Detector [7]. The Canny algorithm was developed to satisfy three

speci�c criteria with regards to the detection of edges:

Low error rate, speci�cally a good detection of only existent edges even in

noisy images.

Good localization minimizing the distance of any detected edge to the true

edge.

Minimal response to edges: each true edge in the image only results in one

detected edge by the algorithm.

To achieve these goals, the algorithm is divided into four steps:

1. Noise �ltering

2. Calculating intensity gradient

3. Edge thinning

4. Hysteresis thresholding

The noise �ltering step can be achieved via any noise �ltering kernel, such as

the Gaussian kernel described in the previous section.

To calculate the intensity gradient, the blurred image can be convoluted with

an edge-detection kernel, such as the Sobel or Laplacian operator.

For the third step, all pixel values are compared with their neighbourhood in

the direction of the edge to suppress all pixels that are not a local maximum,

reducing edge width.

Finally, hysteresis thresholding is applied to further �lter out weak edges.

Hysteresis thresholding is a dual-threshold approach in which all values above

the top threshold are kept and all below the bottom threshold are discarded.

Values between the two thresholds are kept only if they are connected to a

pixel that has already been accepted by the algorithm. This allows connected

contours to be found, even though some of the gradient intensities might be

below the upper threshold.
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2.2 Edge and contour detection in image processing

2.2.3 Adaptive contour models

Contours di�er from edges since they are supposed to be continuous lines that

signify an object boundary. Edge detection can be combined with adaptive

contour models[10], also called snakes, to detect and follow contours. Active

contour models are spline curves parametrized by a variable p ∈ (0, 1) and two

functions x(p) and y(p)) representing the coordinates of the points along the

curve. The vector ~v(p) = (~x(p), ~y(p)). is used to denote the spline. In case of

an object boundary, the curves endpoints need to be identical with ~v(0) = ~v(1).

To track object contours, splines are moved throughout the image to minimize

a modelled energy function shown in equation 2.10. This function consists of

the internal energy of the snake Esnake, which is dependant on its curvature

and used to smooth out the curve, and the external force derived from the

image gradient Eimage, which minimizes the distance to edges in the image.

E =

∫ 1

0

Esnake(v(p)) + Eimage(v(p))dp (2.10)

This function can be minimized using the Euler-Lagrange equation, resulting

in equation 2.11, which can then be solved using a minimization technique

such as gradient descent, pushing the snake towards contours in the image.

~v(p′′) + ~v(p′′′′) +∇Eimage = 0 (2.11)

2.2.4 Pixel-Following methods

For static contours in binary images, a simpler approach called pixel-following

may be applied. With this method, a contour is traced by sequentially

searching the direct neighbourhood of a pixel for another black pixel using a

relative order, e.g starting clockwise from the pixel to the left of the current

pixel. This search is then repeated with the found pixel, forming a chain of

pixels until the contour is complete.

An example of this is the Moore-Neighbour-Tracing (MNT), which searches the

Moore-Neighbourhood of a pixel p, denotedM(p). The Moore-Neighbourhood

of a pixel is shown in �g. 2.6a and a simpli�ed algorithm using this method

13



2 Related Work

M1(p) M2(p) M3(p)

M8(p) p M4(p)

M7(p) M6(p) M5(p)

(a) An example of the Moore-

Neighborhood of a pixel p

b

s

(b) Example contour for which base

MNT fails: starting from s, b

is found(red path) and then s

again(blue path)

Figure 2.6: Moore-Neighbourhood and contour example

shown in pseudo-code in algorithm 2.

The algorithm starts by tracing each pixel of the image, e.g column-by-column

from the bottom row to the top row, until a black pixel is encountered. This

pixel is then set as the start pixel s and the boundary pixel b. Then, the

current pixel c is "backtracked", i.e. it is set to the pixel from which b was

entered from. From this step, each pixel of the Moore-Neighbourhood M(b)

of b is examined until a black pixel is found. This pixel then becomes the

new boundary pixel b and the process is repeated until the start pixel is

encountered again.

A disadvantage of the MNT algorithm is the stop condition, which terminates

the algorithm as soon as the starting pixel is encountered again, which causes

it to fail some patterns. An example of such a pattern is shown in �g. 2.6b

To avoid this, the condition can be expanded so that the start pixel has to be

entered in the same direction as it originally was.

The MNT algorithm can be expanded to �nd multiple contours with topo-

logical information, such as the algorithm used by the OpenCV framework

[21]. An improved pixel-following algorithm was proposed by Seo et al. [19],

including an overview and comparison of similar methods.
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2.2 Edge and contour detection in image processing

Algorithm 2 Moore-Neighbour tracing algorithm

\\ Input: binary image I

\\ Output: list L of contour pixels

Scan image pixels until current pixel c is black

append c to C, set boundary start s = c and current boundary point b = c

backtrack c

while c 6= s do

if c is black then

append c to L

set b = c

backtrack c

else

c = next pixel in M(b)

end if

end while
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3 Particle Swarm Contour

Search

The algorithm created for this thesis, Particle Swarm Contour Search, has the

goal of accurately �nding the contour of one or more objects in a multi-modal

search space, such as e.g. a black surface in a grey-scale image. The idea is to

use a Particle Swarm Optimizer adapted to this environment to continuously

trace the contour of a found object. To overcome the inherent weaknesses of

PSO in this environment, the basic velocity update must be modi�ed to put

less importance on the existence of a global optimum.

3.1 Problem Description

The most basic problem for contour search would be the �nding of a convex

black object within a white background image. As most problems of contour

search within the workings of the proposed algorithm can be reduced to a sen-

sor or function value falling within a certain range (e.g substance concentration

for chemical/oil spills, heat for �re), and can thus be compared to this basic

problem, the image-based contour search will be used as a general problem

reference in the following, with the function value f(x) ready by the sensor

referred to as the colour value. Additionally, it will be assumed that the size

search space is known, as it would usually be in a real-world search application.

All particles move along the pixels of the image and can read the colour value

of their current pixel. A threshold colour value is given, at which the particle

is considered inside the object. This is analogous to a sensor value such as

chemical concentration or heat rising above a pre-set level. The goal for each

particle is then to �nd the object and move along its contour, using its own

information and the information gleaned form its swarm. As a secondary goal

of this thesis is to establish a basic algorithm to improve upon for swarm

17



3 Particle Swarm Contour Search

robotic applications, the colour of the current position as well as the actual

position of the particle itself will be subject to measurement errors.

Increasing problem di�culty can be simulated using more complex and non-

continuous shapes with blurred edges, several example landscapes are shown

in �g. 3.1.

3.2 Overview

The PSCS algorithm consists of three distinct phases with di�erent velocity

update mechanisms. Initially, all particles conduct a global search using a

modi�ed CPSO approach. Once a particle detects an object, a new sub-swarm

is created from its neighbourhood to explore the contour of that object. If a

particle exploring an object detects that it is close to an edge, it enters a

contour following phase. A visualization of the overall �ow of the algorithm is

shown in �g. 3.2.

Algorithm 3 shows a pseudo-code description of the initialization and overall

structure of the algorithm. More detailed algorithm descriptions are given for

each phase individually in the following sections. The input for the algorithm

consists of the evaluated function f(x, y), which represents the measured sen-

sor value at each given position, the population size P , the object detection

threshold θ and the minimum contour distance ε. The initialization sets all

particle positions and velocities, creating a global swarm. The global swarm

performs a search for any object in the search space. Once an object is found, a

sub-swarm is created form particles in the neighbourhood, which then performs

a more localized contour search phase. Once velocity updates for individual

particles in these sub-swarms become su�ciently small, a contour tracing phase

is initialized.

18



3.2 Overview

Figure 3.1: Example landscapes for the contour search. Batman image taken

from: http://getdrawings.com/batman-symbol-vector, license: CC, last

accessed 25.04.2019

19



3 Particle Swarm Contour Search

Figure 3.2: Flowchart of the PSCS algorithm phases. The stopping condition,

which is checked individually after each phase, is omitted for in-

creased clarity
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3.2 Overview

Algorithm 3 Baseline PSCS algorithm

Input: f(x, y), P , θ, ε

Initialize particles in global swarm evenly spaced across the image:

for i = 0 to P − 1 do

~xi(t) = (δx ∗ i, 0)

~vi(t) = (0, VSTART )

Sg.append(pi)

end for

while stop condition not met do

for each particle i in Sg do

perform global search update

end for

for each sub-swarm Sn do

for each particle i in Sn do

if trace condition met then

perform trace update

else

perform search update

end if

end for

end for

end while

Algorithm 4 PSCS global search phase

for each particle i in Sg do

\\ search phase update for the global swarm

if ci(t) < θ then
~ini(t) = ~xi(t)

createSubSwarm(PS)

else

~outi(t) = ~xi(t)

~vi(t+ 1) = updateV elocityGobal(~vi(t), ~xi(t))

~xi(t+ 1) = updatePosition(~vi(t), ~xi(t))

end if

end for

21



3 Particle Swarm Contour Search

3.2.1 Initialization

In this step the particles and their variables are set up. If the size of the

search space is known, the particles can be spread evenly along an edge of the

search space with a constant velocity VSTART away from that edge, with deltax
denoting the distance between the particles in the x direction. If the size is

unknown, they can simply be initialized with random positions and velocities

to ensure non-biased exploration of the search space. With more knowledge of

the search space or the object contour, speci�c patterns could be applied to

improve algorithm exploration and diversity.

A threshold value θ for the detection of objects needs to be set. This represents

the sensor value for which the particle is considered to be inside the object.

This could be chemical concentration, temperature, or radiation count. For

the image application, it simply represents the a colour value. The ~in and ~out

values of each particle are initialized to its current position and all particles

are added to the global swarm, which then begins the object search phase.

3.2.2 Object search phase

This is the update phase for the global swarm Sg including all particles that

have not yet been assigned to a sub-swarm. Initially this swarm will consist

of all particles and eventually be reduced to 0 as more sub-swarms are created

to track object contours. The particles in this swarm use a modi�ed CPSO

approach shown in equations 3.1 and 3.2 for their velocity update, with only

members in sub-swarms being considered for the calculation of the repulsive

force. This leads to a repulsive force acting on the global swarm from all sub-

swarms, preventing the global swarm from repeatedly creating sub-swarms to

explore the same object. This repulsion is decreased over time to allow all

particles to trace the contour if no other object is found.

As with the initialization, this velocity update could be exchanged for any

mechanism suited to explore highly multi-modal environments or speci�c pat-

terns depending on the knowledge of the search space.

If a particle i detects that its measured sensor value ci is below the given

threshold θ, meaning it has entered an object to be explored, it creates a new

sub-swarm of size PS from its immediate neighbourhood. All members of this

sub-swarm are assigned the current position xi as their last known position

inside the object, denoted
−→
in. If the measured value ci does not fall below θ,
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3.2 Overview

it simply updates its last known position outside any objects, denoted
−→
out. If

any particle would leave the search space, it is simply re�ected from the edge

with a small random additional change in direction. This re�ection behaviour

holds true for all phases.

To prevent excessive particle speeds, particle velocity is clamped once it ex-

ceeds a maximum value depending on the search space size.

~vi(t+ 1) = ~vi(t) + ~ai(t) (3.1)

~ai(t) =
∑
j 6∈Sg

Qj ∗Qj

(|~xi(t)− ~xj(t)))|3
(
~xi(t)− ~xj(t)

)
(3.2)

3.2.3 Contour search phase

Once a sub-swarm Sn is created, it immediately enters this phase, which con-

sists of a modi�ed CPSO algorithm outlined in algorithm 4.

At the beginning of this phase, a data exchange is triggered between the current

particle and a random particle of the same sub-swarm with a small probabil-

ity. This leads to particles travelling through the contour and enables the

algorithm to detect holes in the contour.

Following this, the condition for entering the contour trace phase is checked

for each particle in the sub-swarm. If it resolves to true, then this phase is

skipped and the contour trace phase initiated.

Instead of tacking the local and global bests, each particle updates either its

last position inside
−→
ini or outside

−→
outi of the object, depending on its measured

value ci. Accordingly, the velocity update deviates from the CPSO variant as

shown in equations 3.3 to 3.6. As either
−→
in or

−→
out will always be equal to

~xi, one of the velocity components will amount to 0. As such, the usually

included scaling values c1 and c2 as well as the random variables r1 and r2
are omitted for a simple factor of 0.5 for all velocity components including the

inertia weight. The reduced randomness helps the algorithm to consistently

return to the object contour while the equal weight for the inertial velocity

allows particles to overcome narrow corners and highly concave contours.

To prevent an immediate collapse to the position of the �rst particle, an in-

creased but decaying repulsion factor between members of this sub-swarm is

used to retain diversity in the sub-swarm, shown in equation 3.5 with Tn de-

noting the age of the sub-swarm, beginning with 1.
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3 Particle Swarm Contour Search

~vini (t) =
−→
ini(t)− ~xi(t) (3.3)

~vouti (t) =
−→
outi(t)− ~xi(t) (3.4)

~ai(t) =
∑
j∈Sn

Q3
j

(|~xi(t)− ~xj(t)|3 · Tn
(
~xi(t)− ~xj(t)

)
(3.5)

~vi(t+ 1) = 0.5 · ~vi(t) + 0.5 · ~vini (t) + 0.5 · ~vouti (t) + ~ai(t) (3.6)

3.2.4 Contour trace phase

This phase is determined for each particle individually during the contour

search phase. After the update of the
−→
ini(t) and

−→
outi(t) values, if their di�er-

ence is less than a set minimum value ε, the contour tracing update is triggered

instead of the equations detailed in the previous section as the particle is now

close to an edge. For contour tracing, calculating the new velocity receives

an additional term representing the direction of the edge of the contour and

replacing the repulsion force ~ai(t):

With su�cient proximity of ~ini(t) and ~outi(t), the actual edge of the contour

will be perpendicular to the vector ~ei(t) = ~outi(t)− ~in(t). Note that this vec-

tor will be either equal to
−→
ini(t), given the particle is currently outside of the

contour or equal to
−→
outi(t) if the particle is currently inside the contour. Using

this approximation, the particle is moved along one of the normal vectors of

~ei(t), denoted ~ni(t). The magnitude s of this velocity can be chosen depending

on the application, with smaller values increasing the accuracy of the contour

approximation as well as the needed time to fully explore the contour. The

full velocity update for this contour tracing is shown in equations 3.7 to 3.11

and a visualization of the vectors involved is shown in �g. 3.3

The �nal step in this phase is to write the particle positions to an output

archive for later evaluation.
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3.2 Overview

i
~outi(t)

~vi(t)

~ei (t)

~n
i
(t
)

~v i
(t
+

1
)

Figure 3.3: Contour trace velocity example: Particle p is currently inside the

contour with previous velocity ~vi(t) and ~ei(t) =
−→
outi(t). Both of

these vectors are added with 50% magnitude to the normal vector

~ni(t) to obtain ~vi(t+ 1).

~vini (t) =
−→
ini(t)− ~xi(t) (3.7)

~vouti (t) =
−→
outi(t)− ~xi(t) (3.8)

~ei(t) =
−→
outi(t)− ~ini(t) (3.9)

~ni(t) =

[
0 −1

1 0

]
~ei(t)

||~ei(t)||
(3.10)

~vi(t+ 1) = 0.5 · ~vi(t) + 0.5 · ~vini (t) + 0.5 · ~vouti (t) + s · ~ni(t) (3.11)
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3 Particle Swarm Contour Search

Algorithm 5 PSCS contour search and trace phases

for each subswarm Sn do

\\ search phase update for each sub-swarm

for each particle i in Sn do

exchangeData()

if ci < θ then
~ini(t) = ~xi(t)

else

~outi(t) = ~xi(t)

end if

if | ~out(t)i− ~ini(t)| < ε then

\\ contour trace phase
~vi(t+ 1) = updateV elocity(~ini(t), ~outi(t)) \\Equation 3.11

else

\\ contour search phase

~vi(t+ 1) = updateV elocity(~ini(t), ~outi(t)) \\Equation 3.6

end if

~xi(t+ 1) = updatePosition(~vi(t), ~xi(t))

end for

end for
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4 Evaluation

The goals motivating this thesis include the experimental evaluation of the

PSCS algorithm and a qualitative comparison to an image-recognition based

contour search algorithm. To this end, the algorithm described in the previous

chapter was implemented and experiments performed. This chapter describes

the implementation and the performed experiments.

4.1 Implementation

The algorithm and experimental evaluation are implemented using the python

programming language. The main algorithm accepts all necessary parameters

as arguments, allowing independent variation and evaluation of parameter sets.

The objective function f(x, y) for the particles is represented as a binary image

containing the contour to be approximated.

While python packages providing various PSO implementations exist, most of

the algorithm was self-implemented due to the various changes to the mathe-

matical foundations of the PSO velocity updates and the overall control �ow

as well as the speci�c input nature for the evaluation requiring the algorithm

to run on a binary image. Most of the mathematical operations are done using

functions provided by the numpy package.

The importing of the images and reading of speci�c pixel-values as well as the

image-recogniton based contour search algorithm are provided by the OpenCV

python library [5]. An automated way to start experiments for each set of pa-

rameters was implemented using a simple con�guration �le. The output of the

algorithm is written to a �le during each iteration in order to reduce RAM

usage.

For the evaluation, a concave hull has to be constructed from the output

produced by the algorithm, which is done via the QGIS project [18], which

provides a python plugin to calculate concave hulls of point clouds. The dif-

ference of the areas of the concave hull and the actual shape is then used as
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4 Evaluation

Category Parameter Values

General

Population Size 1,5,20

Sub-swarm Size 1,5,20

Contour search/trace phase

ε 10,25,50

Step-size s 1,10,25,50

Errors σ 0,5,10

Table 4.1: Parameter values used for experiments

metric by which the algorithm is evaluated. The data is loaded and analysed

via the pandas package, and for visualization the matplotlib package was used.

4.2 Parameters

The performance of the algorithm is dependant on a variety of parameters. To

reduce the parameter space to a manageable size, parameters already evaluated

by previous work, such as the repulsion factor for the charged PSO repulsion,

are used as recommended by the original authors. The parameter settings

that were tested are shown in table 4.1. As the parameter space of all com-

binations is still too large for individual experimentation on each test image,

an exhaustive parameter evaluation is only done for a selected image, which

combines multiple convex and concave contour sections in addition to sharp

angles, providing a su�cient representation of possible object shapes. The

best parameter sets are then used on the remaining images and the results

evaluated in comparison to the output of the OpenCV contour search.

4.3 Experiments

As mentioned previously, the �rst experiments were conducted in a single test

image with all possible parameter combinations, with the exception being the

error value, which is always set to a single value for all error sources. While the

output of the algorithm allows analysis of all particle positions for any time-

step, only the positions of particles in the contour tracing phase are evaluated,
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4.4 Error Model

as these are the only information necessary to evaluate the concave hull of the

found object.

Further experiments are done on a subset of the images shown in Fig. 3.1. For

these experiments, the input images are heavily blurred to represent a more

natural �ow of the function value instead of a sharp edge. For each image, the

obtained area is then compared to the area received from running the OpenCV

contour search algorithm on the same image. Each experiment is repeated 11

times to improve the statistical signi�cance of the results. Each experiment

terminates after 20.000 function evaluations have been calculated.

4.4 Error Model

With a goal of the thesis being the evaluation of the algorithm under real-world

constraints, simple additive error terms are introduced for velocity, position

and sensor measurements.

Error terms are calculated for each component according to Equations 4.1 to

4.3, with the error values N drawn for each equation individually from a two-

dimensional normal distribution. The velocity ~Ev(t) error is applied directly

during the velocity update, while the positioning error ~Ex(t) is only applied

during during the objective function evaluation at the current particle position,

combined with the measurement error ~Ef (t).

~Ev(t) = 0.01 · N ((0, 0), σ)⊗ ~vi(t) (4.1)

~Ex(t) = N ((0, 0), σ) + ~xi(t) (4.2)

Ef (t) = N ((0, σ) + f( ~Ex(t)) (4.3)

(4.4)

The introduction of these errors leads to situations in which the algorithm

cannot produce an output from which a concave hull can be constructed. For

all following experiments, these failings are tracked and displayed along with

the results.
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4 Evaluation

Figure 4.1: Test image and visualized algorithm output

(a) Population of 1 (b) Population of 5 (c) Population of 20

Figure 4.2: In�uence of di�erent epsilon settings without error model and a

step-size of 1

4.5 Experiment for parameter evaluation

As described previously, this experiment is done on a single test function using

all available parameter combinations to evaluate the in�uence of individual

parameter changes. The test image, along with an example output of the

algorithm, is shown in �g. 4.1.

The �rst parameter to be evaluated is the minimum distance to the contour

for entering the trace phase, ε. Fig 4.2 shows the in�uence of the parameter

for the di�erent population sizes when no error is applied. Shown is the

distribution of the relative error to the absolute area, along with any runs

for which the algorithm failed. The colour of the box plots indicates the

sub-swarm size used for the experiment.
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4.5 Experiment for parameter evaluation

It is interesting that the ε value seems to have little to no in�uence on

the solution quality. The initial assumption was that the parameter would

improve the solution quality by restricting particles to a closer area around

the contour, but this is not the case.

The second thing to note is that with increasing population size the solution

quality decreases. A reason for this could be that particles interfering with

each others trajectories due to the application of a CPSO repulsion approach.

The ε parameter only becomes relevant when an error value is introduced, as

shown in �gures 4.3 and 4.4: For small values of ε the algorithm fails to trace

the contour completely, with all runs failing to produce a viable contour. This

makes sense intuitively, as the error is applied to both particle velocity and

the measurement position. With larger error values, a small ε increasingly

restricts the window in which particles enter the contour tracing phase relative

to the imprecision in particle movement. If no particle ever manages to enter

the contour tracing phase, the algorithm produces no output from which a

contour can be constructed.

The data displayed also shows the importance of the step-size, which seems

to have a similar in�uence on the algorithms performance: With lower step

sizes, the algorithm becomes signi�cantly more prone to failure. Figure 4.5

shows the data for the step sizes without any error model applied. The data is

already trimmed to not include infeasible ε values. As the exact value of ε had

no noticeable in�uence above 25, this was chosen as the value size to use. In-

stead of ε variation, di�erent population sizes are shown for the step variations.
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(a) Step-size 1 (b) Step-size 10 (c) Step-size 25 (d) Step-size 50

Figure 4.3: In�uence of ε for di�erent step sizes with a �xed population of 1 and σ of 5

(a) Step-size 1 (b) Step-size 10 (c) Step-size 25 (d) Step-size 50

Figure 4.4: In�uence of ε for di�erent step sizes with a �xed population of 1 and σ of 10
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4.5 Experiment for parameter evaluation

(a) Population size 1 (b) Population size 5 (c) Population size 20

Figure 4.5: In�uence of step-size for di�erent population sizes with a �xed ε of

25 and no applied errors

Immediately noticeable is the impact the step-size has on the relative error of

the contour area. This concurs with expectations: The step size has direct

in�uence on the velocity of the particles during the contour trace phase, in

which the boundary is approximated. More precisely, the step-size directly

sets the distance travelled along the estimated tangent of the contour, i.e. the

smaller this distance, the closer the particle remains to the actual contour.

Figures 4.6 and 4.7 show the data including the error model. In addition

to the in�uence on solution quality, the step-size has a similar impact on

the algorithm robustness as ε: To small values prevent the algorithm from

tracing the contour. The reason for this is that for the smaller step-sizes the

error regarding position measurement can become greater than the travelled

velocity in the contour trace phase. Due to this, a particles last known

position inside and outside of the contour could become identical, causing the

particle to become stuck.

The data also shows another in�uence of the population size: While a popu-

lation size of 1 shows a theoretical best performance when not subjected to

errors, a population size greater than 1 improves robustness of the algorithm

when the error model is included, reducing the failure rate to 0 given a

su�ciently large step-size.
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(a) Population size 1 (b) Population size 5 (c) Population size 20

Figure 4.6: In�uence of step-size for di�erent population sizes with a �xed ε of 25 and σ of 5

(a) Population size 1 (b) Population size 5 (c) Population size 20

Figure 4.7: In�uence of step-size for di�erent population sizes with a �xed ε of 25 and σ of 10
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4.6 Experiment on a convex contour

Category Parameter Values

General

Population Size 5

Sub-swarm Size 1

Contour search/trace phase

ε 25

Step-size s 25

Table 4.2: Parameter values used for the following experiments

As for the second parameter concerning population size, the sub-swarm size,the

data shown in this section indicates that a size of 1 yields the best performance.

This can be explained by the fact that particles do not exchange information

during the contour trace phase and therefore nothing is gained by a larger

sub-swarm size. However, if the contour has a hole, only a sub-swarm of size

greater than one can locate this hole, since particles from the same sub-swarm

occasionally exchange their memories, as explained in section 3.

Table 4.2 shows the best parameter values extracted from this experiment.

4.6 Experiment on a convex contour

With the necessary parameter settings established, the next experiment is test-

ing the algorithm against the OpenCV contour search on the convex boundary

of a circle. Fig. 4.8 shows the input image along with an example output

produced by the algorithm.

Fig. 4.9 shows the data exported from the experiment, including the contour

Area calculated by OpenCV

While the OpenCV contour search provides a more accurate result even for

no error model, with the relative error being one order of magnitude smaller

even the no-error case, it is worth noting that the parameters were selected

for optimal robustness instead of accuracy. The PSCS algorithm however has

shown capability of similar accuracy for a more complex shape (�g. 4.2 (a))

for a less robust parameter set. Another thing to note is the fact that the

algorithm performs reliably with little variation in solution quality.
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4 Evaluation

Figure 4.8: Convex test image and visualized algorithm output

Figure 4.9: Experimental results for the convex shape given various error values
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4.7 Experiment on a concave contour

Figure 4.10: Concave test image and visualized algorithm output

4.7 Experiment on a concave contour

The next type of shape to be evaluated is a concave object shown in �g. 4.10

Fig. 4.11 shows the data exported from the experiment. While the OpenCV

algorithm loses some accuracy, the performance of PSCS method remains rel-

atively stable, with a small increase in the range of error values. However, the

OpenCV remains about an order of magnitude more accurate even in the case

of zero errors.

4.8 Optimum Performance

The previous experiments were done to evaluate the algorithm using parame-

ters suited for real-world applications. For a theoretical case disregarding po-

tential error sources a much improved performance should be achieved. This

is tested with the parameter set shown in table 4.3. For this experiment a

blurred version of the batman image used for parameter evaluation in section

4.5 is employed, as it combines both convex and concave elements and as such

provides a more generalized shape representation. To include a second image,

the concave "blot" image displayed in section 4.7 is also used.

As the standard deviation for this parameter set is to small to be properly

displayed in a box plot, only the median of the algorithm outputs was calcu-

lated instead. The results are shown in table 4.4, with the PSCS algorithm
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4 Evaluation

Figure 4.11: Experimental results for the concave shape given various error

values

Category Parameter Values

General

Population Size 1

Sub-swarm Size 1

Contour search/trace phase

ε 25

Step-size s 1

Table 4.3: Parameters for optimum performance with no error model

outperforming the OpenCV method and showing consistent performance over

all trial runs with very low standard deviation. While only applied to this

limited set of two test images, this still shows the potential of the algorithm

in a perfect, i.e. error-free environment.
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4.9 Non-continuous shapes

Image Algorithm Relative error Standard deviation

Batman
PSCS 0.011 0.00038

OpenCV 0.014 -

Blot
PSCS 0.006 0.00006

OpenCV 0.008 -

Table 4.4: Results of the optimum parameter set applied to two images

4.9 Non-continuous shapes

Another type of contour are the given by non-continuous shapes, i.e. shapes

with holes. These contours can not be evaluated using the methods of the

above sections, as no concave hull can be constructed. However examples can

still be given that the algorithm is capable of �nding such holes. For this, a

changed parameter set is used to improve the exploration of the algorithm.

Especially the sub-swarm size is set to the total population as this facilitates

more data exchange between all particles, which helps the algorithm �nd holes.

The changed parameters are detailed in table 4.5.

Fig. 4.12, shows two examples images with the corresponding output of the

PSCS algorithm for these images.

Category Parameter Values

General

Population Size 20

Sub-swarm Size 20

Contour search/trace phase

ε 25

Step-size s 10

Table 4.5: Parameters for exploring the interior of shapes

Another example for shapes of this type would be multiple unconnected shapes.

Given enough sub-swarms, the PSCS method can potentially �nd a number

of shapes equal to the number of sub-swarms depending on the global search

pattern. Again, the parameters were tweaked to suit this speci�c contour type

(table 4.6) and the results are displayed in �g. 4.13
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4 Evaluation

Figure 4.12: Test images and visualized algorithm outputs for shapes including

holes

Category Parameter Values

General

Population Size 5

Sub-swarm Size 1

Contour search/trace phase

ε 25

Step-size s 10

Table 4.6: Parameters for exploring disconnected shapes

4.10 Discussion

The experimental results are promising. The algorithm succeeded in �nding

the contours of a variety of shapes. With the implemented error models, the

ability of the algorithm to perform in a realistic scenario has been con�rmed.

Furthermore, the algorithm has even shown capability to match or outperform

image-recognition based methods in a error-free environment. However,

once an error model is introduced, the algorithm cannot perform as well as

the OpenCV method, which is not hindered by the constraints of a robotic

application, but would be hindered by other constraints related to imaging
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4.10 Discussion

Figure 4.13: Test image and visualized algorithm output for a disconnected

shape

sensors which were not considered for the experiments.

Most importantly, the initial experiments found a parameter set for which the

algorithm performs reliably, proving the basic viability of the approach. While

errors encountered in robotic applications hinder the algorithm, a contour can

be found reliably with acceptable accuracy.

The main in�uence on solution quality was found to be the step-size, with pop-

ulation size and the epsilon value only having lesser in�uence. The main reason

the optimum, i.e. minimal step-size can not be applied in every scenario is

the fact that particles get stuck given high enough position and velocity errors.

In the case of non-continuous shapes, an analysis of the algorithm could not

be performed in the same way, as it is not possible to create a concave hull

from the resulting point clouds. However, it was shown that the algorithm is

capable of �nding holes in the traced contour as well as trace multiple distinct

contours.
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5 Conclusion

In this thesis a new algorithm was designed to apply the PSO approach to the

problem of 2D-contour search. The algorithm was implemented and tested

for various test cases. The �rst goal of the thesis was to create the algorithm

and show that it works in a theoretically perfect, i.e. error-free environment,

which was con�rmed by the experiments.

The second goal and a large part of the motivation for this thesis was to

establish if the algorithm could be applied under real-world robotic constraints

such as velocity errors and sensor noise. The experiments conducted provide

conclusive evidence that this was achieved, with a parameter set having been

established under which the algorithm performs reliably in such environments.

The last goal was to compare the performance of the PSCS algorithm to a

contour search algorithm based on image recognition. For this comparison

the OpenCV contour search algorithm was chosen. Without an error model,

PSCS was shown to outperform the OpenCV algorithm, albeit in a limited

number of test cases. However, with the introduction of the error model, the

OpenCV algorithm outperformed the PSCS method by an order of magnitude.

The main limiting factor for the performance of the algorithm was found to be

the step size: The smaller the step size, the better the algorithm approximates

the traced contour. However, for larger error values a small step-size causes

the particles to get stuck. Preventing this behaviour could yield signi�cant

improvements to the algorithms performance.

While not a perfect replacement for image based contour search yet, the work

done in this thesis shows a promising potential alternative for cases which

render imaging technologies infeasible.
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