
University of Magdeburg

School of Computer Science

Master’s Thesis

Orchestration of Heterogenous
Agents With Bonding Functions

Author:

Florian Uhde

2016

Advisors:

Prof. Sanaz Mostaghim

Department of Intelligent Systems (IKS)

Uhde, Florian:
Orchestration of Heterogenous Agents With Bonding Functions
Master’s Thesis, University of Magdeburg, 2016.

Abstract

To produce efficient swarms in multi-agent-task based scenarios, team composition and
task allocation play a critical role. This work conceptualizes and evaluates local decen-
tralized mechanics to orchestrate a heterogeneous swarm due to a bonding mechanic in
a dynamic environment. The parametric scope of this methods is analyzed and differ-
ent settings are compared. The resulting systems are able to increase the efficiency in
changing environments with dynamic targets, as well as as stabilize swarm performance
in case of agent failure.
These mechanics are evaluated for their appliance in real world scenarios and as artificial
intelligence in computer games.

Contents

List of Figures and Tables viii

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Structure of the Thesis . 2

2 Background 3
2.1 Theory . 3

2.1.1 Swarm Function . 3
2.1.2 Division of labor . 4

2.2 Related Work . 5

3 Orchestrating a swarm 7
3.1 Terms and definitions . 7
3.2 Concept . 9
3.3 Overview . 11
3.4 Task acceptance . 13
3.5 Bonding . 14

4 Evaluation 17
4.1 Experiment . 17

4.1.1 Test framework . 17
4.1.2 Metrics . 19
4.1.3 Swarms . 25
4.1.4 Scenarios . 26
4.1.5 Parameters . 26
4.1.6 Further experiments . 35

4.2 Results . 40
4.2.1 Influence of bonding parameters 41
4.2.2 Influence of topology . 44

5 Conclusion 47
5.1 Conclusion . 47
5.2 Open Problems . 49

vi Contents

5.3 Future Work . 50

A Appendix 53
A.1 Scenarios . 53

Bibliography 63

List of Figures and Tables

2.1 Illustration of the three different components [Eng07] 4

3.1 Simplified definition of a SAgent . 11

3.2 SAgent: Unity method loop . 12

3.3 SAgent: Task acceptance module . 12

3.4 SAgent: Bonding module . 13

4.1 Example configuration of simulation master 18

4.2 Scene view, scene tree and inspector of SAgent during a run 19

4.3 SimulationMaster parameters . 20

4.4 Sample run H:16, SA:10 . 21

4.5 Effectivity of kill count with different timings 23

4.6 Sample topology . 24

4.7 Decision threshold results . 27

4.8 Config AB1 and AB2 . 29

4.9 Efficiency of different Agent Per Bond values with random bonding . . . 29

4.10 Efficiency of different Agent Per Bond values with skill based bonding . . 30

4.11 Direct comparison of the median values of AB1 and AB2 31

4.12 Config: Reinforced Bonding . 32

4.13 Evaluation reinforced bonding 1.bc: Bond count, br: Bonding reinforce
value . 33

4.14 Evaluation reinforced bonding 1. bc: Bond count, br: Bonding reinforce
value . 34

4.15 Sample run of the FourSeasons scenario. 35

viii List of Figures and Tables

4.16 Sample run of the Forest scenario. 36

4.17 Sample run of the Legion scenario. 37

4.18 Evaluation of reinforced bonding with a high failure rate (51 %) 38

4.19 Maze scenario: Snapshots at three different timings. 39

4.20 Comparison of complex scenario 1,2 and 3 40

4.21 Comparison of bonding mechanics using Three Competent Swarm 42

A.1 Legend for scenario maps . 53

A.2 Scenario: Legend . 53

A.3 Simple Scenarios . 54

A.4 Complex Scenarios . 55

A.5 Chances of healthy bonds with byzantine swarms, depending of agents
per bond and byzantine agent count . 56

A.6 Evaluation of bond trust when reinforcing 57

A.7 Evaluation of bond trust when demoting 58

A.8 Analysis of correlation between efficiency and different topology parameters 59

A.9 Analysis of correlation between agent per bond parameter and efficiency,
for different ranges of parameters . 60

A.10 Normalized correlation between bond size and efficiency 61

1. Introduction

1.1 Introduction

Modern computer science tries to find algorithms to solve complex problems. One way
to design an algorithm for such a task is basing it on natural or biological intelligence; So
called ’intelligent systems’ include swarm- and ant-simulation, evolutionary algorithms
and many more [Eng07]. These systems ”Shaped by natural evolution [they] can withstand
most diverse selective pressures, and the huge plasticity, exceptional flexibility, and high
adaptability have resulted in an extraordinary global success” [Mor15].

Swarm simulation tasks itself with the exploration and discovery of mechanics of natu-
rally developed swarm systems. These systems, like ant colonies or bird flocks exhibit a
kind of intelligence, by showing exceptional patterns, while being constructed by simple
rules. Bonabea summarizes swarm intelligence as ”collective behavior that emerges from
a group of social insects” [BT00] .
One of the common challenges of swarm simulation is the coordination of a large group
of simple agents. By cooperating, these simple agents can form emergent behaviors and
work towards higher level goals, for example optimizing multi-lateral functions or finding
and tracking objects.
This work conceptualizes ways to inter-mesh a swarm of agents, which are all hetero-
geneous in terms of capabilities. By introducing task acceptance mechanics for single
agents, as well as a way of communication between agents the swarm is empowered to
fulfill a predefined goal. In this case the agents are tasked with locating, tracking and
chasing a number of objects, which are moving in a dynamic pre-defined environment.
The agents need to gather and interpret sensual inputs, emitted by the environment and
the moving objects, to form an internal representation of the current situation. Agents
which excel at this kind of game are expected to do well in other scenarios with changing
environments, where prioritization and multi-agent organization are required.

2 1. Introduction

1.2 Motivation

The behavior and performance of agents in this scenario maps to two different real world
applications. First, by looking at robustness of a swarm with only a few competent agents
it helps to decide for a minimal sensor set1 needed to control a swarm (like drones
with visual sensors for guidance). Efficient procedures can help to reduce the total sensor
count in a swarm, making space for other equipment or increasing battery life due to
the lighter drones and reduced strain from sensors. This in turn can allow for extended
range and the creation of multi-purpose swarms, distributing all required sensors between
subsets of the swarm and giving it means to communicate findings efficiently and act
accordingly.
The second scenario evaluates the ability of the agents to navigate and orientate in
a dynamic environment. This is interesting for real world situations where you need
to find or track objects in a non static or unknown environment. An example could
be human rescue after catastrophes, where a swarm of drones, tasked with search and
rescue, needs to be highly adaptable to different environmental influences. This case
maps well onto the task the agents have to fulfill in this thesis, allowing findings to be
adopted easily.
Beside these real world examples findings from this thesis can also be used in computer
games. By giving the swarm the ability to adapt to different scenarios, while still
maintaining swarm integrity and following a high level goal, games can adopt to
different user driven play styles and form emergence in story telling. Instead
of scripted events and patterns the game can utilize dynamic functions to react to player
input and, for example, counteract the player’s strategy.

With regards to these given scenarios this work intends to check different approaches and
shed some light on two questions: first, can simple task processing and communication
mechanics provide emergent and adaptive swarm behavior to locate and track down
objects; and second, if so can these mechanics be tweaked to provide an effective solution
for real world problems.

1.3 Structure of the Thesis

This thesis gives a short introduction into swarm simulation and commonly used formulas
(Section 2.1.1) and division of labor (Section 2.1.2) in the following chapter. Section 2.2
provides a context of other scientific works which cope with a similar theme and positions
this work in a broader scientific context. In Chapter 3 the main concepts used in this
work are presented and explained. After explaining some commonly used terms it focuses
on the core modules developed in this work the task acceptance and the bonding module.
Section 4.1 evaluates the concepts and tests them. In the last chapter a conclusion is
drawn, incorporating possible future work and open problems. It gives an outlook about
what can be done with the findings and where they can be applied.

1A minimal sensor set being the smallest possible equipment of sensors across the swarm to still
fulfill its purpose (see [BPH10])

2. Background

2.1 Theory

This chapter describes some fundamental concepts behind this thesis. In Section 2.1.1
and Section 2.1.2 two core components of swarm simulation, the swarm function and
the idea of division of labor are explained and put into the concept of this thesis. The
related work chapters will highlight similar approaches and place this work into a broader
scientific context.

2.1.1 Swarm Function

The swarm function is a mathematical representation of the inner working of a single
instance. It calculates the movement direction of the agents. As stated in [CWM04],
a swarm function usually consists of a repulsion and an attraction factor. The agent
is drawn towards good solution candidates, but also tries to maintain its distance to
other agents. Engelbrecht names three components for a swarm function: the inertia
velocity, carrying over the value from the last calculation step, like a momentum. The
cognitive component, like a memory, pulling the particle to its own memorized best
location. And finally the social component, denoting the desired velocity of other
agents in proximity [Eng07]. Each of this components produces a velocity, combined
they result in the actual velocity for the agent at this time step. See Figure 2.1 for an
exemple of these components and their influence on the agents behavior.
These components can be weighted to create different patterns. For example by masking
out the cognitive part you can achieve a social-only model. Here agents will only move
towards the best results in their neighborhood, regardless of previous personal best
[Eng07]. The social model works well in a changing environment, (see [CD00]), which is
given in this work, as the targets and thus the solution candidates tend to move around
and are removed completely once fulfilled.

4 2. Background

Figure 2.1: Illustration of the three different components [Eng07]

2.1.2 Division of labor

Division of labor is one of the core concepts found when observing swarm intelligence in
social groups. In order for this groups to thrive different activities need to be done by
parts of the population. The process of distributing these tasks and allocating individuals
to do them is called task allocation [KB00]. Insects have been in the focus of this research
of task and role assignment1, because of their simple, yet robust mechanics used for
this. Within wasp populations of the Ropalidia marginata tasks are assigned based
on a relative age withing the swarm, therefore distributed evenly, with the possibility
to react to population changes automatically [NG99]. [Rob92] has summarized work
on the plasticity within this process, pointing out the importance of flexibility in task
allocation. Using the activation-threshold model where ”individuals react to stimuli that
are intrinsically bound to the task to be accomplished” [KB00] leads to a dynamic process
of task adaption. Different thresholds withing a swarms population lead to a gradual
’recruitment’. This leads to a total fitness gain, when task are distributed and activated
based on the agents’ age.
This work adopts parts of the activation-threshold mechanics, and permutes others. The
gradient thresholds are provided by different skills of the receiving agents. Depending
on the type of stimuli presented agents will receive a strong urge to fulfill this task,
while others have only little desire to partake of this activity. A simple implementation

allows to calculate the probability to take a task with Pθkj(sj) =
sωj

sωj +θ
ω
kj

. θkj is called

the response threshold, noting how likely an individual k will respond to a stimulus sj,

1Task specifying: ”What needs to be done”, contrary to activity : ”what is being done” and role: ”who
of this groups needs to do it” [KB00]

2.2. Related Work 5

based on task j. ω sets the steepness of the threshold curve [Eng07]. This mechanic falls
short if it comes to temporal polytheism and stability in selection over time [Eng07].
This can be addressed by allowing threshold values to vary over time (see [Eng07])

2.2 Related Work

The field of swarm based optimization is a widely researched field, often containing ant
simulation and division of labor in [Rob92]. Depending on the underlying goal single
agents may take up a single task [GM04] or a group of multiple agents may be required
to fulfill a single duty [Mor15][SK98]. This work uses multi-agent tasks to allow agents
to play a game of hide and seek and catch. This game has complex requirements regard-
ing the understanding of the environment and communication [TSP+06]. With moving
targets and variable effects in the scenarios this game features dynamic environments,
an additional challenge which was already discussed in [CD00]. Adding in non-reciprocal
swarms as observed in [CWM04] complex emergent behavior is possible using only sim-
ple bonding mechanics. This mechanics consist of team formation [Mor15][MDJ07], task
allocation [SK98][KB00][MDJ07] and the movement itself. This work investigates on
mechanics to intrinsically solve multi-agent tasks without the agents being aware of the
constraining factors.
When looking at task allocation the spectrum ranges from one single agent coordi-
nating the swarm, to a fully-distributed systems, with only local information at hand
[DZKS06][LMAM04]. On the one hand global agents can produce optimal task assign-
ments in theory, in real use cases it only works well for small teams within static environ-
ments, where planning ahead is possible [DZKS06]. On the other hand Fully-distributed
systems allow for fast results, based on local knowledge, are robust to failures of sin-
gle agents, but may produce globally suboptimal results [DZKS06]. [KB00] proposes a
simple yet solid algorithm, the activation-threshold mechanism, which this work’s task
allocation is based upon. This algorithm is expanded in [AME04] to allow for a single
threshold over the whole population, by only evaluating local demand.
The core requirement of multi-agent task systems is the team formation [GD08][MJT13],
represented by the bonding behavior in this work. The overall structure within the teams
”dictates the interactions among the agents, and can play a significant role in the overall
performance of the agent society” [Gd05]. Traditional approaches use skill values of the
agents to maximize the expected values of teams [Gut08], while more recent approaches
focus also on the overall synergy between the agents [LV12]. This allows to monitor
diversity and adjacency of skills when planning a model for team formation. Diversity
within the teams plays an important role [MJT13], especially in dynamic environments,
like the one featured in this work. A diverse composition can allow for much better
results than just multitudes of a single well performing agent [MJT13]. In [LMAM04] a
way of measuring and adapting diversity, respectively specialization is given.
Another approach is to use a market-like bidding system to allow the agents to form
ad-hoc teams when dealing with different task [DZKS06]. This systems can deal well
with failure and allow a dynamic allocation based on parameters [SABS05]. Ad-hoc

6 2. Background

regrouping has been considered in [Mor15], where groups of agents negotiate exchanges
via moderators.

After team formation a system needs to be in place to allow the agents to communicate
with each other. [GD08] analyzes different communication structures for a network
of agents. Team formation and flow of information is controlled by setting states of
availability for each agent. Graphs can be used to model the underlying structures and
to analyze their effect (see [Gd05] for graphs within dynamic team formation). These
graph can be observed further to measure the formation of beneficial structures like
hubs and portals, which enables information to traverse graph faster [New03].
This work uses a locally distributed system as a base to incorporate communication
mechanics to create a flow of information between the agents. Contrary to [DZKS06]
the task allocation system is rather simple, based on a permuted activation-threshold
mechanism [KB00].

3. Orchestrating a swarm

In this chapter the core concept of the work is conceptualized. Behaviors, which determine
the inner workings of an agent, are defined and explained.

3.1 Terms and definitions
This sections will cover most of the frequently terms used terms in this work, as well as
semantic meaning and limitations of these.

3.1.1 Agent

All individuals in this simulation are called agents. One can distinguish between hiding
agents and seeking agents. The hiding agents use a simple behavior. They can move
along pre-defined paths or can be controlled by the user via mouse input. Hiding agents
are located by the seekers through their emitted signals. A hiding agent is visible, it
emits a sound when moving and leaves a trail of odor.

Seeking agents are controlled by the modular artificial intelligence conceptualized in
this work. They are all arranged in a swarm, with different bonds representing smaller
subgroups. Seeking agents receive signals emitted by hiding agents and decide how
to pursue them based on this information. They communicate inside their bonds and
implement different methods to evaluate and accept tasks.

3.1.2 Swarm

A swarm entitles a conglomerate of agents. In this work only the seeking agents are
considered as a swarm, as the hiding agents all move autonomously without any way
of communicating or cooperating. Besides the logical grouping of agents a swarm will
also describe the syntactic structure in regard of distribution of abilities. For example
the single-competent swarm is made of senseless agents, except one agent capable of
receiving inputs. Section 4.1.3 goes over the different swarm configuration used in this
work and their attributes in more detail.

8 3. Orchestrating a swarm

3.1.3 Senses

Senses provide an ability set to each agent. This work deals with three different senses
derived from human sensual inputs. Each agent has an individual sense profile describing
how prone it is to receive (seeking agent) or emit (hiding agent) information of the
particular sense (see Section 3.1.4). The profile denotes a basic capability for each sense,
as well as a way to modify these for short term adjustments. Senses are considered static
besides this, without any training or learning effect.

3.1.4 Signal

Signals are the medium to provide information from the outside world. Common
sources of signals are the hiding agents or different scenario elements. Each signal
anchors in a specific location, has a strength and a type. The type is based on the three
available senses, seeing, hearing and smelling. Signals also have a certain range, a finite
lifetime and a decay type. These influence the strength of the signal, depending on when
and where agents read it. A linear decay type for instance will decrease the strength
of a signal slowly, while instant decay will lead to a full strength signal, disappearing
immediately after its lifetime is reached.

3.1.5 Scenario

A scenario is a predefined map, including a certain topology and scenario elements. Each
scenario is constructed in a way to increase or suppress effects exhibited by the agents.
The diverse topologies also favor some senses over others, forcing the swarms to adopt
to different situations. This effect also stems from scenario elements producing noise or
canceling different kinds of signals. The idea is to artificially simulate distinct situations
like the aftermath of catastrophic events or certain topology to evaluate the swarm
orchestration under these restrictions. Section 4.1.4 will present the used scenarios, their
characteristics and the aspects focused by them.

3.1.6 Task

After [GM04] a task can be seen as an agent-internal representation of a sub goal,
required to reach the overall goal. Each task is the direct result of a received signal. A
task receives a priority by multiplying the signals received strength with the agent’s skill
to interpret this signal. For example an agent with 0.5 seeing strength can only generate
tasks from optical signals in the priority range 0-0.5. A deaf agent will never be able
to generate tasks based on sounds. Besides the priority task also have a target position
and carry information about their creator. The bonding module used this information
to evaluate trust between seekers.

3.1.7 Bond

A bond denotes a connection between seeking agents. Within a bond information can be
shared freely, as in a radio network. Bonds always are uni-directional and contain one

3.2. Concept 9

receiving agent and many sending agents. This setup simulates the formation of groups,
with possibilities of overlaps and separation. One agent can receive information from
a defined group of sources and pass this information to other agents. Especially with
swarms without equally distributed skills this may benefit the formation of groups, as
closed, bi-directional bonds will either lead to one single big cluster of agents or bonds
without any capable agent. The characteristics and arising features of this mechanics
are discussed in Section 3.5.

3.2 Concept

To fit the scenarios described in Section 1.2 the simulation had to fulfill certain criteria:

• It should allow for dynamic and changing environments.

• It should enable focusing and stressing of single components in the agent AI.

• It should be simple and comparable.

In the end a concept like hide and seek was chosen, with adjustments to fit the above
criteria. This game focuses understanding and control over certain non-trivial concepts.
Hide and seek requires awareness of the state of the game. Usually the game is played
in a large environment, where not all features and information are available to the
seekers at every moment of the game [TSP+06]. This is interesting in matters of the
cases brought up in the motivation; computer games as well as catastrophic scenarios
feature a large dynamic environment. Agents/Drones need the ability to work inside of
physical limitation like weight or memory and still be able to fulfill their goal. In this
variation of hide and seek two kinds of agents exist: seeking agents controlled by AI and
hiding agents controlled by players or following simple routes. To focus on the bonding
mechanics the agents need to locate targets based on their senses and then track them
down. To catch and remove a hiding agent from the game, seekers need to accumulate
in a certain number around the target.
One important consideration is the diversity between the seeking agent. While swarm
simulation often deals with similar and homogenous swarms [LMAM04] we face a very
distinct mixture of agents. While this makes some ’classical’ concepts harder to apply
and to balance, it can result in great emergence and complex behavior [CWM04].

Agents are given a certain sense profile, describing their capability in the three imple-
mented senses; seeing, hearing and smelling. Each sense is able to receive differently
structured impulses:

• Seeing allows to establish an ad-hoc connection, which remains active as long as
the target is in the field of view.

• Hearing is able to catch wide-range, short lived impulses emitted by players when
moving around.

10 3. Orchestrating a swarm

• Smelling locates long lived, locally restricted impulses, left by players to linger a
long time.

This simulation uses four different configurations of swarms, each characterized by a
certain combination of agents (see Section 4.1.3. All simulations take place in different,
predefined scenarios. Each scenario presents a different challenge profile, some restrict
certain senses, others challenge the task acceptance by providing a lot of noise and false
information, see Section 4.1.4 for a detailed description of the scenarios used.

The main concept, based on the motivation is a scenario, with medium background
noise and more hiding than seeking agents. This emblematizes a possible situation after
a catastrophic event. A few assumptions were made:
Agents only know indications of targets: This means an agent will not be able to
track a target for its own sake. Agents need to rely on the information generated by the
target and emitted into the environment to track it.
Agents are able to communicate within each other: The concept assumes that
some way of communication can be established between agents. They may use short
range communication as well as long range communication within their bonds. This
situation may not always be given, especially in real world scenarios. Section 5.3 will
shed some more light about implications and ways to implement this.
Agents have a static feature set: This work does not implement any learning me-
chanic, agents acquire their skills at the start of a run and keep them over the course of
it. See Section 5.3 for an outlook about learning and adopting agents.
Agents only have local knowledge: Contrary to [KNZ10] agents do not have access
to a global storage of information. They can only rely on their own inputs (cognitive
component) and information shared through bond (social component).

As stated in Section 1.2 this works aims for simple mechanics to provoke emergent
behavior and the usability in real world scenarios. Looking at the definition of a swarm
function according to [CWM04] there is a repulsion and an attraction part. The repulsion
is generated by using Unity 3D’s1 own navigation systems. Agents are configured in a
way they avoid each other to a certain extend. While this cannot be put on the same
level as repulsion mentioned in [Eng07] it allows to spread the agents while moving
through the environment. A much larger repulsion, forcing the agents to cover a larger
area, can’t be implemented in this simulation, as agents need to converge to the target
to mark it as done. Estimating the optimal moment to converge to catch a target would
require the agent to have full understanding of different simulation parameters, which
was excluded in the assumptions.
The attraction is generated from bonding. Agents with the same target will converge
towards each other and align in their movement, if the environment allows for this.
This leads to one of the core challenge the agents have to face: Prioritization. The
agents should try to catch as many targets as possible. These hiding agents have a
certain spread over the scenario and a distinct position, both unknown to the seeker.

1Unity 3D is the game engine used for the implementation of this concept. See Section 4.1.1 for
more details.

3.3. Overview 11

The mechanics implemented need to account for the fact that agents can only rely on
spacial mapped information. Each input carries a position but no target, so agents can
not be sure that they are chasing different targets, or are focusing the same hider. This
leads to the need in swarm topologies to allow the accumulation of enough agents to
finalize a target, while still maintaining a broad spread over the scenario to locate other
targets and pull the different groups towards them.

3.3 Overview

A single run in the simulation starts by placing seeking and hiding agents into the
scenario. All agents are aware of the topology of the scene in the sense that they can
decide on an optimal route between two given points. The hiding agents can be controlled
by user input, sending them to clicked positions in the scene. Without user control the
agents will walk around a way-point path, looping over it until killed. Also as soon as
the simulation starts the hiding agents will start emitting different signals, which are
received by the seeking agents.

The internal working of a seeking agent consists of three major steps. First it will gather
and receive all signals from the scene. This is done by logging every intersection with an
olfactory or auditive signal and casting a visibility check for the hiding agents. This yields
a set of signals, all different types with different strengths. The agent now transforms
this set into a set of tasks. Each tasks has a priority based on its signal strength and the
agents capability of interpreting this signal type. This list of tasks is passed into the task
acceptance module which picks the best task in the current situation. At the beginning
of the simulation agents are grouped in subsets, so called bonds. After choosing their
personal best task agents communicate this task to their bond. Like a shared discussion
each agent proposes its best option. The bonded group then decides on the total best
task and pursues the target as a group.

Figure 3.1 Simplified definition of a SAgent

1: SAgent {
2: CurrentTask : Task . Task currently pursued by the agent
3: myImpulses : Impulse[] . Array of all received impulses
4: myTasks : Task[] . Array of all generated tasks
5: myBonds : Bond[] . Array of all receiving bonds
6: holdingBonds : Bond[] . Array of all sending bonds
7: navigation . Unity 3D navigation component
8: base . Base class, handling movement
9: }

For the purpose of simulation different settings can be activated in the simulation master.
The game can be set into headless mode, running simulations with minimal graphical
output to reduce GPU overhead and increase the frame rate. In certain simulations
the ’kill by targeting’ mode was enabled. In this mode agents to not physically need to

12 3. Orchestrating a swarm

Figure 3.2 SAgent: Unity method loop

1: procedure Update()
2: Evaluate bonds:
3: if myBonds 6= null then
4: myBonds.OrderByDescending(Priority ∗ Trust)
5: BondTask ← first valid task from myBonds
6: if CurrentTask.Priority < BondTask.Priority ∗BondTask.Trust then
7: CurrentTask ← BondTask
8: Assign current task :
9: if CurrentTask 6= null then

10: navigation.Target← CurrentTask.Location

11: Gather and process impulses :
12: myTasks.Clear()
13: for all Impulse imp in myImpulses do
14: myTasks.Add(new Task(imp))

15: myImpulses.Clear()
16: base.Update()

17: procedure LateUpdate()
18: Gather and accept tasks :
19: if GatherTaskFromNearby then
20: gatheredTasks← Tasks from agents in proximity
21: myTasks.AddRange(gatheredTasks)

22: TaskAcceptanceModule(myTasks)
23: Bonding :
24: BondingModule()

Figure 3.3 SAgent: Task acceptance module

1:

2: procedure TaskAcceptanceModule(tasks)
3: best← tasks.BestTask()
4: if TaskAcceptance mode == SIMPLE then
5: if CurrentTask.Priority < best.Priority then
6: CurrentTask ← best
7: else if TaskAcceptance mode == SINGLE then
8: if best.Priority ≥ FirstThreshold then
9: if CurrentTask.Priority < best.Priority then

10: CurrentTask ← best
11: else if TaskAcceptance mode == DOUBLE then
12: if best.Priority ≥ FirstThreshold then
13: if best.Priority ≥ SecondThreshold then
14: if CurrentTask.Priority < best.Priority then
15: CurrentTask ← best

3.4. Task acceptance 13

Figure 3.4 SAgent: Bonding module

1: procedure InitBondingModule()
2: myBonds← newList < Bond > ()
3: if Bonding mode == RANDOM then
4: b : Bond← newBond()
5: b.Add(RandomAgents(AgentPerBond))
6: myBonds.Add(b)
7: else if Bonding mode == SKILL then
8: b : Bond← newBond()
9: b.Add(RandomBetterAgents(AgentPerBond))

10: myBonds.Add(b)
11: else if Bonding mode == REINFORCED then
12: for i:int = 0; i<NumberOfBonds do
13: b : Bond← newBond()
14: b.Add(RandomAgents(AgentPerBond))
15: myBonds.Add(b)

16: procedure BondingModule()
17: for all b:Bonds agent is part of do
18: b.Add(CurrentTask)

reach a hiding agent. Instead it can be marked as removed by targeting it. As soon as
the number of targeting agents surmounts the required number to kill, the hiding agent
is removed and all agents targeting it will be put into sleep mode for a certain time.
Sleep mode simulates the effect of moving towards the agent and punishes clumping of
agents. The time an agent is put to sleep is based on the distance between agent and
target: sleeptime(agent, target) = distance(agent,target)

maximumDistance
∗ 10, maximumDistance being the

maximum possible range between agent and target, thus mapping the fraction within 0
and 1. 10 is the time in seconds it would take an agent to walk the maximum distance.
This mode is especially useful when exploring parameters in a simple environment, where
the focus is more on the interaction and internal mechanics of agents, and less on their
interaction with the environment.

3.4 Task acceptance

The task acceptance module deals with the question which objective to follow. In this
experiment each agent can only have one task at a time and will pursue the location
emitting the base signal. A task acceptance module selects the most promising task
from the set of tasks generated by signal inputs. This work evaluates three different
kind of task acceptance. By changing the task acceptance module the simulation is
influencing the process of labor division as described in Section 2.1.2. In [KB00] an
activation-threshold mechanism is used, which distributes task through agent classes
based on an extrinsic impulse. [DZKS06] points out the importance of decentralized
task allocation when dealing with dynamic environments, like in this simulation.

14 3. Orchestrating a swarm

The greedy and simple approach just picks the task with the highest priority, regardless
of the currently selected objective and absolute strength of the picked one. This will
lead to quick decision making, but may result in a lot of backtracking, where agents are
moving back and forth between targets, or even a lock situation.

A more sophisticated approach using a threshold allows to set a minimum priority for
a task to be considered. This is expected to perform well in scenarios with a certain
background noise, by keeping the agent from switching tasks because of noise too often.
This approach has the downside that an agent may ignore potential good tasks if the
threshold is set too high, or will be influenced heavily by noise because of a low threshold.
Section 4.1.5.2 will consider this challenges and discuss different setting for the threshold.

The third module implementation extends on the threshold idea by adding a second,
upper threshold. An agent will consider the first threshold while not having any task,
but to overwrite an already accepted task the new one must surpass the higher threshold.
This forces the agent to stick to the already started task unless a much better alternative
presents itself. By holding on to tasks loss of progress is prevented. Double threshold
is expected to work very well in surroundings where a lot of short lived impulses tend
to occur, like the Forest as described in Section 4.1.4. This emulates the idea behind
the concept int Section 2.1.2. Instead of a probability function two different states are
simulated per agent. A low initial threshold will circumvent the problem of missed weak
tasks. A higher secondary threshold will allow the agents to stick to their tasks and
ignore other tasks until they are done, as long as these task are not significantly higher
prioritized.

3.5 Bonding

The bonding module manages communication and cooperation between agents. It simu-
lates collective decision making behavior by creating communication channels between
agents[Ken99]. Agents will share information and current targets with their bonded
counterpart. At start the bonding modules are initialized and form subgroups accord-
ing to their configuration. This work examines three different bonding strategies with
increasing complexity.
Each agent A receives input from a bond α, which in turn receives its information
from other agents Bi. A itself can be part of other bonds βii with agents Oiii, with
i, ii, iii ∈ {0, AgentCount− 1} and potentially i 6= ii 6= iii.
To simulate overlapping groups bond connections are not bi-directional. This implies
that {Bi} 6= {Oiii}, which means that A may give its own information to other agents
than it is receiving information from. This simulates the flow of information between
different groups. A may propagate a high prioritized task it received in the current frame
from his bond α into all bonds βii.

The simplest approach of this implementation just meshes agents together randomly
at start up. The Agent Per Bond parameter allows the customization of the degree of
separation within the swarm. This systems create one bond for each agent, with varying

3.5. Bonding 15

number of members. A high Agent Per Bond parameter will lead to a well connected
swarm, which behaves in a uniform way. A low value will create a highly separated
network and produce groups too small to actually kill hiding agents.
The second approach works like the above one. It will also create one bond per agent,
based on the bonding division parameter. This time the partnering agents won’t be
picked completely at random. Instead, every agent will try to only bond with agents which
are better in at least one skill that the agent itself. This will raise the average quality of
the information provided through the bond by assembling better teams [Mor15]. This
is expected to work especially well in swarms with only a few competent agents, as it
guarantees a connection to at least one good agent. Emergence of leaders is reinforced by
this approach. They are more likely to appear in many bonds as information providers,
and thus influence more agents in total.
The last approach can be seen as an variation of the other two. While maintaining
each of the two bond creation patterns it establishes more than one bond per agent.
Each single bond is assigned a trust value, indicating the likelihood to provide good
information. During the simulation the agent will reevaluate the quality of each bond
by comparing suggested objectives with actual events. If the agent participates in a kill
it will increase the trust of all bonds which suggested to go after the just killed target.
The trust value of other bonds will decrease slightly.

16 3. Orchestrating a swarm

4. Evaluation

4.1 Experiment

The following chapter illustrates how the concept was implemented and what kind of
experiments were done with the implementation. To test the variety of settings and
functions of bonding mechanics a simulation framework was created as described in
Section 4.1.1. Within this framework different metrics were defined and evaluated.

4.1.1 Test framework

To run this tests a framework was constructed in the Unity 3D1 game engine. This engine
provides tooling to calculate and visualize the swarm simulation in an efficient way, while
also providing a framework to calibrate different aspects of the tests easily. Using Unity’s
internal component system (see [Uni16] for an in depth explanation of GameObjects and
Components) different behaviors were developed to execute the concepts developed in
Chapter 3. Beside being a popular game engine, Unity 3D is also suited for simulation
and serious games2. [Pen15] points out some benefits of Unity and compares the engine
to its direct competitors. Unity itself implements different patterns commonly used for
developing large complex systems. Each object in Unity is describable by the sum of
its component. Different implementations can be found via the service locator pattern3,
implemented by the GetComponent() function.
This system allows for dependency injection4, by switching out different implementations

1https://unity3d.com/ Unity Technologies, accessed 27.05.2016
2https://unity3d.com/unity/industries/sim, accessed 20.07.2016
3A pattern to hide implementation details and locate the right components with a universal locator

class. See: https://msdn.microsoft.com/en-us/library/ff648968.aspx Microsoft Cooperation, accessed
20.07.2016

4A pattern allowing the replacement of loosely coupled class mechanics, without recompiling the code
base. See: https://msdn.microsoft.com/en-us/library/hh323705(v=vs.100).aspx Microsoft Cooperation,
accessed 20.07.2016

18 4. Evaluation

Figure 4.1: Example configuration of simulation master

of core components. This simplifies the process of creating different characteristics per
mechanic and testing them. The agents were implemented derived from a base class
and agnostic to their specific behavior (e.g. what kind of bonding is actually used). In
combination with Unity 3D’s component system this allowed for easy switching of the
test population and batching of test runs. Due to C#5 being Unity 3D’s programming
language it was very easy to connect custom analysis tools and link them to the pipeline.

Another useful feature of Unity 3D is the extensibility of the editor itself. Custom
dialogs and controls were engineered to allow running the simulation directly from the
Unity 3D tools, therefore conserving all setting options provided by them. Trough the
SimulationMaster class a central point of control was established, providing all means to
configure and save a simulation run. A rundown of the available parameters can be seen
in Figure 4.3. Figure 4.1 show an example configuration for a simulation. The simulation

5https://msdn.microsoft.com/en-us/library/kx37x362.aspx, accessed 24.07.2016

4.1. Experiment 19

master stays persistent over all runs, which are organized by the scene system in Unity
3D6 and loaded in additively. When starting the game inside the editor the simulation
master instantiates all background workers, like logging and instance factories. After
configuring and starting the simulation the game finishes run after run, writing log data
into comma separated value files.
During a simulation run the editor can be used to inspect all elements of the simulation
and adjust parameters on the go if needed. In Figure 4.2 a snapshot from a running
simulation is shown. From left to right the scene view shows the current situation in the
level, the scene tree denotes all active game objects and allows to select them to load
their inspector, visible on the very right. The inspector reflects all the current values
which define the selected game object. The values are grouped by their modules and
may be changed during run time, to evaluate different configurations.

Figure 4.2: Scene view, scene tree and inspector of SAgent during a run

4.1.2 Metrics

Distances

During the runs a multitude of data is collected and exported for further processing. For
this work some key points have been chosen as main points of interest to evaluate quality
and performance of features. While the agents are not imagined to know their distance
to the individual targets the total distance is a good measurement to evaluate swarm
performance. This can be seen as an analogy of the often used Pareto front. While
a Pareto front contains optimal solutions to a Multi-objective Optimization problem
the location of hiding agents are one partial solution to the problem assigned in this
work [MT04]. The task of the swarm is to reduce the number of hiding agents to
zero. Following this through we can reason a function based on total swarm distance
td(S,H) =

∑
S
s=0

∑H
h=0 distance(s, h) with S being all the seeking agents and H being

all the hiding agents. Minimizing this function can be interpreted as the seekers closing
in on the hiders and therefore also working towards the higher goal. This correlates
with commonly used pattern in evaluating swarms by their closeness to known Pareto
solutions [LE08][dSC09].

6https://docs.unity3d.com/Manual/MultiSceneEditing.html, accessed 27.07.2016

20 4. Evaluation

Parameter Description

Bonding
Type

Used bonding module

Runs Number of runs
Scenario Scene template to simulate in
Swarm Factory for producing the swarm
Agents Per
Bond

Number of agents to feed information into one bond

Bonding
Reinf Bond
Nr

Number of bonds created initially per agent [Reinforced Bonding]

Bonding
Reinf Value

Value to increase bonds trust when scoring a kill [Reinforced
Bonding]

Task
Acceptance
First
Threshold

Priority threshold a signal need to surpass to be considered [Single
Threshold TA]

Task
Acceptance
Break
Threshold

Priority threshold a signal need to surpass to be considered, if there
is already a accepted task [Single- & Double-Threshold TA]

Game
Time m

Maximum run time of a single run

S Agent
Count

Number of seeking agents to spawn if spawn point is present

H Agent
Count

Number of hiding agents to spawn if spawn point is present

Use Close
Agent Com

Allow seeking agents to share tasks when in close proximity

Keep
Running

Execute multiple run sets. Works with AgentsPerBondMax. After
Runs runs have been simulated the wired parameter (in this case
AgentsPerBond) will be increased and a new run set will start.

Agents Per
Bond Max

Upper limit of incremented value. If KeepRunning is active the
simulation will create run sets until this value is reached

Headless
Kill By
Targeting

Set KillByTargeting mode active

Kill Count Number of agents required to remove a target

Table 4.3: SimulationMaster parameters

4.1. Experiment 21

While this function td may never reach 0, even on a successful run, its slope can still
give an idea about swarm performance. The steeper the slope of a trend line is, the
faster the swarm is working towards the goal.
Besides the total distance the simulation also measures the sum of the minimum
distance as md(S,H) =

∑
S
s=0distance(s, closest(H)). This value is expected to jump

more than the total distance and can be seen more as a quality indicator looking at
single agents, instead of the whole swarm. Different insights can be obtained by this
measurement. In a very well working scenario the jumps, which will occur every time an
agent is removed, will be quite small. This means that the agents are already positioned
close to the next target. Big jumps however show misplanning and long ways which will
lower the efficiency in the end. The size of the jumps also allows to indicate the size
of the killing group. More agents in the group will lead to bigger jumps, as the closest
target for more agents is suddenly farther away. In general it is desirable to have a steep
declining curve with as little jumps back up as possible.

Figure 4.4: Sample run H:16, SA:10

Figure 4.4 shows a sam-
ple analysis of a single
run. The settings for the
run were the same as for
bonding decision testing
and can be found in Fig-
ure 4.8. The blue bars
indicate moments when
a hiding agent was cap-
tured and removed from
the playing field, the yel-
low line is the minimum
distance, the gray line
represents the total dis-
tance and the dotted
gray line a trend line for
the total distance. All

values are sampled once per frame7, the frame count being the x-axis. The scenario
used was an empty arena with a ring of hiding agents, in whose center the seeker are
created. In the first phase a rapid decline of minimum distance can be observed, as the
agents all move away from the center towards different agents. Total distance is on a rise
because of the same reason. Around frame 120 the minimum distance reaches a local
minimum, as most agents are close to their target, yet unable to kill it. It rises again
as agents regroup and are finally able to make their first kill at frame 251. Because the
closest target for some agents is removed the minimum distance value takes a jump up,
while total distance is decreased. In this run two main group of agents have formed, one
starting on the west edge of the circle, the other on the east end. Both groups move
downwards towards the south terminal point of the circle. When the last agent is cleared

7a frame being one simulation step.

22 4. Evaluation

away both groups need to move up through half the circle to catch the next agent and
merge in this process. This can be seen in the large jump at around frame 450. Here
the last close agent was killed and the next target is way further up. Also the size of
the jumps increases, indicating that more agents are part of the killing group.

Both of the distance values have to be taken with a grain of salt. Depending on the
number of agents needed to kill a hiding agent and the total number of all agents it may
be possible to minimize both functions and still have no success at all. A simple scenario
for this is a run with an equal amount of hiding and seeking agents. Each seeking agent
picks a different hiding agent as a target. The swarm will minimize both functions td
and md and yet will not be able to finish a single task. It allows to get a base idea of the
inner working of a swarm and can provide insights about performance when combined
with other metrics.

Timing

Another obvious metric is the time stamp of the moment a hiding agent is removed.
Or, more precisely the relation of the different time stamps. Looking at Figure 4.4 the
vertical blue lines denote a moment a hiding agent was removed. In the beginning the
swarm needs a moment to consolidate itself until it is able to perform the first kill. Here
the single groups form themselves and start moving towards their first targets. It can
be reasoned that at around frame 400 the number of groups with enough agents to kill
increased, as the spacing between the kills decreases. The values around 450 solidify this
assumption. When the minimum distance takes a jump at frame 450 there is no delay in
the kill time, which means that another group was already positioned to make another
kill. Right after the first big increase of distance this group kills of one the upper agents.
Afterward there is a small delay, where all groups need to reposition themselves. Around
frame 600 the groups appear to merge together, as the overall timing between two kills
increases, and then stays consistent.

4.1.2.1 Efficiency

While evaluating the swarms with their distinct configurations different metrics where
collected and evaluated. One metric used was the effectiveness of a swarm, describing
its overall fitness and task solving capability. For this the time the swarm needs to kill a
number of hiding agents is measured. It is calculated by the formula e = deactivatedagents

time
∗

1000. The scaling by 1000 was introduced solely to improve readability in the console
application generating the results.

Figure 4.5 shows some baseline graphs for effectiveness. For the test data a scenario
with six hiding agents was designed. Data was created for timing from 10 seconds up
to 60 seconds, in steps of 10 seconds. Each line represents a simulated number of kills.
For example, the yellow line shows the efficiency of a swarm which was able to kill two
hiding agents in 10, 20, 30, 40, 50 and 60 seconds respective. While this metric allows
to estimate a good general fitness value for each swarm it is also prone to errors of
measurement. Evaluations using this metric need to address the fact that some frame

4.1. Experiment 23

rate variations within Unity 3D may result in a skewed result, therefore some kind
of trimming should be done with gathered data, to reduce the impact of stray values.
To increase the explanatory power of this function simulation time was adopted to
allow agents in most of the cases to fulfill the imposed goal. This fixes one axis of the
function, allowing for more leveled results, while imposing a penalty for configurations
that completely fail the task.

4.1.2.2 Swarm topology

Figure 4.5: Effectivity of kill count with different timings

Another important fac-
tor to consider is the
topology of the observed
swarm. Bonding influ-
ences the flow of in-
formation in a swarm
heavily and thus the ca-
pability to locate and
track valuable targets.
Kennedy presents dif-
ferent pattern from so-
cial communication in
[Ken99], which are partly
adapted in this chap-
ter. Contrary to [Ken99]
these features are not
fit onto the swarm, they

rather emerge from the bonding mechanics. To elaborate concepts and their character-
istics measured during testing a sample network is provided in Figure 4.6. For the first
two bonding modules these metrics can be evaluated once per run, as they are static and
remain the same. For the third module, it is important to note that more connections
exist due to the multitude of bonding connections present in each agent, but not all of
them will be used.

Bidirectional connections

A bidirectional connection means that two agents A and B are inter-meshed in a
way that both are contained in the other receiving bond. This means a full two way
communication is possible between these agents and tasks can be exchanges freely.
During experiments the number of bidirectional connections is measured, as well as the
largest bidirectional network. This is interesting, as agents within this network have
access to all tasks produced by their partners over a few frames. If the small delay
of information transmission, which is one frame per hop, is neglected agents within a
bidirectional network can be grouped logically to one meta agent. They can provide
each other with the best tasks quickly and spread high priority tasks from outside the
network to all partners. The size of the network will heavily influence the cohesion in the

24 4. Evaluation

swarm, as a very small number of high-priority tasks will be shared with all members of
the network. In Figure 4.6 two bidirectional connections can be seen, between agent 1
and 2 and between agent 2 and 4. This means the largest bidirectional network covers
50 % of the swarm (3 of 6 agents).

Masters & slaves

Due to the asymmetric connection pattern it is possible that some agents are part of a
one-sided communications. These agents are called master agent if they are only part
of other bonds, that means they never receive tasks from other agents. If an agent only
receives tasks, without pushing its own tasks in any bonds it is called a slave agent.
Formalized the following relations for agentA stand: master(A)→ αi 6= ∅∧count(β) = 0
and slave(A)→ count(αi) = ∅ ∧ count(β) 6= 0. α being the receiving bond, containing
agents Bii which provide information to A, and β being the set of bond receiving
information from A (see: Section 3.5).
A master relationship can be created when using the skill based bonding with an agent

Figure 4.6: Sample topology

which has the best swarm-wide value in every skill. It will not be able to form a receiving
bond, as it can not find any agent which is better in any skill. Slave relationships can
be formed by chance, if an agent is just not picked to participate in any bond, or, when
using the skill based bonding, for agent that do not dominate another agent in any skill.
An example for master and slave agents can be seen in Figure 4.6. The green tinted
master agent 6 provides his tasks to agent 3 and 2 while not receiving any tasks itself.
This agent will therefore always pursuit his own highest prioritized goal. This can be
beneficial, for example in the following situation: Agent A2 has a very high skill value for
smell, agent A6 is mediocre at spotting targets. While A2 will pull most of the swarm to

4.1. Experiment 25

its current target (based on olfactory inputs) A6 may pursue a different spotted target
and provide tracking information as soon as the rest of the swarm finished A2’s target.
Agent A3 tinted orange has the slave role in this setup. It will only receive information,
without the possibility to pass its own findings on. A3 can therefore only tag along with
other agents, if their task prioritization are high enough, or can move to its own targets
without the ability to call for aid. This is generally an undesirable state, a high number
of slaves may lead to bad performance of the overall swarm.

Hubs & islands

Similar to Section 4.1.2.2 hubs and islands allow to analyze the general topology of the
swarm in more depth. Islands are agents with no connection to other agents. They
can only rely on their own skills and may not provide insights to other agents. A high
number of islands negates any behavior achieved by bonding mechanics, and no flow of
information can be established. Hubs, being the counterpart to islands, denote agents
with a high number of incoming and outgoing connections. In this work an agent is
classified as hub when it is connected to at least 33% of the swarm population with
incoming and outgoing connections. These connections do not have to be bidirectional.

An example of one hub and one island is given in Figure 4.6. Agent A2 in yellow receives
input from A1,A4 and A6 while sharing its information with A1, A4 and A3. Three
incoming and outgoing connections each are over the threshold of 33% (1.98 agents) and
A2 can be considered a hub. Hubs allow information to spread quickly within a swarm,
a package p which reaches a hub at time ti will be distributed to at least ceil(n

3
) − 1

agents8 of the swarm at ti+1. Hubs can be seen a broadcaster of information and filters,
roles that Kennedy points out to be very important in effective communication [Ken99].
At the same time can hubs also suppress valuable information. From all the tasks they
receive only the best is forwarded. This can lead to clumping and the loss of diversity
within the swarms solution space [Ken99]. As soon as the threshold, defined by the
number of agents to kill a target, is surpassed, the efficiency of the swarm suffers.

Contrary to A2 there is the gray A5 without any connection to other agents. A5 is
similar to the slave A3, devoid of A3’s ability to receive tasks and follow them. A2 can
only follow private goals and has, just as A3, no way of communicating them. Just as
in Section 4.1.2.2 islands are not desirable and tend to decrease the performance of a
swarm when stacked in number.

4.1.3 Swarms

Different types of swarms are expected to behave different in the test scenarios and
reach varying successful results. These swarms are conceptualized to provide unique
strengths and weaknesses to be able to analyze the used mechanics under these aspects.
The evaluated swarms are:

8n being the number of agents, -1 because the providing agent could be part of the outgoing
connections, therefore already knowing the information

26 4. Evaluation

• Random: In this swarm sense capabilities are randomly assigned a value between
0 and 1 on all agents.

• Single Competence: In the first version this swarm has only one agent which is
able to execute all senses perfectly (strength of 1), all other agents have no senses
at all, and are forced to follow the leader. The second variation has three agents,
each able to perform one sense perfectly, while all the others have no competence
in any skill.

• Byzantine: Derived from the byzantine generals problem [LSP82] this swarm
features agents with a negative skill value. This agents will from time to time
provide false information, trying to sidetrack the swarm. This allows to simu-
late sensor failures in real world drones, as well as provide a source of ’human
error’ in computer game AI. The modification can be combined with the first two
characteristics.

4.1.4 Scenarios

As stated already in Section 3.1 a scenario is a predefined scene within the simulation
environment. A scenario features some way of instantiating agents. These can be done
with the use of spawn points, using Unity 3D’s prefab system [Pen15] or by manually
placing agents in the scene. Furthermore special elements, so called modifiers, may be
added to create certain requirements withing the scenario. Modifiers are able to boost
certain traits, like emitting loud noises whenever an agent passes it, or suppressing them,
like making agents blind / invisible when inside its range.
Scenarios can be roughly divided into simple and complex variants. The simple variants
were used to evaluate single parameters, constructed to allow the swarm to focus on
singular mechanics, trying to minimize outside influences. These simple scenarios mostly
feature an evenly distributed number of hiding agents, with spawn points for seeking
agents in the middle. Their aim is to focus on task selection, bonding topology and to
gather insights about the effect of different bonding parameters.
Complex scenarios employ findings from the simple variants to construct complex
situations. Examples are changing the way signals propagate during the run, forcing
previously powerful agents to rely on others, or demand complex patterns to locate
and surround the targets. They usually do not utilize pre-placed hiding agents and rely
rather on spawn points. This allows to tweak the number of hiding agents over different
runs and evaluate the effect on the overall performance. A complete list of scenarios can
be found in Section A.1.

4.1.5 Parameters

For the evaluation a certain set of parameters was used. This section explains the
creation and fine-tuning of the parameter set. Within the chapter selected reports and
graphs will be highlighted. A full rundown of raw data and report sheets can be found
in the Appendix.

4.1. Experiment 27

Figure 4.7: Decision threshold results

4.1.5.1 Simulation Runtime

One of the core decisions was the maximum time of three minutes per run. Due to
the nature of this game, requiring multiple agents to reach a target to kill it, it’s quite
possible to end up in a deadlock state. Therefore a maximum timing was introduced,
after which the run will be terminated. After initial experiments the time frame was set to
three minutes. This time has proven to allow most of the swarms to show their potential,
without extending the simulation too much with bad swarms. When introducing new
simulation configurations or scenarios spot tests were performed, using a range of different
parameters to evaluate the optimal time frame. These tests were conducted to evaluate
if the swarms extend behavior which was cut short by the artificial time limit and to
adjust the time in this case. For the more complex scenarios at the end of the evaluation
the time limit was increased to ten minutes. This has proven helpful for configurations
with a windup-time, like the reinforced bonding.

4.1.5.2 Decision Threshold

The decision threshold parameters controls which priority a task must possess to be
considered a valuable aim by task acceptance module. A higher decision threshold means
that agents will only take over high prioritized tasks, thus having a high probability of
improving the success of the swarm. But a high threshold will also mask out possibly
rewarding tasks with a lower threshold due to external influences. Noises generated by
surrounding, which may disturb agents, can be filtered out by this threshold.

To test the decision threshold used in task acceptance (see: Section 3.4) a simple Arena
setup was used: A single seeker faces five hide-agents. The hiding agents are placed in a
forest-like arena, each with a randomly generated waypoint net. The hide agents have a
different strength, starting at sending power of 1 with the first one and decreasing by 0.2

28 4. Evaluation

(1, 0.8, 0.6, 0.4, 0.2). To kill a hiding agent off the seeker needs to target it for 3 consecutive
seconds. If this time span passes the hider is removed. One run ends as soon as either
all five hiding agents are removed or the total time passes 60 seconds. This time-frame
was sampled beforehand and proved to be long enough for this simple scenario. Agents
which do not finish a run after 60 seconds won’t be able to finish it at all. Every time this
was the case the agent was not able to generate a task to one or more signal sources due
to its quality being too low. In the first iteration the time is measured, until all HAgents
are deactivated, or the time limit has passed. Then the formula e = deactivatedagents

time
∗1000

is used to calculate the effectiveness of different threshold levels9. In the second iteration
a noise layer was added to the scenario, providing extra, random impulses for the agent.
The noise will generate impulses with a strength between 0 and 1 at random positions
inside the arena.

The test runs have shown that decision threshold provides no immanent effect or even
benefit for the swarm. Due to the agents being unable to match a signal with its cause
decision thresholds were not able to mask out noises efficiently. Higher thresholds (>0.4)
lead to very bad results, as the agents often were not able to accept any task at all10.
Even lower thresholds, while allowing to mask out weak noises, did not provide any
benefit. It can be observed in Figure 4.7 that using no threshold at all was the result in
every setting. With a setting of 0.1 for the threshold data already strays a lot, because
the agent was often not able to generate tasks, while performing decently in the other
cases. It is up to debate if a fine tuned threshold will convey a benefit in specific scenarios.
For the course of this work the threshold has been defined to be 0 for all following test
cases, to allow the focus on bonding mechanics.
In [Ken99] agents can function as filters in social communication networks, reducing the
noise inside of the network. The decision threshold may be useful in such an scenario,
when more complex mechanics are put into place. Interesting results could be achieved
by evolving the decision threshold over time making the agent adaptive respond to
environmental effects [LMAM04][Mor15]. Adapting thresholds can be used to regulate
the amount of tasks circulating the swarm. Master agents, being the main communication
nodes (see Section 4.1.2.2 and [Ken99]) can increase or decrease the threshold based
on how busy the swarm is right now. This can allow the swarm to adapt towards an
efficient configuration by altering its diversity [LMAM04].

4.1.5.3 Bonding Parameters

Agents per bond

The AgentsPerBond parameter is applied when initializing the bonding module and
defines the separation within the swarm. When creating bonds the module adds agents
to the bond until it contains a predefined number of agents.

9The scaling by 1000 was introduced solely to improve readability in the console application gener-
ating the results

10An agent with skills <0.4 will not be able to generate a task with priority >0.4

4.1. Experiment 29

Seeking agents: 20
Hiding agents: 32
Runs per config: 40
Kill count: 5
Timeout: 5 minutes
Swarm-type: Random
Bonding-type:

AB1: Random
AB2: Skill-based

Scenario: S2 Arena Double

Figure 4.8: Config AB1 and AB2

This value influences the amount of connections in
general but especially the amount of bidirectional
communication lines. These are expected to have
influence on overall swarm performance. See Sec-
tion 4.1.2.2 for an in-depth explanation of bidirec-
tional connections and other swarm topology fea-
tures in the simulation.
The scenario used for this test, S2 Arena Double
is an empty arena with 32 hiding agents in a circle-
like structure. A swarm of 20 seeking agents was
spawned in the center of the area. The static pa-
rameters for the simulation (AB1 & AB2) can be seen
in Figure 4.8. One full simulation circle of 40 runs
was performed for each possible AgentsPerBond

value n; with n ∈ {1...SeekingAgentCount} and SeekingAgentCount = 20. From the
sampled metrics the overall efficiency of each instance of n was calculated and then com-
pared with each other. The first test AB1 used Random swarm generation and bonding
mechanics (See Section 4.1.3 for a description of the swarm modes and Section 3.5 for
overview over different bonding mechanics).

Figure 4.9: Efficiency of different Agent Per Bond values with random bonding

Figure 4.9 shows data and insights gathered from AB1: For each set of runs the efficiency
was calculated in a post process. The graphic shows a box plot of the generated values.
The blue and gray areas show the lower and upper quartile, together they contain 50 %
of all values. The two whiskers indicate how far off the median value the extreme values
stray. It can be observed, that for only a single agent per bond values tend to be very
low, with a few runaway values going up to around 300 efficiency. Agents tend to follow
their own inputs and can only gather enough instances at a target by chance. As soon
as agents are added to the bond the overall efficiency starts to rise until it stabilize at

30 4. Evaluation

the highest point at 9 and 10. This is because in the beginning bonds are not able to
get enough agents invested and focused on a single target. By the time 5 agents are
added into one bond the value reaches a local maximum, forming groups which are able
tot instantly kill a target (See Figure 4.8: Killcount of 5). After plummeting a bit at
6 to 8 agents per bond, because bonds starts to snap agents away from other bonds,
overloading targets with too many agents and therefore slowing the overall progress,
efficiency reaches a global maximum at 9 and 10 agents. At this point bonds overlap in
a way that allows to quickly switch between targets, by always presenting a high quality
target, while simultaneously forming multiple groups with close to 5 agents going after
different targets. The last property gets lost slowly when creating bigger bonds, as seen
from 12 onwards, connecting too many agents with strong leaders, therefore forcing
them to blob and form one single big group. The graph shows that the best efficiency
can be achieved with values at 9 or 10, with a falloff of around 100 efficiency to the next
values. Using the formula e = deactivatedagents

time
∗ 1000 from Section 4.1.2.1 a difference

for 100 would mean to catch 0.1 ∗ time more agents, or 1 agent per 10 agents caught.
Transferred to AB1: A swarm of the efficient group performs 10 % better.

Figure 4.10: Efficiency of different Agent Per Bond values with skill based bonding

For the second experiment AB2 the runs were repeated with the skill based bonding
module. This time the agent tries to fill its bond with AgentsPerBond other agents,
which are better in at least one skill. The resulting graph, shown in Figure 4.10 is similar
to AB1. It reaches it peak point at 6 and 7 agents per bond and starts decaying after this
value is surpassed. This shift forward can be explained by the reduced availability of
bonding partners. The mechanics which provoked the loss of efficiency in AB1 takes effect
earlier here. While bonds overall have a higher maximum performance, they are less
diverse and promote a stronger leader selection. This aligns with Marcolinos findings
in [MJT13], where diverse groups outperformed strictly optimized groups. Figure 4.11
shows a direct comparison of the median values, highlighting named effect.

4.1. Experiment 31

Figure 4.11: Direct comparison of the median values of AB1 and AB2

Reinforced Bonding

When using the reinforced bonding module two parameters are responsible for the con-
figuration of this module: Bond Count (bc) and Bond Reinforcement Value (br).
After generating the swarm each agent is assigned bc different bonds from which it
can receive information. Each bond is assigned an internal trust value, set to 1 at the
beginning. Trust acts as an indicator about the quality of the provided information.
Whenever a target is removed agents which are involved evaluate all of their bonds.
When a bond had suggested the recently removed target its trust value is increased
with a function, scaled by the reinforcement value (br). This module is tested against
a byzantine swarm, founded on the fact that in a normal environment the existence of
multiple bonds will just decrease the spread in values. Results would be very similar to
results from Section 4.1.5.3 and data will show an overall higher and more even curve.
One can think of this as a normal bonding strategy, where only the best of the bc
bonds is considered. In the byzantine case however, where agents need to filter out a
high amount of ’foul’ agents, access to multiple bonds can provide a lasting benefit.
As stated before, the value of the Bond Reinforcement Value determines how much
reinforcements are required to clearly differentiate one bond from another. A very high
value will quickly promote bonds which are able to score kills. A low value provides
a smooth increase of values, allowing for a more controlled filtering. Fast convergence
(high value) is beneficial, when the chance for pure bonds is quite high e.g. with low
corruption rate, or a very high bond count with a medium corruption rate.
The formulas for in- and decreasing trust values are:

increasedTrust(trust, reinfV alue) = trust+

√
trust+2reinfV alue

25
and

decreasedTrust(trust, reinfV alue) = trust+
√
trust+reinfV alue

25
.

A deeper analysis of the formulas for different reinforcement values and several steps

32 4. Evaluation

can be seen in Figure A.6 for the evolution of bonds for different br and in Figure A.7
for the demoting counterpart. The increasing function provides stronger changes than
the decreasing function. This is to offset a false-positive penalty, when a healthy bond
focused on a different target. Also the decreasing value is capped at zero, so bonds can
technically be muted but cannot get negative trust values11. The effect of this parameter
is more prominent in the reward function, leading to a quicker promotion of successful
bonds and a leveled degeneration of failing tasks.
Tests were run in scenario S2-Arena Double with the settings from Figure 4.12.
In the center of the arena and 35 seeking agents were spawned. Then 35% of the agents
were marked to go rogue. In this case 13 of the 35 agents were turned into byzantine
agents. The agents were generating falsified tasks every three seconds, the same time
agents need to focus an individual target to remove it from the simulation. A bond
which distributes a lot of this falsified tasks will be called an unhealthy or bad bond,
while a bond free of byzantine agents will be a healthy bond. Bond health quickly
degenerates when adding byzantine agents. See Figure A.5 for the chances to create
a complete healthy bond, depending on agents per bond (1-14) and number of rogue
agents (1-18). For this simulation a value of 35% provided a reasonable chance to have at
least some healthy bonds. This consideration is important for this evaluation, as the ef-
fects of reinforced bonding will be most explicit when there is a difference in bond quality.

Seeking agents: 35
Hiding agents: 32
Runs per config: 30
Timeout: 15 minutes
Swarm-type: Random
Bonding-type:
Random Reinforced
Agents per Bond: 5
Bond Count: 1-31 (steps of 5)
Reinf. Value:
0.5-2.5 (steps of 0.5)

Figure 4.12: Config: Reinforced
Bonding

In the simulation the number of accessible bonds
per agent started at 1 bond each and then increased
their bond count in steps of 5 until it reached its
maximum value of 31 bonds per agent. For each
configuration of bond count the reinforcement val-
ues from 0.5 to 2.5, with a step size of 0.5 was
tested.
Results of the experiment are presented in Fig-
ure 4.13. For the evaluation the runs were post
processed and the average efficiency was calculated,
while 5% runaway values were removed. The figure
shows two different views of the average efficiency
and a box-plot of all values. The graph A, showing
the bond count data plotted against different rein-
forcement values, highlights the difference between
using normal bonding (bc of 1) and the reinforced
bonding strategies. Another notable characteristic

is the fall-of at a br of 2. This is because in the simulation unhealthy bonds often were
able to secure a superior position by getting an early kill, basically locking agents with
their false information. A smaller value and more even curve can counter this problem
by only changing trust values in very small steps.

11This clamping is represented in the code and not reflected in Figure A.7

4.1. Experiment 33

Figure 4.13: Evaluation reinforced bonding 1.bc: Bond count, br: Bonding reinforce
value

34 4. Evaluation

Figure 4.14: Evaluation reinforced bonding 1. bc: Bond count, br: Bonding reinforce
value

The second graph (B) shows the different reinforcement values plotted against the bond
count configurations. The overall observation is that efficiency correlates with the num-
ber of bonds. At 16 bonds a small falloff occurs, which can be explained by the number
of byzantine agents. In total efficiency is rising with bond count, as agents do have
a higher chance to have access to a (more) healthy bond. On the other hand higher
bond count increases also the number of connected agents and therefore the chance to
be connected to a byzantine agent. In the beginning this chances balance out, up to
around 16 bonds the negative effect of getting connected to another rogue agents is
slightly more severe. This is based on the fact, that byzantine agent generate tasks at
the same frequency as agents can kill targets. At 16 bonds the chances are very high
that an agent is somehow connected to all of the 13 rogue agents, being exposed to
every falsified task. From this point on additional bonds can only increase the quality
of available information, by either incorporating a strong healthy agent for example.
Graph C and D show the stacked total areas of to graphs above. Reinforcement values
(with the exception of 1) tend to balance out, and which value is used best depends on
many other parameters.
This experiment again highlights the problem already encountered in Section 4.1.5.3: It
requires a lot of manual testing and adjustment to find the ’right’ difficulty for a given
experiment. If the scenario is to easy to solve results will not differ enough in efficiency
to cover runaway values and still be distinguishable. Another working application of the
bonding reinforcement will be shown in the complex scenario ByzantineSwarm.

4.1. Experiment 35

4.1.6 Further experiments

With all the parameters evaluated and classified further experiments were conducted.
In this runs more complex scenarios were tested to see how well the swarm performs in
different complex situations. The scenarios itself are multi-layered in terms of mechanics
and require the swarm to combine different core skills to solve the tasks successfully.
A list of the scenarios used here can be found in Section A.1. The following scenarios,
except the Byzantine Swarm, were performed by a seeking swarm of 20. If not specified
otherwise, 32 hiding agents were placed in the scene. Parameters were based upon
findings from the previous chapters, setting agent per bond to 9 and using the reinforced
bonding module. Reinforcement parameters were 1 for the reinforcement value and 21
for the number of bonds per individual. The first three scenarios where run in a unique
scene each, the topology and features can be seen in Figure A.4.

Complex 1: FourSeasons In this scenario the arena is divided into four quarters
(See C2). Three quarters block out one type of information each. This scenario calls
for the swarm switching leader often, as previous best candidates can no longer provide
insightful tasks. This will strain the bonding system and evaluate the benefit of having
a decentralized, diverse swarm [MJT13]. While traversing the arena seeking agents will
be cut from their signals and need to rely on other senses or bonded agents to guide
them. The result of this run can be seen in Figure 4.15.

Figure 4.15: Sample run of the FourSeasons scenario.

Looking at the evaluation and the overall results the swarm performs well in this environ-
ment. Although targets are split over all quarters and move around, basically changing
their information signature, there is no major decline in overall swarm performance.
However after targets become more sparse the efficiency starts to drop. This is because
of the locality of some information. To follow a trail of smell agents need to locate it first.

36 4. Evaluation

To orientate oneself by sound agents need to be in the range of its emitter. This explains
the rise of the total distance in the center of the graph. While single agents were able
to track targets, the topology of this swarm did not allow them to communicate their
findings efficiently. Shortly before the end of the curve both distance functions rapidly
decline. This is an indication that either the targets went into a region where they are
easier to track, or that a well connected agent (see Hub in Section 4.1.2.2) reestablished
tracking. Based on the fast decline it is probable that the latter is the case, that an agent
found a target and was able to direct the swarm towards it. By getting into proximity
of the target other agents were enabled to take over tracking by odor or sound, resulting
in a series of quick kills.

Complex 2: Forest The Forest scenario has a multitude of obstacles in the arena,
blocking view and hindering navigation. A topology map can be seen in C1. The
difficulty in this scenario is of a similar kind as seen in the FourSeason scenario. This
time, instead of relying on different senses agents also need to cope with a hindered
navigation ability. Beside this general hindrance the scenario devaluates the seeing
ability. This ability has proven to often be superior over the other senses, but does not
allow a constant tracking in this scenario. Figure 4.16 presents the progress of a sample

Figure 4.16: Sample run of the Forest scenario.

run. Similar to the result of Section 4.1.6 the distance tend to jump up at some points.
Unlike before this jumps occur mostly after a kill has been executed. This leads to the
interpretation that the jumps are not necessarily related to bad swarm performance, but
rather to bad placement of the target. The swarm is moved away from the main group
of targets to score a single kill. This is reinforced by the total distance function, which
increases slightly before a kill, showing the movement of the swarm into a generally less
favorable position. Only in the last 25 % of the evaluation the swarm seems to loose
tracking, as the distance increases in a similar fashion to Section 4.1.6.

4.1. Experiment 37

Complex 3: Legion While being simple element-wise, Legion is the complex scenario
with the worst overall performance (As seen in Figure 4.20). The scenario features the
huge amount of 140 targets, distributed evenly over the arena. Again a topological map
can be found in Figure A.4. The swarm spawn in the middle of the targets and while
kills happen frequently the overall fitness, based on distance to targets, degenerates.

Figure 4.17: Sample run of the Legion scenario.

The extend of the fluctuation withing the minimal distance function gives away that a
lot of backtracking is happening. The problem uncovered by this scenario is the missing
spatial information of tasks. Agents do not evaluate tasks by their proximity, but only by
the strength of the received signal. In this particular case it leads to the swarm working
through the field in a ping-pong like matter, wasting time and resources by moving back
and forth.

Complex 4: Byzantine Swarm As mentioned in Section 4.1.3 byzantine agents will
create tasks based on false / non-existent information. This Scenario is used for an
in-depth analysis of the reinforced bonding module. It extends on the evaluations of
the parameters in Section 4.1.5.3. It also uses to the Arena Double scenario, 35 seeking
agents and the parameters from the ’Reinforced Bond Count’ -experiment. During this
simulation, the percentage of byzantine agents was increased to 51 %. Which leads to
18 of the 35 agents marked as byzantine agents. This means that appropriately every
30 ms a misleading information is generated and spread as a task among the swarm. It
generates an environment, harsh enough for the swarm to be reliant on this mechanic to
filter out the remaining healthy bonds. The number of bonds per agent also started at 1
and increased up to 10 bonds. While the results in Figure 4.18 are still volatile a general
increase of fitness can be observed. It is to be noted that this experiment simulates a
harsh failure in the swarm, more than 50 % of the agents provide false information,

38 4. Evaluation

corrupting bonds with a high probability (0,999999707 % chance of at least 1 rogue
agent per bond)12.

Figure 4.18: Evaluation of reinforced bonding with a high failure rate (51 %)

The high runaway values occur when, by chance, bonds without any byzantine agent
are created, or byzantine agents happen to generate weak tasks. The latter being more
likely, working with a random swarm. After nine bonds per agent the values start to
decrease again. After this point the chance that an agent is connected to a byzantine
agent, which happens to create a strong task is too high. Based on this, healthy bonds
won’t be able to score kills. Without kills agents are not able to rank bonds accordingly,
therefore they stay responsive to byzantine agents.
It can be stated that reinforced bonding has a positive effect on the swarm and can help
to account for failures in the swarm infrastructure, as long as the scenario and swarm

12See Figure A.5 for an evaluation of chances for a healthy bond.

4.1. Experiment 39

configuration is within a certain corridor. The reinforced mechanics have the biggest
impact in a very harsh environment and using the current formulas quickly move the
swarm’s focus towards healthier bonds. With adjustment to the formulas, like harsher
degeneration of health for false information, the system can also be adopted to quickly
mute inefficient bonds. With the (re)evaluation of bonds being executed at the kill of
a target these can lead to a complete lock-down of agents, therefore a adoption to the
mechanics is advised too. Bonding can ease the effect of the three kind of failures named
in [DZZS04] ’Partial Robot Malfunctions ’ and even ’Robot Death’ [DZZS04], as long as
the communication network between the agents is still intact.

Complex 5: Maze The Maze is another very specific scenario: A maze is constructed
in the arena, guarding the four targets in the center. Two groups of seeking agents are
placed in the maze, one group with a walkable connection to the targets (upper left)
and a single agent close to the targets, but without a path to them. While the first
group could reach the targets they can not see them and are to far outside to smell or
hear them. However the single agent is well withing the radius of the sound signal and
therefore able to direct the other group through bonding. The Figure 4.19 shows how

Figure 4.19: Maze scenario: Snapshots at three different timings.

a run in the maze works with agents per bond set to one. Pink dots are the seeking
agents, green dots are targets. Yellow lines denote the collective target of the bond
(Which means the target the agents decided to follow, not necessary the target each
agent generated. Aqua blue lines show bonding connections. The first frame shows the
single agent inside the sound signal, connected to a single agent withing the other group.
The other agents connect themselves to this agent and withing each other. The middle
frame shows how the group of four free agents is able to navigate the labyrinth, guided
by the single agent, which still receives auditory information. The last frame pictures
the arrival of the free group, which is able to remove the targets, resulting in a successful
run for the seeking swarm.

40 4. Evaluation

Summary

The complex scenarios have highlighted more specialized situations and tested the swarm
inside them. The swarm was able to perform in each situation, but additional limitations
and open problems were identified. Especially, looking at the first three complex scenarios
allows to reason some properties of the implemented system. Figure 4.20 shows the values
of Forest, FourSeasons and Legion in direct comparison. Forrest performs best, only
taking small hits in the overall performance. FourSeasons shows a slightly increased
deficit, which can be related to the loss of tracking described in Section 4.1.6. The
Legion scenario, which does not feature any constricting elements in its scene structure,
achieves the lowest rating. This emphasizes the problem with agents not being distance
aware.
The bonding scenario shows that even under extreme conditions the swarm is able to
produce reasonable results. The mechanic of the bonding system allow for stabilization
and increase the robustness of a swarm.
Lastly the Maze emits behavior which are especially interesting for game development.
The implemented flow of information allows different agents to combine their information
and their search space (In this case the region within the maze they can reach) and
to complete the task by merging this information. This can be used in games to form
emergent, yet somewhat controlled behaviors for agents, allowing them to react at player
interaction.

Figure 4.20: Comparison of complex scenario 1,2 and 3

4.2 Results

This chapter sums up the experiments done in Section 4.1 and clusters them.
The first system, implementing a simple task acceptance mechanics in agents, showed
no benefit in performance. It rather downgrades the swarm efficiency. The results of
test runs with active decision threshold can be seen in Figure 4.7. The reason for the

4.2. Results 41

systems failure is missing information. An agent can not discriminate between a valid
task and noise/false input. Therefore filtering based on this system can not provide
better results. Giving the agent access to the source of the signal (at least with a certain
probability) could solve this problem. [KNZ10] uses global storage to circumvent this
kind of problem, agents can use such a storage system to counter-check other task and
evaluate them. Similar to reinforced bonding, tasks can have a trust value, which is
increased when other agents confirm the validity of the task.
The second intended use of the decision threshold was focusing tasks, to reduce the
effect of sidetracking. While this property may still hold, it relies heavily on the right
design of scenario and balance of parameters. With the abolition of task acceptances
main feature the decision was made to not evaluate this property any further. Instead
part of its characteristics where moved inside the agents logic (see Figure 3.3).
With the omission of the decision threshold parameter this section focuses on two major
components: The influence of the swarm topology and and the influence of bonding
values.

4.2.1 Influence of bonding parameters

The parameters of the bonding module shape the behavior of the swarm and are mag-
isterial for its success. In Section 4.1.5.3 three major parameters were exemplified and
tested. The Agent count per bond defines the separation of the swarm. It influences ev-
ery other parameter in a unyielding way. In multi-agent task systems a successful team
formation is the key for efficient swarm behavior [MJT13]. Bonding provides agents with
a simple and decentralized way of interoperability [Gd05]. The agent count parameter
describes the number of agents responsible of providing information to a single agent. It
directly influence the interconnectedness of the swarm and the informational-reach of
each agent. The experiment in Section 4.1.5.3 shows that efficiency correlates with con-
nectivity within the swarm. Up to a certain point the larger zone of interest is beneficial
for agents. Because of the nature of the task chosen in this work, catching targets with a
certain number of seeking agents, a point exist from which more agents do not provide
any benefit. Looking at the two extremes of this parameter on the one side single minded
agents exist, each following only its own inputs, resulting in a potential large spread
over the search space13. On the other side of the spectrum is a fully inter-meshed swarm,
always focusing on a single, most-promising task. Experiments showed a good guiding
value with Agent count per bond set to approximately two times the required number
of agents to score a kill. Bonds with this number of agents provide enough adhesion
to form subgroups capable of removing targets, while simultaneously providing a big
enough spread of targets within a single bond to reduce downtime and backtracking.
The tests AB1 and AB2 in Section 4.1.5.3 showed that a diverse group within a
bond, for example created by random bonding surpasses a very skill focused approach.
Especially when no global instance allocates tasks for groups, but instances decide for
themselves which goal to pursue [MJT13]. This may prove false for special situations.
Using the Three Competent Swarm (See Single Competence in Section 4.1.3), where only

13This will become even more prevailing in more complex sense profiles. See Section 5.1

42 4. Evaluation

Figure 4.21: Comparison of bonding mechanics using Three Competent Swarm

three agents have a single available skill, the skill based bonding outperforms random
bonding early on, because it help to prevent useless bonds where agents with no skill at
all connect to each other (Figure 4.21).

A problem which surfaced during testing is the granularity of the AgentsPerBond pa-
rameter. When tasks are to easy results tend to be very close in terms of efficiency
and there is no real distinction to be made. This is because the step from ’Not enough
connections to coordinate agents’ to ’Too much connections and just one blob’ was
within a very small range. This was circumvented by running initial small scale tests
to determine an appropriate scope. So while experiments were able to narrow down
useful categories for this setting, additional methods have to be deployed to reduce the
required manual adjustment of this parameter. Because bonding is heavily influenced by
this single value alone, results are volatile and tend to change drastically with scenario
and other influence factors. Section 4.2.2 shows some of the cascading bearings of this
value and Section 5.3 points out possible ways to pin down the parameter.
After evaluating the agent per bond parameter another layer was added to the bonding
module. Instead of receiving information from just a single bond agents were provide
a multitude of bonds, each assigned an internal trust value (on a per bond base). This
value is adjusted every time the swarm is able to score a kill. Internally each agent, which
participated in the kill, will evaluate all his bonds, increasing the trust for all bonds
which suggested this successful target, and demote the trust of the other bonds. The
formula of trust adjustment can be seen in Section 4.1.5.3, with a visual representation
in Figure A.6 and Figure A.7. Demoting a bond is slower than reinforcing trust and
can be offset quickly by successful targets. After a certain run-time agents are able to
sort out bad bonds and highlight effective connections. As seen in Figure 3.1 line 4ff the
trust value is factored into the bonding task acceptance. By this healthy bonds with
a high trust value are able to compete with potential corrupted values. Section 4.1.5.3
pointed out these mechanics are highly dependent on different factors: Overall difficulty,
swarm composition and the connection graph between agents. In Section 4.1.6 a scenario

4.2. Results 43

containing a large scale swarm failure is constructed. Over half of the agents contain
’malfunctions’ and provide wrong input signals. The experiment showed that with a
slow enough reinforcement value and enough bonds to choose from agents are able to
stabilize and perform.
The method used to adapt a bonds trust value fulfills its intention, but have to carefully
tweaked by hand and can yield unwanted results if parametrized outside of the tested
variable scope (see Section 4.1.5.3 and Figure 4.13). Right now the method exhibits
some potentially unwanted characteristics. Agents can get locked up in a single bond.
When a bond is able to score some kills early on, but is in total a rather unhealthy
bond it can bind agents to itself. When the trust value of the unhealthy bond rises far
enough, respectively the other bonds are demoted far enough, the agents won’t be able
to tag another kill. Without a kill there is no reevaluation of the bonds, therefore the
situation becomes persistent. To prevent this from happening some measures can be
taken: Just like in [KNZ10] a global index can be used to rate the bonds. Instead of only
reevaluating own bonds when scoring a kill, all bonds will get evaluated by a central
instance whenever a target is removed. A more complex but also powerful approach is
the introduction of dynamic bonds. Right now agents stick with the bonds they receive
at the beginning. There is no direct way for an agent to mute another agent. It can only
demote the bond containing the agent in question. Allowing bonds to change their own
bonds will enable them to be reconfigured to evolve their potential. Similar to [Mor15]’s
approach of group formation with reconfigurable agents, bonds can connect ad-hoc to
close agents and permute their properties. This can allow for complex behaviors, like
morphing the overall topology of the bond into another model with better properties
[Ken99]. Changing the agent per bond count should yield significant changes in swarm
behavior, when evaluated dynamically. One way of achieving a dynamic adoption is
shown in [Men04], where good agents are allowed to reduce the number of connected
agents, while poorly performing agents could increase theirs.
When preserving the current bonding system changes can also be made on the ad-
justment functions. A system with dynamic functions, based on factors like passed
simulation time, total stability of the trust values across the swarm and division of
bonds, can adopt to different situations. Depending on the goal of the functions, a possi-
ble scenario can undertake only very small changes in the beginning and increase them
while the simulation runs. Giving this kind of meta information can specifically target
problems with the current functions. If a switch of the most predominant signal type
happens, like smoke appearing, making visual strength worthless, the system can use
meta information to speed up convergence. In this case it would look for bonds with a
slightly lowered trust value, which got a lot of positive reinforcement lately. A combo
like system, which increases the gain for every correct consecutive target will allow this
bonds to rise quickly and take the place of the degenerated heavy-on-visual bonds. This
would defy the concept of a simple local system and require an existing understanding
of the coming task, but may result in a more optimized swarm.

44 4. Evaluation

4.2.2 Influence of topology

Earlier topology features were defined and their influence was briefly discussed. Evalu-
ation of these feature became increasingly difficult with a raise of complexity. During
test runs the configuration of the swarms was always exported as meta information,
allowing to link it back later onto the result. Yet reinforced bonding proved to be a
problem, as it generates way more connection as it actually uses. The post processing
pipeline was modified to connect this meta information with efficiency results generated
by test runs. By assorting this data by build number, scenario used and other parame-
ters clusters were generated, containing information about efficiency and bonding from
similar runs. These clusters were evaluated by calculating the Pearson- and Spearman-
correlation[Cho10], to find relationships between internal values. In total around 10000
runs were sampled to generate the correlation data. The result of this evaluation can
be found in Figure A.8. The data set shows a strong correlation (> 0.8) between the
number of hubs and our largest bidirectional sending network, as well as between the
number of bidirectional connections and the hub count. A solid correlation (> 0.75)
can be observed between the bidirectional connection count and the size of the largest
bidirectional sending network. While these correlations are expected, they emphasize
the influence of hubs to the overall communication power. Between the slave count and
the average sending net, as well as between the island count and the largest sending net,
a strong (> 0.8) anti-correlation can be observed. All of this values are explainable by
the definitions of these features in Section 4.1.2.2.
The focus of this evaluation was to gather insights about the correlation between swarm
efficiency and topology features. Looking at the first column, it can be seen that some
feature, while not dominating the efficiency completely, influence the outcome of a sim-
ulation. Namely the amount of bidirectional connections, the hub count and the reach
of the bidirectional network provide a moderate (0.5) benefit for efficiency, while island
and slave count have a weak (−0.2) negative influence.
Looking back at Section 4.1.5.3 the experiment showed that from a certain point addi-
tional agents per bond do not provide any benefits, instead leading to clumping and a
slight degeneration in efficiency. To evaluate the influence of the agent per bond param-
eter further the post processing pipeline was extended again to incorporate this meta
information. Due to the fact that the parameter was added to the meta information
at a later build version some clusters were unfit to be included in this evaluation. Af-
ter merging the parameter into the data set around 7500 unique runs remained. The
evaluation of correlation between agent per bond count and efficiency can be found
in Figure A.9. Instead of calculating the overall correlation, clusters were grouped by
their agent per bond parameter, providing more granular results. The table shows the
correlation for different ranges withing the data set. The first entry denotes, that when
looking at values with an agent per bond of 1 and 2 yields a correlation value of 0.07.
The next row then describes ranges of length 3 (e.g. first entry calculates correlation
of the efficiency and agents per bond count with the values 1,2 and 3). Two findings
stand out: looking at the lowest row, where correlations for a spectrum of length 14
are presented the values appear all to be negative and there is a decent hit in values,

4.2. Results 45

which is migrating through the table. The runs used in the data set used different kill
counts, and the extreme values (high as well as low) tend to be multiples of the common
used kill values. Therefore the data was normalized with the kill count, by generating
a coverage parameter as coverage(agentsPerBond,KillCount) = agentsPerBond

KillCount
. This

allows the value to be normalized between different runs and express how much ’surplus’
over the required values was given. A coverage of 2 would mean, that there are twice as
much agents in a single bond as are required to kill one target.
Figure A.10 visualizes the aforementioned streaks and correctly relate them to the kill
count. The first negative correlation appears when the system overshoots the simple
coverage of 1, which means having precisely enough agents in a bond to kill the target.
Especially when looking at rows in the middle of the graph, with section length between
4 and 7 the changes between positive and negative correlation are well visible.

46 4. Evaluation

5. Conclusion

5.1 Conclusion

This thesis conceptualizes mechanics to control and coordinate a swarm of heterogeneous
agents. Agents have to navigate a dynamic environment, filled with targets. They need to
kill all targets by moving a certain number of agents close to them. This work has explored
effects of different task acceptance pattern and the influence of team compositions and
coordination by bonding mechanics. While threshold based task acceptance had proven
to have no positive effect towards swarm performance, bonding resulted in interesting
behavior changes. With simple, local and decentralized mechanics agents are able to
distribute and evaluate information. Bonds can sustain a swarm and keep it operating
even when larger parts of the swarm malfunction. How does this finding translate to
the questions posed in Section 1.2?
Section 4.1.5.3 has shown that bonding mechanics can preserve a swarm’s activity
level, even when a larger number of agents fail. In this test case failure meant that
agents did not only grow silent, they produced false information, actively disrupting
the swarms operation. This should cover the three kinds of failures from [DZZS04]:
Robot malfunction and communication failure and even robot death only inhibit swarm
performance, as the remaining agents need to cover for more tasks. It can be assumed
that this mechanics improves swarm performance with reduced sensor set, as well as
swarm activity in disastrous situations, where drone failure may be immanent.
Specific tests need to be run for such real world scenarios, because optimal bonding
parameters hugely depend on the environment, number of senses and target robustness.
Experiments have shown that a prior information or extensive testing is required to
find parameters which lead to maximal performance. Depending on the swarm size and
desired application, bonding mechanics can be switched to a deterministic approach,
which allows for a greater control over the underlying topology, requiring a increased
planning effort beforehand.
Application in real world situations after catastrophes longs for more considerations. In

48 5. Conclusion

the most cases search spaces are huge and the current system produces a decent amount
of backtracking for agents. While this does not significantly decrease agents performance
in this work because of generally confined areas, it will prove to be a problem in large
open spaces. This has been highlighted in the Legion scenario, which put a focus on the
deficits created by backtracking. To counter this problem the bonding system needs be
location aware and to consider distance between agents and targets as a cost to factor
in.
To consider the application in games these work can be extended easily to provide a
robust artificial simulation of adversaries. Especially the momentary popular survival
games1 can hugely benefit from mechanics proposed in this thesis. In this scenario agents
are not expected to behave as efficient as possible, instead it is desirable to implement a
faulty behavior, to allow for players countermeasures. A system based on this work, can
implement a local swarming behavior, connecting groups of agents to increase challenges
and to produce emergent behavior. This means a behavior of the enemy agent which is
not expected by players. A scenario that springs to mind are groups of enemies following
a trail of odor, connecting to another group and surrounding the player in between. On
the same time players can abuse the system by creating falsified information as baits to
lure enemies out of critical zones. A system of agents which is simulated over a decent
amount of time would have a distinct tendency withing the bonds, basically following
decent leaders. Players can eliminate these leaders to disrupt agents organization and
forcing a reconsideration of their strategy.
All this can be implemented in a high-performance way, as bonding mechanics would act
as some high level coordination, letting usual logic2 handle the ’close range interaction’,
unburdening the calculations. Therefore bonding and swarm topology can be updated
asynchronously with a reduced frequency.
Looking at other AI solution used in game development with Unity the only comparable
candidate is the RainAI system [Riv16]. While this system also allows a perception
driven system it is only capable of running pre-definded state machines, with no way of
producing dynamically emerged behavior.
This work has focused on three senses to create a diverse and heterogeneous swarm.
During experiments a discrepancy between the influence of the senses has surfaced.
Visual inputs are often dominating other senses, as provided information are usually
more accurate and have a higher availability. This has been manually balanced out in
certain scenarios and by the implementation of diverse modifiers in the scene, but a
more diverse and balanced sense profile is expected to provide more complex behaviors.
Especially in games this is of great interest, as it is possible to equip agents with
non-classical senses. A quick example: Agents can be able to track players based on
the number of a’s in the players name. Such considerations will lead to more diverse
behaviors and enable new ways to ’play’ the system.
The concept of bonding has proven to be complex system, looking at the implementation,

130 % of the top ten played steam games, and 20 % of the top 100 games fall into this category.
When factoring in shooter games with grouped, AI-controlled enemies 42 % of the top 100 are covered
[Val16] Accessed: 08.08.16

2A* pathfinding, ray casting and NavMesh navigation

5.2. Open Problems 49

as well as the balancing. This is partly against the premise of simple mechanics. In
Section 4.2.2 some of the underlying connections were analyzed, but degree of dependency
within the system is tremendous. The separation of the swarm via the Agents Per Bond
parameter function as one of the major adjusting screws, influencing nearly every other
aspect of the behavior. Different applications have been conceptualized and tested, but
still every case needs a throughout analysis and prior testing to generate an efficient
swarm in a deterministic way. With theses parameter in place the mechanics fulfill their
expectation of providing interesting and emergent behavior patterns, guiding the swarm
between targets and forming ad-hoc strategies to solve the given task.

5.2 Open Problems

As stated already in the results fine tuning the test environment is still a huge and
crucial task. The size of the given task and if it can be completed within the time frame,
has a huge effect on the swarm’s overall efficiency. Decoupling these factors can help to
ease this problem, for example by introducing other metrics to measure performance,
more fit for the particular field of application.
While Unity 3D provides a rich toolbox to quickly prototype and iterate implementations
it also enforces a strong coupling of the components, within themselves and also with
the IDE. Especially at the evaluation stage of this work some quirks of Unity 3D became
quite prevalent. The mayor problems with Unity 3D were the tight connection between
components and Unity 3D internal events. To make use of the editors rich feature set
behaviors need to follow Unity 3D’s event function pattern3, loosing the benefit of C#’s
loose-coupled event system. As also stated in [Pen15] Unity 3D does not make any
guarantee about call hierarchy within one event hook. So there is no defined order in
which components will get their Update() function called. This leads to problems of
synchronization. In this implementation the problem was solved by inter-meshing the
Update and LateUpdate function. The pseudo-code shows how the seeking agent groups
all of its sequential functionality into two frames, overlapping the logic to make sure all
agents have finished a step before starting the next one. By moving away from Unity
3D or by implementing own call hierarchies this problem might be solved in a more
efficient and elegant way.
On problem left to evaluate is the handling of missing communication: This work assumes
that agents are always able to communicate their information over the bond channels.
Cutting of this communication channel temporarily, or only allowing a closer range of
communication, will lead to interesting changes in the pattern of group formation. This
extends to other failure (see [DZZS04]) like sensor systems and/or movement failure.
Restricting the swarm in such a way will lead to more insights in regards of robustness
and validate the possibilities for real world application.
The implemented system already allows agents to channel information through a near
field communication. But to isolate features of bonding mechanics this system was
deactivated during test runs. It’s up for further test to see if a local-communication-only

3https://docs.unity3d.com/Manual/EventFunctions.html, accessed 04.08.2016

50 5. Conclusion

system can maintain the information flow required for this task and how team allocation
will be affected by it.

5.3 Future Work

Based on the findings of this work there are interesting directions left to explore.
The agents simulated in this work possessed no meta information about the task they
need to fulfill. Changing this can allow the swarm to form more precise strategies,
especially when used for artificial intelligence in computer games. With understanding
about how many agents are required to complete a task the swarm can adopt the
three components from [Eng07] (Social, Cognitive and Inertia velocity) to reflect this
requirements. Given the game from this work, an agent which is alone will mostly rely
on his social component to move closer to bonded agents. Agents which are close to
more agents than required focus on their own cognitive velocity, to move away from the
blob. Groups around the right count try to stick together.
Another improvement to the agility of the swarm would be some kind of short term
memory. A common way for agents to waste their time is getting stuck at targets,
without enough agents around them to actually remove it. With a short memory system
agents can mark such tasks as unavailable for now and move on, to come back later when
the situation may have changed. This consideration is most interesting when dealing
with the real world application, where efficiency is crucial. However it is hard to clearly
define condition to evaluate the state of a target (’Have at least X agents close to it’ in
this works example).
[DZKS06] and [SABS05] name the concept of market based task allocation. This systems
allows human to feed high level task into the system and let the agents negotiate the
strategy among themselves [SABS05]. Agents use a biding system to buy tasks they rate
as rewarding, intuitively forming teams and splitting tasks. This market based approach
would fit well with systems conceptualized in this work, as it is allowing for low level
task composition and dynamic environments [DZKS06]. The complex task here is the
mapping between the global high level task, and the low level tasks executed by the
robots [DZKS06]. A well expressed mapping is required for the robots to prioritize they
biding and allocate the right tasks [SABS05] and also to efficiently decompose the mayor
goal [PL05]. If such a mapping is present this system could greatly benefit from a market
based allocation scheme, as bonds can quickly be com- and deposed maximizing agents
utilization. When locked on a target, but short of some agents, groups can lower the
fee of their bonds task, attracting bonds into it. Large groups however could increase
charges, making agents pursue other tasks instead.
As another way to allocate teams and to provide a diverse variety withing the the swarm
[Mor15] implements evolutionary systems (see [PdJ04]) to develop ranking schemes for
multi-objective multi-agent tasks. On the one hand, this can be used to control the
bonding process, allowing agents to develop a bonding strategy which is most beneficial
for the current situation. On the other hand it allows for evolution of the agents itself.
Using a skill successfully can enforce training of this skill, shifting features of the agent
from other senses. Especially in computer games it is useable to train distinct groups of

5.3. Future Work 51

agents, performing well in certain game situations. In other scenarios this mechanic can
be used to train agents, if features of the scenario are available beforehand.

This ideas extend on the mechanics conceptualized in this work, they add another layer
of emergence or push the swarm to be even more efficient. For gaming the current state
of this work provide an advanced implementation, which extend swarm based AI beyond
whats usual as of today.

52 5. Conclusion

A. Appendix

A.1 Scenarios

This chapter describes the scenarios developed during this work. The scenarios are
grouped in simple and complex scenarios. The legend (Figure A.1) shows different types
of starting points, which define where agents start in the scenario. Advanced elements
are described directly together with the scenario.

Figure A.1: Legend for scenario maps

Common elements in each scenario are
objects to create the swarm on start-up.
Green icons denote spawn positions of hid-
ing agents, purple icons the spawn location
of seeking agents. A circle means that the
agent on this position was placed manually,
therefore there will always be one agent at
this spot. A triangle denotes a spawn point,
so when the run starts the number of agents
will be distributed among all available spawn
points.

Figure A.2: Scenario: Legend

54 A. Appendix

(S1) Arena: Very simple arena, which
spawns seeking agents at five spawn-points
in the center. Sixteen hiding agents are dis-
tributed on a circle around the seekers. This
arena is used in most of the simple tests, as it
allows the agents to focus on target selection
and information exchange, without being in-
fluenced by environmental effects too much.

(S2) Arena Double: Similar to (S1),
in this version the number of hiding agents is
doubled, yet they remain distributed evenly
on a circle around the center. Arena Dou-
ble is used instead of Arena (S1) later on,
to provide more diverse results due to the
higher spread of possible targets.

Figure A.3: Simple Scenarios

A.1. Scenarios 55

(C1) Forrest: This arena contains a
loot of sight and movement blocking obsta-
cles, colored red in the map. Agents are
forced to navigate around them and often
loose visual tracking of targets.

(C2) FourSeasons: In this scenario,
based on S1, the whole arena is split into
four chunks. Each colored chunk completely
negates the signal ob the corresponding type,
making agents invisible (red), muting their
sounds (blue) and killing off their smell
(green)

(C3) Legion: To increase the time pres-
sure and place a higher penalty on back-
tracking 140 agents were placed in this scene.
Swarms need to split and work in an efficient
way to reduce timely overhead by traveling
back and forth.

(C4) Maze In the maze two groups of
seeking agents are created. One is able to
notice the targets, but not able to reach it.
The other group can pass the maze and reach
the targets, but does not know about them.
Bonding is required to fulfill the goal.

Figure A.4: Complex Scenarios

56 A. Appendix

Figure A.5: Chances of healthy bonds with byzantine swarms, depending of agents per
bond and byzantine agent count

A.1. Scenarios 57

Figure A.6: Evaluation of bond trust when reinforcing

58 A. Appendix

Figure A.7: Evaluation of bond trust when demoting

A.1. Scenarios 59

Figure A.8: Analysis of correlation between efficiency and different topology parameters

60 A. Appendix

Figure A.9: Analysis of correlation between agent per bond parameter and efficiency, for
different ranges of parameters

A.1. Scenarios 61

Figure A.10: Normalized correlation between bond size and efficiency

62 A. Appendix

Bibliography

[AME04] William Agassounon, Alcherio Martinoli, and Kjerstin Easton. Macroscopic
modeling of aggregation experiments using embodied agents in teams of
constant and time-varying sizes. Autonomous Robots, 17(2):163–192, 2004.
(cited on Page 5)

[BPH10] M. Bramer, M. Petridis, and A. Hopgood. Research and Development in
Intelligent Systems XXVII: Incorporating Applications and Innovations in
Intelligent Systems XVIII Proceedings of AI-2010, The Thirtieth SGAI Inter-
national Conference on Innovative Techniques and Applications of Artificial
Intelligence. Applications and innovations in intelligent systems. Springer
London, 2010. (cited on Page 2)

[BT00] E. Bonabeau and G. Theraulaz. Swarm smarts. Scientific American,
282(3):72–79, March 2000. (cited on Page 1)

[CD00] Anthony Carlisle and Gerry Dozier. Adapting particle swarm optimiza-
tion to dynamic environments. In International conference on artificial
intelligence., volume 1, 2000. (cited on Page 3 and 5)

[Cho10] Nian Shong Chok. Pearson’s versus Spearman’s and Kendall’s correlation
coefficients for continuous data. PhD thesis, University of Pittsburgh, 2010.
(cited on Page 44)

[CWM04] Tianguang Chu, Long Wang, and Shumei Mu. Collective behavior analysis of
an anisotropic swarm model. In Proc. of the 16th International Symposium
on Mathematical Theory of Networks and Systems, 2004. (cited on Page 3, 5,

9, and 10)

[dSC09] Leandro dos Santos Coelho. Multi-Objective Swarm Intelligent Systems:
Theory & Experiences. Studies in Computational Intelligence. Springer
Berlin Heidelberg, 2009. (cited on Page 19)

[DZKS06] M Bernardine Dias, Robert Zlot, Nidhi Kalra, and Anthony Stentz. Market-
based multirobot coordination: A survey and analysis. Proceedings of the
IEEE, 94(7):1257–1270, 2006. (cited on Page 5, 6, 13, and 50)

64 Bibliography

[DZZS04] M Bernardine Dias, Marc Zinck, Robert Zlot, and Anthony Stentz. Robust
multirobot coordination in dynamic environments. In Robotics and Automa-
tion, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,
volume 4, pages 3435–3442. IEEE, 2004. (cited on Page 39, 47, and 49)

[Eng07] Andries P Engelbrecht. Computational intelligence: an introduction. John
Wiley & Sons, 2007. (cited on Page vii, 1, 3, 4, 5, 10, and 50)

[Gd05] Matthew E. Gaston and Marie desJardins. Agent-organized networks for
dynamic team formation. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’05,
pages 230–237, New York, NY, USA, 2005. ACM. (cited on Page 5, 6, and 41)

[GD08] Matthew E. Gaston and Marie DesJardins. The effect of network struc-
ture on dynamic team formation in multi-agent systems. Computational
Intelligence, 24(2):122–157, 2008. (cited on Page 5 and 6)

[GM04] Brian P. Gerkey and Maja J. Mataric. A formal analysis and taxonomy
of task allocation in multi-robot systems. The International Journal of
Robotics Research, 23(9):939–954, 2004. (cited on Page 5 and 8)

[Gut08] Christian Guttmann. Making Allocations Collectively: Iterative Group De-
cision Making under Uncertainty, pages 73–85. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008. (cited on Page 5)

[KB00] Michael J.B. Krieger and Jean-Bernard Billeter. The call of duty: Self-
organised task allocation in a population of up to twelve mobile robots,
2000. (cited on Page 4, 5, 6, and 13)

[Ken99] J. Kennedy. Small worlds and mega-minds: effects of neighborhood topology
on particle swarm performance. In Evolutionary Computation, 1999. CEC
99. Proceedings of the 1999 Congress on, volume 3, page 1938 Vol. 3, 1999.
(cited on Page 14, 23, 25, 28, and 43)

[KNZ10] Leila Khalouzadeh, Naser Nematbakshs, and Kamran Zamanifar. A decen-
tralized coalition formation algorithm among homogeneous agents. Journal
of Theoretical & Applied Information Technology, 22(1), 2010. (cited on

Page 10, 41, and 43)

[LE08] W.F. Leong and Oklahoma State University. Electrical Engineering. Multi-
objective Particle Swarm Optimization: Integration of Dynamic Population
and Multiple-swarm Concepts and Constraint Handling. Oklahoma State
University, 2008. (cited on Page 19)

[LMAM04] Ling Li, Alcherio Martinoli, and Yaser S. Abu-Mostafa. Learning and mea-
suring specialization in collaborative swarm systems. Adaptive Behavior,
12(3-4):199–212, 2004. (cited on Page 5, 9, and 28)

Bibliography 65

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gener-
als problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382–401, 1982. (cited on Page 26)

[LV12] Somchaya Liemhetcharat and Manuela Veloso. Modeling and learning syn-
ergy for team formation with heterogeneous agents. In Proceedings of
the 11th International Conference on Autonomous Agents and Multiagent
Systems - Volume 1, AAMAS ’12, pages 365–374, Richland, SC, 2012. In-
ternational Foundation for Autonomous Agents and Multiagent Systems.
(cited on Page 5)

[MDJ07] David Miller, Prithviraj Dasgupta, and Timothy Judkins. Distributed Task
Selection in Multi-agent Based Swarms Using Heuristic Strategies, pages
158–172. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. (cited on

Page 5)

[Men04] Rui Mendes. Population topologies and their influence in particle swarm
performance. PhD thesis, Citeseer, 2004. (cited on Page 43)

[MJT13] Leandro Soriano Marcolino, Albert Xin Jiang, and Milind Tambe. Multi-
agent team formation: Diversity beats strength? In Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence, IJ-
CAI ’13, pages 279–285. AAAI Press, 2013. (cited on Page 5, 30, 35, and 41)

[Mor15] Ruby Louisa Viktoria Moritz. Cooperation in self-organized heterogeneous
swarms. Master’s thesis, University Leipzig, 2015. (cited on Page 1, 5, 6, 15,

28, 43, and 50)

[MT04] S. Mostaghim and J. Teich. Covering pareto-optimal fronts by subswarms in
multi-objective particle swarm optimization. In Evolutionary Computation,
2004. CEC2004. Congress on, volume 2, pages 1404–1411 Vol.2, June 2004.
(cited on Page 19)

[New03] Mark EJ Newman. The structure and function of complex networks. SIAM
review, 45(2):167–256, 2003. (cited on Page 6)

[NG99] Dhruba Naug and Raghavendra Gadagkar. Flexible division of labor medi-
ated by social interactions in an insect colony - a simulation model. Journal
of Theoretical Biology, 197(1):123–133, 1999. (cited on Page 4)

[PdJ04] J Pieter and Edwin D de Jong. Evolutionary multi-agent systems. In
International Conference on Parallel Problem Solving from Nature, pages
872–881. Springer, 2004. (cited on Page 50)

[Pen15] Aleksei Penzentcev. Architecture and implementation of the system for
serious games in unity 3d, 2015. (cited on Page 17, 26, and 49)

66 Bibliography

[PL05] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of
the art. Autonomous agents and multi-agent systems, 11(3):387–434, 2005.
(cited on Page 50)

[Riv16] RivalTheory. Rain ai features. URL:
http://legacy.rivaltheory.com/rain/features/, 2016. accessed 08.08.2016.
(cited on Page 48)

[Rob92] Gene E Robinson. Regulation of division of labor in insect societies. Annual
review of entomology, 37(1):637–665, 1992. (cited on Page 4 and 5)

[SABS05] Jeff Schneider, David Apfelbaum, Drew Bagnell, and Reid Simmons. Learn-
ing opportunity costs in multi-robot market based planners. In Proceedings
of the 2005 IEEE International Conference on Robotics and Automation,
pages 1151–1156. IEEE, 2005. (cited on Page 5 and 50)

[SK98] Onn Shehory and Sarit Kraus. Methods for task allocation via agent coali-
tion formation. Artif. Intell., 101(1-2):165–200, May 1998. (cited on Page 5)

[TSP+06] J. Gregory Trafton, Alan C. Schultz, Dennis Perznowski, Magdalena D.
Bugajska, William Adams, Nicholas L. Cassimatis, and Derek P. Brock.
Children and robots learning to play hide and seek. In Proceedings of the
1st ACM SIGCHI/SIGART Conference on Human-robot Interaction, HRI
’06, pages 242–249, New York, NY, USA, 2006. ACM. (cited on Page 5 and 9)

[Uni16] UnityTechnologies. Gameobjects in unity3d. URL:
http://docs.unity3d.com/Manual/GameObjects.html, 2016. accessed
20.07.2016. (cited on Page 17)

[Val16] ValveCorporation. Top games by current player count. URL:
http://store.steampowered.com/stats/, 2016. accessed 08.08.2016. (cited

on Page 48)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 15.08.2016

	Contents
	List of Figures and Tables
	1 Introduction
	1.1 Introduction
	1.2 Motivation
	1.3 Structure of the Thesis

	2 Background
	2.1 Theory
	2.1.1 Swarm Function
	2.1.2 Division of labor

	2.2 Related Work

	3 Orchestrating a swarm
	3.1 Terms and definitions
	3.1.1 Agent
	3.1.2 Swarm
	3.1.3 Senses
	3.1.4 Signal
	3.1.5 Scenario
	3.1.6 Task
	3.1.7 Bond

	3.2 Concept
	3.3 Overview
	3.4 Task acceptance
	3.5 Bonding

	4 Evaluation
	4.1 Experiment
	4.1.1 Test framework
	4.1.2 Metrics
	4.1.3 Swarms
	4.1.4 Scenarios
	4.1.5 Parameters
	4.1.6 Further experiments

	4.2 Results
	4.2.1 Influence of bonding parameters
	4.2.2 Influence of topology

	5 Conclusion
	5.1 Conclusion
	5.2 Open Problems
	5.3 Future Work

	A Appendix
	A.1 Scenarios

	Bibliography

