

Kevin Kellermann

Multi-Objective Optimization of Multi-Agent Path

Planning using a Co-evolutionary Genetic Algorithm

Multi-Objective Optimization of Multi-Agent Path

Planning using a Co-evolutionary Genetic Algorithm

Master Thesis

Author

- Kevin Kellermann -

December 12, 2020

Professor: Prof. Dr. Sanaz Mostaghim, Chair of Computational Intelligence

Advisor: Sebastian Mai

Advisor: Jens Weise

Kevin Kellermann: Multi-Objective Optimization of Multi-Agent Path Planning using a Co-

evolutionary Genetic Algorithm
Otto-von-Guericke-Universität

Magdeburg, 2020.

I

Abstract

Multi Agent Pathfinding (MAPF) is used in many real world and virtual applications. In recent papers,

approaches for solving the MAPF problem multi-objectively (MOMAPF) with genetic algorithms

were formulated. This work follows up on this idea and presents a co-evolutionary approach for

MOMAPF. The subpopulations are optimized by their own objectives, which are linked to the

objectives of the solution for the whole problem. Two variants of the algorithm are implemented: One

which optimizes the objectives of the subpopulations multi-objectively (MO SACCGA) and one

which optimizes the objectives of the subpopulations with a weighted sum approach (SO SACCGA).

These variants are compared to each other to get empirical information about how good they work

for MOMAPF and MAPF. The metrics used for comparison are the GD and IGD and the calculation

of the weighted sum by using the same weights as for optimizing the subpopulations in the SO

SACCGA. The MO SACCGA solves nearly every problem better than SO SACCGA in terms of GD

and IGD. The MO SACCGA solves most problems better in terms of the calculation of the weighted

sum. The reasons for these results are most likely that the SO SACCGA converges away from pareto

optimal solutions, which do not fit the weighted sum and the SO SACCGA has the tendency to fall

into local optima, which the MO SACCGA can avoid. These results gives insight on how MOMAPF

can be solved using co-evolution and how well weighted sum approaches do compared to multi-

objective approaches in evolving the subpopulation in MAPF with co-evolutionary algorithms.

II

III

Contents

List of Figures .. V

List of Tables .. VII

Acronyms .. VIII

1 Introduction ... 1

1.1 Problem-description .. 3

2 Theoretical Background ... 5

2.1 Multi Agent Pathfinding (MAPF) .. 5

2.2 Cooperative Coevolution .. 6

3 State of the Art .. 8

3.1 Overview classic MAPF Solver ... 8

3.2 Multi Robot Path planning using cooperative co-evolutionary Algorithms 9

3.3 Multi-objective Optimization of MAPF with Genetic Algorithm.. 12

3.4 Single-objective Optimization in Comparison to Multi-objective Optimization in Pathfinding

 .. 13

3.5 Summary of the state of the Art and discussion ... 14

4 Materials and Methods ... 16

4.1 Architecture of the algorithm: .. 16

4.2 Algorithm Overview... 17

4.3 In Depth Explanation of the Algorithm Operators and Implementation 25

4.3.1 Programming Language and DEAP-framework ... 25

4.3.2 Representation of Individuals ... 25

4.3.3 Converting Waypoints to consecutive Vertices .. 26

4.3.4 Input data and Preparation: ... 28

4.3.5 Initialization .. 29

4.3.6 SA Collisionlist ... 29

4.3.7 SA Evaluation Collision Count ... 30

4.3.8 SA Selection .. 31

4.3.9 SA Crossover Operator ... 31

4.3.10 SA Mutation Operators ... 33

4.3.11 SA Evaluation ... 36

4.3.12 SA SELECTION Next Gen and Representatives ... 36

4.3.13 SA Collisionlist update ... 36

4.3.14 MA Evaluation Generation One ... 37

4.3.15 MA handling Representatives swaps and saving old representatives 39

4.3.16 MA Selection .. 40

4.3.17 MA Crossover ... 40

IV

4.3.18 MA Mutation... 40

4.3.19 MA Environmental Selection .. 40

4.3.20 MA Deleting Saved Representatives .. 41

4.3.21 Saving Data, Termination Criteria and Data Output ... 41

4.4 Summary and discussion .. 41

5 Experiments and Evaluation .. 44

5.1 Benchmark.. 44

5.2 Parametrization ... 46

5.3 Comparison of the Single-objective Slave algorithm and the Multi-objective Slave algorithm

 .. 53

5.3.1 Further analyzation of the SO SACCGA and MO SACCGA results: Swapping Conflict

Calculation ... 62

5.3.2 Further analyzation of the SO SACCGA and MO SACCGA results: Local Optima 71

5.4 Summary of the Experiments and discussion ... 73

6 Conclusion and Future Work .. 76

6.1 Conclusion .. 76

6.2 Future Work ... 77

6.2.1 Research topics in MAPF with genetic algorithms: .. 77

6.2.2 Research topics in MAPF with co-evolution: ... 78

6.2.3 Research topics in multi-objective MAPF .. 78

Appendix ... 79

Section A: Input Parameter .. 80

Section B Parameter values .. 82

Section C Win Lose Tie Table ... 83

References ... 84

V

List of Figures

Figure 1: MAPF conflicts .. 6

Figure 2: Overview of the algorithm architecture .. 18

Figure 3: Sequence of slave algorithm functions of the SO SA and MO SA 19

Figure 4: Sequence of master algorithm functions .. 23

Figure 5: Interaction between waypoints and consecutive vertices ... 26

Figure 6: Representation of a MA individual .. 26

Figure 7: Example for the probability of the branches .. 27

Figure 8: A* add extra waypoints example ... 28

Figure 9: Crossover variant one ... 32

Figure 10: Crossover variant two - nearest point ... 32

Figure 11: Deletion value example. ... 33

Figure 12: Mutation Operator Gene Deletion .. 34

Figure 13: Mutation in Shift Neighborhood example .. 34

Figure 14: Mutation Insert Random Waypoint example ... 35

Figure 15: Handling of new representatives .. 39

Figure 16: Mapf.info environments [37].. 44

Figure 17: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the GD values of the

SO SACCGA and the MO SACCGA .. 55

Figure 18: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the IGD values of

the SO SACCGA and the MO SACCGA .. 56

Figure 19: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the weighted sum

values of the SO SACCGA and the MO SACCGA... 57

Figure 20: Boxplot-comparison of weighted sum values (minimization) of SO SACCGA and MO

SACCGA for the problem of Maze-32-32-2 Scene 1 and 2 .. 59

Figure 21: Maze-32-32-4, scenario 1, agent-count 2: Paths with Swapping Collision 64

Figure 22: Maze-32-32-4, scenario 1, agent-count 2: Paths to avoid Swapping Collision................ 64

Figure 23:Maze-32-32-4, scenario 1, agent-count 2:Mandatory vertices for fastest path both agents

 .. 64

Figure 24:Maze-32-32-4, scenario 1, agent-count 2: Agent Green path for pareto optimal solution 65

Figure 25:Maze-32-32-4, scenario 1, agent-count 2: Agent Blue path for pareto optimal solution

with avoiding.. 65

Figure 26: Maze-32-32-4, scenario 1, agent-count 2: Agent Blue path for pareto optimal solution

without avoiding .. 65

VI

Figure 27: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the GD values of the

SO SACCGA and the MO SACCGA with precise swapping conflict calculation 69

Figure 28: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the IGD values of

the SO SACCGA and the MO SACCGA with precise swapping conflict calculation 70

Figure 29: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the weighted sum

values of the SO SACCGA and the MO SACCGA with precise swapping conflict calculation 70

Figure 30: Paths of representatives around the conflict for the “maze-32-32-4 scene 1 number of

agents 2” –problem .. 72

VII

List of Tables

Table 1:Empty Maps .. 45

Table 2: Random Maps .. 45

Table 3: Maze Maps ... 45

Table 4: Room Maps .. 45

Table 5: Test problems for parametrization. .. 47

Table 6: Parametrization Ranking table Basic setting ... 49

Table 7: Parametrization Ranking table MO SACCGA .. 49

Table 8: Parametrization Ranking table SO SACCGA ... 50

Table 9: Ranking tables Icon Legend .. 50

Table 10: Number of agents, at which the algorithm results get worse ... 60

Table 11: Problems, which show high drops in performance categorized by how many versions they

affect and if the pareto front consists of more than one solution before and after the drop 61

Table 12: Using the new swapping calculation for the problems of the category “high drops in

performance both version, by transition from one solution in pareto front to more solutions” 67

Table 13: Using the new swapping calculation for the problems of the category “high drops in

performance for one version (SO SACCGA), by transition from one solution in pareto front to more

solutions” ... 68

Table 14:Parameter values ... 82

Table 15: Extra waypoints dataset values .. 82

Table 16: Win-Lose-Tie-Table of the comparison of the SO SACCGA and the MO SACCGA 83

VIII

Acronyms

MAPF Multi-agent Path Finding

MOMAPF Multi-objective Multi-agent Path Finding

CCEA Cooperative Co-evolutionary Algorithm

SA Slave algorithm

MO Master Algorithm

SO SA Single-objective Slave algorithm

MO SA Multi-objective Slave algorithm

SO SACCGA Cooperative Co-evolutionary Genetic Algortihm with Single-objective Slave

algorithm

MO SACCGA Cooperative Co-evolutionary Genetic Algortihm with Multi-objective Slave

 algorithm

GA Genetic Algorithm

1 Introduction

1

1 Introduction

The Multi agent pathfinding (MAPF) problem is an important research topic. In MAPF path plans

for multiple agents are created, which the agents can follow to get to their target destination free of

conflict. The usage of Multi agent pathfinding takes place in robot [38] and vehicle coordination [9]

automated warehouses [22] and in other applications.

MAPF belongs to the NP-hard problems [46]. This means that it makes sense to apply heuristics and

metaheuristics to this problem, to create good but non-optimal solutions in reasonable time. Many

cooperative co-evolutionary approaches can be found among these metaheuristics in literature, which

apparently lead to good results [5,18,32,33]. Cooperative co-evolution intended that individuals from

subpopulations should be evaluated on the basis of the best solution to the whole problem [31].

However, in some of the approaches the individuals of the subpopulations were evaluated by how

well they solve their part of the problem according some objectives [32,33].

In literature, several objectives for MAPF can be found. The most used objectives, makespan and

sum of costs, are in conflict with each other [38,40]. Therefore, it can be useful to solve the problem

multi-objectively to create a set of pareto optimal solutions of which the decision maker can pick the

one best suiting their preferences. In Weise et al. [42] a genetic algorithm was implemented and

tested, which solved several MAPF problems multi-objectively by optimizing the objectives

makespan, sum of costs and overlaps. Optimizing the overlaps objective is supposed to minimize the

collisions. While in the classic MAPF collisions are forbidden, Weise et al. argued that, since it was

shown in Oliveira et al. [27] that conflict free multi-agent plans in robotics can lead to conflicts

anyways, which have to be solved during the execution, conflicts in the multi-agent plan should be

accepted and should be weighed against the other objectives by the decision maker [42].

In this thesis, a cooperative co-evolutionary algorithm is used to solve the MAPF problem multi-

objectively. The objectives the algorithm optimizes are makespan, sum of costs and overlaps. The

algorithm uses different objectives for the subpopulations, which are linked to the objectives of the

whole solution. Two variants of the algorithm are implemented: One, which solves the subpopulations

with weighted sums and one, which solves the subpopulations multi-objectively. This is done in order

to examine the following theses:

 Thesis 1: MAPF multi-objective optimization with co-evolution works better if the

subpopulations of the agents are optimized multi-objectively than if the subpopulations are

optimized single-objectively with a weighted sum approach.

 Thesis 2: Using a co-evolutionary approach, if the decision maker weighs the objectives of

the Multi-objective MAPF problem with the same weights the objectives of the

1 Introduction

2

subpopulations of the agents are weighted using a weighted sum approach, then this weighted

sum approach works better than optimizing the objectives of the subpopulations of the agents

multi-objectively.

The findings of the first thesis shall help developers and researchers to conceptualize co-evolutionary

approaches for Multi-agent MAPF better.

The second thesis examines if weighted sum approaches are suitable to evolve subpopulations in

MAPF. If the weights used to evaluate the subpopulations do not lead to optimize the objectives of

the whole solution by the same weights as well as other approaches, then the other approaches should

be used.

The goal of this thesis is to provide concepts for two cooperative co-evolutionary multi-objective

MAPF solver: One which solves the subpopulations multi-objectively and one which solves the

subpopulations with a weighted sum approach. Additionally, these algorithms should be implemented

and compared against each other, using the metrics GD, IGD and by calculating the weighted sums.

The weights for the weighted sums used should be the same as the ones by which the objectives of

the subpopulations of the weighted sum approach are optimized. Based on the test results a statement

should be given whether the experiments approve the contents of the thesis or not. Since there are

infinitely many ways to conceptualize the algorithms, the thesis can not be proven or disproven for

every concept of a co-evolutionary algorithm.

In chapter 2, the basics to cooperative co-evolution are explained. In chapter 3, the State of the art is

described. In chapter 3.1, MAPF solvers are classified and a few of them are explained as examples.

In chapter 3.2, all co-evolutionary approaches and in chapter 3.3 all multi-objective MAPF solver are

summarized. In chapter 3.4, the findings of the comparison of multi-objectively and single-

objectively solving single-agent pathfinding in Ahmed and Deb [1] are described. In chapter 4, the

two variants of the cooperative co-evolutionary multi-objective MAPF solver are described and

explained. In chapter 5, the two variants of the co-evolutionary approach are compared to each other

in regards to the thesis described above. The results are analyzed to explore the limitations of the co-

evolutionary approach and to find the reasons for the results. With the findings in the experiments a

statement about the thesis is given. Lastly, the findings of this thesis are summarized and

recommendation for future work is given in chapter 6.

1 Introduction

3

1.1 Problem-description

Multiple variations of the MAPF problem exist. The MAPF problem, which is supposed to be solved

by the co-evolutionary algorithm of this thesis, is similar to the definition of the classical MAPF

problem explained in chapter 2.1.

The MAPF problem with k agents has the tuple (G, s, t) as input. G = (V, E) is an undirected graph,

s:[1, 2,. . . k-1, k] → V assigns an agent to a starting vertex and t : [1,2 . . . k-1, k] → V assigns an

agent to a target vertex. As simplification, time is discrete. At each time step, an agent is in a vertex

and takes an action. The action a(v), an agent can take is to switch to an adjacent vertex a (v) = v’-

with v ∈ V . 𝜋𝑖 is a single agent plan and includes all actions that move an agent i from the starting

point s (i) to the end point t (i). 𝜋𝑖 [x] is the vertex the agent i is in after x time steps/ x actions. One

solution 𝜋={𝜋1... 𝜋𝑘} to the entire MAPF problem is a set of k single-agent plans. Each single agent

plan relates to one agent. The vertices are assumed to be either freely passable terrain or obstacles.

Agents are not allowed to move into an obstacle. Additionally, a common simplification is used:

Agents disappear after reaching the target vertex. A vertex is considered to have eight neighbors, with

the simplification that each one of the eight neighbors is one time step away [cf. 38].

As stated in the introduction, the MAPF problem is usually solved single-objectively. The two most

common objectives are makespan and sum of costs. Makespan is defined as the maximum number of

time steps required for all agents to reach their target and sum of costs is defined as the sum of time

steps each agent needs to reach its target. In this thesis, the MAPF problem is solved multi-

objectively. The chosen objectives are makespan, sum of costs and the overlaps objective. All three

objectives are minimized.

Usually MAPF solvers treat the conflicts as hard constraints. This solver minimizes the number of

conflicts by treating them as the overlaps objective. The penalized conflicts are:

 Vertex conflict: Two agents plan to enter the same vertex at the same time step: 𝜋𝑖 [x]= 𝜋𝑗

[x]

 Swapping conflict: Two agents plan to swap their vertices with their action: 𝜋𝑖 [x + 1] = 𝜋𝑗

[x] and 𝜋𝑗 [x + 1] = 𝜋𝑖 [x] [38]

The objectives makespan, sum of costs and overlaps for every solution 𝜋 for k agents are calculated

as follows:

1 Introduction

4

Makespan:

Makespan = 𝑚𝑎𝑥𝑖=1
𝑘 |𝜋𝑖| (1.1)

The || operator expresses the path length

Sum of Costs:

Sum of Costs = ∑𝑖=1
𝑘 |𝜋𝑖| (1.2)

The || operator expresses the path length

Overlaps:≠

𝐶𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔(x) being the number of swapping conflicts at the time step x.

𝑁Agents(𝑥, 𝑣) being the number of agents in vertex v at time step x.

𝑁𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 being the number of vertices in V.

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠 = ∑𝑥=0
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝐶Swapping(𝑥) + ∑𝑣=1

𝑣=𝑁Vertices(
𝑁Agents(𝑥,𝑣)

2
• (𝑁Agents(𝑥, 𝑣) − 1)))

(1.3)

With makespan being used as maximal time step value since time and path length are unitless,

discrete, and increase by the same value at each step.

This way, the calculation of the overlaps objective penalizes the clash between more than two agents

exponentially to the number of agents. While a vertex conflict between two agents is penalized by a

value of one, a vertex conflict between three agents is penalized by a value of three. A conflict is

always penalized for each agent, while the penalty increases by a value of 0.5 for each agent one

agent collides with.

2 Theoretical Background

5

2 Theoretical Background

In this chapter, the theoretical foundations for the classical multi-agent pathfinding problem and

cooperative co-evolution are explained. The description of the classical MAPF in chapter 2.1 problem

highlights the differences between classical MAPF and the problem description in this thesis. In

chapter 2.2 cooperative co-evolution is explained, since the algorithm used in this work is based on

these theoretical foundations.

2.1 Multi Agent Pathfinding (MAPF)

The classical MAPF problem described in Stern et al. [38], is similar to the MAPF problem described

in chapter 1.1. In this chapter, the differences between the classic MAPF described in Stern et al. and

used in this work are highlighted. In the classical MAPF problem, agents have two action types: The

move action a (v) = v’ and the wait action a (v) = v. Another important difference is that a conflict

between two agents in the plans makes a MAPF solution invalid.

Other than the two conflicts used in this thesis, there are other conflicts used in literature. The most

commonly used ones are:

 The Vertex conflict: Two agents plan to enter the same vertex at the same time step.

 The Edge conflict: At the same time step, two agents plan to traverse the same edge into the

same direction.

 The Following conflict: One agent occupies a vertex, which was occupied by an agent exactly

one time step before.

 The Cycle conflict: A set of agents form a rotating cycle pattern. This occurs, if every agent

enters the vertex the next agent was occupying the time step before, whereby the last agent

occupies the vertex the first agent was occupying at the previous time step.

 The Swapping conflict: Two Agents plan to swap their vertices with their action.

Figure 1 illustrates the described conflicts.

2 Theoretical Background

6

Figure 1: MAPF conflicts

(a) Vertex conflict, (b) Edge conflict, (c) Following conflict, (d) Cycle conflict, (e) Swapping

conflict. [cf. 38]

There are two options for agent behavior at the target vertex. Either the agent is considered to have

disappeared, or the agents waits in its target vertex until all agents have reached their designated target

vertex.

More specialized MAPF problem formulations differentiate from the classical MAPF:

 In the weighting of the graph: Either agents move from one grid to a neighboring one, whereby

there can be distinctions between the number of neighboring vertices, or they move in

Euclidean space.

 In the applications of Feasibility Rules: Solutions are only feasible if they fulfill some

Robustness Rules or if the agents move in formations.

 In transforming the classical problem into a motion planning problem, where agents can have

volumes, shapes or move at changing speed.

 And in assigning the task of agents: In some MAPF problems the target vertices have also to

be assigned to the agents [38].

2.2 Cooperative Coevolution

Co-evolutional algorithms try to exploit the compositional nature of a problem by using a genetic

algorithm for each of their components. Co-evolutional genetic algorithms can be categorized into

competitive and cooperative co-evolutional algorithms [45]. In this thesis, a cooperative co-

evolutionary algorithm (CCEA) according to Potter and Jong [31] was implemented. In Potter and

Jong five ideas how such a cooperative co-evolution approach has to look like:

 A species (subpopulation) is a subcomponent of a solution.

 The complete solutions are obtained by combining representative individuals of each

subpopulations.

2 Theoretical Background

7

 The fitness at the species level depend on the fitness of the complete solution it participates

in.

 The subpopulations evolve by themselves if necessary.

 The evolution of a species is handled by a genetic algorithm (GA) [31].

Since co-evolutionary algorithms have been around for a long time, further analyzes about them were

done. In Wiegand [44] it was shown that normal CCEAs have problems finding global optima. This

is because they tend to test the fitness of individuals of subpopulations, which might lead to an optimal

solution, with individuals of other subpopulations they do not fit to. On the other hand, co-

evolutionary algorithms tend to lead to more robust solutions since they are evaluated on how well

they fit together with other solutions [3,45].

In Panait et al. [29] and in Bucci and Pollack [3] approaches were formulated, which help the CCEA

to find the global optimum. In Panait et al. [29] it was suggested that an estimation of the optimal

values should be mixed into the evaluation. In Bucci and Pollack [3] three different setups were

compared against each other to find out which CCEA versions get near the optima. The first version

is a classic CCEA, which evaluates an individual by the best solution of the previous generation. The

second version the pCCEA considers every solution of the previous generation as an objective. Every

individual is evaluated multi-objectively by these objectives. The third version the cCCEA was also

tested on every solution but numerical fitness values are used. The experiments showed that the

pCCEA and the cCCEA works far better than the standard CCEA version. Ultimately, the pCCEA

turned out to work best out of the three version.

3 State of the Art

8

3 State of the Art

In this chapter, the state of the art of MAPF solver will be discussed in more detail. In chapter 3.1, a

small overview and classification of MAPF solver is given. In chapter 3.2, all cooperative co-

evolutionary algorithms found in literature are described and discussed. A few features of these

concept are adopted by the approach presented in this thesis. In chapter 3.3, all multi-objective MAPF

approaches found in literature are presented and the differences between these approaches and the

one used in this thesis are explained. In chapter 3.4, the findings in Ahmed and Deb [1] are

summarised. These findings give insight why multi-objective optimization might be better than

single-objective optimization in single-agent pathfinding and are helpful for the theses of this work.

In chapter 3.5, the state of the art chapter is summarized.

3.1 Overview classic MAPF Solver

MAPF solver can be categorized into distributed [16] and centralized settings. In distributed settings,

the agents make their decisions on their own. The algorithm of this thesis falls into the centralized

setting category. In this setting, the movements of the agents are controlled by a single decision maker

[10]. Additionally MAPF solver can be divided into the categories traditional methods and intelligent

methods [32]. The traditional MAPF solvers can further be categorized in whether they solve the

problem optimal or suboptimal [10].

To the optimal solvers category belong:

 Reduction-based Optimal Solvers: Reduction-based Optimal Solvers reduce the MAPF

problem to a well-known problem, for which optimal solvers exist already. In the approach

in Surynek [39] for example the MAPF problem is translated into Boolean variables. This

way a SAT formula is created, which SAT solvers can solve.

 A*-based Optimal Solvers: A*-based Optimal Solvers solve the MAPF like a normal A*

problem using a joint state space, where the agents are viewed as a single entity. How fast the

algorithm converges depends on the used heuristics [6].

 Increasing Cost Tree Search: In Increasing Cost Tree Search, the MAPF problem is solved

using the Increasing Cost Tree. The root of the tree represents all the possible solutions where

the agents’ routes are the fastest. A child will increase the length of the route of an agent by

one. Starting with the root once a node holds a valid solution the search is finished [10].

 Conflict based search (CBS): Conflict based search (CBS) uses a binary constraint tree to find

an optimal solution. Every node of the tree inherits the constrains from the node above. A

3 State of the Art

9

solution is created which fulfills the constrains of a leave. If the solution is invalid, the leave

creates new nodes, which prohibit the action, which made the solution invalid. The nodes with

the lowest costs are examined first [10].

For each one of these solvers exist different variants and enhancements. More details can be found in

Felner et al. [10].

The category of suboptimal solvers include search-based suboptimal solvers. They tend to be not

extremely fast but near optimal [10]. Hierarchical Cooperative A* for example creates an order in

which the agents plan their path to the target. The path is reserved and the following agents are not

allowed to have a conflict with reserved paths [34]. Bounded suboptimal solvers are also part of the

search-based suboptimal solvers. They let the user choose a value w, which leads to a search where

a solution is guaranteed to cost less than w•C, where C is the cost of the optimal solution [2]. Another

category of suboptimal solvers is the Rule-based solvers. They usually find a solution relatively fast,

but return solutions that are often not near the optimal solution. Many of them are modified optimal

MAPF solvers like the Greedy CBS which is a CBS-based MAPF solver designed for finding a

solution as fast as possible [2]. Some approaches fit as hybrids into both categories [10].

The co-evolutionary approach of this thesis falls into the category of the intelligent MAPF solvers.

Other intelligent approaches for MAPF would be the virtual spring method [28], the artificial bee

colony for online MAPF in Liang and Lee [21], the evolutionary algorithms [25] and the switching

formation strategy for multi-robots in Dai et al. [7].

3.2 Multi Robot Path planning using cooperative co-evolutionary Algorithms

The cooperative co-evolutionary adaptive genetic algorithm (CCAGA) is the oldest co-evolutionary

solver for multi robot path planning in literature. Agents have their own subpopulation, in which the

individuals evolve. It is a simple algorithm, which shrinks the decision-space by only allowing

waypoints at the edges of obstacles. Agents’ cooperation is forced via their evaluation. Individuals of

one subpopulation are evaluated by pairing them with the best individuals of the other subpopulation

and evaluating them as one solution to the whole problem. The approach allows infeasible solutions

and tries to sort them out by penalizing them [4].

In Chen [5] each agent has its own population and uses a chaotic genetic algorithm. The algorithm

uses a weighted sum approach to optimize the objectives path length, smoothness and time with

penalties for having too much velocity, running into obstacles or conflicting with the best individual

3 State of the Art

10

of the other agents. The mutation and the crossover rates are adaptive. The algorithm uses a chaos

operator, which disturbs individuals. If they result in a better individual, they replace the old one.

In Kala [18] the subpopulations are divided in populations of the slave genetic algorithm (SA) and a

subpopulation of the master genetic algorithm (MA). Every subpopulation of the slave algorithm

optimizes the path of a single agent with an evolutionary algorithm. An individual of the master

algorithms’ population picks individuals out of the subpopulation of the slave algorithm to create a

MAPF solution. The master algorithm evolves its population also evolutionary. Individuals of the SA

cooperate with each other using their evaluation. An individual of the SA is evaluated by its path

length and by how well it would work together with the other agents. The second part of the evaluation

is done by calculating the sum of all collisions that an individual i of an agent j would have if it

replaces the current picked solution of the agent 𝑗 in the five best master algorithm solutions. The

genes of a slave algorithms’ individuals are represented by an integer, which defines how it will react

at the next crossing. A crossing is defined as a place where the agent has more move options than

following the path or turning around. The first gene decides the direction the individual takes at the

first crossing; the nth gene decides the direction the individual takes at the nth crossing. Once all

genes are used up, while the individual did not reach the endpoint, it resets once and starts using the

genes again, culminating into the fact that an agent does not always end at the designated target.

Additionally, the algorithm uses a scattered crossover, which will rip paths apart. The algorithm was

only tested on maze-like maps, which heavily benefits the action-at-next-crossing representation [18].

The approach of Kala [18] was mentioned in Pan et al. [28] where the author wrote that the algorithm

of kala suffers “of slow convergence rate, local optimum and ignoring cooperation between

populations”. It is to assume that the representation and the operators of the SA are more likely to be

responsible for these shortcomings than the general structure of the algorithm.

The approach in Qu et al. [32] has a subpopulation for every agent ,which optimizes the weighted

sum of the objectives path length, safety and smoothness for the associated agent. Waypoints with

straight paths between them are used. The paper presents a modification operator, which deletes

waypoints between two waypoints either to avoid obstacles or to accelerate convergence. The

algorithm selects the representatives for each subpopulation by optimality. The cooperation between

the agents happens after that, using the island approach: Every agent randomly selects another agent.

A second fitness value for every representative regarding the collision with every representative of

the other agent is calculated. According to this fitness value, the elite individual of this agent for this

generation is selected. The elite individuals form the final solution.

3 State of the Art

11

In Korayem et al. [20] the concept of a master and a slave algorithm was used too. In this case the

slave algorithm solved the individual pathfinding problem for each agent (here nanoparticles).

However, the premise of the problem is different: The nanoparticles do not move simultaneously but

in sequence and task allocation was done as well. The slave algorithm uses a weighted sum approach

to optimize three different objectives as one. Additionally, an artificial potential field was used to

repair infeasible solutions in the SA to find better routes.

The algorithm in Muthiah and Saad [24] uses an order similar to Hierarchical Cooperative A* in

which the routes of the algorithm are determined. The order is defined by the size of the decision

space. The following agents see the routes of the agents before as moving obstacles. A genetic

algorithm determines the routes. Additionally, some heuristics are used, which are not fully explained.

The author claims that the found path of the genetic algorithms is the “optimal path”, which is due to

the nature of genetic algorithms questionable. Then again, the text found was only an extended

abstract of a thesis, which could not be accessed.

In Sarkar et al. [33] a co-evolutionary algorithm is presented where the agents perform a multi-agent

pathfinding task while having multiple targets without a predefined order. The agents evolve in their

own population with their fitness function being the path length. At the end of a generation, every

individual of one population is paired with every individual of the other populations to calculate their

interaction cost. With the sum of the interaction cost between every combination of individuals

between agents and their path lengths, the elite set of chromosomes is formed. For the representation

of the individual paths, waypoints are used which are connected with a straight path. The GA also

uses a deletion operator, which deletes waypoints and replaces them sometimes with other nodes to

minimize the path length.

This concludes the co-evolutionary algorithms found in literature. The common ground between these

approaches is that every agent has their own population. The main differences can be found in the

cooperation between the populations, in the picking of the overall solution and in the evolution of the

subpopulations, with cooperation and picking of an overall solution being distinctive features of a co-

evolutionary algorithm.

The term cooperation here means how collisions with other robots are avoided. In Muthiah and Saad

[24] the cooperation is done by seeing the paths of over agents as moving obstacles. In all the other

texts cooperation is done by the fitness function. In Kala [18], in Cai and Peng [4] and in Chen et al.

[5] the conflicts are part of the fitness function with which the subpopulation is evolved by. In Sarkar

et al. [33] and in Qu et al. [32] the subpopulations are evolved by a fitness function, which does not

3 State of the Art

12

consider other agents. The cooperation of these two approaches is done at the end of each generation

by a second fitness function, which selects individuals based on their conflict behavior with the other

subpopulations. In Sarkar et al. [33] all individuals are compared with each other while in Qu et al.

[32] the representatives of an individual only communicate with the representatives of one other agent

instead of all agents. In Cai and Peng [4] and in Chen et al. [5] the cooperation is done only with the

best combination of solutions and in Kala [18] the cooperation is done with the y best combinations

of individuals.

The picking of the best combination in Sarkar et al. [33] and in Qu et al. [32] is done by the results

of second fitness function. The picking of the best combination in Cai and Peng [4] and in Chen et al.

[5] is just selecting the best individuals. In Kala [18] another genetic algorithm, the master algorithm

picks the best individuals.

3.3 Multi-objective Optimization of MAPF with Genetic Algorithm

In Literature just two paper exist on the topic of solving MAPF multi-objectively:

In Weise et al. [42] the MAPF problem is solved multi-objectively with an evolutionary algorithm.

Individuals of the algorithm contain paths for every agent, which consist of an array of a fixed number

of waypoints, which are translated into nodes using the Dijkstra algorithm. The crossover operator

exchanges a random waypoint of one random agents from two individuals with each other and the

mutation operator changes the position of a random agents‘ waypoint by one node. The optimized

objectives are makespan, flow-time, which is the same as sum of costs, and the overlaps objective.

The overlaps objective counts all edge conflicts and vertex conflicts of the given solution. Selection

is done with the NSGA-II and NSGA-III operators.

In Mai and Mostaghim [23] another multi-objective multi-agent pathfinding approach for swarm

robotics was formulated. The algorithm focuses on decentralized path planning. Since the approach

is done for the swarm robotics, a motion-based problem is formulated instead of the theoretical classic

MAPF problem. A remodelled NSGA-II approach is used, where the individuals contain a path for

every agent made out of waypoints. The crossover is a two-point crossover between a pair of

randomly selected agents. For mutation a Gaussian mutation, which moves one of the waypoints of

a randomly selected agent in its neighbourhood, is used. Additionally, a smoothing operator, which

selects a waypoint of an randomly selected agent and puts it on the path between its previous waypoint

and it‘s subsequent waypoint, is used. The optimized objectives are the risk objective, which

minimizes collision potential with obstacles and other agents, and path length, which tries to minimize

all the paths.

3 State of the Art

13

Other than these two, no paper about solving the multi-agent pathfinding problem multi-objectively

in literature exists as far as the literature search in this thesis goes. Often in multi agent path planning

multiple objectives are optimized by using the weighted sum approach:

For example in Chen et al. [5] the weighted sum for each subpopulation for the objectives distance,

time and smoothness with penalties for constraint violation was optimized. Also in Qu et al. [32]

objectives path length, safety and smoothness are optimized with the weighted sum approach.

The approach in this thesis aims to solve the MAPF problem by optimizing the objectives makespan,

sum of costs and overlaps by solving the problem multi-objectively by creating a set of pareto-optimal

solutions regarding the three objectives. With this, the thesis differentiates itself from the weighted

sum approaches. The algorithm in this thesis differentiates itself from Weise et al. [42] in the

following points: The overlaps objective of this thesis minimizes vertex and swapping conflicts

instead of vertex and edge conflicts. Forbidding vertex conflicts implies that edge conflicts are also

forbidden [38]. In that sense, penalizing vertex conflicts means that edge conflicts are also penalized.

Additionally the overlaps objective in this paper penalizes a vertex conflict between more than one

agents exponentially. Furthermore, a co-evolutionary algorithm is used in this thesis. Other than that

by not fixing the number of waypoints, the approach in this thesis is able to explore the whole decision

space. Other than by using a co-evolutionary approach and optimizing different objectives the

approach in this thesis also differentiates itself from Mai and Mostaghim [23] by attempting to solve

a problem near to the classical MAPF problem.

3.4 Single-objective Optimization in Comparison to Multi-objective Optimization in

Pathfinding

In Ahmed and Deb [1] a comparison between a single objective optimizing EA and a multi-objective

optimizing EA with NSGA-II in the context of singe agent pathfinding is done. The optimized

objectives are: the Path length, the path vulnerability, which maximizes the distance to obstacles, and

the smoothness, which sums up the angle of each turn. In the tests, the one single objective optimizer

optimized path length. Another single objective optimizer optimized the path vulnerability. For the

multi-objective optimizer existed a version which was optimizing path length and path vulnerability

while using smoothness to keep diversity instead of the crowding distance. The second multi-

objective optimizer optimized all three objectives.

The results on a less complex environment with a grid size of 16 x 16 and randomly placed obstacles

showed that the extreme values of the multi-objective optimizer were approximately the same as the

results of the single objective optimizers. On a larger more complex environment a 64x64 grid with

3 State of the Art

14

a higher obstacle density, the single objective solver was not able to find a feasible solution anymore

neither with the path length objective nor with the path vulnerability objective. The multi-objective

solver with three objectives on the other hand was able to find feasible solutions in 80% of the time.

Ahmed and Deb interpreted that these results must have occurred because the multi-objective EA is

able to keep a high diversity in the population while a single objective EA is more likely to lose this

diversity [1].

3.5 Summary of the state of the Art and discussion

In this chapter the MAPF solver are categorized and a few of them are described. Furthermore, all

the co-evolutionary MAPF solver as well as all approaches which solve the MAPF problem multi-

objectively were explained. Additionally the findings of a paper, which examined the differences

between solving the single agent pathfinding problem single objectively and multi-objectively, were

described.

Most of the co-evolutionary approaches used the fitness function to cooperate between agents while

one approach was searching for the paths of the agents by order. The “by order“ approach in Muthiah

and Saad [24] does not follow the guidelines of Potter and Jong [31] and since the first agents do not

care about the following agents, they will likely end in local optima. The two approaches, which used

one fitness function without communication to the other subpopulation to evolve the subpopulation

and second fitness function with communication to find the best combination [32,33], are most likely

to end up in local optima too, since the subpopulations evolve without knowing of the other

populations. In addition, the idea of just using the best-known solution to avoid collision might lead

to bad performance [32,33]. The findings in Bucci and Pollack [3] which were described in chapter

2.2, showed that to minimize the chance of falling into local optima all available solutions should be

used to evaluate the individuals. While all solutions might be too much since the computational time

needed might be too high, at least the x best solutions should be used.

Since the problem of the thesis is to solve MAPF multi-objectively, the Master Slave architecture of

Kala [18] seems like a good way to deal with the problem. The Master algorithm can pick the best

solutions to solve the multi-objective MAPF problem. The Slave algorithm must evaluate the paths

also by the objectives of the Master algorithm. All the co-evolutionary approaches, which were

optimizing more than one objective, used the weighted sum approach to find the best solutions

[5,20,32]. Since the studies in Ahmed and Deb [1] showed that solving the single agent path-planning

problem multi-objectively leads to better solutions, this thesis will examine how well a co-

3 State of the Art

15

evolutionary algorithm, which uses a weighted sum approach for the subpopulation, does compared

to a co-evolutionary algorithm, which solves the subpopulation multi-objectively.

Many approaches used waypoints to represent paths. While most of them use a straight line from

waypoint to waypoint, the approach in Weise et al. [42] uses the Dijkstra algorithm. A straight line is

easier to compute but will lead to infeasible solutions. This is especially the case, if the environment

is maze-like. Because of that, this thesis will also use a shortest path algorithm like Dijkstra. The

waypoint approaches also used deletion operators to fasten the convergence, which will be adapted

by the approach of this work too.

The research on the multi-objective MAPF problems also showed that no co-evolutionary approach

was yet used to solve the problem. Additionally the algorithm presented differentiates itself in more

aspects like using the whole decision space.

4 Materials and Methods

16

4 Materials and Methods

In this chapter the concept of the two variants of the co-evolutionary multi-objective MAPF solver

are explained and their implementation is described. In chapter 4.1 the basic idea of the algorithm is

presented. In chapter 4.2 an overview of the functions of the algorithm is given. In chapter 4.3 the

functions and their implementation are explained in more detail.

4.1 Architecture of the algorithm:

In order to reduce the decision space, the problem is decomposed by using a co-evolutionary

algorithm. An evolutionary algorithm – slave algorithm (SA) - optimizes the route of each agent.

Another evolutionary algorithm – the master algorithm (MA) - searches for solutions for the multi-

objective MAPF problem by combining the best solutions of the subpopulations, which are optimized

by the slave algorithm. These best solutions are the representatives of the subpopulations.

The MA optimizes the objectives makespan, sum of costs and overlaps, which are fully explained in

the problem description in chapter 1.1. The SA minimizes the objectives path length and collision

count. The path length (PL) objective stands for the number of vertices passed and the collision count

represents the collisions between an individual and the representatives of the other agents’

subpopulations.

For all individuals i the path length PL is the length of the single agent plan 𝜋𝑖 of individual i:

𝑃𝐿𝑖 = |𝜋𝑖| (4.1)

The || operator expresses here the path length

The collision count 𝐶𝐿𝐶𝑖 objective of an individual i of the subpopulation of an agent A penalizes

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴 for having vertex conflicts with representatives of the other agents with one and

penalizes 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴 for having possible swapping conflicts with the representatives of the other

agents by the Collision-Swapping-Penalty-Value: 𝐶𝑆𝑃𝑉. A possible swapping conflict occurs for each

representative of the other agents which is at the same vertex v at time step x+1 as the 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴

is at time step x. This way, agents are penalized for each agent they might have had a swapping

conflict with.

4 Materials and Methods

17

The collision count 𝐶𝐿𝐶𝑖 for an individual i is described by equation 4.2:

δ(x)={
1, 𝑥 = 0
0, 𝑥 ≠ 1

𝐶𝐿𝐶𝑖 = ∑𝑥=0

|𝜋𝑖| ∑𝑗=1,𝑖≠𝑗
𝑘 ∑𝑟=1

NR (δ(𝜋𝑖(x) − 𝜋𝑗𝑟(x)) + 𝐶SPV • δ(𝜋𝑖(x) − 𝜋𝑗𝑟(x + 1)) (4.2)

With 𝑁𝑅 being the number of representatives every agent and |𝜋𝑖|being used as maximal time step

value since time and path length are unitless, discrete, and increase by the same value at each step.

The optimization of the path length objective in the SA directly optimizes the MA objectives

makespan and sum of costs. The optimization of the collision count objective in the SA is supposed

to optimize the overlaps objective in the MA.

The subpopulation of the agents cooperate via the collision count objective. Optimizing this objective

should minimize conflicts with other agents. Two versions of the SA are implemented in this

algorithm. One which uses a weighted sum approach to evaluate individuals and another one which

uses a non-dominated sorting algorithm like described in Deb et al. [8] to select a set of pareto optimal

solutions.

For better understanding, the single-objective SA is abbreviated to SO SA and the multi-objective SA

to MO SA. The cooperative co-evolutional genetic algorithm using the SO SA is called SO SACCGA

and the cooperative co-evolutional genetic algorithm using the MO SA is called MO SACCGA

4.2 Algorithm Overview

This chapter gives an overall overview of the algorithm. The individual functions are explained in

detail in the following chapters.

4 Materials and Methods

18

Figure 2: Overview of the algorithm architecture

Figure 2 shows the basic structure of the algorithm. At the beginning of the algorithm, input data is

imported. The input data contains data on the problem such as map layout and number of agents start-

and target point and setting parameters (chapter 4.3.4). First, the input data is being prepared.

Secondly, the first individuals of the first generation of the SA subpopulations and the MA

subpopulation are initialized and partially evaluated (chapter 4.3.5).

After that the first generation of the algorithm starts. Within one generation, one generation of the SA

for the subpopulation of each agent is executed. Then, one generation of the MA is performed. The

results are then saved and a check is carried out to determine whether the termination criterion is met.

If it is fulfilled, the results are put out and the algorithm terminates. If not, the next generation begins.

4 Materials and Methods

19

Figure 3: Sequence of slave algorithm functions of the SO SA and MO SA

Figure 3 shows how the slave algorithm works. A pseudocode of the MO SA is presented in algorithm

1 and of SO SA in algorithm 2. The parts of the MO SA and the SO SA, which are different from

another, are highlighted in both algorithms. Every agent A has their own population 𝑆𝐴𝑃𝑜𝑝𝐴, which

consists of Individuals - 𝑆𝐴𝑃𝑜𝑝𝐴={𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1,𝐴,...,𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑁𝑆A Individiuals } (with 𝑁SA Individiuals

being the size of the subpopulation of the SA) and their fitness values for the objective collision count

𝐹𝑖t𝐶𝐿𝐶,𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴
 and the objective path length 𝐹𝑖𝑡𝑃𝐿,𝐼𝑛𝑑𝑖𝑑𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴

, which are mapped to the

corresponding individual. Additionally, every agent has their own representatives 𝑅𝐴={𝑟1 ,...,𝑟NR
}𝑅𝐴

⊆ 𝑆𝐴𝑃𝑜𝑝𝐴. The first thing the SA does and only after the first generation is to update the 𝐹𝑖𝑡𝐶𝐿𝐶 value

of all the individuals. This must be done because the 𝐹𝑖𝑡𝐶𝐿𝐶 value of the individuals changes by

changing representatives of the other agents. For the evaluation of the collision count objective the

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 is used. The 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 is a two dimensional matrix with the dimensions

vertices V and time steps X. A cell 𝐶𝑣𝑥 of the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 holds the information how many

representatives of all agents are at vertex v at time step x.

𝐶𝑉𝑋 = ∑𝑗=1
𝑘 ∑𝑟=1

𝑁𝑅 (δ(𝜋
𝑗𝑟

(x) − v)) (4.3)

4 Materials and Methods

20

Before the 𝐹𝑖𝑡𝐶𝐿𝐶 can be evaluated the information of the own agents 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝐴 must be

removed from the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋. Next, the parents are selected. In the multi-objective SA the

parents are selected by tournament selection with dominance as selection criteria. The SO SA has to

normalize the fitness-values and calculate the weighted sums first. Then the parents are selected by

tournament selection with weighted sums being the selection criteria. After this, in both versions the

parents are used for crossover with the SA crossover probability (SACXPB) as probability. The

parents, which are not affected by crossover, are simply copied into the offspring. Then the offspring

are mutated by three different mutation operators each one having their own mutation probability (SA

MUTBP1, SA MUTBP2, SA MUTBP3). If a copied parent is not affected by any changes, it will be

deleted. Next the 𝐹𝑖𝑡𝐶𝐿𝐶 and the 𝐹𝑖𝑡𝑃𝐿 values of the offspring are determined and the next generation

is selected. For the MO SA, the fitness-values are normalized and the non-dominated-sorting-

selection like in Deb et al. [8] is used to determine the next population and the new representatives of

the agent. For the SO SA the fitness-values are normalized, the weighted sum is calculated and the

new population is formed by the best individuals of the old population and the newly created

offspring. The individuals with the highest weighted sum values form the representatives of the agent.

Lastly, the information of the new representatives is added to the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋.

4 Materials and Methods

21

Algorithm 1: Slave algorithm Multi-objective (MO SA)

Input: Population of the agent A: 𝑆𝐴𝑃𝑜𝑝𝐴, Matrix to calculate collision count: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 ,representatives of

agent A: 𝑅𝐴, the fitness values for the individuals of 𝑆𝐴𝑃𝑜𝑝𝐴: 𝐹𝑖𝑡𝐶𝐿𝐶,𝑆𝐴𝑃𝑜𝑝𝐴,,
, 𝐹𝑖𝑡PL,𝑆𝐴𝑃𝑜𝑝𝐴

, the counter of the

generation: gen, SA crossover-probability: SACXPB, SA mutation-probabilities: SAMUTBP1, SAMUTBP2,

SAMUTBP3

Output: 𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁𝑒𝑤_𝑅𝐴

for every Agent:

| if gen > 1:

| | 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋= removeRepresentativesFromCollisionlist(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋, 𝑅𝐴)

| | 𝐹𝑖𝑡𝐶𝐿𝐶,𝑆𝐴𝑃𝑜𝑝𝐴
=evaluateCLC(𝑆𝐴𝑃𝑜𝑝𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋)

| Offspring =tournamentselectionByDominance(𝑆𝐴𝑃𝑜𝑝𝐴)

| for 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1in Offspring:

| | if SACXPB <random(0,1):

| | | 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1=crossoverSA(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 ,𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1)

| for 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 in Offspring:

| | if SAMUTBP1< random(0,1):

| | | 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationGeneDeletion(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖)

| | if SAMUTBP2< random(0,1):

| | | 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationShiftInNeighbourhood(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖)

| | if SAMUTBP3 < random(0,1):

| | | 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationInsertRandomWaypoint(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖)

| | if 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 ⊆ 𝑆𝐴𝑃𝑜𝑝𝐴: # copied parents which weren't changed are deleted

| | | delete 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖

| | 𝐹𝑖𝑡CLC,O𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 ,𝐹𝑖𝑡PL,𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠=evaluateCLC&PL(Offspring, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋)

| 𝑆𝐴𝑃𝑜𝑝𝐴=𝑆𝐴𝑃𝑜𝑝𝐴 ∪ Offspring

| norm_𝐹𝑖𝑡𝐶𝐿𝐶,𝑆𝐴𝑃𝑜𝑝𝐴
,norm_𝐹𝑖𝑡PL,S𝐴𝑃𝑜𝑝𝐴

=normalizeFitness(𝐹𝑖𝑡CLC,𝑆𝐴𝑃𝑜𝑝𝐴
,𝐹𝑖𝑡𝑃𝐿,𝑆𝐴𝑃𝑜𝑝𝐴

)

| 𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴=nonDominatedSortingSelection(𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁𝑆A Individiuals)

| 𝑁𝑒𝑤_𝑅𝐴 = nonDominatedSortingSelection (𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁R)

| 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋=updateCollisionlist(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋, 𝑁𝑒𝑤_𝑅𝐴)

return 𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁𝑒𝑤_𝑅𝐴

4 Materials and Methods

22

Algorithm 2: Slave algorithm Singe-objective (SO SA)

Input: Population of the agent A: 𝑆𝐴𝑃𝑜𝑝𝐴, Matrix to calculate collision count: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 ,representatives of

agent A: 𝑅𝐴, the fitness values for the individuals of 𝑆𝐴𝑃𝑜𝑝𝐴: 𝐹𝑖𝑡𝐶𝐿𝐶,𝑆𝐴𝑃𝑜𝑝𝐴,
, 𝐹𝑖𝑡PL,𝑆𝐴𝑃𝑜𝑝𝐴

, the current generation:

gen, SA crossover-probability: SACXPB, SA mutation-probabilities: SAMUTBP1, SAMUTBP2, SAMUTBP3

Output: 𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁𝑒𝑤_𝑅𝐴

for every Agent:

| if gen > 1:

| | 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋= removeRepresentativesFromCollisionlist(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋, 𝑅𝐴)

| | 𝐹𝑖𝑡CLC,S𝐴𝑃𝑜𝑝𝐴
=evaluateCLC(𝑆𝐴𝑃𝑜𝑝𝐴 , 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋)

| | 𝑛𝑜𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚𝑆𝐴𝑃𝑜𝑝𝐴
=normalize&FormWeightedSum(𝐹𝑖𝑡CLC,𝑆𝐴𝑃𝑜𝑝𝐴

,𝐹𝑖𝑡PL,𝑆𝐴𝑃𝑜𝑝𝐴
)

| Offspring=tournamentSelectionByWeightedSum(𝑆𝐴𝑃𝑜𝑝𝐴, 𝑛𝑜𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚𝑆𝐴𝑃𝑜𝑝𝐴
)

| for 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1in Offspring:

| | if SACXPB <random(0,1):

| | | 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1=crossoverSA(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 ,𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1)

| for 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 in Offspring:

| | if SAMUTBP1< random(0,1):

| | | 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationGeneDeletion(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖)

| | if SAMUTBP2< random(0,1):

| | | 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationShiftInNeighbourhood(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖)

| | if SAMUTBP3 < random(0,1):

| | | 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationInsertRandomWaypoint(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖)

| | if 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 ⊆ 𝑆𝐴𝑃𝑜𝑝𝐴: # copied parents which weren't changed are deleted

| | | delete 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖

| | 𝐹𝑖𝑡CLC,O𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 , 𝐹𝑖𝑡PL,𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠=evaluateCLC&PL(Offspring, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋)

| 𝑆𝐴𝑃𝑜𝑝𝐴=𝑆𝐴𝑃𝑜𝑝𝐴 ∪ Offspring

| 𝑛𝑜𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚𝑆𝐴𝑃𝑜𝑝𝐴
= normalize&FormWeightedSum(𝐹𝑖𝑡CLC,,𝑆𝐴𝑃𝑜𝑝𝐴

,𝐹𝑖𝑡PL,,𝑆𝐴𝑃𝑜𝑝𝐴
)

| New_𝑆𝐴𝑃𝑜𝑝𝐴=environmentalSelection(𝑆𝐴𝑃𝑜𝑝𝐴 , 𝑛𝑜𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚𝑆𝐴𝑃𝑜𝑝𝐴
, 𝑁𝑆A Individiuals)

| New_𝑅𝐴=representativeSelection(new_𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁R)

| 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋=updateCollisionlist(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋, 𝑁𝑒𝑤_𝑅𝐴)

return 𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁𝑒𝑤_𝑅𝐴

4 Materials and Methods

23

Figure 4: Sequence of master algorithm functions

Figure 4 shows the process of the MA. A pseudocode of the MA is presented in Algorithm 3. The

MA has its own population MAPop = {𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,1...𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑁MA Indiviudals
} with

𝑁MA Indiviudals being the numbers of individuals in the MA subpopulation. Every Individual

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙MA,𝑖={𝐺𝑒𝑛𝑒1...𝐺𝑒𝑛𝑒𝑘} has a Fitnesstuple = (𝐹𝑖𝑡𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛, 𝐹𝑖𝑡𝑆𝑢𝑚𝑂𝑓𝐶𝑜𝑠𝑡, 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠) for

the fitness-values of the three objectives makespan, sum of costs and overlaps and consists of exactly

as many genes as there are agents. The value of a gene refers towards one of the representatives of

the agent. The representatives, which are referred to, can be of the current generation or of the

generations before. In generation one, the first thing the MA does is to evaluate the newly initialized

population. This can only be done after the first iteration of the SAs, since they do not have any

representatives before. After that, the MA handles the changes in the representatives. This is only

done at the second generation and onwards. The individuals, which refer to changed representatives,

keep pointing at the old representative. An additional version of the individual is created, which points

at the new representative, which took the spot of the old representative. A change in representatives

occurs if the SA finds a better individual to fill that spot. The old representatives, which are still used

by the MA, are saved. The newly created individuals are evaluated and added to the population. Next,

the parents are selected by tournament-selection with dominance as selection criteria. The parents are

either used for crossover or copied into the offspring depending on the crossover probability. The

used crossover-operator is the uniform-crossover-operator. With the chance of the mutation

probability, the offspring are mutated. After that, the offspring are evaluated. The non-dominated-

4 Materials and Methods

24

sorting algorithm (like used in NSGA-II) is used to pick the best individuals from the old generation

and the offspring to form the new population and to determine the set of pareto dominant solutions.

Lastly, the saved old representatives, which are not used anymore, are deleted. The MA returns its

population, the saved old representatives and the found pareto front.

Algorithm 3: Master algorithm (MA)

Input: Population of the MA: MAPop. representatives of all agents of the current generation: 𝑅𝑘 =

{∑𝑨=𝟏
𝒌 ∑𝑟=1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠
𝑅𝐴,𝑟}, representatives of all agents the generation before the current

generation: 𝑜𝑙𝑑_𝑅𝐾 , list of saved representatives from old generations: 𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅 , current

generation: gen, crossover-probability: MACXPB, mutation-probability: MAMUTBP

Output: MAPop, Pareto_Front

if gen=0:

| 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝐴𝑃𝑜𝑝 = evaluateMA(MAPop,𝑅𝑘)

if gen>0:

| New_Individuals, 𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅= handlingChangesOfRepresentatives(MAPop,𝑅𝑘 ,𝑜𝑙𝑑_𝑅𝑘,

𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅)

| 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑁𝑒𝑤_𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 = evaluateMA(𝑅𝑘, 𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅)

| MAPop=MAPop ∪ New_Individuals

Offspring= tournamentselectionByDominance (MAPop)

for 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1 in Offspring:

| if MACXPB >random(0,1):

| | 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 , 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1 = uniformcrossoverMA(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1)

while 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 in Offspring:

| if MAMUTBP >random(0,1):

| | 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖'=uniformmutation(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖)

| if 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 ⊆ MAPop:

| | delete 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔=evaluateMA(Offspring, 𝑅𝑘, 𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅)

MAPop=MAPop ∪ Offspring

New_MAPop, Pareto_Front=nonDominatedSorting(MA_pop, 𝑁MA Individuals)

𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅=deleteUnusedOldRepresentatives(New_MAPop 𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅)

return New_MAPop, Pareto_Front

4 Materials and Methods

25

4.3 In Depth Explanation of the Algorithm Operators and Implementation

In this chapter, the functions of the algorithm are explained in detail. The functions are described in

the order they are used in the algorithm. In 4.3.1, the used programming language and the used

framework are mentioned. In chapter 4.3.2, the representation of the individuals of the MA and the

SA is described. In chapter 4.3.3, the A* algorithm used to connect the waypoints of the SA

individuals is clarified. In chapter 4.3.4, the Input data of the algorithm and in chapter 4.3.5 the

initialization process is explained. From chapter 4.3.6 to 4.3.13, all functions of the SA and from

chapter 4.3.14 to 4.3.20 all functions of the MA are described. In chapter 4.3.21, the termination

conditions and data output are explained. Lastly, the algorithm is summarized and discussed in

chapter 4.4.

4.3.1 Programming Language and DEAP-framework

The implementation was done in python. Additionally, functions from the evolutionary computation

framework Distributed Evolutionary Algorithms in Python (DEAP) were used. DEAP provides

several modules for implementing evolutionary algorithms [15]. A few modules like the binary Heap

implementation from Singh [35] and the merge sort algorithm implementation from [30] were also

used.

4.3.2 Representation of Individuals

In this thesis, every vertex has a numerical value for identification. The individuals of the SAs consist

of two forms of representation: waypoints and the consecutive vertices, in which the waypoints are

converted to. 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴 = {𝑤𝑠𝐴
, 𝑤0. . . 𝑤𝑛, 𝑤𝑡 ; 𝑤𝑠𝐴

, 𝑣0 … 𝑣𝑙 , 𝑤0, 𝑣𝑙+2 . . . 𝑤𝑡𝐴
}. Figure 5 shows a

possible conversion from waypoints to consecutive vertices. The first waypoint and the last waypoint

as well as the first and the last vertices are the start s and the target point t of the agent. The start and

target points cannot be changed by any of the operators. The number of waypoints between start and

target points are variable. The waypoints and vertices are numerical and point towards one of the

vertices of the map. The two forms of representation are necessary, because the same set of waypoints

can lead to a different set of consecutive vertices. The reasoning behind this is explained in the

following chapter 4.3.3.

4 Materials and Methods

26

Figure 5: Interaction between waypoints and consecutive vertices

The individuals of the MA have as many genes as there are agents. 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖 =

{𝑔𝑒𝑛𝑒0, … , 𝑔𝑒𝑛𝑒𝑘}. Each gene refers to a representative from a different subpopulation of an agent.

Figure 6 shows how each gene of the MA refers to a representative from the subpopulations of the

agents.

Figure 6: Representation of a MA individual

4.3.3 Converting Waypoints to consecutive Vertices

The A* algorithm is used to translate the waypoints into neighboring vertices. A possible heuristic

could be used, which calculates the direct route disregarding obstacles between the examined point

and the target point. With the existing assumptions, the calculation of the heuristic distance h would

be described by the following function:

4 Materials and Methods

27

h=𝑚𝑎𝑥(|𝑤1𝑦 − 𝑤2𝑦|, |𝑤1𝑥 − 𝑤2𝑥|) (4.4)

With 𝑤1𝑥 and 𝑤1𝑦 being X- and Y-coordinates of one waypoint and 𝑤2𝑥 and 𝑤2𝑦 being X- and Y-

coordination of the second waypoint.

This is the recommended heuristic for this algorithm for most maps. Nevertheless, in this thesis,

precomputed distances are used as the A* heuristic. For this purpose, in the beginning of the algorithm

the distance between each points is determined and saved. This distance can then be used to determine

the route to the next waypoint. The disadvantage of this variant is that the preparation of the map

involves exponential time depending on the number of vertices on the map. The advantage is that the

A* algorithm requires the minimum effort to compute the path between two waypoints. This is

particularly advantageous on small maps with many agents and with many obstacles and the resulting

long routes. The main reason this variant is used here, is that the precomputed distances are practical

for the experiments, since they only have to be calculated ones for each map. The difference in the

results between the two heuristics should be small.

Additionally, two variants of the A* algorithm are implemented. A deterministic and a stochastic one.

While the deterministic version works like a classic A* algorithm, the stochastic variant works as

follows: Whenever the next node is pulled from the priority queue of the known nodes, the algorithm

checks if there is more than one node with the same highest priority. Out of these nodes, the algorithm

pulls out a node randomly with evenly distributed probabilities. The used priority queue is a min-

heap. Therefore, nodes with the same priority are found fast. For the min-heap, the implementation

in Singh [35] was used and altered. The stochastic version does not lead all possible paths to be

equally likely. Instead, all branches of a fork are equally likely, as shown seen as an example in the

figure 7.

Figure 7: Example for the probability of the branches

Using the stochastic A* variant on the shown grid to find a fastest path from s to t could end in the

consecutive vertexes a={s,1,2,4,6,9,11,t},b={s,1,3,5,7,10,12,t} and c={s,1,3,5,8,10,12,t}. The

probabilities of getting each path is different. The algorithm has at vertex 1 a 50-50-chance of

moving to 2 or 3 and then at vertex 5 another 50-50 chance of moving to vertex 7 or 8 resulting into

the probabilities: 𝑝𝑎=50%,𝑝𝑏=25%,𝑝𝑐=25%

4 Materials and Methods

28

This has two side effects. First this procedure makes the A* algorithm computationally more

expensive. Secondly, the stochastic variant ensures that every change in a waypoint leads to new

calculations of the consecutive vertices between this waypoint and others. To help the stochastic

variant, every time the A* algorithm is used, a number of vertices between the waypoints are

converted into waypoints depending on the length of the route (see figure 8). This is used to cause

path sections to solidify. As a result, changing a waypoint does not change a very long route section.

How many waypoints are added and which A* variant is used is tested during the parameterization

tests.

Figure 8: A* add extra waypoints example

4.3.4 Input data and Preparation:

The input data can be classified into two categories:

 • Environment-related data

 • Parameter settings

The environment-related data consists of all the data on the MAPF problem. This includes the map,

the number of agents and the associated start s and target points t. The start and target points are saved

as lists and the number of agents as a constant. The map is converted to a graph G=(V,E). Each vertex

on the map is represented by a node. Each node has, among other variables, an X- and Y- coordinate,

a numerical value for identification and a list of pointers to all neighboring nodes. Additionally, for

4 Materials and Methods

29

every agent a list of all the points, which are reachable from the start position (the connectivity-list)

is created. This is important for all maps, which have sections of passable space, which are isolated

from the rest of the map by obstacles. With this connectivity-list, it is possible to only use reachable

waypoints. Furthermore, a distance matrix from every point to every other point is created for the A*

algorithm heuristic.

The parameter settings include all parameters that can be changed in the algorithm. These parameters

are described in the Appendix section A.

4.3.5 Initialization

The initialization function creates individuals for the subpopulation of the SA and the MA until the

population size is reached. For each individual of a SA subpopulation, h waypoints are randomly

determined with evenly distributed probabilities from the associated connectivity-list with h ∈

{0≤j≤𝑁Startinggenes|j∈ℕ} and 𝑁Startinggenes being an input parameter. Furthermore, the associated

start 𝑠𝐴 and target 𝑡𝐴 point are added and the consecutive vertices between the waypoints are

determined by the A* algorithm. The MA individuals consist of one gene for every agent. The

individuals are created by assigning one of the representative-slots to every gene (one representative

per agent).

Initially, only the individuals of the SA subpopulations are evaluated and only according to the

objective path- length by counting the number of actions/consecutive vertices. The fitness value of

the MA individuals (𝐹𝑖𝑡𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛, 𝐹𝑖𝑡𝑆𝑢𝑚𝑂𝑓𝐶𝑜𝑠𝑡𝑠, 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠) and the fitness value 𝐹𝑖𝑡𝐶𝐿𝐶 of the

SA individuals can not be determined yet because the representatives have to be specified beforehand.

4.3.6 SA Collisionlist

Every generation after the first generation, the individuals of the SA subpopulations are evaluated

with regard to the objective collision count. For this, the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 needs to be prepared. The

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 is a two dimensional matrix with the dimensions Vertices V and Time steps X. A cell

𝐶𝑣𝑥 of the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 holds the information how many representatives of all agents are at vertex

v at time step x (equation 4.3). Before the collision count evaluation at the beginning of a SA

generation, the information of the representatives of the own agent is removed from the collision list.

This prevents collisions of an individual of an agent with the representatives of the same agent to be

included in the calculation of the collision count. Algorithm 4 illustrates how the removal is done. At

4 Materials and Methods

30

the end of the generation, the information of the new representatives is added to the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋

like seen in algorithm 5.

Algorithm 4: Remove Representatives from Collisionlist

Input: Representatives of Agent A: 𝑅𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋

Output: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋’

for 𝜋𝑖 in 𝑅𝐴:

| for x=0; x< 𝜋𝑖; x++ :

| | 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋[x][𝜋𝑖[x]]= 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋[x][𝜋𝑖 [x]]-1

Algorithm 5: Collisionlist update/Creation

Input: Representatives of Agent A: 𝑅𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋# if Gen one 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋=[]

Output: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋’

CollisionlistVertices=[0]*𝑁𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠

for 𝜋𝑖 in 𝑅𝐴:

| for x=0; x< 𝜋𝑖; x++ :

| | if length(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋)<x:

| | | 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋.append(copy(CollisionlistVertices))

| | 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋[x][𝜋𝑖[x]]++

4.3.7 SA Evaluation Collision Count

Starting with generation two, the individuals of the SA are evaluated with regard to the objective

collision count at the beginning of the SA generation. Algorithm 6 shows how the evaluation is done.

The fitness value 𝐹𝑖𝑡𝐶𝐿𝐶,𝑖 of an individual i is increased by one for each representative of the other

agents the individual shares a vertex v with at the same time step x. Additionally, the collision count

fitness value is increased by the 𝐶𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑉𝑎𝑙𝑢𝑒 for every representative of the other agents

which is in the same vertex v at time step x+1 at which individual 𝑖 was in at time step x. The

information how many representatives of the other agents are at vertex v at time step x and x+1 is

taken out of the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋.

The described evaluation process at the beginning of an SA only happens from the second generation

onward, because the 𝐹𝑖𝑡𝐶𝐿𝐶 values can only be calculated once the agents have representatives. The

described process must happen before the parents are selected, because the representatives might have

changed since the last evaluation and thus the collision count fitness value needs to be updated before

selection.

If the SO SA variant is active, the two fitness values 𝐹𝑖𝑡𝐶𝐿𝐶 and 𝐹𝑖𝑡𝑃𝐿 of each individual are

normalized and the weighted sum is formed using the weights from the input data.

4 Materials and Methods

31

Algorithm 6: Evaluate collision count

Input: Population of agent A: 𝑆𝐴𝑃𝑜𝑝𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋, 𝐶𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑉𝑎𝑙𝑢𝑒

Output: 𝐹𝑖𝑡𝐶𝐿𝐶,𝑆𝐴𝑃𝑜𝑝𝐴

for 𝜋𝑖 in 𝑆𝐴𝑃𝑜𝑝𝐴:

| 𝐹𝑖𝑡𝐶𝐿𝐶,𝑖=0

| for x=0; x< 𝜋𝑖; x++ :

| | 𝐹𝑖𝑡𝐶𝐿𝐶,𝑖 = 𝐹𝑖𝑡𝐶𝐿𝐶,𝑖 + 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 [x][𝜋𝑖[x]]

| | 𝐹𝑖𝑡𝐶𝐿𝐶,𝑖= 𝐹𝑖𝑡𝐶𝐿𝐶,𝑖+𝐶𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑉𝑎𝑙𝑢𝑒 * 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 [x+1][𝜋𝑖[x]]

4.3.8 SA Selection

The selection process is used to create the parents for crossover. For the SO SA version, a simple

tournament selection with two participants with the selection criteria of the weighted sum value is

used. For the MO SA, the crowding distance is assigned and the parents are selected by tournament

selection with two participants based on dominance. If the selected individuals do not dominate one

another the crowding distance is used to determine the winner of the tournament selection. For this

purpose the functions assignCrowdingDist – for crowing distance- and selTournamentDCD – for the

tournament selection based on dominance- from the DEAP framework are used [14]. As many parents

are selected as, there are individuals in the population.

4.3.9 SA Crossover Operator

One of the two One-Point Crossover variants is used, which are compared against each other in

parametrization. In the first One-Point Crossover variant, a random value between zero and one is

determined. The value is multiplied by the number of waypoints of each parent. The resulting product

is the 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑖𝑛𝑡𝑖 for a 𝑝𝑎𝑟𝑒𝑛𝑡𝑖. Figure 9 shows how the crossover variant works.

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑖𝑛𝑡𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑𝑜𝑚([0,1]) • 𝑁𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠) (4.5)

 [] being rounding brackets in this context

 With the 𝑁𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠 being the waypoints between the starting and target point

4 Materials and Methods

32

Figure 9: Crossover variant one

Since it is possible that the path length of the offspring increases after the crossover. The second

crossover tries to reduce this effect. The second crossover variant randomly selects a waypoint of a

parent and searches in the other parent for the waypoint that is closest to the first selected waypoint

using the distance matrix. The crossover point is set after each of the two points. This crossover

variant is supposed to minimizes the distance difference between the parents and the offspring: the

maximal increase between the sum of the parent path lengths and the offspring’ path lengths is two

times the distance between the waypoints before and after the crossover point.

Figure 10: Crossover variant two - nearest point

Many of the approaches presented in chapter 3.2 and 3.3 use some kind of deletion operator to fasten

the convergence. Since many of the created children have long path lengths, a deletion function was

built into the crossover function to counteract this. A percentage value between zero and the 𝐶𝐷𝑉 is

set at random for each child – with 𝐶𝐷𝑉 being the crossover-deletion-value of the input parameter.

This is multiplied by the number of waypoints to the left and right of the crossover point in order to

4 Materials and Methods

33

determine how many of the waypoints are deleted starting from the crossover point. The result is

rounded down. The deletion operator uses a percentage rather than a fixed number, because the A*

value adds waypoints into the chromosomes.

𝑁deleted Waypoints to the left = ⌊𝑁number of waypoints to the left ∗ 𝑟𝑎𝑛𝑑𝑜𝑚[0, 𝐶𝐷𝑉] ⌋ (4.6)

𝑁deleted Waypoints to the right = ⌊𝑁number of waypoints to the right ∗ 𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑎𝑙𝑢𝑒(0, 𝐶𝐷𝑉)⌋ (4.7)

With 𝑁number of waypoints to the left being the number of waypoints to the left of the crossover point

and 𝑁number of waypoints to the right being the number of waypoints to the right of the crossover point

Figure 11: Deletion value example.

Figure 11 shows an example of the use of the deletion operator. The middle picture b shows a possible

offspring made from the parents shown in the picture a. The path length of this offspring is far worse

than the path length of the parents and the connection path even furthers the distance to the target.

The picture on the right shows the difference with the deletion value. The path length is far more

acceptable than it was before.

The vertices between the new waypoint connections are determined with the A* algorithm. In the

special case, that a parent only has start and target points as waypoints, a random step is changed into

a waypoint and the crossover takes place as described above. If there are no steps between a parents

starting and target point, no crossover takes place.

4.3.10 SA Mutation Operators

In this thesis, three different mutation operators with different individual mutation probabilities are

used:

Mutation Gene Deletion:

With the mutation probability of SAMUTBP1 an individual is mutated by the Gene-Deletion mutation

operator. This operator deletes any non-mandatory waypoint with the probability of

4 Materials and Methods

34

𝑝𝑚𝑢𝑡_𝑑𝑒𝑙=
1

𝑁Non mandatory Genes
 (4.8). An average of one waypoint is deleted during execution. The A*

algorithm translates the new waypoint-connection into consecutive vertices. In the special case that

there are no waypoints between start and target point, nothing is changed. Figure 12 shows how the

Gene Deletion mutation works.

Figure 12: Mutation Operator Gene Deletion

Mutation Shift in Neighborhood

With the mutation probability of SAMUTBP2 is mutated by the Mutation Shift in Neighborhood

operator. Every one of the consecutive vertices of an individual mutated by this operator has a

probability 𝑝𝑚𝑢𝑡_𝑠ℎ𝑖𝑓𝑡 =
1

𝑁Consequtive Vertices−1
 (4.9) to be converted into a waypoint and moved in its

neighborhood. If the chosen vertex is already a waypoint, it is just moved in its neighborhood. This

way on average one waypoint is moved. The A* algorithm translates the new waypoint connections

into consecutive vertices. Figure 13 shows how the Shift in Neighborhood mutation works.

Figure 13: Mutation in Shift Neighborhood example

4 Materials and Methods

35

In the special case that there are no steps between the start and target point, a waypoint is added. This

waypoint is either a neighbor of the start or target point. The A* algorithm determines the new

consecutive vertices between the start-point and the new point and the new point and the target point.

While in other approaches this kind of mutation is only used on waypoints, in this approach, it can

also be used on the steps between the waypoint. This way the operator has a higher chance to change

a path into avoiding a conflict if no waypoint is near that conflict.

Mutation Insert Random Waypoint

With the mutation probability of SAMUTBP2 is mutated by the Insert Random Waypoint mutation

operator. This operator adds a random waypoint into the chromosome of an individual. For every

waypoint-to-waypoint connection, a random waypoint is added by the probability

𝑝𝑚𝑢𝑡_𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑛𝑑=
𝑁consecutive vertices between two waypoints

𝑃𝐿𝑖
 (4.10). On average one waypoint is added into

an individual with a higher chance of being added between two waypoints that have a long path

between them. If there are no consecutive vertices between start and target point a random waypoint

is added between them. The A* Algorithm translates the new waypoint connections into consecutive

vertices. Figure 14 shows how the Mutation Insert Random Waypoint works.

Figure 14: Mutation Insert Random Waypoint example

The Operator added a waypoint between former w1 and w2 becoming the new w2. The old w2 is

now the new w3.

Additionally, similar to the crossover deletion function a random percentage between 0 and the

Mutation deletion value (MDV) of the waypoints left and right to the added waypoint are deleted –

with the MDV being the Mutation deletion value from the parameter input data and evenly distributed

probabilities used. This way it is possible to insert a new waypoint and still keeping the path length

low. After mutation, any offspring, which was not effected by any change, is deleted.

4 Materials and Methods

36

4.3.11 SA Evaluation

In the next step, the created children are evaluated. The 𝐹𝑖𝑡𝑃𝐿 value is calculated by counting the

consecutive vertices and the 𝐹𝑖𝑡𝐶𝐿𝐶 value, as described in chapter 4.3.7, by counting all vertex

conflicts and all possible swapping conflicts with the representatives of the other agents and

multiplying them with 𝐶𝑆𝑃𝑉. In generation one only the 𝐹𝑖𝑡𝑃𝐿 is calculated, since there are no

representatives yet. In the SO SA version, the fitness values of all individuals, including the parents,

are normalized and the weighted sum is calculated using the weights. In the MO SA the fitness values

are also normalized for the crowding distance calculation.

4.3.12 SA SELECTION Next Gen and Representatives

The population of the next generation is build out of the best individuals of the old population and

the children population. The SO SA version sorts the individuals by their weighted sum fitness value.

For this purpose, the merge sort algorithm from Popović [30] is altered and used for the

implementation. The MO SA uses the non-dominated sorting algorithm to build the population of the

next generation. For this purpose, the non-dominated sorting algorithm from the DEAP framework is

used [13]. The population size stays the same between generations. The representatives are chosen

the same way (SO SA with merge sort, MO SA with non-dominated sorting). The number of

representatives is defined by the number-representatives-variable.

4.3.13 SA Collisionlist update

Lastly, the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 is updated by inserting the information of the new representatives. Like

stated in chapter 4.3.6 the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 holds the information of how many representatives of an

agent are to a certain time step in a certain vertex. The insertion of new information from a

representative works like described in algorithm 5. For every step of a representative, the associated

tuple value is increased by one. A cell is identifiable by the combination of vertex and time step it

represents equation 4.3.

4 Materials and Methods

37

4.3.14 MA Evaluation Generation One

The first generation of the MA starts with the evaluation of all individuals. The genes of the MA

individuals refer to representatives of the subpopulations (like described in chapter 4.3.2). Algorithm

7 shows how to translate a gene of an individual into a path. To make equations more understandable

genes of individuals of the MA are assumed to be equivalent to the associated path. Genes can refer

to representatives of the current SA subpopulations or representatives of old SA subpopulations saved

in the Old_RepresentativesR list. The Old_RepresentativesR list contains all saved representatives of the

previous generations. The saving of old representatives is explained in chapter 4.3.15.

Algorithm 7: Reading out paths

Input: Individual of the MA subpopulation: 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑗 = {𝑔𝑒𝑛𝑒0, … , 𝑔𝑒𝑛𝑒𝑘}, representatives of all agents of

the current generation: 𝑅𝑘, list of all saved representatives: Old_RepresentativesR

Output: 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠

for 𝑔𝑒𝑛𝑒𝑖 in 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑗:

| if 𝑔𝑒𝑛𝑒𝑖 =< 𝑁Number of Representatives for each agent :

| | 𝑃𝑎𝑡ℎ_𝑜𝑓_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖 =𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑖[𝑔𝑒𝑛𝑒𝑖]

| else:

| | 𝑃𝑎𝑡ℎ_𝑜𝑓_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖= Saved_Representatives [𝑔𝑒𝑛𝑒𝑖]

The individuals are evaluated by the objectives makespan, sum of costs and overlaps described in

chapter 1.1. algorithms 1.1, 1.2 and 1.3.

Makespan: The algorithm calculates the makespan fitness value 𝐹𝑖𝑡𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 by determining the

longest path length value of all paths being part of the MA individual.

Sum of Costs: The algorithm calculates the sum of costs fitness value 𝐹𝑖𝑡𝑆𝑢𝑚𝑂𝑓𝐶𝑜𝑠𝑡 by summing up

all path lengths of all paths being part of the MA individual.

For the overlaps fitness value 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠, all the collisions between the paths of an

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖 must be calculated. Algorithm 8 shows the pseudocode to the evaluation for better

understanding. To calculate the swapping- and the vertex-conflicts two lists are used in the algorithm:

𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 and 𝑙𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠. 𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 contains the number of agents at every

vertex v at one time step x and is used to determine the vertex conflicts. The second list,

𝑙𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠, has at the index of each vertex v a list of all paths of 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖, which

were at time step x+1 at the given vertex v. To initialize the lists, 𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 is filled with

4 Materials and Methods

38

zeroes one for each vertex. The 𝑙𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 is filled with empty lists, one for each vertex.

For each time step x three things are done:

First, the lists are updated: The vertex values of the 𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 are increased by one for each

path of the 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖 being at the vertex at time step x. 𝐿𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 is updated by

putting a pointer of each path of the 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖 into the list with the vertex-index at which the

agent is at time step x+1.

Secondly, for each path i the vertex in the 𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 where the agent i is at time step x is

checked. The overlaps variable is increased by (𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠[𝜋𝑖 [𝑥]] −1)•0.5. For the swapping

conflicts the list in 𝑙𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠-cell at the vertex-index corresponding to the agents location

at time step x is checked. The list contains all agents which are in this vertex v at time step x+1. For

each agent of this list, the location at time step x is compared with the examined paths i location at

time step x+1. If they match the fitness value of the overlaps objective for the 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖 is

increased by one. Third, the lists vertex values are set back to zero and to empty lists.

Algorithm 8: MA Fitness Evaluation of the Overlaps Objective

Input Population of the MA: MAPop, 𝐹𝑖𝑡𝑀𝑎𝑘𝑒𝑠𝑠𝑝𝑎𝑛,𝑀𝐴𝑃𝑜𝑝

Output: 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠

𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠=[0]*𝑁𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠

𝑙𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠=[]*𝑁𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠

for 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑔 in MAPop:

| while time step x=0, x< 𝐹𝑖𝑡𝑀𝑎𝑘𝑒𝑠𝑠𝑝𝑎𝑛,𝑔, x++

| | for 𝜋𝑖 in 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑔: # get the paths referred to by the genes, fill lists

| | | list_VertexConflicts[𝜋𝑖 [x]]=+1

| | | list_SwappingConflicts[𝜋𝑖 [x+1]].append(𝜋𝑖)

| | for 𝜋𝑖 in 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑔:

| | | 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠,𝑔= 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠,𝑔+(list_VertexConflicts[𝜋𝑖 [x]]-1)*0.5

| | | for 𝜋𝑗,𝑗!=𝑖 in SwappingConflicts[𝜋𝑖 [x]]:

| | | | if 𝜋𝑖 [x+1]== 𝜋𝑗 [x]:

| | | | | Overlaps= Overlaps+1

| | for 𝜋𝑖 in 𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑔: # remove location information from list

| | | list_VertexConflicts[𝜋𝑖 [x]]=-1

| | | list_SwappingConflicts[𝜋𝑖 [x+1]].pop()

4 Materials and Methods

39

4.3.15 MA handling Representatives swaps and saving old representatives

Like already stated, every individual of the MA has one gene for each agent and every gene points to

one of the representatives of the agent. When one representative of the subpopulation of the SA is

switched out, a solution of the MA, which uses this representative would be changed too. If that

happens the MA might lose good solutions after each run of the SAs. To counteract this the MA uses

following procedure starting with the second generation: For every individual of the MA which points

at a representative of an agent, which was changed by the SA, the MA creates another individual.

This new individual will point at the new representatives. The old individual refers towards the old

representatives. For this reason, the old representatives, which are used by the MA, are saved in the

𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅 list.

Figure 15: Handling of new representatives

This solution leads to an overall bigger population of the MA, which slows down the algorithm. On

the other hand, the impact will not be too high, since the SA is expected to have the biggest impact

on the time performance, because the SA has one subpopulation for each agent to evolve.

Additionally, this solves two problems: Firstly, old solutions in the MA subpopulation do not

disappear by changes in the subpopulation. Secondly, the new representatives of the SAs, which are

4 Materials and Methods

40

supposed to be better than the old ones, are part of the population faster. Otherwise, the mutation

operator would be the only way to insert the new SA representatives into the MA population. The

new solutions created by this function are then evaluated.

4.3.16 MA Selection

The parents are selected by tournament selection based on dominance with two participants for each

tournament.

4.3.17 MA Crossover

For crossover, uniform-crossover like described in Narmadha et al. [26] is used. For this purpose, the

uniform-crossover function from DEAP is used [11]. The cross probability is determined by the input

crossover probability variable MACXPB.

4.3.18 MA Mutation

For the mutation of the MA offspring uniform mutation like described in Soni and Kumar [36] is

used. For this purpose, the uniform mutation function from the DEAP framework is used [12]. The

mutation probability is determined by the input Mutation-probability variable MAMUTBP. The range

of possible values for a mutated gene are from one to the Number Representatives:

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑉𝑎𝑙𝐹𝑜𝑟𝑀𝐴𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ∈ {1≤j≤𝑁𝑅|j∈ℕ}. This way, the mutated genes refer only towards

representatives of the current generation. After the mutation, the newly created offspring are

evaluated as described in chapter 4.3.11.

4.3.19 MA Environmental Selection

After the evaluation, the non-dominated sorting algorithm like described in Deb et al. [8] is used to

select individuals of the newly created offspring and of the old population to create the next

population. The new population size is defined by the MA Population Size variable. For this purpose,

the non-dominated sorting algorithm from the DEAP framework is used [13]. Additionally the set of

pareto optimal solutions is determined by the non-dominated sorting algorithm.

4 Materials and Methods

41

4.3.20 MA Deleting Saved Representatives

Lastly, the MA deletes old representatives from the saved representative list (𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅),

which are not used by the new population.

4.3.21 Saving Data, Termination Criteria and Data Output

The Output data after each generation is saved as a data frame. For the purpose of testing the

generation, the function evaluations, the steps of every agent of the solutions of the pareto front, the

fitness values of the solutions of the pareto front, the random-seed value and the number of nodes

traversed with the A* algorithm are saved every 10 Generations or if the agents terminate early.

The algorithm terminates when one of two conditions is met: Either the algorithm reaches the

maximal number of generations or the algorithm finds a solution with the best possible fitness values.

For this solution it is required that the path of each agent in this solution has the minimum possible

path length value, thereby minimizing makes span and the sum of the costs, and the overlaps fitness

value is zero.

Once the termination criteria is fulfilled, the saved output data is put out as a csv file and the algorithm

terminates.

4.4 Summary and discussion

In this chapter, a co-evolutionary approach for solving the multi-objective multi-agent pathfinding

problem was presented. The algorithm uses the master-, slave-architecture similar to Kala [18]. A

subpopulation for every agent is created, which is evolved by the SA, and the MA evolves a

subpopulation, which refers to the representatives of the SA to create a set of pareto optimal solutions

for the MAPF problem.

Like stated in chapter 2.2 the tests in Bucci and Pollack [3] showed among other things that using

every test available leads to a better solution. Since the evaluation of every solution of the k agents in

all possible combination would use up too much time, the SA individuals are instead evaluated by

objectives, which have a connection to the MA objectives. The SA path length objective optimizes

the makespan and sum of costs objective of a MA solution. The SA collision count objective is

supposed to optimize the overlaps objective of the MA. Care was taken here to evaluate an individual

using the representatives of all other agents using the collision list. So in some way every available

4 Materials and Methods

42

test is used. Admittedly, an individual with a comparatively small collision count value can still lead

to a comparatively high overlaps value since:

 The swapping collisions in the collision count objective are estimated,

 The collision count comes from using all representatives from all agents while in the overlaps

objective only the collisions between one representative from every agent are examined,

 In the calculation of the overlaps objective vertex conflicts between many agents in one vertex

are penalized exponentially, while vertex conflicts in the collision count can only be penalized

linearly.

The SA uses waypoints like most of the approaches presented in chapter 3.2 and 3.3. The waypoints

are translated into paths using the A* algorithm. Two variants of the A* variant were implemented:

A stochastic and a deterministic one. Two heuristics were presented of which the precomputed

distances will be used for the tests to minimize the computational power needed. Additionally, the

A* algorithm introduces new waypoints into long paths to solidify paths. Two one-point crossover

variants are introduced, which differentiate in the setting of the crossover point. Additionally, the

crossover operator uses a deletion operator to fasten the convergence. Three mutation operators are

used. A Waypoint deletion mutation, a mutation operator, which moves a step of the path in its

neighbourhood, and a waypoint operator, which introduces a new random waypoint, and uses a

deletion operator to smoothen the transition. The last mentioned mutation operator introduces new

solutions to the population. Two different versions of the SA were implemented: One, which uses a

weighted sum approach to optimize the objectives (SO SA), and another one, which solves the

pathfinding problem multi-objectively (MO SA).

The genes of individuals of the MA refer to representatives of each agents’ subpopulation. The MA

saves old representatives if they are still used in the population. Otherwise, the MA is pretty straight

forward in terms of multi-objective evolutionary algorithms using tournament selection, uniform

crossover, uniform mutation and the non-dominated sorting algorithm.

The algorithm is computational expensive: The number of function evaluations of the algorithm is

calculated by formula 4.11.

𝑁Functionevaluations = 𝑁generations ∗ 2 ∗ (𝑁SA Individiuals ∗ k + 𝑁MA Individuals) (4.11)

With k being the number of agents and with 𝑁generations being the number of generations the

algorithm needed. The “times 2” comes from the additional evaluation of the collision count in the

SA and from the evaluation of the new individuals created by the “MA handles representatives”-

function.

4 Materials and Methods

43

To reduce the computational cost it would have been useful to stop the evolution of subpopulations,

which are unlikely to change anymore. Additionally, elitism would have been probably the better

choice for the environmental selection in the SO SA. Other than that, different mechanisms for

choosing the representatives could have been compared against each other. The representatives can

be chosen by random choice, optimal choice or combined choice [32].

5 Experiments and Evaluation

44

5 Experiments and Evaluation

In this chapter the two variants SO SACCGA and the MO SACCGA are compared with each other

and analyzed. For this, both variants are first parameterized in chapter 5.2. In the following section

chapter 5.3, the two variants are compared against each other in different environments with a

different numbers of agents and different start and target point (scenarios). The quality of the co-

evolutionary algorithm should be determined and to test thesis 1 (like formulated in chapter 1.):

Thesis 1: MAPF multi-objective optimization with co-evolution works better if the

subpopulations of the agents are optimized multi-objectively than if the subpopulations are

optimized single-objectively with a weighted sum approach.

Additionally, the pareto fronts achieved from the tests are analyzed to determine which of the two

algorithms achieves better results, if the decision maker weighs the objectives in the same way as the

weighting in the slave algorithm of the SO SACCGA is done. This is done to examine thesis 2 (like

formulated in chapter 1.):

Thesis 2: Using a co-evolutionary approach, if the decision maker weighs the objectives of

the Multi-objective MAPF problem with the same weights the objectives of the

subpopulations of the agents are weighted using a weighted sum approach, then this weighted

sum approach works better than optimizing the objectives of the subpopulations of the agents

multi-objectively.

The environments and scenarios from the Mapf.info benchmarks are used for the analysis and

parametrization. These benchmarks are described in more detail in Chapter 5.1. Finally, the results

are summarized in chapter 5.4.

5.1 Benchmark

The Benchmarks from Mapf.info provide grid-based MAPF maps of real cities, videos games, open

grids with or without obstacle, maze-like grids, warehouse-like grids and grids with room-forming

obstacles like illustrated in figure 16.

Figure 16: Mapf.info environments [37]

5 Experiments and Evaluation

45

Additionally, each map has 25 random and even scenarios. Each Random scenario consist of 1000

randomly paired points on the largest reachable region [38]. The even Scenarios consist also of

random points, whereby each path length-spectrum is represented by the same number of problems

[19].

The used environments in this thesis are the open grids with and without obstacles, the maze-like and

the room-like maps. These maps are used because they have distinctive features, which can be

analyzed.

The Open Maps without obstacles differentiate only in size from each other:

Table 1:Empty Maps

Map

type Size

Empty 8 x 8

Empty 16 x 16

Empty 32 x 32

The Open Maps with random obstacles differentiate in size and percentage of obstacles:

Table 2: Random Maps

Map

type Size Ratio of obstacles to empty space

Random 32 x 32 10

Random 32 x 32 20

Random 64 x 64 10

Random 64 x 64 20

The maze-like maps differentiate in size and space between walls:

Table 3: Maze Maps

Map

type Size Space between walls

Maze 32 x 32 2

Maze 32 x 32 4

Lastly, the room-like maps differentiate in size and room size:

Table 4: Room Maps

Map

type Size Room size

Room 32 x 32 3 x 3

Room 64 x 64 15 x 15

Room 64 x 64 7 x 7

5 Experiments and Evaluation

46

Overall, the algorithm is tested on twelve different environments. For the rest of the work the word

“problem” is used for a combination of a map, a scenario and the number of agents.

5.2 Parametrization

Value Presentation: The input-parameters are presented in Appendix section A. Table 14 in

appendix section B shows the values for every parameter that are being compared against each other

during parametrization. For parameters with natural limitations such as probabilities or weights, the

values come from the entire spectrum. For the weighting of the collision count objective of the

weighted sum approach 0.001 and 0.999 are chosen as extreme values instead of zero and one in order

to create a lexicographical optimization instead of neglecting one of the objectives entirely. For all

parameters without natural limitations, different and nevertheless promising values are chosen.

Procedure of parameterization:

In order to find a good parameter setting for both the SO SACCGA and the MO SACCGA, the

following was done: In the first step, the parameters were improved by finding a promising basic

setting. In the second step, the MO SACCGA and the SO SACCGA were parameterized separately.

In order to find the basic setting, all parameters were set to a promising pre-basic setting. Then, for

each value setting of a parameter, 31 runs were carried out on seven different test setups illustrated

in table 5. Before moving on to the next parameter, the tested parameter was reset to the default

setting. The results for all settings of a parameter were then compared against one another. The

Convergence and Diversity Metric hypervolume was used for the comparison. To do this, the pareto

front fitness values of the repetitions were first normalized and then the hypervolume value was

calculated. The settings were then compared by the hypervolume value in dependency to the number

of function evaluations or in dependency to the number of nodes that the A* algorithm ran through.

After the values for every parameter were compared against each other. The winning settings of the

comparison formed the basic setting. This basic setting was then used as start setting to parameterize

the MO SACCGA and the SO SACCGA separately. For the separate parameterization, the same

procedure as in the first step was used, with the exception that the procedure was done separately for

the MO SACCGA and SO SACCGA.

For calculation of the hypervolume values the python implementation from Wessing [43] was used.

5 Experiments and Evaluation

47

Table 5: Test problems for parametrization.

The Feature setting refers to the map types’ special feature described in chapter 5.1

The seven test setups contain different maps with an adapted numbers of agents. Care was taken to

ensure that the number of agents is high enough to create an interesting problem. The starting and

target points were taken from the even scenarios for each map.

To measure somehow the computational cost of the algorithm, function evaluations and A* traversed

nodes are measured. While functional evaluations are used more frequently in the literature (like for

example in Weise et al. [42]), the measurement of the A* traversed nodes is rarer. However, the only

two parameters that effectively influence the number of function-evaluations are the population size

of the SA and the population size of the MA. In the current state of the algorithm the A* algorithm

takes a lot of time. Since precomputed distances are used as heuristic, there is not much room to

optimize the A*. Additionally, the number of traversed nodes grows proportionally to the population

size of the SA, which has probably the biggest impact on the number of function evaluations

considering the SA has to run once for every agent every generation. For these reasons, all parameters,

which have an effect on the number of function evaluations, are parameterized using the hypervolume

value in dependence to the number of function evaluations. All the parameters, which have no effect

on the number of function evaluation but might have an effect on the number of A*-traversed nodes,

are optimized using the hypervolume value in dependence to the number of A*-traversed nodes.

For comparing the hypervolume values in dependence to the computational time the average

hypervolume of the 31 runs of all values of a parameter were visualized with a 68% confidence

interval (standard error) and put into a graph.

For the comparison a parameter value a was considered better than another value b of the same

parameter if the graph showed that:

 a has a better average hypervolume value at generation 100 than b is having with the same

computational cost while a has a smaller or as high computational cost as gen b after 100

generations

 or b has a smaller average hypervolume value at generation 100 than a is having with the

same computational cost.

Maptype Size Featuresetting Number of Agents

Empty 8 x 8 - 32

Empty 16 x 16 - 45

Maze 32 x 32 2 32

Random 32 x 32 20 40

Random 64 x 64 20 50

Room 32 x 32 3 x 3 40

Room 64 x 64 7 x 7 50

5 Experiments and Evaluation

48

If both values a and b had the same hypervolume value in dependency to the computational cost after

one value reaches generation 100, it was checked which value reached it first. Else the values were

considered being as good as one another. The procedure was used to create the ranking tables 6 to 8

Table 6 shows the results of the first step of finding a basic setting. Table 7 and 8 show the results of

the optimization of the MO SACCGA and SO SACCGA. The tables show for each parameter how

their values were ranked on each environment. The resulting value on the far right of the table shows,

which value won the comparison over all maps together. Table 9 explains the icons used in table 6

to 8.

5 Experiments and Evaluation

49

Table 6: Parametrization Ranking table Basic setting

Table 7: Parametrization Ranking table MO SACCGA

empty-8-8.map empty-16-16.map maze-32-32-2.map "random-32-32-20.map random-64-64-20.map "room-32-32-4.map room-64-64-8.map

SA-Population-Size 20 20>28>>12 28>20>12 28>/20>12 28>20>>12 28>/20>>12 28>20>>12 28/20>>12 28

Maximal-Number-of-Starting-Chromosones 3 1>3>/2>>5 1>2>/3>5 5>3/2>1 1>2>>3>5 1>/2>/3>>5 1>2>3>>5 1>2>3>>5 1

SA-Crossover-Probability 0,25 0.25>0>0.5>1>0.75 1>/0.75>0.5/0.75>0 0.5>0>0.25>/0.75>1 0.75>/1>0.5>0>0.25 1/0.75/0.25>0.5>>0 1>0.75>0.5/0.25/0 1>/0.75>0.5>0.25>0 0.75

SA-Mutation-Probability-Shift-in-Neighborhood 0,75 0.75>1>0.5/0>0.25 0.5>1/0.75>0.25>0 1/0.75>0.5>0.25>>0 0.5>1>0.25>0>>0.75 0.75>/1>0/0.25/0.5 0.75/1>0.5>0/0.25 1/0.5>0.75>0.25>0 0.75

SA-Mutation-Probability-Gene-Deletion 0,25 1>0.25>/0.5/0>0.75 1/0.75>0.25>0.5>0 0.5>/1/0.75>0/0.25 1>0>0.5>>0.25/0.75 0.75/0.25/0.5>1>0 0.5>1>0.25>0.75/0 1>0.25>0.5/0/0.75 1

SA-Mutation-Probability-Insert-Random-Waypoint 0,5 0.5/0.25>0.75>1/0 0>0.25>0.5>0.75>1 0.25>0.5>0>0.75>1 0>0.25>1>0.5>0.75 0>0.25>0.5>0.75/1 0>0.25>0.5>1>0.75 0.25>0.5>0>0.75>1 0.25

A-star-Random-or-Stochastic-Variant-Switch True True>>False True>>False False>True True>>False True>>False True>>False True>>False True

Weight-Collisioncount 0,75 0.75>0.99>0.5>>0.25>0.001 0.5>0.75>0.25>0.99>>0.01 0.75>0.999>0.5>>0.25>>0.001 0.5>0.25/0.75/0.999>>0.0001 0.5/0.25>/0.75>0.999>>0.001 0.5/0.75>0.999/0.25>>0.001 0.75/0.5>/0.999>0.25>>0.001 0.5

Collision-Swapping-Penalty-Value 0,25 0.25>0.1>0>0.5 0.1>0.25>0>0.5 0.5>0.25>0.1>>0 0.1>/0>0.5>>0.25 0.25>0.1/0.5>>0 0.25>0.5>>0.1>0 0.1/0.25>/0.5>>0 0.25

Crossover-Variant-Switch True True>>False True>Flase True>False True>False True>False True>False True>False True

Extra-Waypoint-Datasets Set 4 Set3>Set1>Set4>Set2 Set3/Set1>Set2/Set4 Set3>Set2>Set4/Set1 Set3>Set1>Set2>Set4 Set3>/Set4>Set2/Set1 Set3>Set4>Set1>Set2 Set1>Set2/Set4>Set3 Set 3

Crossover-deletion-value 75% 75>100>25>50>0>False 75>100>0/25/False/50 25/0/100>75/50/False 100>50>25>False>75 75>100>50>False/0>25 75/100/>/25>0>False>50 100>75/50>25/False/0 100%

Mutation-deletion-value 75% 75>0>100/50>25 100>75>25>0>50 100>50/0>75/25 50>100>25>0>75 75>100>50/0>25 75/25>100>0>50 100>75>50>25>0 100%

MA-Population-Size 100 100>148/48>>28 148>100>48>28 148>100>48>28 148>28/48>100 100/148>48>28 148>100>48>28 148>100>48>>28 148

MA-Mutation-Probability 0,5 0.5>0.75>0/0.25>1 0.5/0.25>/1>0.75/0 1>0.75>0.25>0.5/0 1>0.75>0>0.25>0.5 0.5/0.25>1>0.75>0 0.75>0.5/1>0/0.25 0.75>0.25/1/0.5>/0 0.75

MA-Crossover.Probability 1 0.75>1>>0.5>0.25>0 1>0.75>0.5>0.25>>0 0.25>0.5/0.75>1>0 0.5>/0.75>/0.25>1>0 1/0.75>0.5>0.25>>0 1>0.75>/0.5>0.25>0 1>/0.75>0.5/0.25>>0 0.75

Number-of-Representatives 5 5>10/20 5>10>>20 10>5>>20 5/10>>20 5>10>>20 5>/10>>20 5>10>>20 5

Finding the Basic setting

Paramters Startingvalue

Maptypes

Resulting value

empty-8-8.map empty-16-16.map maze-32-32-2.map "random-32-32-20.map random-64-64-20.map "room-32-32-4.map room-64-64-8.map

SA-Population-Size 28 20>28>40 40>20>28 28>40/20 40>28/20 28>40>20 40>28>20 20>28>40 28

Max-Number-of-Starting-Chromosones 1 1>3>5>2 5>1/2>3 5>1>3/2 2/1>3/5 3>/1/2>5 2/5>1>/3 5/3>1>2 1

SA-Crossover-Probability 0,75 0.25>0.75>/0.5>1>0 0.25/0>0.75>0.5>1 0.25>0>0.75>0.5>1 0.75>0>0.25/1>0.5 1>0>0.5/0.25>0.75 0.5>1/0.75>0.25>0 1/0.75/0>0.25>0.5 0.25

SA-Mutation-Probability-Shift-in-Neighborhood 0,75 0.75>1>/0>0.5>0.25 1>0.75>0/0.5>0.25 0.75/0.5>1>0.25>>0 1>0.75>0.5>0.25>0 1>0/0.75/0.5>0.25 1>0.75>0.5>0.25>0 0.75>0.5/0.25/0/1 0.75

SA-Mutation-Probability-Gene-Deletion 1 0.5/0.25>1>0>0.75 0.5>0.75>0.25/0>1 0/0.25>0.5>1/>0.75 0.5>/1>0.25>/0>0.75 0.5>1>0.25/0.75/0 0.75>0.25>0>/1>0.5 0>0.25>0.5>0.75>1 0.25

SA-Mutation-Probability-Insert-Random-Waypoint 0,25 0.75>0.25>1>0>0.5 0.25>0.5>0.75>1>>0 0.25>0.5>0.75>1>>0 0.25>0.5>0.75>0>1 0.5>0.25>0.75>1/0 0.25>0.5/0.75/0.5>>0 0.25>0.5>0.75>1>0 0.25

A-star-Random-or-Stochastic-Variant-Switch True True>>False True>False False>True True>False True>>False True>False True>>False True

Weight-Collisioncount Moop - - - - - - - MOOP

Collision-Swapping-Penalty-Value 0,25 0.1>0.25>0>0.5 0.1>0.25>0>0.5 0.25>0.1>0.5>>0 0.1/0.25>/0.5>0 0.1>0>0.25>0.5 0.1>0.25/0.5>>0 0.25>0.1>0.5>0 0.1

Crossover-Variant-Switch True True>/False False>/True True>/False False>/True True>False True>False False/True True

Extra-Waypoint-Datasets Set 3 Set3>Set2/Set4>Set1 Set1>Set2/Set3/Set4 Set2>Set4>Set1>Set3 Set3>Set1>Set2>Set4 Set4>Set3>Set2>>Set1 Set1>Set2/Set3>Set4 Set2>Set4/Set1>Set3 Set2

Crossover-deletion-value 100% 0>50>100>75>25 25>100>75/0>50 25>0>50/75>100 25>100/50>75/0 50>0>25>100>75 25>0>100>50>75 25/0>50>100/75 25%

Mutation-deletion-value 100% 75>0>50>100>25 75/50>100>25/0 100>75>0>/50/25 75>100>0>25>50 50/100>75>0>25 25>100>0>50>75 100>50>25/75>0 75%

MA-Population-Size 148 148>100>28>48 148>100>48>28 148>100/48>28 148/100/48>28 100>148>48>28 148>100>48/28 148>100>48>28 148

MA-Mutation-Probability 0,75 0.75/0.5>1/0.25>>0 1/0.75/0.5>0.25>>0 1/0.75>0.5>0.25>>0 1>0.75>0.5>0.25>>0 0.25>0.75>/0.5>/1>>0 1>0.75>0.5>>0.25>0 1>/0.75>0.5>0.25>>0 0.75

MA-Crossoverprobability 0,75 1>0.75>0>0.25>0.5 0.5>/0.75/1>0.25>0 0/0.25>0.75>0.5>1 1/0.75>0.5>/0.25>0 0>0.25/0.75>0.5>1 0.25>0/0.75>1/0.5 0.25>/0.5>/0.75>0>1 0.5

Number-Representatives 5 10>/5>20 5>10/20 5/10>20 5>10>20 5>10>20 5>10>20 5>10>20 5

Optimizing the MO SACCGA

Paramters Startingvalue

Maptypes

Resulting value

5 Experiments and Evaluation

50

Table 8: Parametrization Ranking table SO SACCGA

Table 9: Ranking tables Icon Legend

empty-8-8.map empty-16-16.map maze-32-32-2.map "random-32-32-20.map random-64-64-20.map "room-32-32-4.map room-64-64-8.map

SA-Population-Size 28 20>>28>40 40>>20>28 40>28/20 20>40>28 28>20>40 20>28>40 40>28>20 28

Max-Number-of-Starting-Chromosones 1 3>5>1>2 5>/3>1>2 3>/5>1>2 1>2>3>5 1>2>3>5 1/2/3>5 5>3/2>1 3

SA-Crossover-Probability 0,75 0>0.25>0.75>1>/0.5 0.5>0.25>0.75/0>1 0/0.25/0.5>0.75>1 1>0.5>0.75>0.25>0 0.75>0>1>0.5>0.25 0.5>0/0.75>0.25/1 0>0.25>0.75>0.5>1 0.25

SA-Mutation-Probability-Shift-in-Neighborhood 0,75 0.5>0.75>0/0.25>1 0.5>1>0.75>0>0.25 0.75>1>0.5>0.25>0 0.25>1>0.75>0.5>>0 0.25>0.75>0.5/0>1 1>0.75>0.5>0.25>0 1>/0.75>0.5>0.25>0 0.75

SA-Mutation-Probability-Gene-Deletion 1 0.5>1>0.75>0>0.25 0.5>0.25>0.75>0>1 0>0.25>0.5>0.75>1 0.5>1>0.25>0.75>0 1>0.75>/0.25>0.5>0 0>0.75>/1>0.5>0.25 0>0.25>0.75>/1/0.5 0.5

SA-Mutation-Probability-Insert-Random-Waypoint 0,25 0.5>0.25/1>0.75>>>0 1/0.75>0.5>0.25>>0 0.25>0.5>0.75>1>>0 0.25>/0.5>0.75>1>>0 0.25>0.5/0.75>1>>0 0.5/0.25>0.75>1>>0 0.25/0.5/0.75>1>>0 0.25

A-star-Random-or-Stochastic-Variant-Switch True True>>False True>False False>True True>>False True>>False True>>False True>False True

Weight-Collisioncount 0,5 1>0.75>0.5>0.25>0 0.75>0.5>1>0.25>0 0.75>1>0.5>0.25>0 0.25/0.5/0.75>1>>0 0.25>0.5>0.75>1>0 0.5>0.75>1>0.25>>0 0.75>1>0.5>0.25>0 0.75

Collision-Swapping-Penalty-Value 0,25 0.1>0.25>0>0.5 0.1>0.25>0>0.5 0.25>0.5>0.1>0 0.5>0.25>0.1>0 0.25>0.5/0.1>0 0.25>0.1>0.5>0 0.25>0.5>0.1>0 0.25

Crossover-Variant-Switch True True>False False>True False>True True>False True>False True>False False>True True

Extra-Waypoint-Datasets Set 3 Set1>/Set3>Set4>Set2 Set4>Set1>Set2/Set3 Set4/Set2>Set1>/Set3 Set3>Set1>Set4>Set2 Set3>Set2>/Set4>Set1 Set3>Set1>Set4>Set2 Set4>Set2>Set1>Set3 Set4

Crossover-deletion-value 100% 75>100>50>0>25 0>100>50>75/25 25>50/0>100>75 75>50/0>/100>25 75>100/25>50>0 75>25>0>100>50 25>0>50>75/100 75%

Mutation-deletion-value 100% 75>0>100/50>25 0>25>75/100>50 100>25>75/0>50 75>0>/100>25/50 50>/100>25>75/0 50>25>75>100>0 100/75>50>25>0 75%

MA-Population-Size 148 100>/148>48>28 100>/148>48>28 148>100>48>28 100>/148>48>28 148>100>48>28 148>100>48>28 148>100>48>28 148

MA-Mutation-Probability 0,75 0.5>1>/0.75>0.25>0 0.25>0.5>0.75/1>0 0.75>0.5>1>0.25>0 0>0.5>0.25>0.75>1 0.75>1>/0.5>0.25>0 1>0.5>0.75>0.25>0 0.75>1>0.25>0.5>0 0.5

MA-Crossover Probability 0,75 0.75>0>/1>0.5>0.25 0.5/0.75>1>0>0.25 0.75>0>0.25>0.5>1 0.5>0.25>0.75>1>0 0.75>1>0.5/0.25>0 1/0.75>0.5>0.25>0 0.25/0.75>0.5>0/1 0.75

Number-Representatives 5 5>10>20 5>10>20 5>10>20 10>20>5 20>10>5 5>10>20 5>10>20 5

Optimizing the SO SACCGA

Paramters Startingvalue

Maptypes

Resulting value

Icon Explanation

a>>b: a is by much better than b

a>b: a is better than b

a>/ b: a is a little better than b

a/b: a and b are equal

5 Experiments and Evaluation

51

Analysis of results of the parametrization: For the population size of the MA, a population

of 148 individuals clearly seems to get the best results. A population of 100 sometimes seems

to work better for some maps. Since a MA population of 100 uses less function evaluations it

might converge faster. The reason why a population of 148 individuals is getting better results

might be that the decision space of the MA grows exponential with the number of agents. For

the mutation probability of the MA and the crossover probability of the MA values between

0.75 and 0.5 appear to work well.

The population size of the SAs seems to converge the fastest in both variants with the value of

28. From the two crossover variants, the second crossover operator was chosen which places

the crossover point in front of the values that are close together. The small crossover probability

of the SA shows that even that crossover operator is not working effectively. The selected

crossover probability value is 0.25 for both variants and was closely followed by a crossover

probability value of zero, which shows that there is potential for a better crossover operator.

The crossover deletion value is at 25% for the MO SACCGA and 75% for the SO SACCGA.

The 0% value seems to work well for some maps, especially for the MO SACCGA. This,

coupled with the high degree of randomness of the algorithm, does not allow a clear statement

to be made as to whether the deletion value in the crossover is useful for this algorithm. The

fact that the dominant value for the mutation probability for the Mutation in Neighborhood

operator is at 75% indicates that the mutation operator works well. The selected values for the

probability of the Gene Deletion mutation operator of the SA are 25% and 50% for both

variants. However, for both variants the decisions were difficult since for many maps the best

value was different and the result is more of a compromise between the results for the different

maps. The reason might be that the original effect of making the route smoother is reduced due

to the adding of new waypoints. Deleting a through A* added waypoint doesn‘t shrink the path

length but increases the number of A* traversed nodes. The Mutation Random Waypoint

operator seems to be very important for the algorithm. Although this operator greatly increases

the number of A* traversed nodes - far more than the other operators do - the value of zero

leads to very bad results in contrast to the other values for all tested environments. However, a

high value does not produce good results either for most maps. The operator takes care of two

things: It introduces new waypoints and deletes waypoints in the process. The algorithm works

best with a high maximum deletion value. In the Comparison of the stochastic A* variant with

the deterministic A* variant, the stochastic one seems to dominate. The stochastic variant is for

every map except the maze map in all three parametrization runs by far better. This might be

the case because the maze environment gives less room for the stochastic algorithm to change

5 Experiments and Evaluation

52

a path to a not yet used path. But it must be kept in mind that the way the algorithm is structured,

the way the algorithm was tested and the way the problem was defined benefit the stochastic

variant:

 The algorithm creates extra waypoints when creating long paths. This shrinks the

randomness effect of the stochastic variant and makes the algorithm more reliable.

 The increase in complexity of the stochastic variant is not taken into account in the

comparison.

 The simplification of the cost of vertical movements to one time step leads to a higher

amount of fastest routes between two waypoints and therefore increases the effect of the

stochastic variant.

For the number of representatives the lowest value of five representatives dominates. The

number of representatives has two main effects in this algorithm. First, the decision space of

the MA increases/decreases proportionally with this value. Secondly, the objective collision

count of the SA is determined by checking how many collisions an individual has with the

representatives of the other agents. The tests for the Collision-Swapping-Penalty-Value 𝐶𝑆𝑃𝑉

lead for maps with less obstacles to smaller values and for maps with more obstacles to higher

values. For the SO SACCGA, a value of 0.25 works best, while for the MO SACCGA a value

of 0.1 seems to dominate. For the Extra-Waypoint-Datasets, which determines how many

waypoints are added by the A* algorithm depending on the path length between two waypoints,

the MO SACCGA works best with the Set, which creates the most waypoints, and the SO

SACCGA works best with a Set, which creates a moderate number of waypoints. As for the

weight of the collision count objective of the SO SACCGA 0.75 works best. A close second

best is the value 0.5. The value 0.0001, which changes the optimization to a lexicographical

optimization by prioritizing the path length objectives, achieves the worst results for all maps,

while the value 0.9999, which prioritizes the collision count works fine. This shows that the

collision count variable works well in terms of optimizing the three objectives. The weight for

the path length is thereby 0.25.

The parameterization done in this chapter does by no means lead to an optimal parameter

setting. Neither all combinations of settings are compared with one another, nor have enough

test runs been carried out to make statistically stable statements. Furthermore, the settings were

only applied to seven test problems with only one combination of start and target points used.

However, using a parametrization, which leads to an optimal setting, would have gone beyond

the scope of this thesis.

5 Experiments and Evaluation

53

5.3 Comparison of the Single-objective Slave algorithm and the Multi-objective

Slave algorithm

In this chapter, the results of the SO SACCGA and the MO SACCGA comparison are shown

and analyzed. For the comparison, both variants were tested on the twelve different

environments mentioned in chapter 5.1. Three different starting- and target-point-sets for each

environment and different number of agents were used. For each problem setting (environment

+ scenario + agent count) 31 runs were done. For the three starting and target point sets the first

three even scenarios from mapf.info [19] were used by taking the starting and ending point

combinations from the front (for a 40 agents scenario 1 problem, the first 40 starting and target

points from scenario 1 for the selected environment are taken). Starting with two agents for

each problem the number of agents is increased by one until an agent count was reached for

which it was expected that the quality of the solutions gets too low. The pareto front of each

run was normalized and the GD and IGD values were calculated by using a fake pareto front,

which was formed out of all pareto fronts found for this problem. The GD and IGD values were

calculated as described in Ishibuchi et al. [17].

Out of the GD and IGD values for the 31 runs of each variants, the median and the interquartile

range were calculated. These values were used to decide which variant does better for a given

problem. Ties were determined using the Mann-Whitney-U-test with a significance level of

0.05 using the Mann-Whitney-U function from the SciPy module [41]. If the tests did not lead

to a tie, the variant which found the fake pareto front in 100% of the cases was crowned as a

winner for the problem. If no variant found the fake pareto front in 100% of the 31 runs, then

the variant with the higher median was determined as the winner. If the median was the same,

the visualized box plots were analyzed to determine the winner.

Additionally, the runs were compared by assuming that a decision maker weighs the objectives

of the MA with the same weights, which were used to form the weighted sum in the SA. The

collision count objective of the SA is designed to optimize the overlaps objective of the MA

and the path length objective to optimize the makespan and sum of costs objective. Since the

weights, which work best for the SA, are the 0.75 for the collision count objective and the 0.25

for the path length objective, the decision maker weighs the overlaps-objective with a weight

of 0.75 and the makespan and sum of costs each with a weight of 0.125. The solution of the

pareto front of each run, which minimizes the weighted sum is used for comparison. The

weighted sum values were used to calculate the medians and interquartile ranges for both

variants for each problem to decide, which variant solves the problem better. Ties are again

5 Experiments and Evaluation

54

determined using the Mann-Whitney-U-test with a significance level of 0.05 and the winner

was chosen like for the IGD and GD comparison.

Since both variants have the same population sizes for the SA and the MA it is assumed that

the number of function evaluations is the same for both variants. To simplify things the results

after 100 generations are compared against each other.

Figure 17 to 19 show grouped bar plots of a Win-Lose-Tie-Table (table 16 appendix section C)

showing the results of the comparison in regards to the GD values, IGD values and weighted

sums.

5 Experiments and Evaluation

55

Figure 17: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the GD values

of the SO SACCGA and the MO SACCGA

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

Empty 8 S1

Empty 8 S2

Empty 8 S3

Empty 8 all three scenes

Empty 16 S1

Empty 16 S2

Empty 16 S3

Empty 16 all three scenes

Empty 32 S1

Empty 32 S2

Empty 32 S3

Empty 32 all three scenes

Maze 32 2 S1

Maze 32 2 S2

Maze 32 2 S3

Maze 32 2 all three scenes

Maze 32 4 S1

Maze 32 4 S2

Maze 32 4 S3

Maze 32 4 all three scenes

Random 32 10 S1

Random 32 10 S2

Random 32 10 S3

Random 32 10 all three scenes

Ramdom 32 20 S1

Ramdom 32 20 S2

Ramdom 32 20 S3

Ramdom 32 20 all three scenes

Ramdom 64 10 S1

Ramdom 64 10 S2

Ramdom 64 10 S3

Ramdom 64 10 all three scenes

Random 64 20 S1

Random 64 20 S2

Random 64 20 S3

Random 64 20 all three scenes

Room 32 4 S1

Room 32 4 S2

Room 32 4 S3

Room 32 4 all three scenes

Room 64 8 S1

Room 64 8 S2

Room 64 8 S3

Room 64 8 all three scenes

Room 64 16 S1

Room 64 16 S2

Room 64 16 S3

Room 64 16 all three scenes

GD value Comparison of the SO SACCGA and MO SACCGA

MO SACCGA Win

5 Experiments and Evaluation

56

Figure 18: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the IGD values

of the SO SACCGA and the MO SACCGA

0,00% 20,00% 40,00% 60,00% 80,00% 100,00% 120,00%

Empty 8 S1

Empty 8 S2

Empty 8 S3

Empty 8 all three scenes

Empty 16 S1

Empty 16 S2

Empty 16 S3

Empty 16 all three scenes

Empty 32 S1

Empty 32 S2

Empty 32 S3

Empty 32 all three scenes

Maze 32 2 S1

Maze 32 2 S2

Maze 32 2 S3

Maze 32 2 all three scenes

Maze 32 4 S1

Maze 32 4 S2

Maze 32 4 S3

Maze 32 4 all three scenes

Random 32 10 S1

Random 32 10 S2

Random 32 10 S3

Random 32 10 all three scenes

Ramdom 32 20 S1

Ramdom 32 20 S2

Ramdom 32 20 S3

Ramdom 32 20 all three scenes

Ramdom 64 10 S1

Ramdom 64 10 S2

Ramdom 64 10 S3

Ramdom 64 10 all three scenes

Random 64 20 S1

Random 64 20 S2

Random 64 20 S3

Random 64 20 all three scenes

Room 32 4 S1

Room 32 4 S2

Room 32 4 S3

Room 32 4 all three scenes

Room 64 8 S1

Room 64 8 S2

Room 64 8 S3

Room 64 8 all three scenes

Room 64 16 S1

Room 64 16 S2

Room 64 16 S3

Room 64 16 all three scenes

IGD value Comparison of the SO SACCGA and MO SACCGA

MO SACCGA Win SO SACCGA Win Tie

5 Experiments and Evaluation

57

Figure 19: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the weighted

sum values of the SO SACCGA and the MO SACCGA

0,00% 20,00% 40,00% 60,00% 80,00% 100,00% 120,00%

Empty 8 S1

Empty 8 S2

Empty 8 S3

Empty 8 all three scenes

Empty 16 S1

Empty 16 S2

Empty 16 S3

Empty 16 all three scenes

Empty 32 S1

Empty 32 S2

Empty 32 S3

Empty 32 all three scenes

Maze 32 2 S1

Maze 32 2 S2

Maze 32 2 S3

Maze 32 2 all three scenes

Maze 32 4 S1

Maze 32 4 S2

Maze 32 4 S3

Maze 32 4 all three scenes

Random 32 10 S1

Random 32 10 S2

Random 32 10 S3

Random 32 10 all three scenes

Ramdom 32 20 S1

Ramdom 32 20 S2

Ramdom 32 20 S3

Ramdom 32 20 all three scenes

Ramdom 64 10 S1

Ramdom 64 10 S2

Ramdom 64 10 S3

Ramdom 64 10 all three scenes

Random 64 20 S1

Random 64 20 S2

Random 64 20 S3

Random 64 20 all three scenes

Room 32 4 S1

Room 32 4 S2

Room 32 4 S3

Room 32 4 all three scenes

Room 64 8 S1

Room 64 8 S2

Room 64 8 S3

Room 64 8 all three scenes

Room 64 16 S1

Room 64 16 S2

Room 64 16 S3

Room 64 16 all three scenes

Weighted Sum Comparison of the SO SACCGA and MO SACCGA

MO SACCGA Win SO SACCGA Win Tie

5 Experiments and Evaluation

58

First of all, these results show that the MO SACCGA works overall better for all scenario-map-

combinations regarding GD and IGD. For three of the four map types, the SO SACCGA is not

able to solve one problem better than the MO SACCGA. Only when it comes to the problem

types Maze 32-32-2 with the scenarios one and two and Maze-32-32-4 with the scenario three,

the SO SACCGA seems to work better for a few problems. But the results also indicate that the

MO SACCGA solves most of the problems better in these environment-scenario combinations.

There is only a small difference between the GD and IGD results. Only for the map types for

which the SO SACCGA is a little more competitive, the MO SACCGA tents to work slightly

better in the comparison of the IGD values than in the comparison of the GD values.

Accordingly, one can conclude that the SA of the MO SACCGA passes on solutions that ensure

more diversity than the SA of the SO SACCGA. The large proportion of ties is caused by

problems with a small number of agents, for which both versions are able to find the pareto

front in 100% of the cases.

In the case, where the decision maker weighs the objectives with the same weight the SO SA

uses for its objectives, the results show that the MO SACCGA again gets overall better results

than the SO SACCGA. For the empty and random map types, the MO SACCGA solves every

problem as good as or better than the SO SACCGA. The SO SACCGA is only able to get a few

more ties for these map types. In contrast to the GD IGD results, the SO SACCGA is able to

solve many problems for the map types room and maze better than the MO SACCGA.

Especially for the map Maze 32-32-2 with the scenarios one and two, the SO SACCGA solves

more problems in a better way than the MO SACCGA does. For this particular scenario map

combinations, the MO SACCGA solves in respect to the weighted sums the problems with a

smaller number of agents better. The SO SACCGA solves the problems with a higher agent

count better like illustrated in figure 20. However, even for those environments the MO

SACCGA works far better than the SO SACCGA if all problems are considered. For Maze-32-

32-4, the SO SACCGA gets even worse results than in the GD IGD comparison. For all other

environments, however, the SO SACCGA performs either just as well or better as in the GD

IGD comparison.

5 Experiments and Evaluation

59

Figure 20: Boxplot-comparison of weighted sum values (minimization) of SO SACCGA and

MO SACCGA for the problem of Maze-32-32-2 Scene 1 and 2

To analyze why the SO SACCGA is worse than the MO SACCGA and where the algorithm

fails, it is examined what kind of problems lead the SO SACCGA and the MO SACCGA to not

being able to find the whole pareto front. Table 10 shows with at which agent count the SO

SACCGA and the MO SACCGA versions are still able to find the complete fake pareto front

in over 90%, over 75% and over 50% of the runs for a particular map scenario combination.

Additionally, the column „Single Dominant solution“ shows until which number of agents the

pareto front consists of just one solution, which dominates every other solution.

5 Experiments and Evaluation

60

Table 10: Number of agents, at which the algorithm results get worse

What can be seen is that for many map-scenario combinations the performance does not

decrease granularly as the number of agents increases, but decreases sharply at some point by

increasing the agent count by one. The word performance in this context refers to the quality

of the solution and not to the computational cost. These cases are often found when the set of

pareto optimal solutions changes from a single-dominant solution to several solutions. This

shows that some features of the problem, which leads the problem to have a pareto front

consisting of more than one solution, leads also the algorithms to have a worse performance.

Furthermore, this particular case often only affects the SO SACCGA. To analyze these effects

even farther table 11 lists all the cases, in which by increasing the number of agents by one a

high drop in the percentage of runs occurs, in which the whole pareto front was found.

Moreover, they are categorized according to the number of versions they affect and whether or

not the pareto front consists of more than one solution.

90% 75% 50% 90% 75% 50%

32 Empty 8 Sz1 26 18 26 26 17 17 26

32 Empty 8 Sz2 25 12 13 16 12 13 16

32 Empty 8 Sz3 8 23 23 26 8 8 8

50 Empty 16 S1 till the end 14 20 28 11 13 14

50 Empty 16 S2 23 23 39 39 16 16 19

50 Empty 16 S3 49 (unsure) 36 36 45 10 25 35

65 Empty 32 Sz1 till the end 65 65 65 33 36 51

65 Empty 32 Sz2 till the end 65 65 65 11 36 36

65 Empty 32 Sz3 till the end 42 53 56 25 26 26

40 Maze 32 2 Sz1 7 13 13 14 7 7 7

40 Maze 32 2 Sz2 5 5 5 15 5 5 5

40 Maze 32 2 Sz3 8 9 9 10 8 8 8

40 Maze 32 4 Sz1 never existed 0 12 15 0 0 0

40 Maze 32 4 Sz2 3 3 3 3 3 3 3

40 Maze 32 4 Sz3 5 5 5 5 5 5 5

50 Random 32 10 Sz1 till the end 46 48 50 31 31 33

50 Random 32 10 Sz2 49 (unsure) 40 47 48 25 25 35

50 Random 32 10 Sz3 45 (unsure) 35 35 38 26 26 38

50 Ramdom 32 20 Sz1 23 30 32 39 21 23 23

50 Ramdom 32 20 Sz2 10 (unsure) 10 10 12 10 10 10

50 Ramdom 32 20 Sz3 37 (unsure) 18 18 18 4 18 18

60 Ramdom 64 10 Sz1 till the end 24 24 46 20 21 24

60 Ramdom 64 10 Sz2 till the end 29 29 50 21 21 30

60 Ramdom 64 10 Sz3 till the end 31 38 42 17 17 25

60 Random 64 20 Sz1 54 43 43 43 19 22 31

60 Random 64 20 Sz2 18 41 53 60 18 18 18

60 Random 64 20 Sz3 56 41 50 52 24 40 44

40 Room 32 4 Sz1 8 11 11 11 8 10 11

40 Room 32 4 Sz2 11 17 17 19 11 11 11

40 Room 32 4 Sz3 12 22 22 22 14 16 20

50 Room 64 8 Sz1 5 14 14 14 5 5 5

50 Room 64 8 Sz2 5 10 14 15 5 5 5

50 Room 64 8 Sz3 22 22 22 22 22 22 22

50 Room 64 16 Sz1 26 31 32 34 21 26 26

50 Room 64 16 Sz2 19 21 22 22 19 19 19

50 Room 64 16 Sz3 11 17 29 32 11 11 11

MO SACCGA SO SACCGASingle dominant

solution
Maptype and Scenario

Max number

of agents

5 Experiments and Evaluation

61

Table 11: Problems, which show high drops in performance categorized by how many

versions they affect and if the pareto front consists of more than one solution before and after

the drop

It becomes clear that there is a large amount of cases, in which a high drop in performance

occurs. These cases either affect both the SO SACCGA and the MO SACCGA or only the SO

SACCGA. The MO SACCGA is not affected by any major drop in performance, which does

not also affect the SO SACCGA. However, there are cases, which only affect the performance

of the SO SACCGA. One can see that most of the high drops in performance happen in cases

in which the pareto front changes from consisting of one solution to multiple ones and most of

them only affect the SO SACCGA.

It can also be seen that each scenario of the room maps appears in the table. The SO SACCGA,

in particular, suffers from high drops in performance in room map-problems when the pareto

front changes from a single-dominant one to multiple solutions. The two Maze Maps are also

represented with all scenarios. It can be seen that the Maze-32-32-4 always causes problems

Category Map Szenario
Agentcount before drop in

performance to after

High drops in performance both version, just one solution in pareto front SO SACCGA Values MO SACCGA Values

Empty 8-8 2 16 to 17 70-25 70-38

Ramdom 32 20 3 18 to 19 87-6 100-32

Random 64-10 1 24 to 25 74-16 100-67

Random 64-20 1 43 to 44 22-3 96-41

Empty 16-16 2 39 to 40 0-0* 80-22

Room 32-32-4 1 11 to 12 70-3 100-16

Room 32-32-4 3 22 to 23 22-0 100-6

High drops in performance one version, just one solution in pareto front

Random 32-32-10 2 25 to 26 96-58 100-100

Random 32-32-10 3 26 to 27 100-65 100-97

Random 64 10 2 21 to 22 100-58 100-100

Random 64-10 3 17 to 28 93-35 100-97

Random 64-20 1 19 to 20 100-54 100-100

High drops in performance one version, more than one solution in pareto front

- - - - -

High drops in performance both version, by transition from one solution in pareto front to more solutions

Empty 8-8 1 26 to 27 54-0 80-22

Random 32 20 2 10 to 11 97-0 100-51

Maze 32-32 2 2 5 to 6 100-12 100-45

Maze 32-32 4 1 nothing to 2 (100)-6 (100)-41

Maze 32-32 4 2 3 to 4 100-0 100-19

Maze 32-32-4 3 5 to 6 100-6 100-0

Room-64-64-8 3 22 to 23 100-0 100-42

High drops in performance one version, by transition from one solution in pareto front to more solutions

Empty 8-8 3 8 to 9 100-0 100-100

Random 32 20 1 23 to 24 87-29 100-100

Random 64 20 2 18 to 19 100-12 100-100

Maze 32-32-2 1 7 to 8 100-9 100-100

Maze 32-32-2 3 8 to 9 100-19 100-97

Room 32-32-4 1 8 to 9 100-71 100-100

Room 32-32-4 2 11 to 12 100-12 100-97

Room-64-64-8 1 5 to 6 100-10 100-100

Room-64-64-8 2 5 to 6 100-0 100-83

Room-64-64-16 1 26 to 27 84-35 100-100

Room-64-64-16 2 19 to 29 97-19 100-100

Room-64-64-16 3 11 to 12 100-6 100-100

Percentage of finding whole pareto front before

agentcount increase and after in %

High drops in performance both version, more than one solution in pareto front

5 Experiments and Evaluation

62

for both variants, as well as when the pareto front changes from a single solution to multiple

ones. In addition, such a change happens for both maze maps while the agent-count is still low.

Maze-32-32-4 Scenario 1 presents the most striking problem, as both versions show low

performance, starting with an agent count of two. Empty-8-8 of the Empty maps is represented

with all scenarios, two of which also occur when the pareto front switches from a single to

multiple solutions. With the exception of Empty-16-16 scenario 2 and Empty-8-8, the Empty

maps show only granular changes in the performance during the increase of the agent-count.

The Random maps scenarios with 10% obstacles are represented in the list but do not show the

greatest performance drops. The low amount of high performance drops in the large Empty and

the Random maps with 10% obstacles can be explained. The high performance drops happen

mostly when the pareto front changes from consisting of one solution to multiple ones.

Meanwhile all examined problems from the scenarios of Empty-32-32 and Random-64-64-10

as well as scenario 1 from Random-32-32-10 and scenario 1 from Empty-16-16 never changed

from having just one dominant solution in the pareto front. For Empty-16-16 scenario 3 and

Random-32-32-10 scenario 2 and 3 it is also very likely that a single dominant solution existed,

but the two variants were not able to find them. This can be the case because the performance

of the variants decreased sharply towards the end. In contrast to the Random environments with

10% obstacles, all three scenarios of Random-32-32-20 and two of the scenarios of Random

64-64 20 are represented in the list, which means that the 10% obstacles more leads to cases

which the algorithm handles badly.

In this chapter, many problems and a few problem-characteristics were identified, which the

SO SACCGA and partially the MO SACCGA solve poorly. In the following, the reasons behind

the high drops in performance are further analyzed.

Chapter 5.3.1 examines whether the difference in the calculation of the swapping conflict in the

SA and the MA lead to some of the problems mentioned.

In chapter 5.3.2 the representatives of the SA of both versions are further analyzed to find out

if they lead to some problems mentioned in this chapter.

5.3.1 Further analyzation of the SO SACCGA and MO SACCGA results: Swapping Conflict

Calculation

The swapping conflict in the SA is not precisely calculated but rather estimated. The SA just

penalizes an individual i with a higher collision count fitness value for every representative r

of the other agents, which are in the same vertex at time step x+1, in which individual i was at

5 Experiments and Evaluation

63

time step x. In contrast to that, the MA calculates the real number of swapping-conflicts.

Additionally, the separate parametrization of the SO SACCGA and the MO SACCGA lead to

different penalty values for the swapping conflict, which might have an influence on the results

of the comparison.

To analyze the swapping-conflict calculation the Maze-32-32-4 Scenario 1 Number of Agent 2

problem was analyzed. Although the problem only has two agents, it belongs to the cases in

which both variants have low performances like shown in table 11.

The illustration 21 shows a solution for the problem visualized. For the following analyzation,

the blue path in figure 21 belongs to the blue agent and the green path belongs to the green

agent. This solution is an excerpt from the "fake pareto front" found where the makespan values

and the sum of costs are optimal and the overlaps value has the value 1. That means the agents

take the fastest route and collide with each other once, which results in the objective values:

Makespan = 49.0, sum of costs = 97.0, overlaps = 1.0. In figure 21 it can be seen that the conflict

is a swapping conflict. The agents can only avoid each other if one extends its route because

the vertices, at which the agents cross, are mandatory for the fastest route given the start- and

target points. Figure 23 shows the mandatory points of the fastest routes around the conflict

point. This means that the true pareto front must consist of at least two solutions. The second

solution of the pareto front requires that the agent in blue avoids the agent in green like to see

in figure 22. This results in the objective values: Makespan = 49.0 sum of costs = 98.0, overlaps

= 0.0. Although it does not matter what the route to get there looks like, as long as it is one of

the fastest ways, the agents have no leeway in the area around the conflict point.

5 Experiments and Evaluation

64

Figure 21: Maze-32-32-4, scenario 1, agent-count 2: Paths with Swapping Collision

Figure 22: Maze-32-32-4, scenario 1, agent-count 2: Paths to avoid Swapping Collision

Figure 23:Maze-32-32-4, scenario 1, agent-count 2:Mandatory vertices for fastest path both

agents

5 Experiments and Evaluation

65

Figure 24:Maze-32-32-4, scenario 1, agent-count 2: Agent Green path for pareto optimal

solution

Figure 25:Maze-32-32-4, scenario 1, agent-count 2: Agent Blue path for pareto optimal

solution with avoiding

Figure 26: Maze-32-32-4, scenario 1, agent-count 2: Agent Blue path for pareto optimal

solution without avoiding

If we assume that there is only one representative in green, whose route around the conflict

point looks exactly as it does in the illustration 24 the “with avoiding”(figure 25) and “without

avoiding” (figure 26) routes for the blue agent are evaluated in the SA, then:

 The route "with avoiding" receives a path length of 49 and a collision count of one time

the swapping collision penalty value 𝐶𝑆𝑃𝑉, because agent green moves into the vertex

at time step 27 at which agent blue was at time step 26.

 The route “without evading” receives a path length of 48 and a collision count of one

time collision penalty value 𝐶𝑆𝑃𝑉, since agent green also moves here into the vertex at

time step 27, at which agent blue was at time step 26.

This means that the route without evasion dominates the route with evasion in the SA. They

both have the same value in the collision count objective, although one solution leads to

collision and the other does not. Therefore, the algorithm would not be able to find the route

with a robustness value of zero anymore. The algorithm is much more likely to produce a

5 Experiments and Evaluation

66

solution without evasion because individuals are initialized with a low amount of waypoints

and because in the first generation, individuals are only evaluated by their path length.

This would not be the case if the swapping conflicts were calculated precisely. To prove that

another calculation of the collision count of the SA was programmed. In this version, the

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 has been modified.

The 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴 is a three dimensional matrix with the dimensions Vertices V, Time steps

X, and Agents A. Instead of showing how many agents are in a particular vertex at a particular

time step, it stores a pointer of the representatives in a list on the vertex and time step index. As

a result, it can refer to the agents that are in a particular vertex at a particular time step. This

way it is possible to determine exactly how many representatives of the other agents are at a

time step x + 1 in the same vertex as an individual i at the time step x and how many of the

same representatives are in time step x in the same vertex as the individual i at the time step x

+ 1 during the evaluation in the SA as seen in algorithm 9. Algorithm 10 and 11 show how the

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴 is created and updated. In the new version, the collision count 𝐶𝐿𝐶_𝑝𝑟𝑒𝑐𝑖𝑠𝑒

of an individual is increased by one for every representative with which it has a swapping

collision like seen in equation 5.1:

δ(x)={
1, 𝑥 = 0
0, 𝑥 ≠ 1

𝜀(x)={
1, 𝑥 = 2
0, 𝑥 ≠ 2

𝐶𝐿𝐶_𝑝𝑟𝑒𝑐𝑖𝑠𝑒 = ∑𝑥=0
|𝜋𝑖|

∑𝑗=1,𝑖≠𝑗
𝑘 ∑𝑟=1

NR (δ(𝜋𝑖(x) − 𝜋𝑗𝑟(x)) + 𝜀(δ(𝜋𝑖(x) − 𝜋𝑗𝑟(x + 1))+ δ(𝜋𝑖(x +

1) − 𝜋𝑗𝑟(x))) (5.1)

With |𝜋𝑖| being used as maximal time step value since time and path length are unitless,

discrete, and increase by the same value at each step.

Algorithm 9: Evaluate collision count with precise collision swapping conflict calculation

Input: Population of agent A: 𝑆𝐴𝑃𝑜𝑝𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴, 𝐶𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑉𝑎𝑙𝑢𝑒

Output: 𝐹𝑖𝑡𝐶

for 𝜋𝑖 in 𝑆𝐴𝑃𝑜𝑝𝐴:

| 𝐹𝑖𝑡𝐶,𝑖=0

| for x=0; x< 𝜋𝑖; x++ :

| | 𝐹𝑖𝑡𝐶,𝑖 = 𝐹𝑖𝑡𝐶,𝑖 + getLength(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴 [x][𝜋𝑖[x]])

| | for 𝜋𝑗 in 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 [x][𝜋𝑖[x+1]]:

| | | if 𝜋𝑖[x] == 𝜋𝑗 [x+1]:

| | | | 𝐹𝑖𝑡𝐶,𝑖 = 𝐹𝑖𝑡𝐶,𝑖 +1

5 Experiments and Evaluation

67

Algorithm 10: Remove Representatives from Collision list with precise collision swapping conflict

calculation

Input: Representatives of Agent A: 𝑅𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴

Output: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴’

for 𝜋𝑖 in 𝑅𝐴:

| for x=0; x< 𝜋𝑖; x++ :

| | for 𝜋𝑗 in 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴[x]

| | | if 𝜋𝑗==𝜋𝑖:

| | | | del 𝜋𝑗 #delete pointer

Algorithm 11: Collisionlist update/Creation with precise collision swapping conflict calculation

Input: Representatives of Agent A: 𝑅𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋# if Gen one 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋=[]

Output: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋’

CollisionlistVertices=[]*𝑁𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠

for 𝜋𝑖 in 𝑅𝐴:

| for x=0; x< 𝜋𝑖; x++ :

| | if length(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋)<x:

| | | 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋.append(copy.copy(CollisionlistVertices))

| | 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋[x][𝜋𝑖[x]].append(𝜋𝑖) #append pointer

This calculation was used in the MO SACCGA and the SO SACCGA for each problem of the

category “high drops in performance both version, by transition from one solution in pareto

front to more solutions”; the same category the Maze-32-32-4 scenario 1 agent count 2 problem

was belonging to. Table 12 shows the results for the new swapping calculation in comparison

to the results of the old swapping calculation in the context of finding the whole set of pareto

dominant solutions.

Table 12: Using the new swapping calculation for the problems of the category “high drops in

performance both version, by transition from one solution in pareto front to more solutions”

While the performance for the maps Empty-8-8, Random-32-32-20 and Room-64-64-8

remained largely the same, the performance for all four maze problems generally improved.

5 Experiments and Evaluation

68

This demonstrates that the difference in the calculation of the swapping conflicts between the

SA and the MA lead to a few of the categorized problems.

Additionally it was checked if the problems of the category “high drops in performance for one

version (SO SACCGA), by transition from one solution in pareto front to more solutions”,

which only affected the SO SACCGA, are also solved with better performance when using the

precise calculation of the swapping conflicts.

Table 13: Using the new swapping calculation for the problems of the category “high drops in

performance for one version (SO SACCGA), by transition from one solution in pareto front to

more solutions”

The outcomes show that results for the Empty-8-8, Random-32-32-20 and the Room-64-64

environments got far better and that some of the high drops in performance were traced back to

the swapping calculation. This shows that the SO SACCGA was more affected by the swapping

conflict calculation than the MO SACCGA. The reason behind this might be that differences in

the evaluation between subpopulation and overall solution might have less negative influence

when the subpopulations are solved multi-objectively, as this provides more diversity. Another

explanation could be that the higher penalty value of the SO SACCGA was leading the SO

SACCGA to obtain worse solutions. Although it might be interesting to find out what the reason

behind this effect is, it will not be further analyzed in this thesis.

The precise calculation of the swapping collisions was also used for the problems of Empty-8-

8, Random-32-32-20, Room-32-32-4 and Maze-32-32-2 scene 1 to find out if the calculation

also had an effect on the comparison of the two variants. This was done because the collision

count parameter of 0.25, which the SO SACCGA uses, worked better for the maze and room –

Mapname Scenario
Number of

Agents

Pareto_Front_found SO

SACCGA with new

swapping calculation

Pareto_Front_found SO

SACCGA with old

swapping calculation

Empty-8-8 3 9 100% 0%

Random-32-32-20 1 24 74% 29%

Random-64-64-20 2 19 0% 12%

Maze-32-32-2 1 8 25% 9%

Maze 32-32-2 3 9 6% 19%

Room-32-32-4 1 9 80% 71%

Room-32-32-4 2 12 3% 12%

Room-64-64-8 1 6 100% 10%

Room-64-64-8 2 6 0% 0%

Room-64-64-16 1 27 58% 35%

Room-64-64-16 2 20 83% 19%

Room-64-64-16 3 12 54% 6%

5 Experiments and Evaluation

69

maps and the collision count parameter of 0.1 worked better for empty and random maps (like

seen in table 6 to 8). For the room and maze maps, the SO SACCGA was able to solve some

problems in respect to the weighted sum value better than the MO SACCGA, while the MO

SACCGA was better for the other maps than the SO SACCGA in respect of every used metric.

Figure 27: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the GD values

of the SO SACCGA and the MO SACCGA with precise swapping conflict calculation

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

Empty 8 Sz1

Empty 8 Sz2

Empty 8 Sz3

Maze 32 2 Sz1

Ramdom 32 20 Sz1

Ramdom 32 20 Sz2

Ramdom 32 20 Sz3

Room 32 4 Sz1

Room 32 4 Sz2

Room 32 4 Sz3

GD value Comparison of the SO SACCGA and MO SACCGA

MO SA Win SO SA Win Tie

5 Experiments and Evaluation

70

Figure 28: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the IGD values

of the SO SACCGA and the MO SACCGA with precise swapping conflict calculation

Figure 29: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the weighted

sum values of the SO SACCGA and the MO SACCGA with precise swapping conflict calculation

The results shown in figure 27 to 29 are similar to the results without the precise swapping

collisions. In terms of GD and IGD values the MO SACCGA version dominates. In terms of

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Empty 8 Sz1

Empty 8 Sz2

Empty 8 Sz3

Maze 32 2 Sz1

Ramdom 32 20 Sz1

Ramdom 32 20 Sz2

Ramdom 32 20 Sz3

Room 32 4 Sz1

Room 32 4 Sz2

Room 32 4 Sz3

IGD value Comparison of the SO SACCGA and MO SACCGA

MO SA Win SO SA Win Tie

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Empty 8 Sz1

Empty 8 Sz2

Empty 8 Sz3

Maze 32 2 Sz1

Ramdom 32 20 Sz1

Ramdom 32 20 Sz2

Ramdom 32 20 Sz3

Room 32 4 Sz1

Room 32 4 Sz2

Room 32 4 Sz3

Weighted sum Comparison of the SO SACCGA and MO SACCGA

MO SA Win SO SA Win Tie

5 Experiments and Evaluation

71

weighted sum values, with the same weights used as in the SA of the SO SACCGA version,

the SO SACCGA version solves the problems of the Maze-32-32-2 and the Room-32-32-4

scenario 2 with high agent count better, while the MO SACCGA solves problems for the same

map scenario combinations with lower number of agents better.

It is to conclude that the MO SACCGA solves most problems better than the SO SACCGA.

For some problems, in which the environment is more complex (maze/ room map with high

number of agents), the SO SACCGA is better in finding solutions in terms of the same weighing

of the objectives as in the SA. However, in most of the examined problems this is not the case.

5.3.2 Further analyzation of the SO SACCGA and MO SACCGA results: Local Optima

As shown in table 12 the results for the examined “Maze-32-32-4, scenario 1, agent-count 2” –

problem got much better. However, although the problem is not too complex, the SO SACCGA

does still not find all pareto optimal solutions in every run. To assure that this only affects the

SO SACCGA, 101 additional runs were performed for the same test setup. The results show

that the MO SACCGA is able to find the whole pareto front 132 times out of the overall 132

runs. The SO SACCGA is only able to find the whole pareto front 118 times out of the 132

runs. It is certain that the 11% of the runs, in which the SO SACCGA is not able to find the

whole pareto front, embody a problem of the algorithm that seems to only affect the SO

SACCGA. All repetitions from the 11% were able to find the pareto optimal solution with the

fastest routes and one collision: Makespan=49; sum of costs=97; overlaps=1 (figure 21).

However, they were not able to find the pareto optimal solution in which agent blue evades the

agent green: makespan=49; sum of costs=98; overlaps=0 (figure 22). Instead, solutions were

generated in which agent green evades agent blue, which leads to the same value in the sum of

costs objective but to a worse value in the makespan objective: makespan=50; sum of costs=98;

overlaps=0 and makespan=50; sum of costs=99; overlaps=0. The SO SACCGA ends up in a

local optima. This is particularly interesting in the context of the thesis, because the solution

with the fitness values makespan=49, sum of costs=98 and overlaps=0 is also the optimal

solution for the calculation of the weighted sum value, where the decision maker weighs the

objectives with the same weights as used in the SO SA. For one of the runs of the 11% the paths

of the representatives slave algorithm at generation 99 were visualized in the conflict-enabling

part of the map in figure 30a. Although the whole paths of the representatives are not completely

the same, they act the same in the part of the map in, which the collisions occur. The

representatives show no diversity in this crucial part of the path. In this state of the run, it is

5 Experiments and Evaluation

72

impossible to plant a new solution into the populations, which would be integrated as

representative even if this new solution is part of the global optimum because the paths of the

representatives of both agents are fitted perfect to each other. Therefore, it is impossible for the

SO SACCGA to leave the local optima. A visualization of the representatives of the SO SA of

a run (figure 30b), which found the whole pareto front was found, shows the same phenomenon.

Although the whole pareto front was found in this run, the paths of the representatives do not

show any diversity around the conflict point. In both SO SA runs, the solution where the agents

take the fastest routes and collide once is not represented in the representatives anymore. This

solution was found in generation one. This is very likely to happen, since many solutions start

with a small number of waypoints and in the first generation solutions are only evaluated by

their path length, because no representatives exist at that point. This means the SO SA finds

parts for a pareto optimal solution by the first generation and converges away from this solution.

If the problem made this solution harder to obtain it would not be able to find it anymore. For

the comparison, the paths of the representatives of the MO SACCGA around the conflict area

were visualized too. The representatives of both agents of the MO SACCGA run show diversity

around the conflict area. Also all solutions from the pareto front are represented in the

representatives. Several solutions that would lead to local optima are represented as well.

Figure 30: Paths of representatives around the conflict for the “maze-32-32-4 scene 1 number

of agents 2” –problem

a)SO SACCGA run, where parts of the pareto front were not found; b) SO SACCGA run,

where whole pareto front was found; c) MO SACCGA run, where whole pareto front was

found

5 Experiments and Evaluation

73

In conclusion, the lack of diversity in the SA leads to the SO SACCGA being partially unable

to grasp the entire pareto front and ending up in a local optima. Additionally, the SO SA

converges from some solutions away, which are part of the pareto front. The MO SA in contrast

has more diversity in the paths of the representatives, which leads it to find the entire pareto

front more easily.

In Wiegand [44] it was already stated that co-evolutionary algorithms often find themselves

even in simple problems in local optima and Ahmed and Deb [1] stated that solving single agent

pathfinding multi-objectively often leads to better a solution (or at least feasible ones) than if

solved single objectively. Solving the subpopulations in coevolution multi-objectively, leads

less often to local optima, was somewhat similarly stated in Bucci and Pollack [3]. Solving the

subpopulation of every agent in MAPF multi-objectively and avoiding local optima with this

procedure is a new finding as far as the literature research of this work goes.

5.4 Summary of the Experiments and discussion

This chapter first explained the MAPF.info benchmarks, on which the various tests were carried

out. The MO SACCGA and the SO SACCGA versions were initially parameterized, so that the

variants could be compared with one another. The SO SACCGA and MO SACCGA were then

compared with regard to their GD and IGD values as well as weighted sum values. It turned

out that the MO SACCGA dominated on most of the problems according to all used metrics.

The MO SACCGA did work even better in the comparison of the IGD values than in the

comparison of the GD values. Only for some maze map problems and room map problems with

a high agent count did the SO SACCGA seem to be better in respect to the weighted sum value

than the MO SACCGA.

To find out why the SO SACCGA was worse on most of the maps and where the limitations of

both algorithms lay, problems and problem properties were sought, leading to poorer

performance on the versions. It was found out that the performance often does not decrease

granularly when the agent count increases, but suddenly by the increase of the agent count by

one. Problems found that showed this feature were categorized and a correlation was identified

between the change of the pareto front consisting of one solution to more than one solution and

the drops in performance.

One of the problems, which showed a high drop in performance and a pareto front consisting

of more than one solution, showed that the drops in performance were related to the different

calculation of the swapping collision between the SA and the MA. To test whether this affects

5 Experiments and Evaluation

74

several problems, the calculation of the SA was changed. The new calculation was applied to

several problems that had high drops in performance when increasing the agent count by one.

Several of these problems were solved with far better performance. Therefore, it is very likely

that the difference in the calculation of the SA and the MA lead to the high performance drops.

Some of these low performances, which got better after the new calculation only affected the

SO SACCGA. It is therefore plausible that the difference in calculation of the collisions

between the SA and the MA affected the SO SACCGA more than the MO SACCGA. The

theories have been voiced in this thesis that the reason behind this might be:

 That differences in the evaluation between subpopulation and overall solution might

have a less negative influence when the subpopulations are solved multi-objectively,

because of the higher diversity in the subpopulation

 Or that the higher penalty value was leading the SO SACCGA to obtain worse solutions.

The correctness of the theories were not analyzed further. Additionally, with the precise

calculation of the swapping collision the SO SACCGA and MO SACCGA were again

compared against one another. The results showed that the MO SACCGA is still better in all

maps except the maze map in terms of weighted sum and dominated in terms of the other

metrics for all other environments. The SO SACCGA was able to solve high agent counts for

more complex maps (partially the room map and the maze map) better in terms of the weighted

sum than the MO SACCGA.

The behavior of the representatives of the SO SACCGA, which leads the algorithm to fall into

a local optima, was analyzed based on one problem. It was found out that the representatives

of the weighted sum approach converge to one solution and only find the other solutions of the

multi objective MAPF problem by chance on the way. This shows that the weighted sum

approach in the subpopulation is not fitting to be part of a multi objective MAPF solver. This

also explains the bad IGD values compared to the MO SACCGA version. Furthermore, it was

found out that the representatives do not show diversity in fitness and therefore do not offer

different solutions in crucial parts of the path. It was also shown that the SO SACCGA lands in

local optima even in less complex problems because the SA was solved single-objectively. For

this particular test problem, this did not happen to the MO SACCGA and the representatives

show diversity. It is possible that the representatives of the SO SA will quickly adapt to one

another due to the lack of diversity of the routes and thus end up in a local optimum without a

way out. The finding on the behaviour of the representatives of the SO SA are based on multiple

runs for one problem. Although it is highly likely that this phenomenon applies to multiple of

the problems, it was not proven.

5 Experiments and Evaluation

75

The experiments in this thesis agree with the thesis 1 of this work: “MAPF multi-objective

optimization with co-evolution works better if the subpopulations of the agents are optimized

multi-objectively than if the subpopulations are optimized single-objectively with a weighted

sum approach”. The reasons are most likely that the low diversity in the subpopulations of the

weighted sum approach leads it to not finding the whole pareto front and falling into local

optima. Additionally, the fact that the weighted sum approach converges from pareto optimal

solutions away shows that a weighted sum approach should not be used to evaluate

subpopulations, if the whole solution should be optimized multi-objectively.

The experiments disagree for the most part the thesis 2 of this work: “Using a co-evolutionary

approach, if the decision maker weighs the objectives of the Multi-objective MAPF problem

with the same weights the objectives of the subpopulations of the agents are weighted using a

weighted sum approach, then this weighted sum approach works better than optimizing the

objectives of the subpopulations of the agents multi-objectively.” The experiments showed that

the multi-objective solving of the subpopulations works best for most environments even if the

decision maker uses the same weighs as the weighted sum approach uses. The SO SACCGA

appeared to be better for some complex maps with high agent count. The reason why the SO

SACCGA is worse for many maps could be the lower diversity in the representatives of the SO

SA, which lead into the local optima. For the Maze-32-32-4 scenario 1 agent count 2 problem,

this was certainly the case. It is also questionable, if all parts of a problem are optimally solved

according to certain weights, that the overall solution is then optimized according to the same

weights. That could be very problem-dependent. Why the SO SACCGA was better in solving

more complex environments with high agent count sometimes better than the MO SACCGA

was not found out in this thesis. Unfortunately, it is not proven that the same results will occur

if different objectives are used or parts of the algorithm are changed.

As far as the quality of the algorithm is concerned, the MO SACCGA is able to solve many of

the problems well compared to the SO SACCGA. Table 10 shows the limitations, at which the

algorithm is no longer able to find the entire fake pareto front reliable. Even so, optimality is

not the goal of the algorithm, since this is not an optimal solver. However, the algorithm is very

complex and requires a large number of function evaluations, as demonstrated with formula

4.11. A comparison with similar work in the same field was not done. Furthermore, the correct

Pareto front could not be determined, since there are still no optimal solvers for MAPF with for

the three objectives used in this thesis.

6 Conclusion and Future Work

76

6 Conclusion and Future Work

This chapter summarizes the results of this thesis (chapter 6.1) and provides suggestions for

future work (chapter 6.2).

6.1 Conclusion

In this thesis, the basics of cooperative coevolution were conveyed. Through literature search,

an overview of the MAPF solver, the co-evolutionary MAPF approaches and the solver for the

multi-objective MAPF problem is given. Furthermore, findings from comparing the solving of

the single agent pathfinding problem single-objectively and multi-objectively are described.

A cooperative co-evolutionary algorithm was presented in this master thesis. This algorithm

has a subpopulation for every agent, which are optimized by a genetic slave algorithm. Using

the best solutions of every agent a genetic master algorithm searches for the best combinations

of the paths to optimize the objectives, makespan, sum of costs and overlaps of the multi-agent

MAPF problem. The slave algorithm optimizes the objectives path length, which optimizes the

solutions makespan and sum of costs as well as the collision count objective, which is supposed

to optimize the overlaps objective.

Two variants of the slave algorithm were implemented: One variant, which solves the

subpopulations single objectively with a weighted sum approach (SO SACCGA), and another

variant, which solves the subpopulations multi-objectively using the non-dominated sorting

algorithm (MO SACCGA). The variants were parameterized and compared to each other. The

comparison showed that MO SACCGA works better in terms of the GD and IGD metrics for

nearly all the examined problems. Therefore, the experiments approve the content of the thesis

1. Some of the reasons why the SO SACCGA is worse than the MO SACCGA for multi-

objective optimization of the MAPF problems are:

 The low diversity in the subpopulations of the weighted sum approach, lead to a fall

into local optima

 The weighted sum approach converges away from some pareto optimal solutions, which

do not satisfy the weights.

The MO SACCGA showed diversity in its subpopulations and the ability to avoid local optima.

This also shows that a weighted sum approach should not be used to evaluate subpopulations,

if the whole solution should be optimized multi-objectively.

6 Conclusion and Future Work

77

The MO SACCGA works better than the SO SACCGA in terms of having a decision maker,

who weighs the objectives the same way, in which the subpopulations of the agents of the SO

SACCGA weigh their objectives. The SO SACCGA appears to be better for some complex

maps with high agent count. The experiments disapprove the content of the thesis 2. The reason

why the SO SACCGA is worse for many problems is most likely the low diversity in the

subpopulations, which leads into the local optima. Why the SO SACCGA was sometimes better

in solving more complex environments with high agent count than the MO SACCGA is not

further analyzed.

The experiments also showed that solving the subpopulation of the agents multi-objectively

avoids local optima and that the SO SACCGA is more affected by differences between the

objectives of the subpopulation and the objectives of the whole solution.

Since there are no optimal solvers with the corresponding answers, it is not clear how good the

quality of the solutions produced by the algorithms is. However, it is safe to say that the MO

SACCGA is better than the SO SACCGA in terms of solving the MAPF problem multi-

objectively. The algorithm is although computationally expensive.

6.2 Future Work

This work raised many research questions, which were out of the scope of this thesis:

6.2.1 Research topics in MAPF with genetic algorithms:

In this thesis, a stochastic A* algorithm was used to connect waypoints to each other. The

parametrization showed that the stochastic A* algorithm works better for most environments

than the deterministic one. However, it must be mentioned that the algorithm by adding

waypoints and the test setup by neglecting the additional computational expenses and the

movement simplifications greatly favoured the stochastic algorithm. One question that would

be interesting for future work is whether and under what conditions a stochastic A* algorithm

for connecting waypoints is better than a deterministic A* algorithm for genetic algorithms in

MAPF. Many areas of application of MAPF require that MAPF concepts can also be used in

Euclidean space. Further questions would be, if a stochastic A* algorithm is advantageous and

how one can transfer these advantages of stochastic solutions to the Euclidean space, on which

there are only rarely several fastest solutions.

6 Conclusion and Future Work

78

6.2.2 Research topics in MAPF with co-evolution:

The findings in Wiegand [44] showed that Co-evolution often leads to local optima. In Panait

et al. [29] and in Bucci and Pollack [3] approaches were presented on how to avoid these local

optima. The approach in Panait et al. [29] needs information about the best values. In Bucci and

Pollack [3] it was suggested to use every test available to evaluate an individual and treat the

evaluation multi-objectively with every test being one objective. Tests in this context are all

solutions, which can be created by combining the solutions of the subpopulations. Forming

every solution out of k agents and evaluating every individual by all these tests is

computationally expensive. In this thesis, an agent was evaluated by its cooperation with the

representatives of all other agents. The single objective solver of the slave algorithm was still

leading into local optima. The multi objective solver was able to avoid these local optima. Since

there are no studies on how local optima in co-evolution in MAPF can be avoided, this should

be done in future works. The multi objective solver of this thesis is a good starting point for

these works.

6.2.3 Research topics in multi-objective MAPF

Another interesting topic for future work is the multi-objective solving of MAPF. One thing,

which was missing for this thesis, was an efficient optimal solver for multi-objective MAPF.

Using overlaps as one of the objectives makes the problem more complex since agent path

combinations, which lead to collisions, can still be part of a pareto optimal solution. If this

solver can be adjustable for different objectives then the solution space of different MAPF

problems can be further analyzed.

The last research suggestion would be similar to the work done in Ahmed and Deb [1] in which

the quality of solutions between the single objective and the multi-objective solving of single

agent pathfinding was compared to each other. It is possible that multi-objective MAPF genetic

algorithms can find better solutions for single objectives than single objective MAPF genetic

algorithms because the multi-objective MAPF genetic algorithms might keep more diversity in

the population. A comparison of the two algorithms would be interesting for future work.

Appendix

Appendix

80

Section A: Input Parameter

Regarding the SA:

SA Population Size 𝑵𝑺𝑨 𝑰𝒏𝒅𝒊𝒗𝒊𝒅𝒊𝒖𝒂𝒍𝒔: Defines the number of individuals in every SA

subpopulation.

Maximal Number of Starting Genes 𝑵𝐒𝐭𝐚𝐫𝐭𝐢𝐧𝐠𝐠𝐞𝐧𝐞𝐬: Defines the number of maximal starting

genes for agents in initialization. The algorithm chooses a random number between zero and

𝑁Startinggenes as number of waypoints for every fresh-initialized individuals.

SA Crossover-probability: Defines the probability of the crossover operator of the SA.

SA Mutation-probability Shift-in-Neighborhood SAMUTBP2: Defines the mutation

probability of the Shift-in-Neighborhood-Mutation operator of the SA.

SA Mutation-probability Gene Deletion SAMUTBP1: Defines the mutation probability of

the Gene-Deletion-Mutation operator of the SA.

SA Mutation-probability Insert Random Waypoint SAMUTBP3: Defines the mutation

probability of the Insert Random Waypoint Mutation operator of the SA.

A* Variant Switch: If true, the algorithm uses the stochastic A* version. If false, the algorithm

uses the deterministic A* version.

SA MOOP Switch: If true, the SA uses the multi-objective algorithm. If false, the SA uses the

single-objective algorithm.

Weight collision count 𝒘𝒆𝒊𝒈𝒉𝒕𝟐: Defines the weights used in the weighted sum approach of

the SO SA. The weight-collision count variable is the weight of the objective collision count.

Since only two weights are used, the path length objective 𝑤𝑒𝑖𝑔ℎ𝑡1 is automatically 𝑤𝑒𝑖𝑔ℎ𝑡1 =

(1 − 𝑤𝑒𝑖𝑔ℎ𝑡2).

Collision-Swapping-Penalty-Value 𝑪𝑺𝑷𝑽: Defines how much the collision count objective is

increased for each representative of the other agents which the individual might have a

swapping collision with. A possible swapping conflict occurs if the representatives of the other

agents are at the same vertex at time step x+1 as the individual at time step x.

Crossover-Variant-Switch: Defines which of the two one point-crossover-variants is used. If

true, the crossover operator chooses randomly one waypoint from one parent and the nearest

waypoint to this waypoint from the second parent. If false, the crossover operator sets the

crossover point in both parents into the same spot in dependence on the length of the parents.

Crossover-deletion-value 𝑪𝑫𝑽: Defines how many waypoints are deleted by the crossover

operator.

Appendix

81

Mutation-deletion-value MDV: Defines how many waypoints are deleted by the mutation

operator Insert Random Waypoint.

Extra-Waypoint-Datasets: The Extra-Waypoint-Datasets defines how many consecutive

vertices are converted into waypoints depending on the length of the path when using A* to

translate waypoints into steps.

Regarding the MA:

MA Population Size 𝑵𝑴𝐀 𝐈𝐧𝐝𝐢𝐯𝐢𝐝𝐢𝐮𝐚𝐥𝐬: Defines the number of individuals in the MA population.

MA Crossover-probability MACXPB : Defines the probability of the MA crossover operator.

MA Mutation-probability MAMUTBP: Defines the individual mutation probability of the

MA mutation.

Regarding the SA and the MA

Maximal Number of Generations: Defines the number of generations before the algorithm

terminates.

Number of Representatives 𝑵𝑹: Defines the number of representatives the SA selects. The

MA individuals refer to these representatives.

Appendix

82

Section B Parameter values

Table 14:Parameter values

Table 15: Extra waypoints dataset values

The options for the Extra Waypoint Datasets are presented in table 15. The number of

waypoints, which are being inserted, is always depending on the path length between two

waypoints and the chosen Extra waypoint Dataset. Set 4 for instance creates 0 waypoints if path

consists of 5 vertexes or less, 1 waypoint if path has 5 to 10 vertexes or less, 1 to 2 waypoints

for 10 to 20 vertexes, 1 to 3 waypoints for 20 to 30 vertexes, 2-4 for 30 to 40 vertexes and 3 to

5 if the path length exceeds 40 vertices. Set 2 creates the most waypoints, Set 3 the least and

Set 1 and 4 are in between.

SA Inputparameter Value 1 Value 2 Value 3 Value 4 Value 5

SA-Population-Size 12 20 28 40

Maximal-Number-of-Starting-Chromosones 1 2 3 5

SA-Crossover-probability 0 0,25 0,5 0,75 1

SA-Mutation-probability Shift in Neighborhood 0 0,25 0,5 0,75 1

SA-Mutation-Probability-Gene-Deletion 0 0,25 0,5 0,75 1

SA-Mutation-Probability-Insert-Random-Waypoint 0 0,25 0,5 0,75 1

A-star-Variant-Switch True False

Weight-Collisioncount 0,0001 0,25 0,5 0,75 0,9999

Collision-Swapping-Penalty-Value 0 0,1 0,25 0,5

Crossover-Variant-Switch True False

Extra-Waypoint-Datasets Set 1 Set 2 Set 3 Set 4

Crossover-deletion-value 0 0,25 0,5 0,75 1

Mutation-deletion-value 0 0,25 0,5 0,75 1

 MA Inputparameter:

MA-Population-Size 28 48 100 148

MA-Mutation-Probability 0 0,25 0,5 0,75 1

MA-Crossoverprobability 0 0,25 0,5 0,75 1

Regarding MA and SA

Maximal-Number-of-Generations 100

Number-of-Representatives 5 10 20

n k n k n k n k n k n k n k n k n k n k n k

Set 1 0-10 0 10-20 1 20-30 2 30-40 3 40-50 4 50-60 5 60-70 6 70-80 7 80-90 8 90+ 9

Set 2 0-5 0 5-10 1 10-15 2 15-20 3 20-25 4 25-30 5 20-35 6 35-40 7 40-45 8 45-50 9 50+ 10-15

Set 3 0-20 0 20-40 1-2 40-60 2-3 60-80 3-4 80+ 4

Set 4 0-5 0 5-10 1 10-20 1-2 20-30 1-3 30-40 2-4 40+ 3-5

Appendix

83

Section C Win Lose Tie Table

Table 16: Win-Lose-Tie-Table of the comparison of the SO SACCGA and the MO SACCGA

GD GD GD IGD IGD IGD

Maptype + Scene

Tie

SO

SACCGA

Win

MO

SACCGA

Win Tie

SO

SACCGA

Win

MO

SACCGA

Win Tie

SO

SACCGA

Win

MO

SACCGA

Win

Empty 8 S1 54,84% 0,00% 45,16% 54,84% 0,00% 45,16% 54,84% 0,00% 45,16%

Empty 8 S2 51,61% 0,00% 48,39% 51,61% 0,00% 48,39% 90,32% 0,00% 9,68%

Empty 8 S3 22,58% 0,00% 77,42% 22,58% 0,00% 77,42% 22,58% 0,00% 77,42%

Empty 8 all three scenes 43,01% 0,00% 56,99% 43,01% 0,00% 56,99% 55,91% 0,00% 44,09%

Empty 16 S1 18,37% 0,00% 81,63% 18,37% 0,00% 81,63% 18,37% 0,00% 81,63%

Empty 16 S2 30,61% 0,00% 69,39% 30,61% 0,00% 69,39% 30,61% 0,00% 69,39%

Empty 16 S3 20,41% 0,00% 79,59% 20,41% 0,00% 79,59% 20,41% 0,00% 79,59%

Empty 16 all three scenes 23,13% 0,00% 76,87% 23,13% 0,00% 76,87% 23,13% 0,00% 76,87%

Empty 32 S1 43,75% 0,00% 56,25% 43,75% 0,00% 56,25% 43,75% 0,00% 56,25%

Empty 32 S2 17,19% 0,00% 82,81% 17,19% 0,00% 82,81% 17,19% 0,00% 82,81%

Empty 32 S3 34,38% 0,00% 65,63% 34,38% 0,00% 65,63% 34,38% 0,00% 65,63%

Empty 32 all three scenes 31,77% 0,00% 68,23% 31,77% 0,00% 68,23% 31,77% 0,00% 68,23%

Maze 32 2 S1 41,03% 15,38% 43,59% 35,90% 7,69% 56,41% 25,64% 43,59% 30,77%

Maze 32 2 S2 28,21% 0,00% 71,79% 28,21% 2,56% 69,23% 25,64% 46,15% 28,21%

Maze 32 2 S3 20,51% 0,00% 79,49% 17,95% 0,00% 82,05% 35,90% 2,56% 61,54%

Maze 32 2 all three scenes 29,91% 5,13% 64,96% 27,35% 3,42% 69,23% 29,06% 30,77% 40,17%

Maze 32 4 S1 15,38% 0,00% 84,62% 0,00% 0,00% 100,00% 0,00% 0,00% 100,00%

Maze 32 4 S2 5,13% 0,00% 94,87% 5,13% 0,00% 94,87% 28,21% 0,00% 71,79%

Maze 32 4 S3 25,71% 8,57% 65,71% 25,64% 5,13% 69,23% 35,90% 5,13% 58,97%

Maze 32 4 all three scenes 15,04% 2,65% 82,30% 10,26% 1,71% 88,03% 21,37% 1,71% 76,92%

Random 32 10 S1 42,86% 0,00% 57,14% 42,86% 0,00% 57,14% 42,86% 0,00% 57,14%

Random 32 10 S2 46,94% 0,00% 53,06% 46,94% 0,00% 53,06% 46,94% 0,00% 53,06%

Random 32 10 S3 57,14% 0,00% 42,86% 57,14% 0,00% 42,86% 57,14% 0,00% 42,86%

Random 32 10 all three scenes 48,98% 0,00% 51,02% 48,98% 0,00% 51,02% 48,98% 0,00% 51,02%

Ramdom 32 20 S1 38,78% 0,00% 61,22% 38,78% 0,00% 61,22% 38,78% 0,00% 61,22%

Ramdom 32 20 S2 18,37% 0,00% 81,63% 18,37% 0,00% 81,63% 20,41% 0,00% 79,59%

Ramdom 32 20 S3 8,16% 0,00% 91,84% 8,16% 0,00% 91,84% 8,16% 0,00% 91,84%

Ramdom 32 20 all three scenes 21,77% 0,00% 78,23% 21,77% 0,00% 78,23% 22,45% 0,00% 77,55%

Ramdom 64 10 S1 30,51% 0,00% 69,49% 30,51% 0,00% 69,49% 30,51% 0,00% 69,49%

Ramdom 64 10 S2 35,59% 0,00% 64,41% 35,59% 0,00% 64,41% 35,59% 0,00% 64,41%

Ramdom 64 10 S3 27,12% 0,00% 72,88% 27,12% 0,00% 72,88% 27,12% 0,00% 72,88%

Ramdom 64 10 all three scenes 31,07% 0,00% 68,93% 31,07% 0,00% 68,93% 31,07% 0,00% 68,93%

Random 64 20 S1 30,51% 0,00% 69,49% 30,51% 0,00% 69,49% 30,51% 0,00% 69,49%

Random 64 20 S2 33,90% 0,00% 66,10% 33,90% 0,00% 66,10% 33,90% 0,00% 66,10%

Random 64 20 S3 50,85% 0,00% 49,15% 50,85% 0,00% 49,15% 50,85% 0,00% 49,15%

Random 64 20 all three scenes 38,42% 0,00% 61,58% 38,42% 0,00% 61,58% 38,42% 0,00% 61,58%

Room 32 4 S1 17,95% 0,00% 82,05% 17,95% 0,00% 82,05% 17,95% 0,00% 82,05%

Room 32 4 S2 25,64% 0,00% 74,36% 25,64% 0,00% 74,36% 51,28% 2,56% 46,15%

Room 32 4 S3 30,77% 0,00% 69,23% 30,77% 0,00% 69,23% 30,77% 0,00% 69,23%

Room 32 4 all three scenes 24,79% 0,00% 75,21% 24,79% 0,00% 75,21% 33,33% 0,85% 65,81%

Room 64 8 S1 8,16% 0,00% 91,84% 8,16% 0,00% 91,84% 34,69% 10,20% 55,10%

Room 64 8 S2 8,16% 0,00% 91,84% 8,16% 0,00% 91,84% 8,16% 0,00% 91,84%

Room 64 8 S3 42,86% 0,00% 57,14% 42,86% 0,00% 57,14% 44,90% 0,00% 55,10%

Room 64 8 all three scenes 19,73% 0,00% 80,27% 19,73% 0,00% 80,27% 29,25% 3,40% 67,35%

Room 64 16 S1 42,86% 0,00% 57,14% 42,86% 0,00% 57,14% 44,90% 0,00% 55,10%

Room 64 16 S2 32,65% 0,00% 67,35% 32,65% 0,00% 67,35% 32,65% 0,00% 67,35%

Room 64 16 S3 20,41% 0,00% 79,59% 20,41% 0,00% 79,59% 20,41% 0,00% 79,59%

Room 64 16 all three scenes 31,97% 0,00% 68,03% 31,97% 0,00% 68,03% 32,65% 0,00% 67,35%

Win Loose Tie Table

Weighted Sum

References

84

References
[1] F. Ahmed and K. Deb, Multi-objective optimal path planning using elitist non-dominated

sorting genetic algorithms, Soft Computing 17 (2013), pp. 1283–1299.

[2] M. Barer, Sharon, Guni, Stern, Roni, and A. Felner, Suboptimal Variants of the Conflict-

Based Search Algorithm for the Multi-Agent Pathfinding Problem, in: Proceedings of the

Seventh International Symposium on Combinatorial Search (SoCS-2014), 15 - 17 August

2014, Prague, Czech Republic, S. Edelkamp and R. Barták, eds. AAAI Press, Palo Alto,

Calif., 2014, pp. 19–27.

[3] A. Bucci and J.B. Pollack, On identifying global optima in cooperative coevolution, in:

Proceedings of the 2005 conference on Genetic and evolutionary computation - GECCO

'05, U.-M. O'Reilly and H.-G. Beyer, eds., the 2005 conference, Washington DC, USA,

Jun. 25-29, 2005. ACM Press, New York, New York, USA, 2005, p. 539.

[4] Z. Cai and Z. Peng, Cooperative Coevolutionary Adaptive Genetic Algorithm in Path

Planning of Cooperative Multi-Mobile Robot Systems, Journal of Intelligent and Robotic

Systems 33 (2002), pp. 61–71.

[5] J. Chen, D. Yang, N. Matsumoto, and Y. Yamane, Multi-robot Path Planning Based on

Cooperative Co-evolution and Adaptive CGA, in: 2006 IEEE/WIC/ACM International

Conference on Intelligent Agent Technology, IEEE Computer Society, ed., 2006

IEEE/WIC/ACM International Conference on Intelligent Agent Technology, Hong Kong,

Dec. 18-22, 2006. IEEE, 2006, pp. 547–550.

[6] L. Cohen, Efficient Bounded-Suboptimal Multi-Agent Path Finding and Motion Planning

via Improvements to Focal Search, Dissertation, 2020.

[7] Y. Dai, Y. Kim, S. Wee, D. Lee, and S. Lee, A Switching Formation Strategy for Obstacle

Avoidance of a Multi-Robot System Based on Robot Priority Model, ISA transactions 56

(2015), pp. 123–134.

[8] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A Fast Elitist Non-dominated Sorting

Genetic Algorithm for Multi-objective Optimization: NSGA-II, in: Parallel Problem

Solving from Nature PPSN VI, G. Goos, J. Hartmanis, J. van Leeuwen, M. Schoenauer, K.

Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo, and H.-P. Schwefel, eds., Lecture Notes

in Computer Science Vol. 1917. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000,

pp. 849–858.

[9] K. Dresner and P. Stone, A Multiagent Approach to Autonomous Intersection Management,

jair 31 (2008), pp. 591–656.

[10] A. Felner, R. Stern, S.E. Shimony, E. Boyarski, M. Goldenberg, G. Sharon, N.R.

Sturtevant, G. Wagner, and P. Surynek, Search-Based Optimal Solvers for the Multi-Agent

Pathfinding Problem: Summary and Challenges, in: Proceedings of the Tenth International

Symposium on Combinatorial Search (SoCS 2017): 16-17 June 2017, Pittsburgh,

Pennsylvania, USA, A. Fukunaga and A. Kishimoto, eds. AAAI Press, Palo Alto,

California, 2017.

[11] F.-A. Fortin, F.-M. de Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,

Evolutionary Tools: deap.tools.cxUniform(ind1, ind2, indpb). 2009. Available at

https://deap.readthedocs.io/en/master/api/tools.html#deap.tools.cxUniform. Accessed

December 4, 2020.

[12] F.-A. Fortin, F.-M. de Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,

Evolutionary Tools: deap.tools.mutUniformInt(individual, low, up, indpb). 2009. Available

at https://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutUniformInt.

Accessed December 4, 2020.

[13] F.-A. Fortin, F.-M. de Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,

Evolutionary Tools: deap.tools.selNSGA2(individuals, k, nd='standard'). 2009. Available

References

85

at https://deap.readthedocs.io/en/master/api/tools.html#deap.tools.selNSGA2. Accessed

December 2, 2020.

[14] F.-A. Fortin, F.-M. de Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,

Evolutionary Tools: deap.tools.selTournamentDCD(individuals, k). 2009. Available at

https://deap.readthedocs.io/en/master/api/tools.html#deap.tools.selTournamentDCD.

Accessed December 2, 2020.

[15] F.-A. Fortin, F.-M. de Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, DEAP:

Evolutionary Algorithms Made Easy, Journal of Machine Learning Research (2012),

pp. 2171–2175.

[16] D.K. Grady, K.E. Bekris, and L.E. Kavraki, Asynchronous Distributed Motion Planning

with Safety Guarantees under Second-Order Dynamics, in: Algorithmic Foundations of

Robotics IX, B. Siciliano, O. Khatib, F. Groen, D. Hsu, V. Isler, J.-C. Latombe, and M.C.

Lin, eds., Springer Tracts in Advanced Robotics Vol. 68. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2011, pp. 53–70.

[17] H. Ishibuchi, R. Imada, N. Masuyama, and Y. Nojima, Comparison of Hypervolume,

IGD and IGD+ from the Viewpoint of Optimal Distributions of Solutions, in: Evolutionary

Multi-Criterion Optimization, K. Deb, E. Goodman, C.A. Coello Coello, K. Klamroth, K.

Miettinen, S. Mostaghim, and P. Reed, eds., Lecture Notes in Computer Science

Vol. 11411. Springer International Publishing, Cham, 2019, pp. 332–345.

[18] R. Kala, Multi-robot path planning using co-evolutionary genetic programming, Expert

Systems with Applications 39 (2012), pp. 3817–3831.

[19] S. Koenig, Learn all about Multi-Agent Path Finding (MAPF): Benchmarks. Available

at http://mapf.info/index.php/Main/Benchmarks. Accessed November 21, 2020.

[20] M.H. Korayem, A.K. Hoshiar, and M. Nazarahari, A hybrid co-evolutionary genetic

algorithm for multiple nanoparticle assembly task path planning, Int J Adv Manuf Technol

87 (2016), pp. 3527–3543.

[21] J.-H. Liang and C.-H. Lee, Efficient collision-free path-planning of multiple mobile

robots system using efficient artificial bee colony algorithm, Advances in Engineering

Software 79 (2015), pp. 47–56.

[22] H. Ma, W. Hönig, T.K.S. Kumar, N. Ayanian, and S. Koenig (eds.), Lifelong Path

Planning with Kinematic Constraints for Multi-Agent Pickup and Delivery, 2019.

[23] S. Mai and S. Mostaghim, Modeling Pathfinding for Swarm Robotics, in: Swarm

Intelligence, M. Dorigo, T. Stützle, M.J. Blesa, C. Blum, H. Hamann, M.K. Heinrich, and

V. Strobel, eds., Lecture Notes in Computer Science Vol. 12421. Springer International

Publishing, Cham, 2020, pp. 190–202.

[24] M. Muthiah and A. Saad, Multi Robot Path Planning and Path Coordination Using

Genetic Algorithms, in: Proceedings of the SouthEast Conference. ACM, New York, NY,

USA, 2017, pp. 112–119.

[25] G. Nagib and W. Gharieb, Path planning for a mobile robot using genetic algorithms,

in: International Conference on Electrical, Electronic and Computer Engineering, 2004.

ICEEC '04, International Conference on Electrical, Electronic and Computer Engineering,

2004. ICEEC '04, Cairo, Egypt, 5-7 Sept. 2004. IEEE, 5-7 Sept. 2004, pp. 185–189.

[26] S. Narmadha, V. Selladurai, and G. Sathish, Multi Product Inventory Optimization

using Uniform Crossover Genetic Algorithm, International Journal of Computer Science

and Information Security abs/1002.2195 (2010), pp. 170–179.

[27] G.M.B. Oliveira, R.G.O. Silva, G.B.S. Ferreira, M.S. Couceiro, L.R. do Amaral, P.A.

Vargas, and L.G.A. Martins, A Cellular Automata-Based Path-Planning for a Cooperative

and Decentralized Team of Robots, in: 2019 IEEE Congress on Evolutionary Computation

(CEC), 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New

Zealand, Jun. 10-13, 2019. IEEE, 10.06.2019 - 13.06.2019, pp. 739–746.

References

86

[28] Z. Pan, Di Wang, H. Deng, and K. Li, A Virtual Spring Method for the Multi-robot Path

Planning and Formation Control, Int. J. Control Autom. Syst. 17 (2019), pp. 1272–1282.

[29] L. Panait, R.P. Wiegand, and S. Luke, A Sensitivity Analysis of a Cooperative

Coevolutionary Algorithm Biased for Optimization, in: Genetic and Evolutionary

Computation – GECCO 2004, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C.

Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,

D. Tygar, M.Y. Vardi, G. Weikum, and K. Deb, eds., Lecture Notes in Computer Science

Vol. 3102. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 573–584.

[30] O. Popović, Merge Sort in Python. Available at https://stackabuse.com/merge-sort-in-

python/. Accessed December 2, 2020.

[31] M.A. Potter and K.A. Jong, A cooperative coevolutionary approach to function

optimization, in: Parallel Problem Solving from Nature — PPSN III, G. Goos, J. Hartmanis,

J. Leeuwen, Y. Davidor, H.-P. Schwefel, and R. Männer, eds., Lecture Notes in Computer

Science Vol. 866. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994, pp. 249–257.

[32] H. Qu, K. Xing, and T. Alexander, An improved genetic algorithm with co-evolutionary

strategy for global path planning of multiple mobile robots, Neurocomputing 120 (2013),

pp. 509–517.

[33] R. Sarkar, D. Barman, and N. Chowdhury, A Cooperative Co-evolutionary Genetic

Algorithm for Multi-Robot Path Planning Having Multiple Targets, in: Computational

Intelligence in Pattern Recognition, A.K. Das, J. Nayak, B. Naik, S.K. Pati, and D. Pelusi,

eds., Advances in Intelligent Systems and Computing Vol. 999. Springer Singapore,

Singapore, 2020, pp. 727–740.

[34] D. Silver, Cooperative Pathfinding, in: Proceedings of the First AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment, AIIDE’05. AAAI Press, 2005,

pp. 117–122.

[35] N.K. Singh, Binary Heap. 2020. Available at https://www.geeksforgeeks.org/binary-

heap/. Accessed December 12, 2020.

[36] N. Soni and T. Kumar, Study of Various Mutation Operators in Genetic Algorithms,

International Journal of Computer Science and Information Technologies (2014),

pp. 4519–4521.

[37] R. Stern, N.R. Sturtevant, A. Felner, S. Koenig, H. Ma, T.T. Walker, J. Li, D. Atzmon,

L. Cohen, T.K.S. Kumar, E. Boyarski, and R. Bartak, MAPF Benchmark Sets. 2019.

Available at https://movingai.com/benchmarks/mapf/index.html. Accessed December 4,

2020.

[38] R. Stern, N.R. Sturtevant, A. Felner, S. Koenig, H. Ma, T.T. Walker, J. Li, D. Atzmon,

L. Cohen, T.K.S. Kumar, E. Boyarski, and R. Bartak, Multi-Agent Pathfinding: Definitions,

Variants, and Benchmarks, in: Proceedings of the Twelfth International Symposium on

Combinatorial Search: SOCS 2019, P. Surynek and W. Yeoh, eds. AAAI Press 2019,

Napa, California, 2019, 151--158.

[39] P. Surynek, Towards Optimal Cooperative Path Planning in Hard Setups through

Satisfiability Solving, in: PRICAI 2012: Trends in Artificial Intelligence, D. Hutchison, T.

Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C.

Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi, G. Weikum,

P. Anthony, M. Ishizuka, and D. Lukose, eds., Lecture Notes in Computer Science

Vol. 7458. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 564–576.

[40] P. Surynek, A. Felner, R. Stern, and E. Boyarski, An Empirical Comparison of the

Hardness of Multi-Agent Path Finding Under the Makespan and the Sum of Costs

Objectives, in: Proceedings of the Ninth International Symposium on Combinatorial Search

(SoCS 2016): 6-8 July 2016, Tarrytown, New York, USA, AAAI, ed. AAAI Press, Palo

Alto, California, 2016, pp. 145–146.

References

87

[41] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E.

Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J.

Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y.

Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A.

Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, and P. van Mulbregt,

SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature methods

17 (2020), pp. 261–272.

[42] J. Weise, S. Mai, H. Zille, and S. Mostaghim, On the Scalable Multi-Objective Multi-

Agent Pathfinding Problem, in: 2020 IEEE Congress on Evolutionary Computation (CEC),

IEEE Congress on Evolutionary Computation, ed., 2020 IEEE Congress on Evolutionary

Computation (CEC), Glasgow, United Kingdom, 2020. IEEE, 2020, pp. 1–8.

[43] S. Wessing, Hypervolume: Python. 2010. Available at https://ls11-www.cs.tu-

dortmund.de/rudolph/hypervolume/start. Accessed December 6, 2020.

[44] R.P. Wiegand, An Analysis of Cooperative Coevolutionary Algorithms, PhD thesis,

2003.

[45] R.P. Wiegand and M.A. Potter, Robustness in cooperative coevolution, in: Proceedings

of the 8th annual conference on Genetic and evolutionary computation - GECCO '06, M.

Cattolico, ed., the 8th annual conference, Seattle, Washington, USA, Jul. 08-12, 2006.

ACM Press, New York, New York, USA, 2006, p. 369.

[46] J. Yu and S.M. LaValle, Structure and Intractability of Optimal Multi-Robot Path

Planning on Graphs, in: Proceedings of the Twenty-Seventh AAAI Conference on Artificial

Intelligence and the Twenty-Fifth Innovative Applications of Artificial Intelligence

Conference: 14 - 18 July 2013, Bellevue, Washington, USA ; [the Fourth Symposium on

Educational Advances in Artificial Intelligence. AAAI Press, Palo Alto, Calif., 2013,

pp. 1443–1449.

Declaration of Authorship

I hereby declare that this thesis was created by me and me alone using only the stated sources

and tools.

Kevin Kellermann Magdeburg, December 17, 2020

