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Abstract

Melanoma is a dangerous type of skin cancer whose incidence has increased
significantly in recent years. Even though several therapy approaches exist, it
is unclear when to use which, as they are based on distinct mechanisms and
have different effects on the tumor state. One of those effects is the devel-
opment of resistance. As every case is different, a method that predicts the
tumor progression based on the current state and the administered medica-
tions would be beneficial. Individual therapy plans can be constructed which
actively steer the tumor progression for each patient using this knowledge.
One way of implementing such a tool is by using an in-silico model. There-
fore, this work creates an agent-based skin cancer simulation and tests it using
an evolutionary algorithm to find optimal therapies. As it is supposed to be
a proof of concept, the most straightforward approach is used in most cases.
While the medical model needs to be revised, the overall work turned out to be
successful. The simulation produces realistic results to some extent, and the
optimization algorithm provides plausible therapy plans. Nonetheless, some
critical aspects need to be tackled in the future to make the work medically
relevant. On the one hand, the implementation needs to be more efficient to
allow for more extensive tests and optimization scenarios. On the other hand,
a reliable approach to tune the parameters of the simulation is required. Such
an approach must feature some search or optimization strategy and must most
likely use actual medical data.
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1 Introduction

1.1 Motivation

In medicine, models help to understand intricate interrelationships and thus
advance the research of new medications. They do this primarily by reducing
the complexity of the individual facts. On the level beneath the original human
organism are animal models. Here, primarily rats and mice are used for basic
research, finding cures for diseases, research on toxicology, and other tasks.
Cell cultures represent even simpler models. Although gained knowledge is
not easily transferable back to the human organism, concepts are easier to
grasp due to the minimal complexity. However, complicated scenarios are not
possible with cell cultures. One solution to this problem may be organs-on-
chips [9, 11]. These are microsystems featuring living human cells capable of
representing organ physiology. Another alternative, however, may be in-silico
models. With the starting point of cell cultures, a model can be implemented
in-silico that defines the behavior of individual cells. A simulation then can
bring insights into the multicellular interactions and effects of specific influ-
ences such as induced drugs. These multi-agent systems feature the advantage
that adding or subtracting different simulation elements can create an arbi-
trary complexity with reasonable costs. Advances in computational power
further facilitate the use of computer-aided medicine. Nonetheless, computers
have already been in use for some time. In the 1960s, computers were used
first for administrative purposes in health care. Additionally, an effort was
made to incorporate them into the decision-making process [13]. Since then,
computers have been used in a growing number of medical areas. A recent
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1 Introduction

field is the application of artificial intelligence to medical issues, both virtual
and physical [8]. The optimization algorithm used in this work can also be
assigned to this topic. Regarding simulations, some multi-agent systems were
also already tested and utilized in the medical field: One work used an agent-
based computer simulation at a cellular level for a better understanding of
the inflammatory processes [1], while another takes a look at different models
simulating epithelial tissues [18]. However, an agent does not have to be a
single cell or a cluster of cells. One team used a spatiotemporal simulation to
model the outbreak of the coronavirus [12]. In their case, an agent refers to a
human that interacts with other humans.

When it comes to skin cancer, multiple therapies exist that can be practiced.
However, it is currently unclear when it makes sense to use which therapy and
in which form. The evolution of the tumor itself can be seen as a Darwinian
process, where the tumor evolves based on external influences [21]. Actively
steering the tumor progression may be part of future therapies. Some works
already incorporate this idea and try to construct models which include the
surrounding microenvironments into the equations. One work reviews different
systems to characterize tumor development [23]. Another work makes use of
dynamic programming to optimize policies in cancer treatment by incorporat-
ing evolutionary game theory [7]. Ideally, each patient receives a customized
therapy that is optimal regarding the current and future state of the tumor. An
in-silico solution to find such therapy is required, as a trial and error approach
is not feasible using the patient. It is a promising research field, as tumors
cannot anticipate, while humans can [6]. This difference brings an advantage
that hopefully leads to the sustainable handling of cancer.

1.2 Research goals

The aim of this work is not to produce any medically relevant results yet. It
strives to present a first feasibility study that examines the possibilities in this
research area. More precisely, it addresses two questions that build upon each
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1.3 Thesis structure

other. First, is it possible to develop a cell-based simulation that provides
meaningful data despite featuring a significantly reduced complexity? Second,
can this simulation be used to optimize therapies or help decision-making,
for example, when weighing costs and benefits? Not all relevant aspects and
approaches can be covered in this work. The most straightforward approach
is used in most cases while naming different options that can be examined
in follow-up experiments. Furthermore, the computer science aspects are in
focus, while the medical ones are presented and used in a simplified manner.

1.3 Thesis structure

Following the introduction, chapter 2 encompasses the background knowledge
required for this work. This theoretical part can be split into two sections. The
first of which explains the computer science-related fundamentals. Following,
the second one introduces the simplified but required medical knowledge to
understand the general concepts of the simulation. The main part of this work
consists of two stages that try to answer the two questions introduced in the
previous section. The first involves modeling and implementing a simplified
cancer model. For this, an agent-based system is used, where each agent repre-
sents a single cell. The details are shown in chapter 3. In a subsequent chapter,
chapter 4, this model will then be validated by using real-world knowledge. Af-
terward, the second stage involves creating a therapy for the previously imple-
mented simulation and optimizing its parameters. An evolutionary algorithm
is used for this that finds the optimal solutions in a multi-objective search
space. It does not require any domain-related knowledge besides the modeling
details of the therapy. This part is covered in chapter 5. The experimental set-
tings and the results of the optimizations are discussed in chapter 6, together
with the question to what extent the tumor development can be directed us-
ing different therapies. The final chapter 7 concludes this work and expounds
problems regarding the employed approach, as well as presents adaptation and
guidelines for future research.
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2 Theory

2.1 Evolutionary game theory

Before starting with the evolutionary game theory (EGT) itself, it makes sense
to introduce first the general game theory (GT). Game theory studies math-
ematical models that deal with cooperative and non-cooperative interactions
among rational decision-making entities. Such an entity is an agent or player
who takes part in some game. GT is often used in social science to understand
behavior or economics to help with the decision-making process. The primary
aspect of game theory is that the payoff, the win or loss at the end of the game,
is influenced by both one’s own and others’ decisions. As a result, the selected
strategy also depends on the strategies pursued by others. The players have
the goal to maximize their payoff. The case in which no player can improve
the payoff by switching to another strategy is called Nash equilibrium and is
often part of the model analysis. The whole issue can be better understood by
studying an example, like the prisoner’s dilemma. This scenario is a simple in-
teraction often used to introduce the subject, and one can find much literature
about it.

In EGT, the game theory is applied in an evolutionary context that repre-
sents a sequence of interactions among the participants, with fitness being the
fundamental aspect of survival. The focus lies now on populations instead
of individual players. In contrast to general GT, a population consists of in-
dividuals that do not actively reason about their own and others’ strategies.
In other words, there is no overall consciousness anymore. As a result, the
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2 Theory

player is not the object of interest but the strategies adopted by the individ-
uals. Furthermore, the payoff is now fitness in an evolutionary sense, and the
individuals do not choose their strategy but inherit or mutate them. A famous
example is the hawk-dove game [19]. Analogous to the Nash equilibrium in
GT, evolutionarily stable strategies (ESS) are of great interest. Once adopted
by a population in a specific environment, a set of ESS cannot be substituted
by a novel set of strategies. However, since EGT plays only a minor role in this
work, it will not be discussed in depth. Furthermore, there is already much
literature on this topic, like these books [20, 16].

2.2 Evolutionary algorithms

Evolutionary algorithms (EAs) are metaheuristics designed to solve computa-
tional optimization problems. A metaheuristic can provide a sufficiently good
solution to any optimization problem while making only a few assumptions
about the domain. That way, they can easily be applied to a wide variety of
problems. Evolutionary algorithms are inspired by the theory of evolution and
the concept of survival of the fittest. They can be characterized by three core
concepts [22]:

• Population-based: A group of individuals, each representing a single
solution, is called a population. Together, they learn the problem in a
parallel manner.

• Fitness-oriented: Each individual consists of two parts, the gene rep-
resentation and the resulting fitness value. Fitter individuals are favored
during the iterative updates of the algorithm leading to convergence.

• Variation-driven: Individuals are altered using different nature-
inspired variation operators like crossover and mutation to explore the
solution space.

While the base algorithms are always very similar, different flavors are pre-
ferred for different tasks. If only one objective function needs to be optimized,
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2.2 Evolutionary algorithms

Initialize
population

start Termination

Evaluate
population Select

mating pool

Perform
crossoverApply

mutations

Compute
fitness

Select new
population

Figure 2.1: Basic EA algorithm

it is called a single-objective optimization problem. A typical example is find-
ing a global minimum in a one-dimensional function. However, depending on
the context, multiple objective functions need to be considered. Such a multi-
objective optimization scenario is also part of this work and, therefore, will
be explained further in subsection 2.2.2. However, first, the general process
and the contained parts of an evolutionary algorithm will be introduced in the
following part.

2.2.1 Basic algorithm

Evolutionary algorithms take an iterative approach to finding adequate solu-
tions to an optimization problem. Figure 2.1 shows an overview of the general
scheme. The algorithm starts by sampling an initial population within the
search space. Having a diverse first set of individuals is favorable as it helps to
explore the search space faster. In the next step, the population will be evalu-
ated regarding the termination criterion. That can be a predefined number of
generations or a check whether it has converged using a performance metric.
In that case, the algorithm outputs the locally optimal solution. If the search
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continues, a subset of the whole population gets chosen, which is responsible
for generating new solutions. Different selection operators can be employed
that often focus on the individuals’ fitness values. From this mating pool,
various offsprings will be created by combining the genes from the respective
parents. This process is called crossover, and again different operators exist
that depend on the type of genes. Afterward, the second variation operator
mutates some of the created offsprings. Next, the newly created individuals’
fitness values will be computed. Using these values, the new generation of
solutions gets selected. One can pick from the offspring population alone or
the union of both sets, the parent generation and the created offspring. With
this, the cycle is complete, and it starts all over again.

2.2.2 Multi-objective optimization

A multi-objective optimization scenario features multiple conflicting objective
functions. In this context, the objective functions are conflicting when opti-
mizing only one function leads to worse values for the other objectives and the
other way around. In other words, there usually is no solution that is the best
regarding all objectives, especially not in the final set of solutions. The overall
problem can be defined as follows:

Definition 1. (Multi-objective optimization problem)

Minimize {f1(~x), f2(~x), . . . , fm(~x)}
s.t. ~x ∈ S

m conflicting objective functions fi : S → R need to be minimized by finding
solutions ~x from the set of feasible solutions S.

As a consequence, there is no single optimal solution to the problem. Instead,
there are various solutions with different advantages but also disadvantages.
Nevertheless, a metric is required to distinguish valuable points from those
that do not contribute to a helpful compromise regarding the objectives. For
this, the so-called Pareto optimality is used:
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2.3 Medical background

Definition 2. (Pareto Optimality)

~x∗ ∈ S is (globally) Pareto optimal (PO) if there does not exist another ~x ∈ S
such that fi(~x) ≤ fi( ~x∗) for all i = 1, . . . ,m and fj(~x) < fj( ~x∗) for at least
one j.

That means that a solution is not PO if another solution exists that is at
least as good as the first one in every objective and strictly better in at least
one. In that case, the second solution dominates the first one. The subset of
a population containing only Pareto optimal solutions is called Pareto front
and should survive to the next generation. There are many algorithms with
different methods to select the new population. The algorithm used in this
work gets explained in more detail in chapter 5.

Once the multi-objective optimization algorithm has terminated, it returns the
Pareto front. However, it cannot say which of these returned solutions is the
best one. A decision-making process is still required to analyze the solutions
and select the final one. For this task, expert knowledge of the corresponding
domain is necessary.

2.3 Medical background

Melanoma is a dangerous kind of skin cancer. The primary cause of an out-
break is exposure to ultraviolet light. Fair-skinned people, in particular, have
an increased risk of developing skin cancer in their lifetime. As a result, it
most frequently occurs in North America, northern Europe, Australia, and
New Zealand. Melanomas originate from melanocytes, which are pigment-
producing cells that occur most frequently in the basal layer of the skin.
However, the exact stages of development, including the involved biological
processes, will not be further elaborated here, as they are not required for
understanding this work. While not everything is known in this research field,
the basics are well represented in literature [15].
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2 Theory

Before looking at the therapy options, it makes sense to explicate the tumor
environment used in the simulation. It is not sufficient to examine the tumor
cells in isolation, as the surrounding microenvironment significantly affects
the tumor development and spread. Apart from tumor cells, immune cells
play a significant role. Since the whole immune system is too complex to
explain, this section focuses on the two types of cells implemented in the
simulation. The first type of immune cell represented in this model, the T
cell, is a subgroup of lymphocytes, also called white blood cells. T cells play a
significant role in the adaptive immune response. There are various types of T
cells, and their birth, maturing, and activation process is complex. Therefore,
this work heavily simplifies those aspects. Only one type of T cell is used,
which can directly detect and kill cancer cells. The second type of immune cells
covered are neutrophils, which are a subgroup of leukocytes. However, they are
part of the innate immune system and often first responders in inflammatory
environments, including tumor tissues. Even though they are supposed to help
the human, it is a current research topic to what extend neutrophils help tumor
cells elude other immune cells [17, 5]. That is also the reason why they are
included in the simulation.

Apart from tumor and immune cells, the third category represents the sur-
rounding tissue in which the tumor grows. Blood vessels are part of this cat-
egory, as they are essential due to the delivery of oxygen and nutrients. The
second and final type of cell, called fiber in this work, represents the connec-
tive tissue. It is again a simplification of the original fibroblasts in the human
body. Fibers are implemented as a static mash that can be destroyed by the
individual tumor cells to proceed in the environment. Other aspects of tumor
fibroblast interactions are not used in this work.

Back to the general topic, this work is focused on tumor therapy and not on tu-
morigenesis or metastasis. Superficial melanomas that have not yet infiltrated
deeply into the tissue can often be excised with a high success rate [3]. How-
ever, melanomas tend to spread fast. Under these circumstances, a surgical
operation is not sufficient anymore. Different therapy types can be employed

10
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to at least slow down tumor progression. Here, the focus lies on two dis-
tinct therapy types, signal transduction therapy and immunotherapy. Signal
transduction therapy is a combination of multiple drugs that block different
biological pathways which would otherwise promote tumor growth. However,
this procedure may fail due to alternative pathways found by the tumor lead-
ing to resistance. On the other hand, immunotherapy inhibits mechanisms
that help the tumor elude the immune system’s attack. As a result, the im-
mune cells can better identify and attack tumor cells. Again, the emerging of
resistance is a problem that limits the sustainability of such a therapy.
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3 Modeling the simulation

3.1 General concept

The simulation can be divided into two parts: The generic simulation frame-
work and the problem-specific logic. First of which initializes the simulation
based on a configuration file and supervises the primary update cycle. Fur-
thermore, it is responsible for in- and output, such as user input, visualization,
or saving entire simulations. The framework does not contain any problem-
specific knowledge and thus can be used for various simulations from different
domains. However, the base entities of such simulations must be agents, which,
in this case, represent individual cells. Each of these agents contains several
components. These components define the behavioral traits of different agent
types. The configuration of each component stack is specified in a user-written
configuration file used by the framework to construct a simulation. The end-
user can either use predefined components which provide basic behaviors or
program and import problem-specific ones. Thereby, each component is de-
rived from an abstract component class. The inheritance allows for modular
and reusable code, even across domains. The individual components within a
cell communicate via so-called signals, stored in the cell object and accessible
for all others. Figure 3.1 depicts a rough overview of the program, which will
be further explained in the next section.

As the rest of the general framework is not critical for understanding this work
and mainly consists of conventional code, this chapter focuses on the medical
model and the concrete implementation of those rules.
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3 Modeling the simulation

Class: Simulation Class: Cell
MEMBER MEMBER

cells: list[Cell] components: list[Component]
signals: list[Signal]

METHODS METHODS

update(): interact(cell):
for celli in cells: for component in components:
for cellj in cells: component.interact(cell)

celli.interact(cellj)
update():

for cell in cells: for component in components:
cell.update() component.update()

Figure 3.1: General object oriented concept of the simulation

3.1.1 Interactions

As introduced before, the simulation is written so that the cells and their
components contain all problem-specific logic. Therefore, there is no general
code that computes interactions and updates the simulation from the outside.
This pure agent-based approach is not the most efficient computation-time-
wise as it contains a deep hierarchy with many function calls. However, it
is easy to expand and adapt due to its modularity. Since the interactions
also happen locally within each component, only the affected parts need to be
modified instead of an overlooking code when changing, adding, or removing
features from the simulation. The job of the simulation framework is only
to present each cell to every other possible cell with which it might interact.
During this interaction step in the update cycle, neighborhoods can be formed
by the components that are helpful for the following update procedure. They
are inspired by the neighborhood structure used in swarm intelligence [2]. The
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3.1 General concept

focus primarily lies on the k-closest neighborhood. With this topology, a cell
considers the k closest cells as its neighbors. Closeness is thereby meant in
a spatial way using the euclidean distance. This approach is justified since
cells do not view their surroundings but interact directly with physical contact
or perceive messenger substances. Implementation-wise, neighborhoods store
references of the corresponding cells and the distances. As a result, they can
be used by iterating over them and extracting those two values, as seen in later
presented algorithms.

3.1.2 Movement system

The basic movement system is the same one as used in many swarm intelligence
applications. The standard motion equations can be seen in Equation 3.1 and
Equation 3.2.

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1) (3.1)

~vi(t+ 1) = w~vi(t) + ~fi (3.2)

In a new update cycle, the velocity gets calculated first. It consists of a mo-
mentum term and an acting force. The momentum term is the scaled velocity
vector from the previous update cycle. The factor ~fi can be any force act-
ing on the agent and thus changing its velocity and direction. Given the new
velocity vector and the old position, one can calculate the resulting position
within the environment. This movement system is straightforward and does
not reflect the true nature correctly, as cells usually crawl within the tissue and
do not move freely within the space as it is implemented here. Nonetheless, it
is sufficient as a base framework for the first test. Further, two main interac-
tion principles are also copied from swarm intelligence methodology. Agents
either attract or repel each other. Special functions are applied that precisely
determine the behavior by outputting a resulting force given the distance of
two cells. The total force for a single agent is then the sum of all individual
ones. The simulation in this work makes use of two of those functions that are
explained in the following:
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Figure 3.2: Repulsion-I for agent i given agent j with d = 3.0

• Repulsion-I:

~fi(i, j) = [−k(‖~xi − ~xj‖ − d)](~xi − ~xj), k > 0 (3.3)

Two agents with this function try to maintain the distance d between
each other. If the current distance is smaller than that, they repel each
other. On the other hand, if the current distance is greater than d,
they attract each other. One should note that both agents experience
the same force. The factor k determines how strongly they attract and
repel each other. If k is chosen too large, the force may be too strong,
which results in oscillations around the desired distance. On the other
hand, if the factor is too small, the effect may vanish, given the own
movement of the agents. The user must configure the final factor k from
the movement component assigned to each cell type. This function, in
general, is frequently used for tracking other agents, which is also the
case for this simulation, where T cells can follow tumor cells. Figure 3.2
shows an explanatory plot of the function.
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Figure 3.3: Repulsion-II for agent i given agent j with kr = 1.0

• Repulsion-II:

~fi(i, j) = kr exp(
−1
2
‖~xi − ~xj‖2

r2s
)(~xi − ~xj), kr, rs > 0 (3.4)

The second function is, in contrast to the previous one, purely repelling.
Any two agents that are too close repel each other. However, there is no
possibility to set a fixed minimum distance that two agents should always
maintain. How far the repulsion force extends depends on rs, while kr
acts as an additional magnitude modifier. As the repulsion theoretically
extends infinitely, it is hard to quantify the parameters. This work uses a
trial and error approach with appropriate visualizations to find suitable
values for the two factors. Further, this repulsion function is the base
for most interactions within the simulation. It prevents two cells from
staying in the exact location, but on the other hand, it is not strict and
therefore mimics the deformability of cells. An explanatory plot with
kr = 1.0 can be seen in Figure 3.3.
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Figure 3.5: Annotated view of a real tumor

3.1.3 Medical viewpoint

The simulation computes the tumor growth in a later stage of its progression
but before it has metastasized. Therefore, the emergence is not covered, as
this work primarily focuses on the therapy and not prevention. Since it often
takes a while for the tumor to be diagnosed, this time frame is suitable for
further examination. Regarding the spatial dimension, the visible environment
exposes a cross-section of the tissue at the border of the tumor. Therefore, one
can see how the tumor invades the healthy tissue and expands in the visible
plane. A schematic of the spatial relations is shown in Figure 3.4. Below that,
Figure 3.5 shows a real tumor section. Both figures share the same point of
view.

18



3.2 Cells

Neutrophil

Tumor
cell

Dead
tumor cell

FiberT cell

Blood
vessel

boost

boost
+

heals

hinders

hinder
s

attacks

dediff
dediff

sto
psatt

ac
ks

cra
wl
s

diff
/d
ed
iff

str
en
gth

en
s

he
als

density
influence

Figure 3.6: Simple interaction diagram

3.2 Cells

This section presents the different cells and their modeling as well as imple-
mentation details. Each cell type is uniquely defined by its component stack,
which will be illustrated in the following. Apart from the components, all cells
share some fundamental traits. They have a precise location and orientation
within the environment, as well as a health value. However, the base cell object
only stores those values. How these change throughout the simulation depends
entirely on the components.

For a better understanding, Figure 3.6 shows a diagram of the general in-
teraction between the different cell types. What the individual interactions
mean will be explained in the following. Additionally, Figure 3.7 shows a table
with all components broken down by the cell type. One should note that the
Attack, Health, Death, and Movement components are different for each cell
type. They are all derived classes adapted to the unique individual behavior.
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Figure 3.7: Component stacks of all cell types

3.2.1 T cell

In this simulation, the main antagonists of tumor cells are the T cells. They
are a simplification of the actual T cells in the human body. All T cells are
assumed to be activated and can detect and attack all tumor cells regardless of
the differentiation state. Their component stack is described in the following:

Blood boost: This component computes the effect of blood vessels in the
vicinity. Each of the sub-elements of a blood vessel has an influence based
on its distance. These influences accumulate for each element of the blood
vessels and get divided by an upper limit to compute a value between zero and
one, the so-called blood boost factor. The general algorithm can be seen in
Algorithm 1. Variables with entirely capitalized names have to be configured
by the user. Further, the function that maps the distance to the influence can
also be configured. An exponential function is used for this simulation because
the blood boost should span the environment, but the decrease due to the
distance should be significant. A plot for the function, as well as the resulting
blood boost distribution within the environment, is shown in Figure 3.8. This
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Algorithm 1 Computing blood boost
1: procedure compute_blood_boost

2: blood_vessel_neighborhood← create_neighborhood()
3: blood_boost← 0

4: for bv, dist in blood_vessel_neighborhood do
5: tmp← A+B ∗ exp(−C ∗ dist)
6: tmp← max(tmp, 0)

7: blood_boost← blood_boost+ tmp

8: end for

9: blood_boost← blood_boost/LIMIT

10: end procedure
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Figure 3.8: Mapping function and resulting blood boost

component does not act itself but provides the calculated value via a signal to
the others which use it for their computations.

Attack: The attack component has two primary responsibilities: Finding
a target, and if possible, attacking it. When a tumor cell exists within the
detection range, it gets selected as the target. Further, if multiple tumor cells
are within that range, the closest one becomes the target. Once a T cell
has acquired one, it will not switch until the tumor cell is either dead or out
of range, and it will provide a reference as a signal for other components to
utilize. The T cell will perform multiple attacks in the actual fight when the
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Algorithm 2 T cell attack
1: procedure t_cell_attack(delta_time)
2: if has_target then
3: health← get_own_health()
4: time_to_attack ← time_to_attack − delta_time
5: while time_to_attack ≤ 0 and health ≥ 0 do

6: health← health−HEALTH_DECREASE
7: time_to_attack ← time_to_attack + 1/ATTACK_SPEED
8: attack_target()
9: end while

10: end if

11: end procedure

selected target is within the attack range, which does not necessarily match
the detection range. How those attacks are computed is shown in Algorithm 2.
Each of those attacks costs a discrete amount of time and health. Further, T
cells do not manage their health. They instead attack until they die.

Health: The maximal health value decreases over time to model the life ex-
pectancy of T cells. Here, a stochastical reduction is used. Additionally, a T
cell can regain health lost due to attacks up to the time-varying maximal value.
This positive effect is caused by blood vessels in the vicinity. The actual value
is proportional to the blood boost computed in the respective component. An
algorithm showing all those computations can be seen in Algorithm 3.

Death: The death of T cells is comparatively simple. T cells die when their
health value dwindles below or equal to zero. They get instantly removed from
the simulation as they are not needed anymore.

Movement: A T cell has two modes when it comes to its movement. If
it has no current target, it crawls around randomly while avoiding regions
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Algorithm 3 T cell health
1: procedure t_cell_health(delta_time, blood_boost)
2: . Regain health due to blood vessels
3: health← health+ blood_boost ∗ FACTOR ∗ delta_time
4: . Decrease the maximum possible health over time
5: max_health ← max_health − random(0, 2) ∗ DECREASE ∗
delta_time

6: health← min(health,max_health)
7: end procedure

with denser fibers as well as possible. The latter functionality is implemented
using the repulsion-II function introduced in subsection 3.1.2. In addition to
the distance, the integrity of the fibers also affects the acting force. If a fiber
should not be passed effortlessly, it features a high repulsion. That way, T cells
can theoretically go everywhere but tend to find the easiest path. The random
movement itself is based on a direction vector that gets altered randomly by
adding or subtracting small amounts in each time step. Further, the cells slow
down at probabilistic time intervals to allow for sharper direction changes.
Additionally, a repulsion factor has the task of preventing cells from being
at the same spot. This factor is simply a repulsion-II function acting on all
movable other cells within the environment. The second movement mode is
active if the T cell has a target. This results in the random movement being
deactivated, along with the general repulsion. Instead, it is attracted to the
target and follows it to get close and attack. For the attraction function, the
repulsion-I function is used, which was described earlier in subsection 3.1.2,
with a small value for d that results in physical contact.

Spawning: The final aspect of T cells is their spawning behavior. In the
human body, they emerge from blood vessels. In the simulation, that is the first
implemented spawning mechanism. Since there are also blood vessels outside
the visible environment, the second mechanism spawns T cells at the border,
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Figure 3.9: T cell spawning with custom tumor cell count and ratio of 0.5

representing those T cells that emerged from other blood vessels that cannot
be seen. Further, the spawning rate is an essential factor that significantly
influences the outcome of the simulation. It is implemented so that the user
can specify the desired ratio between tumor cells and T cells.

Given the number of tumor cells and the desired ratio, the number of required
T cells can be calculated. The actual number of T cells then gets adjusted to fit
this value by increasing the spawn rate if more T cells are required or decreasing
it when too many T cells are alive. However, direct computation prohibits a
complete tumor eradication, as fewer T cells are more likely to miss the last
isolated tumor cells. The solution for this problem is to introduce a delayed
computation once the tumor shrinks. After a plateau phase with a constant
value, the required T cells will be calculated with the number of tumor cells
from the past. Figure 3.9 shows an example plot, where the number of tumor
cells is a custom function. The numbers at the bottom of the plot show the
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different stages of the algorithm. State zero is active when the tumor grows.
Further, the number of T cells gets computed directly. Once the tumor starts
to shrink, the algorithm is in state one, and the number of T cells does not
decrease. Instead, it stays constant for a certain period to increase the relative
amount of T cells. After the specified time delay, the algorithm switches to
the next state, and the required T cells are computed using the past numbers
of tumor cells. However, as one can see at second 71, once the number of
required T cells at the current time gets higher than the needed T cells due to
the delayed value, the tracking is live again.

3.2.2 Neutrophil

The second type of immune cell is the neutrophil. Neutrophils are part of the
innate immune system, as introduced in the theory part. They are represented
in this simulation as a type of immune cell that promotes the dedifferentiation
of tumor cells. That way, they help the tumor elude T cell attacks or at least
have an advantage compared to differentiated tumor cells.

The component stack is mainly identical to the one used for T cells. The
only difference is that they do not feature the target and attack behavior.
As a result, they do not follow tumor cells but only crawl around randomly.
In reality, however, they also follow signals. Since this movement style is not
relevant to the current medical model, it can be neglected. Further, promoting
dedifferentiation in tumor cells is not implemented here but in the tumor cells
themselves.

Also, the same spawning system is used for neutrophils as for T cells. The user
can adjust the spawning rate for both cell types separately, but the tracking
is based on T cells. Therefore, the resulting change in the spawn rate due to
the tracking affects both cell types in the same way.
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3 Modeling the simulation

3.2.3 Tumor cell

The tumor cells and their behavior is the central aspect of the simulation.
However, the individual cells themselves do not actively make decisions on
their own. They only react to their surrounding environment.

The main focus lies on differentiation, as it includes the evolutionary game
theory in this simulation. Tumor cells can either be differentiated or dedif-
ferentiated. Both states have different behavioral traits and, therefore, their
advantages and disadvantages. The component stack further specifies these
characteristics. Depending on their local environment, it might be suitable to
be in one state or the other. The conditions to switch between the two states
are purely rule-based and modeled on nature.

One aspect of this work is to examine the influence therapies have on the
differentiation state and the consequences on tumor growth. At this point,
however, the component stack of a tumor cell is presented.

Basic: The basic component is one of the default components and is respon-
sible for multiple values. In this case, it provides the area of the cell given
its size and shape. This value is required for computing the local density in
another component.

The shape of a tumor cell is assumed to be round. Therefore, the standard
formula for a circle is used, as the simulation is fully implemented in only two
dimensions.

Blood boost: The blood boost component in the tumor cell is the same as
in the T cell. It provides a value based on the accumulated influences of blood
vessels in the vicinity of the cell. Once again, it does not act independently but
only provides the resulting value to other components, as seen in the following
stack description.
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Figure 3.10: Schematic of the blood neighbor computation

Blood neighbor: Sometimes, it makes a difference whether a cell is in the
vicinity of a blood vessel or has direct physical contact with one. This com-
ponent computes the signed distance between the outer borders of this cell
and the closest blood vessel. Together with a reference of the closest blood
vessel sub-element, this value is stored in two signals so that other components
can use it. Figure 3.10 shows a schematic of the two possible scenarios when
computing the blood neighbor. Once the distance is negative, physical contact
occurs.

Density estimator: This component estimates the local density for the given
types of cells. Here, the density of the tumor itself is computed. The calcu-
lation consists of summing all cell areas in the vicinity and dividing by the
circular search area configured by its radius. Therefore, it does not compute
the actual density but an approximation. Nonetheless, it is sufficient, as pre-
cise measurements are not required. Since cells can overlap in this simulation,
the density value can be greater than one. A density visualization of an exam-
ple tumor can be seen in Figure 3.11. The resulting density values affect the
differentiation, as seen later on in the corresponding component.
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Figure 3.11: Density of an example tumor

Attack: The attack component of tumor cells targets fibers, which are ex-
plained later on. Each tumor cell selects the fiber with the lowest health value
within its attack range and damages it. Similar to the T cell attack, an attack
costs time and health. The computation of when to attack is the same as in
Algorithm 2. The difference to T cells is that tumor cells stop before they die
of exhaustion.

Health: In contrast to T cells, tumor cells have a longer life expectancy.
Since the simulation only represents a short period, no time-dependent health
decrease is modeled for tumor cells. However, the healing functionality works
in the same way again. Tumor cells can also regain lost health by being in
the vicinity of blood vessels. Nonetheless, the most significant function of the
tumors’ health component is the computation of the damage-induced health
decrease caused by T cells. Thereby, two factors influence the way an attack
decreases the tumor’s health. A tumor cell that has physical contact with a
blood vessel only receives half the damage. Secondly, a dedifferentiated tumor
cell only takes one-fifth of the damage compared to a differentiated tumor cell.
Apart from those two scalars, the damage taken gets mapped directly to the
health decrease, as seen in Algorithm 4.
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Algorithm 4 Tumor health
1: procedure tumor_health(delta_time, blood_boost)
2: health← get_health()
3: damage← get_damage()
4: if has_blood_neighbor() then
5: damage← damage ∗ C1

6: end if

7: if is_dedifferentiated() then
8: damage← damage ∗ C2

9: end if

10: health← health+ blood_boost ∗ C3 ∗ delta_time
11: health← health− damage
12: health← min(health, 1.0)

13: end procedure

Death: If the health value is below or equal to zero, a tumor cell is considered
dead. However, it is not immediately removed from the simulation but after a
configurable period in contrast to the T cell. This delayed removal is crucial
because dead cells can influence the dedifferentiation of surrounding tumor
cells, similar to neutrophils. This interaction works by emitting messenger
substances that can be sensed by surrounding tumor cells.

Differentitation: As described at the beginning of subsection 3.2.3, this sim-
ulation features a simplified version of differentiation. Each tumor cell has a
value ranging from zero to one, denoting the state of differentiation. If it is
between zero and one-half, the cell is dedifferentiated. Above one-half and
below one, the cell is differentiated. The tumor cells do not actively decide
which state is the best one. Transitions only occur based on the surround-
ing environment. In total, the seven factors shown in Figure 3.12 affect the
differentiation value. Under natural circumstances, the tumor tends to be dif-
ferentiated. Only ten to twenty percent of all tumor cells are dedifferentiated.
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Default increase: Tumor cells have the general tendency to differentiate
over time.

Blood boost: If a tumor cell receives enough nutrients, it is more likely
to differentiate.

Density: Areas with higher densities tend to be dedifferentiated
because concurrency produces stress.

Dead neighbors: Dead tumor cells release substances into the environment
that promote dedifferentiation.

Neutrophils: Have a similar effect to dead tumor cells and also promote
dedifferentiation.

Hypoxia: If tumor cells do not get enough oxygen and nutrients,
they become dedifferentiated.

Blood contact: If a tumor cell touches a blood vessel, it may become
dedifferentiated.

Figure 3.12: Differentiation factors

However, therapies and other factors can alter this ratio and increase the num-
ber of dedifferentiated tumor cells. The general goal is to keep differentiated
tumor cells during therapy as they are easier to kill.

Movement: Generally, only the repulsion-II function describes tumor cell
movement, which solely considers other tumor cells. They do not move ran-
domly within the environment. However, due to the mutual repulsion, tumor
cells tend to drift apart and get scattered across the environment. Individual
cells only get blocked by fibers, which they have to destroy. There is only one
exception to this movement behavior. Dedifferentiated tumor cells can crawl
on blood vessels. They switch to this mode with a specific user-configured
probability and a constant velocity along the blood vessel if they have direct
contact. Figure 3.13 shows a schematic of this behavior. While crawling, they
are not affected by the fibers, as they squeeze through the gaps around the
blood vessels.
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Figure 3.13: Crawling schematic

Spawning: For better comparability of multiple simulations, the tumor gets
spawned invariably. A single cluster of tumor cells gets sampled in the center
of the environment within a small framed region. The quantity of tumor cells
also stays constant across runs.

Due to the initial high density within the cluster, the tumor expands rapidly
at first with an unrealistic velocity due to the base repulsion function and high
overlap among the cells. In the future, a precomputed tumor might be a better
choice to produce realistic results from the start of the simulation without
having a start-up phase that distorts some results. This precomputation is
possible, as a stored simulation can be used to initialize a new one. In such
a case, tumor cells get extracted from the old simulation, along with immune
cells and fiber health values. Further, when using the same simulation for
initialization every time, this approach also provides comparability.
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3.2.4 Blood vessel

Blood vessels are vital since they provide essential nutrients and oxygen for the
surrounding tissue. Therefore, cells close to them have an advantage in contrast
to cells further away. The effect blood vessels have within this simulation has
already been explained in the previously presented cell types. In general, they
add a new level of complexity to the simulation and additional dependencies,
which might be interesting to analyze.

Blood vessels are modeled as oblong sub-sections. Referring to one of those
sections as a cell is inaccurate, as they are composed of multiple different
and smaller cells. Since those different cells do not have any effect within the
simulation, they can be neglected. Further, modeling the sub-sections as single
cells has a computational advantage, as the overall number of required cells is
lower.

The actual implementation of blood vessels themselves is pretty simple since
they do not have any components. As a result, they are entirely static and do
not change throughout the simulation. In the real world, tumors can promote
angiogenesis. That is forming new blood vessels from already existing ones. It
helps them to grow even bigger and still have enough oxygen and nutrients.
However, angiogenesis can be neglected in this work since a single simulation
only looks at a short period, while forming new blood vessels requires more
time. Therefore, a static blood vessel approach is justified.

The starting point, the endpoint, and the thickness are the only three param-
eters required to create a linear blood vessel section. Given this information,
the specified line will be automatically filled with cells at the correct locations
and proper orientation. This implementation allows for an automated gener-
ation of blood vessels within an environment. However, the blood vessels are
generated by hand to reduce additional parameters and complexity in this first
approach.
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Figure 3.14: Computing fiber health from sampled value

3.2.5 Fiber

The last type of cell implemented in the simulation is fiber. As introduced in
section 2.3 and indicated in the section on tumor cells above, fibers are only
there to restrict the growth and expansion of the melanoma. In the simulation
itself, the fibers have no functionality. They only feature the death component.
It removes the fiber as soon as the health is equal to or below zero. This value
gets reduced by the tumor cells, as described in subsection 3.2.3.

Similar to the blood vessels, fibers also add to the complexity of the simulation
and provide new aspects to investigate. One of them is the role and influence
of connective tissue.

The fibers in this simulation are static and are created once at the beginning
of the simulation. They have different health values and can thus withstand
the tumor for various lengths of time. Thereby, the distribution of more robust
and weaker fibers should roughly mimic natural connective tissue. The health
values for the fibers are sampled from a specially created map that is constant
over all runs. An illustration of the different stages of the map creation process
can be seen in Figure 3.15. It consists of the following steps:
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(i) Pearl noise (ii) Sobel filter

(iii) Gaussian filter (iv) Inverting lower values

Figure 3.15: Different stages of the health generation map for fibers

(1) The base is a texture generated using the gradient-based simplex noise
algorithm invented by Ken Perlin in 2001, the successor and improved
version of the famous Perlin noise. It is often used in visual effects due
to its organic and realistic look.

(2) In the first processing step, a Sobel filter is applied. It is generally used
for detecting edges within an image. Here, it serves a similar purpose.
The goal is not to have hills and valleys but to use the transitions between
those as strands of denser fibers.
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(3) In the next step, a gaussian filter smoothes the image. A high sigma is
used to reduce underlying noise further and increase the sharpness.

(4) In the last but one update, the valleys get inverted. As a result, the low
spots are no longer the valleys but the longer lines enclosing the hills.
These lines represent barriers that are difficult to break for the tumor
cells.

(5) Finally, the generated map gets sampled using a uniformly distributed
grid. The resulting values are converted using the function

f(x) =
2

1 + e−12x+12

which is a transformed sigmoid function. Figure 3.14 shows the corre-
sponding plot. The goal is to have clusters of fibers destroyed quickly
and stronger fiber barriers that do not get destroyed, or only with a lot
of effort. The function separates those two modalities to achieve the
desired duality.

3.3 Example simulation

This final section of the modeling chapter illustrates a visualization of a com-
plete simulation. Figure 3.16 shows the environment for six different stages, at
identical intervals in time. The simulation starts with 100 differentiated tumor
cells (brown) in the center of the environment. Throughout the simulation,
some tumor cells dedifferentiate due to external influences (pink) or die (grey).
Further, one can see three blood vessels (red) that do not change during the
simulation. The grid structure (gray mesh) represents the fibers, where darker
fibers are denser and harder to break. The last cells one can see are from the
immune system, namely T cells (blue) and neutrophils (yellow). The simula-
tion displays a case where only the natural immune system responds to the
tumor, and no therapy is used.
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(i) First frame (ii) Stage 1

(iii) Stage 2 (iv) Stage 3

(v) Stage 4 (vi) Last frame

Figure 3.16: Example simulation
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The next step after modeling the simulation is validation. There are two main
goals to accomplish. First, from a computer science perspective, it is necessary
to validate that the simulation does what it is supposed to do. In other words,
the goal is to check for errors and flaws within the implementation. Second,
configure the simulation to provide medically correct results, and thus one can
validate whether it is possible to draw connections to real-world scenarios. Es-
pecially the second goal is not a trivial task since the simulation features many
parameters that significantly influence the tumor development and, therefore,
the general outcome. There are many possibilities to determine the parameters
used in the simulation.

The most apparent method is to use numbers from the medical research field.
This strategy is certainly possible for some parameters, like the attack range
for T cells since they have to make direct contact with tumor cells, the ratio of
the proliferation probability for differentiated and dedifferentiated tumor cells,
or the attack speed of T cells. However, since the implemented simulation uses
a custom scale for time and size and not the real-world dimensions, those values
do not always lead to the desired result. Further, many values are unknown
because experts in the medical field do not need them precisely determined.
Most of the time, the understanding of biological mechanisms is the crucial
part. Additionally, many parameters are implementation-specific and do not
appear in the same way in organisms as in the simulation. Examples are
parameters related to the life system of cells, like the health decrease over
time or due to attacks.
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Another possible approach is to gather data through medical imaging from
actual tumors. It might be possible to analyze these images using computer
vision techniques and construct a fully initialized simulation from the results.
Although it is an interesting approach, it is not pursued in this work due to
time and complexity constraints, but it might be a new research topic in the
future that is worth exploring.

In this work, as stated above, the parameters are a mixture of educated guesses
based on medical knowledge about real-world tumors together with known
values. However, these values can only serve as a starting point. Fine-tuning is
necessary to produce a meaningful simulation. Edge cases that focus on single
properties were created to validate the final set of parameters. For these cases,
hypotheses were made as to how the tumor should behave. These hypotheses
can then be tested using different statistical measures. If these hypotheses are
confirmed, and the simulation behaves as expected when changing parameters,
the implementation can also be assumed to be correct in an abstract sense.
Nonetheless, theoretical testing and debugging have also been deployed but
are not shown here. The following parts of this chapter present the different
scenarios, the corresponding hypotheses, and the results.
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Figure 4.1: Tumor proliferation without any influences

Tumor Proliferation The first test case examines the tumor growth without
external influences such as blood vessels, fibers, and immune cells. The simu-
lation starts with a single tumor cell. The extent of the environment limits its
growth by prohibiting individual cells from crossing the borders. The goal is
to validate whether the simulated tumor features a realistic growth function.
This test case is similar to real in vitro tumor growth experiments. Further,
creating mathematical models for the growth function of cancer is an active
research field. Purely mathematical models, for example, make use of time-
delayed ordinary differential equations [10]. Other works, similar to this one,
focus on computational approaches [14]. However, there are also some simple
standard models. One of which is the so-called Gompertz function:

f(t) = a · e−b·e−ct

Among other things, it is used to model the growth behavior of tumors. There-
fore, it is applied here to evaluate the simulated growth. Figure 4.1 shows a
Gompertz function fitted by hand to the mean of 16 different simulations of
the described scenario. Even though the curves are not identical, the general
behavior is quality-wise the same so that this scenario validates the general
tumor growth.
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Figure 4.2: Tumor dedifferentiation without the immune system

Dedifferentiation rate The subsequent validation case examines the default
dedifferentiation rate. If the tumor does not experience any stress, for exam-
ple, due to attacks from T cells, it should favor the differentiated state, as
it promotes growth. Therefore, T cells and neutrophils get removed in this
scenario, but everything else stays original. Especially the blood vessels are
essential since they provide oxygen and nutrients. Without those, all tumor
cells would have the same probability to dedifferentiate due to the hypoxia-
induced stress resulting in a trivial scenario. Nonetheless, a certain percentage
of dedifferentiated tumor cells is expected due to cells with direct contact to
blood vessels and regions far away from the influence of blood vessels. The
target percentage lies somewhere between 10 % and 20 %. Figure 4.2 shows
the average rate of dedifferentiated tumor cells over 16 different runs with the
corresponding standard error. The rate is computed as the number of ded-
ifferentiated tumor cells divided by overall tumor cells. Therefore, one can
observe that the dedifferentiation rate, even with fluctuations, lies under 20 %
and is within the expected range. As a result, one can keep the parameters
determining the differentiation behavior of tumor cells.
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Figure 4.3: First and last frame of the tumor-fiber interaction scenario

Tumor-fiber interaction As the name suggests, this scenario attempts to
evaluate the tumor and fiber interaction. As introduced in subsection 3.2.3,
the tumor can attack and destroy fibers. However, it will lose health while
doing so. As a result, blood vessels are also present in this scenario so that
tumor cells can regain their lost health. Immune cells are not required in this
scenario. A custom fiber distribution is employed to examine the interaction
properly. It consists of broad regions without fibers in which the tumor can
expand effortlessly. An actual tumor always uses the simplest path through
the surrounding tissue, and it is expected that the simulation shows the same
behavior. Over time, however, the tumor should also force its way through
denser fiber regions. The second aspect tested in this scenario is the crawling
of tumor cells on blood vessels. While doing so, they are not affected by the
fibers and, therefore, can reach regions that normal tumor cells cannot reach.
Figure 4.3 shows the initial state on the left and the final state of the computed
simulation on the right. It can be seen that even if the tumor slowly invades
the surrounding fibers, it still generally takes the most accessible route first,
as intended. Further, one can see the blood vessels’ impact on tumor growth
when looking at the blood vessel in the top left. Due to crawling and better
healing times, the tumor can break through to the isolated open space. The
same can be observed at the left end of the lower blood vessel, where the
surrounding fibers were destroyed. Therefore, the expectations were met, and
the scenario validates the tumor-fiber interaction.
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Figure 4.4: Tumor eradication with an excess of T cells

Tumor eradication The following scenario tests whether T cells manage
to eradicate a tumor. For the T cells to do this, they have to outnumber
the tumor cells by an unrealistic factor. Here a ratio of two to one is used.
Real-world experiments use much higher ratios, but the simulation has to use
fewer T cells due to the computational restrictions. Nonetheless, the T cells
should completely eradicate the tumor for this scenario to be successful. The
simulation consists of a tumor in the middle surrounded by a blood vessel
square, from which the T cells spawn. This arrangement is essential because
the randomly moving T cells spawning from the border might not quickly find
the tumor and might die before reaching it. Further, this scenario leaves out
fibers and neutrophils.

Figure 4.4 shows the mean number of tumor cells plotted over the simulation
time for 16 different runs together with its standard error. One can see that
the T cells eradicate the tumor over time. However, they have to reach the
tumor first. This aspect of the simulation can be seen in the small plateau at
the beginning of the plot. Once the T cells have reached the tumor, the curve
gets steeper. At some point, only a few tumor cells are left, and it is less likely
that the T cells find them, so the curve flattens a little.
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Figure 4.5: Tumor dedifferentiation with an excess of neutrophils

Tumor dedifferentiation using neutrophils This validation case is similar
to the previous one. The difference is that this time neutrophils are used
instead of T cells, and the goal is not to eradicate the tumor but to force
it into an utterly dedifferentiated state. The same simulation composition is
used with a square of blood vessels from which the neutrophils spawn, and no
fibers are present. The expectation is that all tumor cells dedifferentiate if the
ratio of neutrophils is high enough. Since neutrophils do not lose health like
T cells do when they interact with the tumor, the ratio can be significantly
lower than in the previous scenario. Here, a value of 0.75 is used. The results
are shown in Figure 4.5. The high standard error, in the beginning, is based
on high fluctuations caused by the randomness of whether the neutrophils
interact with the tumor. However, there are so many neutrophils that the
tumor cells cannot differentiate again despite the influence of the surrounding
blood vessels. This property results in the flat line at a ratio of one for the
rest of the simulation. Nonetheless, the general behavior is still as expected,
and therefore, the interaction between neutrophils and tumor cells is adequate
for the simulation.
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Figure 4.6: Result of the binary search algorithm

Determining the required T cell ratio for tumor eradication The last
validation scenario is slightly different from the previous ones. Here, the goal
is to find the parameter for the ratio of T cells and tumor cells at which the
immune system eradicates the tumor with a 50 % probability. This task can be
seen as a simple optimization problem. One evaluation of a ratio parameter
requires several runs of the identical simulation to determine the resulting
chance of tumor eradication by the immune system. The assumption that
more T cells will always have a greater chance of eradicating the tumor is
made to speed up the process. This monotonicity constraint allows the use of
a binary search algorithm. One has to specify an initial lower and upper bound
for the value of interest. The average of the two limits is used as the current
parameter. If the percentage of eradication scenarios is higher than 50 %, the
lower limit will be set to the currently used value, and the new average gets
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computed for the next iteration. The search continues until a fixed number of
iterations is done, or a value of 50 % is reached.

Figure 4.6 shows the T cell ratio over the iterations in blue and the probability
of eradicating the tumor in orange. As one can see, a final ratio of 2.355
is computed, which appears to be reasonable for such a scenario. One should
note that here the complete simulation is used and not a custom one like in the
eradication scenario, because of which the two values cannot be compared. The
second noticeable aspect is that the monotonicity assumption is not correct.
An example that violates this can be seen when comparing iterations two and
five. Even though the T cell ratio is higher in iteration two, iteration five has
a higher eradication rate. However, the difference is only marginal, so that the
used method is still appropriate.

Conclusion Overall, it can be stated that the simulation works as it is sup-
posed to. None of the scenarios produced any unexpected or wrong results.
Accordingly, the simulation reflects reality, at least to an abstract extent. The
validation did not review all possible circumstances and edge cases that could
be examined. Further, it did not compare the results quantitatively by taking
actual medical data into account. However, this is not mandatory for this the-
oretical work. It only aims to show whether such an approach is conceivable
in general and does not strive to produce valuable results or gain insights yet.
Nonetheless, such procedures are essential in the future. They can be realized
eventually by finding parameters based on medical visualization data, as this
information can also be used to evaluate predictions.

Apart from the general success of the validation, one crucial feature of the
simulation has emerged, namely the variability. It can be best seen in the
scenarios determining the regular dedifferentiation rate or searching for the
T cell ratio at which the tumor gets eradicated with a 50 % chance. Hav-
ing a high variability implies that two identically initialized simulations can
have completely different outcomes. This phenomenon occurs due to several
stochastical decisions within the calculation of the simulation. The random-
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ness is justified as representing hidden factors that are not present within the
current model used in the simulation. Having a high variability has advan-
tages and disadvantages. From a medical point of view, two tumors and their
development are never the same. Having different courses of tumor growth
provides more valuable insights. The disadvantages are more of a practical na-
ture. When trying to evaluate, for example, a therapy, it is not enough to run
a single simulation, as the variability strongly influences therapy efficacy. As a
result, many runs are necessary to get a trustworthy result. The downside to
this is the high computational cost. Nevertheless, it is required to get reliable
results, and therefore this work computes the same simulation multiple times,
as seen later when optimizing the therapy.
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As outlined in section 1.3, the second part of this thesis covers the modeling of
therapy for the implemented simulation, employs an evolutionary algorithm to
determine optimal therapy parameters, and evaluates the results. In the same
way, as the simulation tries to model the real world, the therapies are also based
on real-world medications. However, they are fully simplified and adjusted to
fit the simulation. The general goal is to investigate whether it is possible to
optimize therapy through agent-based simulations and, if yes, to what extent
it is valuable in a medical sense. In case of success, one of the aspects to be
studied is how similar the resulting optimal therapy plans are to those already
used on humans. The second aspect, against the background of evolutionary
game theory, deals with the effect of the therapies on the differentiation of the
individual tumor cells. Further, it gets examined which insights can be gained
from this simple simulation to understand the opportunities that arise from
this approach.

This chapter starts by explaining which models and procedures are employed
in the optimization process. First, the implementation of the in section 2.3
introduced therapies is presented. The second part of this chapter deals with
the evolutionary algorithm’s functionality, implementation, and configuration.
This explanation includes the variation operators, the fitness evaluation, and
the performance metrics. The next chapter will show the actual experimen-
tal settings and also evaluates the results, as this one purely focuses on the
methodology.
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Figure 5.1: Example therapy and the resulting concentrations

5.1 Therapy

The overall medical treatment consists of two individual therapies that tar-
get different cells within the organism. A signal transduction therapy, also
called tumor therapy or targeted cancer therapy, targets tumor cells, while
immunotherapy enhances the T cell attacks. These are two different medica-
tions and, therefore, can be given independently of each other. Both of these
therapies share the same underlying behavior. The active ingredient concen-
tration in the simulation is always between zero and one. The concentration
rises by 33 percentage points with each administration of the corresponding
drug. This value is chosen so that the concentration is not always at 100 %
but can quickly reach this level. The breakdown of the drug is regulated by an
exponential function with a user-configurable half-life. Figure 5.1 shows the
concentration of an example therapy plan. At ten seconds, the immunotherapy
was given twice, resulting in a concentration of 66 %. By giving a third dose
after a few seconds, the concentration increases once again.
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Algorithm 5 Apply immunotherapy
1: procedure apply_immunotherapy(concentration, p1, p2)
2: min1 ← HEALTH_DECREASE_MIN

3: max1 ← HEALTH_DECREASE_MAX

4: factor1 ← min1 + (max1 −min1) · p1 · concentration
5:

6: min2 ← DETECTION_RANGE_MIN

7: max2 ← DETECTION_RANGE_MAX

8: factor2 ← min2 + (max2 −min2) · p2 · concentration
9:

10: for tcell in cells do

11: tcell.set_health_decrease(HEALTH_DECREASE · factor1)
12: tcell.set_detection_range(DETECTION_RANGE · factor2)
13: end for

14: end procedure

5.1.1 Immunotherapy

Immunotherapy enhances the properties of the T cells. Within the simulation,
the therapy focuses on the attack component and changes two parameters.
First, the T cell loses less life when attacking a tumor cell, and second, it
can recognize the tumor cell from a greater distance. This implementation
is not necessarily compliant with how the actual medication works within the
organism. However, it is a way to implement the behavior here, considering the
simulation and its mechanics. Since it is unknown to what extent the therapy
should alter the parameters, these values are also to be determined using the
evolutionary algorithm. This idea is implemented by specifying a minimal and
maximal scaling factor of the original value. Then the algorithm can use values
between zero and one to reach any conceivable parameter. Algorithm 5 shows
how the computation works. Words in all upper case refer to user-configurable
values. p1 and p2 refer to the values produced by the evolutionary algorithm
and are part of the therapy plan.
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Algorithm 6 Apply tumor therapy
1: procedure apply_tumor_therapy(concentration, p3)
2: min1 ←MAX_HEALTH_DECREASE_MIN

3: max1 ←MAX_HEALTH_DECREASE_MAX

4: health_decrease← min1 + (max1 −min1) · p3 · concentration
5: max_health← 1.0− health_decrease
6:

7: for tumor_cell in cells do
8: if tumor_cell.get_health() > max_health then

9: tumor_cell.set_health(max_health)
10: end if

11: tumor_cell.set_max_health(max_health)
12: end for

13: end procedure

5.1.2 Targeted cancer therapy

As the name suggests, the targeted cancer therapy specifically weakens the
tumor, as described in section 2.3. Within the simulation, this is implemented
by decreasing the maximal health a tumor cell can have. Accordingly, the
individual cells are more susceptible to attacks by T cells and have a shorter
average lifetime. Furthermore, they cannot spread as quickly because breaking
through the fibers exhausts them faster. As introduced in subsection 3.2.3,
the tumor cell can regain health that is lost due to attacks from T cells or by
attacking fibers. However, the health can only be regained up to the therapy
influenced maximal health value. Further, tumor cells that initially have more
health than the upper limit lose the corresponding difference when the drug is
administered.

Like immunotherapy, the user can specify a minimal and maximal decrease
of the maximal health for a tumor cell. Using the therapy parameter and
the current concentration, one can calculate the resulting maximal health.
Algorithm 6 shows this computation.
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Figure 5.2: Non-dominated sorting for a minimization task

5.2 Evolutionary algorithm: NSGA-II

This work uses standard parameters and a straightforward approach, as no
preliminary knowledge is available. Therefore, these values and methods are
educated guesses based on other works from different domains. Modifications
to the modeling, algorithm, or parameters can be examined in the future based
on the findings of this work. Currently, the runtime of the simulation heavily
limits the number of possible experiments within the time frame of this work.
Nonetheless, it might be enough to determine if it is possible to optimize
therapies with the implemented simulation.

The general procedure of an evolutionary algorithm was already explained in
section 2.2. This part of the methodology chapter shows the implementation
details for the employed evolutionary algorithm. Selecting individuals for the
mating pool is quite simple, as the entire population is used for mating. As
a result, no selection operator is required. The crossover operator for two
individuals will be explained in subsection 5.2.2 and the mutation operator
in subsection 5.2.3. The newly created and altered individuals need to be
evaluated regarding their fitness. Subsection 5.2.4 explains the fitness functions
and how they are computed.
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Figure 5.3: Crowding distance

After these steps, the parental individuals must be merged with the newly
created children to create the new generation. Since a fixed population size is
enforced, not all individuals can survive. For this, the non-dominated sorting
genetic algorithm II [4] (NSGA-II) is utilized. It is a widely employed algorithm
for multi-objective optimization based on sorting the population into individual
fronts. Starting with all individuals, the set of non-dominated ones is part of
the first front. If the first front were removed, all individuals that are part
of the Pareto front are within the second front. Following this principle, the
whole population can be sorted into a set of distinct fronts. Figure 5.2 shows
an example, where eight individuals of a minimization task get sorted into
three fronts. These fronts then get selected according to their index as long as
enough space is available in the new population.

Once a front does not fit into the new population, another method is applied to
fill the remaining places. The key aspect for deciding which individuals should
survive is diversity, meaning that individuals with far neighbors are preferred
because they explore the search space better. One way of measuring diversity
is the so-called crowding distance (CD). Figure 5.3 shows the calculation of
these values for an example set of solutions. A larger crowding distance is
preferable to a smaller one. Therefore, the extreme points receive an infinite
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Figure 5.4: NSGA-II selection [4]

crowding distance since they should be kept at all times. For all other points,
the crowding distance is computed as the sum of normalized distances to the
two neighbors over each dimension of the objective space. After the individu-
als got their crowding distance assigned, the ones with the highest values get
selected into the new population until it has reached its final size. Figure 5.4
visualizes the whole procedure of selecting the new population. Starting with
the previous population Pt, a set of offsprings Qt gets created using crossover
and mutation operators. The combined set is called Rt. It gets sorted into
separated fronts using the previously explained non-dominated sorting algo-
rithm. Front1 completely fits into the new population and therefore can be
selected directly. Front2 does not fit completely. As a result, the best individ-
uals according to the crowding distance get selected to fill up the remaining
places in the new population Pt+1.

53



5 Methodology

Therapy strength values: p1 p2 p3

Immunotherapy timings: t1,1 t1,2 t1,n1
. . .

Tumor therapy timings: t2,1 t2,2 t2,n2
. . .

Figure 5.5: Individual modeling

5.2.1 Encoding the therapy

One of the previous sections, section 5.1, explained how the therapies are mod-
eled within the simulation and which parameter they use. These values need
to be embedded within a single individual that can be used in the evolutionary
algorithm. It must contain the three parameters for the strength of the two
therapies and two lists of drug administration times. There are multiple ways
to model an individual that contains this information. Figure 5.5 shows the
version that is used in this work. If the evaluation shows that the modeling is
unsuitable for this task, future work can improve it.

The individual itself consists of three lists. The first list contains the three
parameters, p1, p2, and p3, denoting the strength of the therapies. The second
list holds time stamps at which the immunotherapy should be administered.
Each entry corresponds to one dose. Since different therapy plans should
administer the drugs with different frequencies, the list cannot have a fixed
length but must be variable in size. Ideally, the entries in this list should
be real values between zero and one. It makes it easy to keep the therapies
feasible, and one can use standardized variation operators to alter them. That
can be achieved by fixing the length of the simulation to a known constant. As a
result, zero corresponds to the start of the simulation and one to the end of the
simulation. The third list, denoting the administration times for the targeted
cancer therapy, works the same way as the second list for immunotherapy.
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Figure 5.6: One point crossover of different length individuals

5.2.2 Crossover operator

The crossover operator, as introduced in subsection 2.2.1 is responsible for gen-
erating offspring given two parental individuals. A simple one-point crossover
is used as the actual operator. It chooses a crossover point randomly, at which
the genes will be split into two sublists. These then get switched so that each
new child contains genes from both parents. Figure 5.6 visualizes this behavior
using two dummy individuals consisting of two and three real numbers, respec-
tively. One can see that this method also works with lists of different lengths,
as long as both lists contain at least two values. Therefore, it can also be
applied for the two lists denoting the time values for the therapies with some
minor exceptions when having zero or one administration time. Given two
individuals for which the crossover should be computed, the crossover between
the strength values gets computed first. Afterward, either the crossover for the
matching therapy times gets computed, or the therapies get switched. If they
get switched, the crossover operator uses the immunotherapy timings from
parent one and the tumor therapy timings from parent two and the other way
round. In conclusion, this custom operator based on the one-point crossover
can create two new therapy plans given two parental individuals. Whether it
is a sufficient operator or needs to be replaced will be seen when evaluation
the optimization results.
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Original genotype: 0.1 0.8 0.2 0.4

Gaussian mutation of third gene: 0.1 0.8 0.1 0.4
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Adding a new gene: 0.1 0.8 0.2 0.4 0.7

Figure 5.7: Mutation operator

5.2.3 Mutation operator

Since the individual only consists of real values between zero and one, those
can be mutated using a simple gaussian mutation operator. If an individual
gets selected for mutation, each value has the chance to be mutated. Here a
probability of 20 % is used. The mutation operator adds randomly drawn val-
ues from a gaussian distribution with a mean of zero and a standard deviation
of 0.2.

In addition to the Gaussian mutation, two new operators are introduced.
They are specific to the two lists of administration times and manipulate their
lengths. The insertion mutation adds a randomly initialized value. It is not
essential at which position this new element gets added since the lists are un-
ordered. Each entry denotes the absolute time and no relative time steps.
Therefore, the new value gets appended to the end. The deletion mutation
removes one value from the list. Since it does make a difference which value
gets removed, it is chosen randomly. These two operators help to explore the
search space by creating lists of different lengths. Figure 5.7 shows an example
for each of the three mutation operators. Blue denotes original genes, while
orange shows mutations.
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5.2.4 Fitness evaluation

The evolutionary algorithm uses two conflicting objectives to determine the
value of an individual. The first objective measures how well the therapy
works. Since more drug administrations probably inhibit tumor growth, the
second objective must favor therapy plans with fewer drug administrations to
be conflicting. This approach is also valid in the real world, where side effects
play an essential role. If a patient has more severe side effects due to the
medication than the illness itself, it might not be the best therapy plan.

While there are many ways to measure the effectiveness of the therapy, the
simplest one is employed. The first objective is equal to the number of tumor
cells at the end of the fixed-length simulation. It is easy to compute but
does not provide any information about the state of the tumor regarding its
differentiation rate, for example. A more complex fitness function and the
effects should be examined in future projects. The focus in this work lies on
whether it is possible in general. Therefore, the following function is used:

f1 = ‖tumorcells‖ (5.6)

The second objective does not measure the side effects but the fictional cost
of the therapy. Since the simulation only represents a small excerpt of the
entire organism, it is impossible to make statements about the overall effect.
Therefore, the simplifying assumption is made that the side effects increase
proportionally with the drugs administered. Additionally, costs also play a
significant role in real-world therapy plans so that the here employed approach
is reasonable. It makes use of the following function:

costimmunotherapy =
p1 + p2

2
∗ n1 (5.7)

costtumor therapy = p3 ∗ n2 (5.8)

f2 = costimmunotherapy + costtumor therapy (5.9)

Both of the objectives need to be minimized.
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Figure 5.8: Hypervolume

5.2.5 Performance metrics

When evaluating a Pareto front, there are two main criteria, diversity and
convergence. Convergence measures how close the points from the computed
front are to the actual Pareto front that is the set of globally optimal solu-
tions. Since the problem and its fitness landscape are unknown, using such
an evaluation metric is impossible. However, one can compare two subsequent
generations during the execution of the evolutionary algorithm to see whether
it still improves. The second criteria, diversity, got explained in section 5.2
when talking about the crowding distance. The selection process already con-
siders this measure when choosing the next population. Nonetheless, it should
still be used when comparing subsequent populations. A single performance
measure that reflects both convergence and diversity is the so-called hypervol-
ume. Figure 5.8 illustrates an example. The hypervolume considers the volume
spanned by the individuals in the objective space utilizing a reference point.
Here f1 and f2 should be minimized, and the reference point must be worse
than the worst values in every objective. In this case, the theoretical worst val-
ues can be computed for both objectives. The number of tumors cells reaches
its maximum when no therapy is applied. Therapy with the maximal number
of administrations and strength values of all ones is the most expensive one.
The hypervolume is used to determine when the evolutionary algorithm has
converged. Once the hypervolume does not increase further, the optimization
algorithm has not found any better therapies, and the search can be stopped.
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6.1 Experiments

When deciding which scenarios should be used in the evaluation process, there
are two different possible strategies. On the one hand, one can employ a com-
puter science approach and use the benchmarks to evaluate the optimization
algorithm and how well it solves the problem. On the other hand, one can
select the simulation scenarios so that it is possible to gain knowledge about
the internal processes and dependencies of the simulation. The latter approach
represents the medical point of view. However, there is one obstacle that limits
the possibilities in both approaches, namely the runtime. Due to the stochastic
nature of a single simulation, multiple runs are required to get a reasonable
estimate for the effect of the chosen therapy. Since the evolutionary algorithm
also features random operators, it has to be computed multiple times with
different random states. With the already high runtime of a single simulation,
it is impossible to conduct more than one experiment within the timeframe of
this work. Therefore, the one experiment conducted optimizes the therapies
for the standard simulation, as it is the most elementary version. For the op-
timization itself, the algorithm introduced in the previous chapter 5 is applied
with a population size of 52 and 50 generations as the termination criterion. A
single therapy gets evaluated by computing the same simulation 16 times with
different random states to form an average. The whole optimization process is
also run five times to cancel out the randomness within the EA. Additionally,
a longer test run evaluates more than 100 generations and helps to estimate
how many generations are required to find a good solution.
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Nonetheless, other aspects worth looking at, mainly from the medical view-
point, should also be examined. To be able to do this, the optimized therapies
from the standard simulation are used to analyze which effect they have on
the scenarios explained in the following:

Test variance The first scenario examines to what extent the variability got
removed by computing multiple runs of the same simulation. These measure-
ments help to assess the significance of the results. It is essential when deciding
whether slight outliers indicate unique solutions or are based on the variation
within the simulation. For this, eight equally spaced solutions from the Pareto
front are selected. Each of those solutions gets evaluated in the same way as
in the optimization by computing multiple runs. However, this gets repeated
50 times. The variations in the different evaluations can then be examined.

Examine isolated therapies The final solutions are broken down into the
two partial therapies to examine their isolated effects. In other words, all
solutions from the Pareto front are re-evaluated twice, but this time, only one
therapy is active at once. It is not the same as optimizing a single therapy,
which is not possible due to this work’s computational and time limitations.
Nonetheless, it might show whether the two therapies amplify each other and
a combinational medication is favorable, or a single therapy is sufficient.

Excluding Neutrophils Further, one aspect to examine is the effect neu-
trophils have within the simulation and the indirect correlation regarding the
therapies. This scenario also allows checking whether they help the tumor as
it was intended. Since they do not get directly affected by any of the two
used therapies, they can just be removed entirely from the simulation. The
evaluation then analysis the influence of the optimal therapy for the standard
simulation on the adapted simulation that does not feature neutrophils.
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6.2 Results

6.2.1 General optimization results

The first step is to get a basic overview of the general results of the optimiza-
tion. The goal is to see whether the approach taken was successful. A suitable
starting point is to look at the change in the hypervolume over time, as seen
in Figure 6.1. It depicts the hypervolume for the five runs and the maximal
hypervolume reached by the long run. One can see that all optimizations show
similar behavior and seem to converge slowly at the end. However, the gap in
the hypervolume to the long run indicates that the five smaller runs are not
yet optimal, as a better set of solutions is already known. Figure 6.2 shows the
last generation of the overall six runs. One can see that the solutions from the
long run are not always part of the Pareto front but in most cases. However,
apart from a few solutions that significantly improve the hypervolume, most
other therapies are comparatively close to the Pareto fronts of the shorter five
runs. As a result, it makes sense to run the optimization as long as possible to
find the best therapies. Nonetheless, the five runs are sufficient for the exper-
iment, as the changes are insignificant and do not outweigh the disadvantages
of the otherwise long runtime.
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Figure 6.4: Hexbin plot with color
coded generations

In the following section, the focus lies on all therapies from all generations.
A problem that arises when trying to visualize all of them in the objective
space is overplotting. It is often the case that the same therapies live for many
generations within the evolutionary algorithm when no better solutions are
found. Because they are the same therapy and do not get re-evaluated due
to performance reasons, they need to be plotted at the exact location. As a
solution, a two-dimensional hexagonal binning plot, also called hexbin plot,
is used. Figure 6.3 is such a plot. The color corresponds to the number of
solutions within a particular bin. One can see that some areas have nearly 300
solutions per bin while others have only a few. The density distribution also
shows that the lower-left border was found quickly and only progressed slowly,
which corresponds to the plot of the hypervolume discussed above. The same
behavior can be seen in Figure 6.4. Here, the color of each bin corresponds
to the average generation. After the first ten generations, the therapies are
relatively close to the final front. While no final assessment can be made
about the variation operators without knowing the true Pareto front, they
did their job increasing the hypervolume. The valuable regions were found
quickly, even though new solutions beyond that point took some time to be
found. Nonetheless, it makes sense to try out other variation operators and
therapy models in future projects to compare different approaches.
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6.2.2 Analyze optimal therapies

After verifying the general optimization results in the previous section, this
one examines the resulting therapies in more detail. The analysis starts with
the last generations of the five shorter runs, as they are more homogeneous
and introduce fewer outliers than when appending the long run. Furthermore,
missing out on a single good solution is not critical for understanding the whole
picture. Figure 6.5 shows the resulting dataset with the PO front being marked
in orange. When looking at the shape of the dataset, it can be separated into
three distinct regions. Figure 6.6 shows such a grouping. It got computed using
the k-means algorithm with three clusters. A linear regression line, shown in
black, is fitted to each of the individual clusters. One can see that the three
lines represent the dataset quite well. The therapies from the orange cluster
improve comparably fast without increasing the cost significantly. Nonetheless,
their overall effectiveness leaves much to be desired. Therapies in the blue
cluster offer a trade-off between efficacy and cost. As seen from the green
cluster, a very high price increase must be accepted if the therapy should have
an even stronger effect. Further, it seems like finding therapies in that range
is more challenging since the density of that cluster is lower in comparison to
the other ones.
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In the next step, a series of hexbin plots are used, which color-code different
aspects using all individuals from all generations and runs. Figure 6.7 shows
six of those plots. The color-coded aspect stands next to the color bar. In
each plot, the final color gets computed by averaging over all values within
an individual bin. The first two plots show the cost of the two therapies, im-
munotherapy 6.7(i) and tumor therapy 6.7(ii). When looking at the regions
close to the Pareto front, it is visible that immunotherapy is the dominating
therapy in this simulation. The tumor therapy only gets used in the expensive
therapies above a cost of 75. Nevertheless, this finding cannot be applied to
reality since only guessed and tuned parameters have been used in the simula-
tion. Other values probably provide other results. As a reminder, the current
aim is to see if it is possible to gain insights into therapies from simulations,
which is the case here.

Since the tumor therapy is somewhat irrelevant, the two parameters of the im-
munotherapy are examined in the following. The plot for the stronger param-
eter of the immunotherapy can be seen in Figure 6.7(iii). It can be seen that
this value is crucial in the simulation used, as it is maximal everywhere within
the Pareto front. When examining the other parameter of the immunotherapy,
the detection range in Figure 6.7(iv), one can see a repetitive pattern on the
left side of the plot. The detection range parameter leads to local discrimi-
nation between therapies. An increased parameter leads to higher costs but
also a slight increase in efficacy. Figure 6.8 and Figure 6.9 are two further
visualizations that reflect the observed characteristics. The first plot shows
the parameter values over the number of tumor cells for the last generation
of the second run. The tumor therapy parameter is mostly near zero, while
the stronger T cells parameter is most of the time one. The detection range
parameter varies, as described above. On the other hand, the right plot shows
the development of these parameters over the optimization process. The lines
represent the averages of all individuals from that generation together with
the standard error denoted by the vertical tick marks.
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Figure 6.7: Hexbin plots with different color-coded aspects of all individuals
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the generation, run 1

For the next aspect to be examined, one needs to recall the concentration
function of therapy, like it was shown in Figure 5.1. The coverage area of a
therapy plan is defined as the area under the concentration curve or, mathe-
matically speaking, the integral of the function. The median can be defined
as the normalized point at which 50 % of this coverage area is reached. It is
a measure of the skewness of the drug administration’s distribution. In other
words, the median describes whether the drugs are given more frequently in
the beginning, symmetrically, or at the end of the simulation. Figure 6.7(v)
shows the overall number of administrations of the immunotherapy and Figure
6.7(vi) the previously introduced median. One can observe that the median
has also increased during the optimization. Therapies from the Pareto front
feature a relatively high median compared to worse therapies. This observa-
tion implies that giving the medications later within the tumor progression is
beneficial compared to an early administration. This behavior is especially the
case with only a few givings, as seen in the bottom right part of the hexbin
plots, resulting in drug administrations at the end of the simulation. It will be
further discussed in the following using a different visualization technique.
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Figure 6.10: Equally spaced therapies of the PO front, transparency corre-
sponds to parameter related cost factor
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In the last step, six equally spaced therapies from the PO front are visualized
in Figure 6.10. Each subplot shows the two concentration curves with the line
alpha denoting the average parameter value of the corresponding therapy. The
upper bar charts additionally show the actual values of the parameters between
zero and one. Comparing these therapy plans to existing ones is challenging,
as the frequency and timings are so different. However, it seems realistic since
a certain concentration level is being held by iteratively giving the drug, as
employed in practice. One thing, however, that seems to be unusual is the
skewness. It was already introduced using the median measure and is even
more apparent here. One would assume that starting with the therapy as
early as possible would result in a high efficacy. For this simulation, however,
it is not the case. Figure 6.11 shows a comparison between the original Pareto
front and the time-wise mirrored therapies. Starting early with the therapy and
administrating no drugs towards the end of the simulation leads to significantly
worse results. One of the reasons is probably the unrealistic starting phase of
the tumor, as addressed in the modeling section. Analyzing the exact reasons
should be part of future research. Nonetheless, tests like these show that it
is possible to utilize a simulation to answer all kinds of questions under the
assumption of a functioning medical model.
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Figure 6.12: Ratio of dedifferentiated tumor cells to differentiated ones

6.2.3 Examine differentiation behavior

The differentiation behavior is, in general, as expected. Figure 6.12 shows
a hexbin plot of the solution space with the ratio of dedifferentiated tumor
cells divided by differentiated ones being color-coded. One can observe that
therapies from the Pareto front tend to have a higher ratio of dedifferentiated
tumor cells with increasing efficacy. However, another aspect worth mentioning
can be observed when comparing therapies with the same efficacy but different
costs. For example, therapies that end up with 200 surviving tumor cells
can have different dedifferentiation ratios ranging from 0.2 to 0.45. These
observations may indicate that it is possible to optimize and find therapies
that do not promote dedifferentiation as much. In case of success, this might
allow steering the tumor progression actively. One way of achieving this is
by adding the dedifferentiation ratio as a third objective when optimizing the
therapies. Other emerging behaviors could not be found in the data due to the
lack of complexity in the model. In the future, a more sophisticated version of
differentiation, for example, using genes, may allow for more exciting results.
However, the general approach and analysis of the data works as intended and
can be reused in future works.
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Figure 6.13: Box plot of variance when evaluating individuals 50 times

6.2.4 Benchmark results

Test variance The goal of this benchmark was to determine the remaining
variation in the evaluation of therapy, even after computing the simulation 16
times for one individual evaluation. Figure 6.13 shows the results in a boxplot
for the eight sampled therapies. They are ordered by their median value for
the first objective function while centered on the y-axis. It can be seen that
50 % of all evaluations lie in an interval with plus/minus five tumor cells.
The remaining 50 % lie in a range between minus 15 and 15. Additionally, it
appears as the variance increases with the median of the corresponding therapy.
However, this effect seems relatively small, and there is insufficient test data
to make a qualified statement. In conclusion, the variation is slight enough
and can be neglected when looking at overall relations and trends. Therefore,
the previous evaluations of the results stand and do not need to be questioned.
In order to compare two close therapies, however, it makes sense to perform a
series of runs and compare the statistical values to get a qualified final result.
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Figure 6.14: Therapy outcome comparison with isolated therapies

Examine isolated therapies An interesting aspect is the interaction of the
two individual therapies. For this purpose, the optimized solutions of the
Pareto front were split up and evaluated individually. The results are shown
in Figure 6.14. Most parts of the Pareto front are somewhat irrelevant re-
garding this aspect, as only immunotherapy is used. However, if having 100
or fewer tumor cells at the end of the simulation is the goal, tumor therapy
comes into play. Without it, the immunotherapy caps at roughly 75 tumor
cells. Tumor therapy helps to reduce the number of surviving tumor cells
further but requires a significant increase in the costs. Therefore, the two
therapies also work together. Nonetheless, the influence of tumor therapy is
significantly lower than the influence of immunotherapy. Further, it only seems
to be useful when the immunotherapy is already maxed out. One should note
that these results cannot be transferred to the actual medicine, as they heavily
depend on the simulation parameters, including the modeling of the therapies.
Additionally, the single therapies should be optimized separately to investigate
the differences in those therapies further.
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Figure 6.15: Therapy outcome with and without neutrophils

Excluding neutrophils The last benchmark scenario tries to understand bet-
ter the role of neutrophils in this simulation, especially the influence on the
therapy. Initially, the core idea of neutrophils was to help the tumor cells elude
the immune system. Therefore, the hypothesis stands that therapies work bet-
ter in a scenario without neutrophils. Figure 6.15 shows the original Pareto
front and the same therapies re-evaluated with a simulation that did not fea-
ture neutrophils. At first glance, there is no significant difference, especially
considering the observed variation in the evaluation. A subtle difference, how-
ever, is noticeable. The therapies seem to perform worse when no neutrophils
are present, which contradicts the hypothesis. Another visualization is used to
get a better understanding of the differences. Figure 6.16 plots the resulting
difference in the first objective function over f1 and f2, respectively. A positive
value means that more tumor cells survived to the end of the simulation where
no neutrophils were present. The red line shows a locally weighted linear re-
gression. As one can see, this regression line is always above zero and therefore
indicates that neutrophils do not help the tumor in the used simulation. The
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Figure 6.16: Efficiency difference when excluding neutrophils

difference is comparatively high when no therapy is used, probably because
more neutrophils are present in those cases, and therefore their overall impact
is more significant. This discrepancy between the hypothesis and actual re-
sults implies an error in the simulation configuration that needs to be fixed in
a further version. However, these results do not allow any conclusions about
the actual processes in the simulation. For this, more data needs to be logged
during the simulations that describe individual interactions. As a result, such
evaluations are not part of this work but are required in the future to get a
deeper understanding of the interrelations of different cell types. Nevertheless,
the evaluation showed this general approach’s promising possibilities, which
can be deepened in further works.

73





7 Conclusion and future

The conclusion is also divided into the two central questions of this work. The
first section summarizes the findings of the general simulation. Along with
the positive and negative aspects, future relevant issues and tasks are listed.
The subsequent section is about the employed optimization and its results.
Additionally, the methodology will be evaluated regarding its usefulness and
what aspects can or should be improved in the future. The last section of this
work summarizes the most important aspects and gives a final outlook on the
subject’s future.

7.1 Simulation

The implemented simulation did work and provided meaningful data to some
extent despite its reduced complexity. The evaluation only revealed some mi-
nor problems with the medical model, such as the incorrect effect of neu-
trophils. However, the manual parameter tuning approach makes it impossi-
ble to transfer the results to the real world anyway. An automatic parameter
search algorithm or some optimization method is required that uses actual
medical imaging data. With this information, the parameters can be tuned to
mimic the behavior of human cells correctly. Additionally, they allow compar-
ing predictions generated by the simulation with the actual tumor states.

Another drawback of the current implementation of the simulation is the com-
putational cost. It limits the number of cells within an environment signifi-
cantly and thus restricts the possible scenarios to small-scale ones. Further,
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algorithms using the simulation to determine a fitness value for an individ-
ual have to reduce the number of calls to terminate within a reasonable time
frame. One can mitigate this drawback to at least some degree by optimizing
the implementation. This performance issue should be tackled first, especially
since the complexity of the used model increases in the future.

The third and last aspect that emerged when testing the simulation is the
variability. Stochastical decisions are used within the simulation to model
hidden and, therefore, not implemented factors. On the one hand, this creates
different scenarios as they occur in real life, and on the other hand, it makes
the optimization of therapies more difficult due to the non-constant results.
In future works, it probably is best to limit the amount of randomness and
instead add factors that influence the outcome of the simulations. These factors
can then also be examined regarding their specific effect on the simulation
result. Overall, however, this attempt to simulate skin cancer can be considered
successful.

7.2 Optimization

The employed evolutionary algorithm also produced plausible results. How-
ever, its performance regarding convergence speed and optimality could not be
evaluated due to missing comparisons. These should be created in the future
using different and more sophisticated approaches. Nonetheless, the evalua-
tion of the general results showed a clear improvement during the optimization
process, and multiple runs confirmed the general trend and Pareto front. Fur-
ther, the evaluation also showed that it is possible to work with the results
and perform tests that bring additional insights into the optimized therapies
and their mechanics.

As expected, the variability explained in the last section was also a primary
aspect during the optimization. Tests showed that the results of the same
therapy could vary to some extend. However, these fluctuations are small
enough to be neglected when examining the whole picture and only need to
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be considered when comparing similar solutions. Such comparisons, together
with an in-depth analysis of the simulation mechanics, were not carried out, as
they are not of interest when trying to show whether the general approach is
applicable or not. In future works with a more complex medical model, these
in-depth analyses are required to understand the interrelations and explain
some general results. Additionally, more data needs to be logged to conduct
these analyses, for example, interaction data, which was not covered by this
work.

Regarding the particular topic of evolutionary game theory and tumor dedif-
ferentiation, the simulation did not work as expected yet. Wrong parameters
and the reduced complexity most likely caused those problems. A strong in-
dicator for this assumption is the decreased effectiveness of the therapy when
removing neutrophils and thus reducing the dedifferentiation rate. Nonethe-
less, the trend that therapy caused an increase in dedifferentiated tumor cells
was found. It is also interesting to note that therapies with the same efficacy
can produce different rates of dedifferentiation. This finding suggests that
therapies can also be optimized in this respect, which may ultimately lead to
the steering of tumor progression. Overall, therefore, no fundamental problems
arose that would invalidate the general approach.

7.3 Future

Overall, the first feasibility study turned out to be successful. An agent-
based simulation was modeled and implemented. A therapy plan then got
optimized using the simulation and an evolutionary algorithm. However, many
questions and possible improvements came up that need to be covered in future
works. Therefore it is currently far from being medically relevant, but it showed
potential. Exploring such systems is necessary, as in-silico assistance will likely
play an increasingly important role in medicine.

Regarding the next steps of this project, the simulation framework needs to be
optimized first to allow more runs and thus experiments with more extensive
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scenarios. In the second step, reliable methods that determine the parameters
of the simulation need to be found. Ideally, they make use of real-world medical
data to initialize and verify simulations. Subsequently, the medical model
should be expanded step by step to represent a more realistic scenario. This
expansion is also the case for the optimization criteria. For example, a better
estimation of the side effects is crucial for human trials. Finally, comprehensive
tests can be carried out using this advanced simulation to elaborate on the
idea of individually tailored therapies that can anticipate and control tumor
development.
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