Robby Henkelmann

A Deep Learning based Approach for Automotive Spare Part Demand Forecasting



Intelligent Cooperative Systems

Master's Thesis

### A Deep Learning based Approach for Automotive Spare Part Demand Forecasting

- Author: Robby Henkelmann
- Professor: Prof. Dr.-Ing. habil. Sanaz Mostaghim
- Examiner: Dr. Peter Korevaar
- Advisor: Dr. Christoph Steup
- Advisor: Heiner Zille
- Summer term 2018

Robby Henkelmann: A Deep Learning based Approach for Automotive Spare Part Demand Forecasting Otto-von-Guericke-Universität Magdeburg, 2018.

## Contents

| List of Figures |       |         | S                                                      |     |
|-----------------|-------|---------|--------------------------------------------------------|-----|
| Lis             | st of | Tables  |                                                        | V   |
| Lis             | st of | Acrony  | vms                                                    | VII |
| 1.              | Intr  | oductio | on                                                     | 1   |
|                 | 1.1.  | Motiva  | ation and Targets                                      | 3   |
|                 | 1.2.  | Struct  | ure of Thesis                                          | 4   |
| 2.              | Fun   | damen   | tals of Automotive Spare Part Demand Management        | 7   |
|                 | 2.1.  | Spare   | Part Life Cycle Model                                  | 10  |
|                 | 2.2.  | Classif | ication of Spare Parts                                 | 13  |
|                 | 2.3.  | Influer | nce Factors for Spare Part Demand                      | 15  |
| 3.              | Fun   | damen   | tals of Time Series and Spare Part Demand Forecasting  | 17  |
|                 | 3.1.  | Defini  | tions                                                  | 17  |
|                 | 3.2.  | Genera  | al Spare Part Demand and Time Series Prediction Models | 20  |
|                 |       | 3.2.1.  | Statistical Models                                     | 21  |
|                 |       | 3.2.2.  | Machine Learning Approaches                            | 22  |
|                 | 3.3.  | Artific | ial Neural Networks for Time Series Forecasting        | 26  |
|                 |       | 3.3.1.  | Fundamentals of Artificial Neural Networks             | 26  |
|                 |       | 3.3.2.  | Artificial Neural Network Literature Review            | 32  |
|                 |       | 3.3.3.  | Fundamentals of Recurrent Neural Networks              | 34  |
|                 |       | 3.3.4.  | Recurrent Neural Network Literature Review             | 37  |
|                 |       | 3.3.5.  | Deep Learning for Time Series Forecasting              | 39  |
| 4.              | Dat   | a Basis | and Current Model                                      | 41  |
|                 | 4.1.  | Spare   | Part Demand Data                                       | 41  |

|     | 4.2.   | Current Model                                         | 44  |
|-----|--------|-------------------------------------------------------|-----|
|     |        | 4.2.1. STPM-VPD Model                                 | 44  |
|     |        | 4.2.2. STPM Model                                     | 46  |
|     | 4.3.   | Enhancements of Current Model                         | 46  |
|     |        | 4.3.1. Enhancements of STPM-VPD Model                 | 48  |
|     |        | 4.3.2. Enhancements of STPM Model                     | 50  |
| 5.  | Dee    | p Learning based Approach for Spare Part Demand Fore- |     |
|     | cast   | ing                                                   | 53  |
|     | 5.1.   | Deep Learning based Model                             | 53  |
|     | 5.2.   | Experimental Setup                                    | 57  |
|     |        | 5.2.1. Evaluation Functions                           | 57  |
|     |        | 5.2.2. Sample Selection                               | 59  |
|     |        | 5.2.3. Significance Test                              | 60  |
|     | 5.3.   | Hyperparameter Determination                          | 61  |
|     |        | 5.3.1. Network Architecture                           | 62  |
|     |        | 5.3.2. Optimizer and Learning-rate                    | 70  |
|     |        | 5.3.3. Activation Functions                           | 74  |
|     |        | 5.3.4. Sliding Window Size                            | 76  |
|     |        | 5.3.5. Data Augmentation                              | 79  |
|     |        | 5.3.6. Training Epochs                                | 81  |
|     | 5.4.   | Summary                                               | 84  |
| 6.  | Eval   | luation and Comparison of Proposed Models             | 87  |
|     | 6.1.   |                                                       | 87  |
|     | 6.2.   | DL-STPM                                               | 97  |
| 7.  | Con    | clusion and Future Work                               | 107 |
|     | 7.1.   | Critical Summary                                      | 108 |
|     | 7.2.   | Outlook                                               | 109 |
| Bil | oliogi | raphy 1                                               | 113 |
| Ар  | pend   | lix                                                   | 123 |
| Α.  | Sign   | ificance tables                                       | 123 |

## List of Figures

| 1.1.                                                                                           | Spare part demand time series                                                           | 2                                |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|
| 2.1.                                                                                           | Worldwide profit of car manufacturers 2014 [86]                                         | 10                               |
| 2.2.                                                                                           | Spare part demand life cycle model [57]. $\ldots$ $\ldots$ $\ldots$                     | 11                               |
| 2.3.                                                                                           | Spare part classification approaches [66]                                               | 14                               |
| 3.1.                                                                                           | Artificial Neural Network Model [73]                                                    | 27                               |
| 3.2.                                                                                           | Model of a Neuron: Perceptron [73]                                                      | 28                               |
| 3.3.                                                                                           | Activation Functions $f(v)$                                                             | 29                               |
| 3.4.                                                                                           | Model of a Recurrent Neural Network: Elman Network [73]. $\therefore$                   | 35                               |
| 3.5.                                                                                           | Long Short Term Memory unit [68]                                                        | 37                               |
| 3.6.                                                                                           | Deep Artificial Neural Network [92]                                                     | 39                               |
|                                                                                                |                                                                                         |                                  |
| 4.1.                                                                                           | Histogram: Demand period per part                                                       | 43                               |
| 4.1.<br>4.2.                                                                                   | Histogram: Demand period per part                                                       | 43<br>44                         |
|                                                                                                |                                                                                         |                                  |
| 4.2.                                                                                           | Same period of demand on different aggregation levels                                   | 44                               |
| 4.2.<br>4.3.                                                                                   | Same period of demand on different aggregation levels Examples for STPM-VPD predictions | 44<br>45                         |
| <ul><li>4.2.</li><li>4.3.</li><li>4.4.</li></ul>                                               | Same period of demand on different aggregation levels Examples for STPM-VPD predictions | 44<br>45<br>47                   |
| <ol> <li>4.2.</li> <li>4.3.</li> <li>4.4.</li> <li>4.5.</li> </ol>                             | Same period of demand on different aggregation levels Examples for STPM-VPD predictions | 44<br>45<br>47<br>49             |
| <ol> <li>4.2.</li> <li>4.3.</li> <li>4.4.</li> <li>4.5.</li> <li>4.6.</li> </ol>               | Same period of demand on different aggregation levels Examples for STPM-VPD predictions | 44<br>45<br>47<br>49<br>51<br>56 |
| <ol> <li>4.2.</li> <li>4.3.</li> <li>4.4.</li> <li>4.5.</li> <li>4.6.</li> <li>5.1.</li> </ol> | Same period of demand on different aggregation levels                                   | 44<br>45<br>47<br>49<br>51<br>56 |

| 6.2. | Example parts showing STPM-VDP and DL-STPM-VDP fore-           |
|------|----------------------------------------------------------------|
|      | cast                                                           |
| 6.3. | Example parts showing STPM-VDP-enh and DL-STPM-VDP             |
|      | forecast                                                       |
| 6.4. | Comparison against DL-STPM according to tournament ranking. 98 |
| 6.5. | Example parts showing STPM and DL-STPM forecast 100            |
| 6.6. | Example parts showing STPM-enh and DL-STPM forecast 103        |

## List of Tables

| 4.1.  | Criteria for data selection.                                          | 42  |
|-------|-----------------------------------------------------------------------|-----|
| 5.1.  | Initial hyperparameter configuration.                                 | 62  |
| 5.2.  | Possible network widths per layer for each depth                      | 64  |
| 5.3.  | Ranking of 50 best architectures for DL-STPM-VPD                      | 65  |
| 5.4.  | Ranking of 50 best architectures for DL-STPM                          | 66  |
| 5.5.  | Significance ranking of 27 best architectures for DL-STPM-VPD.        | 67  |
| 5.6.  | Significance ranking of 24 best architectures for DL-STPM             | 69  |
| 5.7.  | Significance ranking of optimizer $/$ learning-rate for DL-STPM-      |     |
|       | VPD                                                                   | 72  |
| 5.8.  | Significance ranking of optimizer $/$ learning-rate for DL-STPM.      | 73  |
| 5.9.  | Significance ranking of activation functions for DL-STPM-VPD.         | 75  |
| 5.10. | Significance ranking of activation functions for DL-STPM. $\ldots$    | 76  |
| 5.11. | Significance ranking of sliding window sizes for DL-STPM-VPD.         | 77  |
| 5.12. | Significance ranking of sliding window sizes for DL-STPM              | 78  |
| 5.13. | Significance ranking of data augmentation for DL-STPM-VPD             | 80  |
| 5.14. | Significance ranking of data augmentation for DL-STPM                 | 81  |
| 5.15. | Significance ranking of training epochs for DL-STPM-VPD. $\therefore$ | 82  |
| 5.16. | Significance ranking of training epochs for DL-STPM                   | 83  |
| 5.17. | Experimentally derived hyperparameter configuration                   | 85  |
| 6.1.  | Significance ranking versus current model for DL-STPM-VPD             | 88  |
| 6.2.  | Significance ranking versus current model for DL-STPM                 | 97  |
| A.1.  | Significance evaluation of 50 best architectures for $DL-STPM-$       |     |
|       | VPD                                                                   | 124 |
|       |                                                                       |     |

| A.2. | Significance evaluation of 50 best architectures for DL-STPM. $$ . 127 $$                                            |
|------|----------------------------------------------------------------------------------------------------------------------|
| A.3. | Significance evaluation of optimizer / learning-rate for DL-                                                         |
|      | STPM-VPD                                                                                                             |
| A.4. | Significance evaluation of optimizer $/$ learning-rate for DL-STPM.131                                               |
| A.5. | Significance evaluation of Activation functions for DL-STPM-                                                         |
|      | VPD                                                                                                                  |
| A.6. | Significance evaluation of Activation functions for DL-STPM. $$ . 133 $$                                             |
| A.7. | Significance evaluation of sliding window size for $\mathrm{DL}\text{-}\mathrm{STPM}\text{-}\mathrm{VPD}\text{.}134$ |
| A.8. | Significance evaluation of sliding window size for DL-STPM. $$ 135 $$                                                |
| A.9. | Significance evaluation of data augmentation for $\rm DL\text{-}STPM\text{-}VPD.136$                                 |
| A.10 | Significance evaluation of data augmentation for DL-STPM. $$ 137                                                     |
| A.11 | Significance evaluation number of training epochs for DL-                                                            |
|      | STPM-VPD                                                                                                             |
| A.12 | .Significance evaluation number of training epochs for DL-STPM. 139                                                  |
| A.13 | .Significance evaluation current model for DL-STPM-VPD 140                                                           |
| A.14 | .Significance evaluation current model for DL-STPM                                                                   |

## List of Acronyms

- **ADI** Average Demand Interval
- **ANN** Artificial Neural Network
- **AR** Autoregressive
- $\label{eq:armonic} \textbf{ARMA} \quad \text{Autoregressive-Moving-Average}$
- **BPTT** Backpropagtion Through Time
- $\textbf{CC} \quad \text{Correlation Coefficient}$
- **CEC** Constant Error Carousel
- **DE** Differential Evolution
- **EDO** End of Delivery Obligation
- **EOL** End of Life
- **EOP** End of Production
- **EOS** End of Service
- ${{\sf GPM}} \quad {\rm Grey \ Prediction \ Model}$
- $\textbf{LSTM} \quad \text{Long Short Term Memory}$
- **MA** Moving Average
- $\label{eq:mlp} \textbf{MLP} \quad \text{Multi Layer Perceptron}$
- $\textbf{MSE} \quad \mathrm{Mean} \ \mathrm{Squared} \ \mathrm{Error}$

- $\label{eq:operator} \textbf{OEM} \quad \text{Original Equipment Manufacturer}$
- **POC** Proof of Concept
- ${\ensuremath{\mathsf{RBF}}}$  Radial Basis Function
- $\textbf{ReLU} \quad \text{Rectified Linear Unit}$
- ${\color{black}{RNN}}\quad {\rm Recurrent\ Neural\ Network}$
- $\label{eq:RMSE} \textbf{RMSE} \ \ \textbf{Root} \ \ \textbf{Mean} \ \ \textbf{Squared} \ \textbf{Error}$
- ${\small {\bf SBA}} \quad {\rm Syntetos-Boylan} \ {\rm Approximation} \\$
- $\textbf{STPM} \quad \mathrm{Short}\text{-}\mathrm{Term} \ \mathrm{Prediction} \ \mathrm{Model}$
- $\textbf{SES} \hspace{0.1in} \text{Simple Exponential Smoothing}$
- ${\color{black}{\textbf{SOP}}}\quad {\rm Start} \ {\rm of} \ {\rm Production}$
- $\textbf{SGD} \hspace{0.1in} {\rm Stochastic} \hspace{0.1in} {\rm Gradient} \hspace{0.1in} {\rm Descent}$
- ${\ensuremath{\mathsf{SVM}}}$  Support Vector Machine
- ${\sf SVR}$  Support Vector Regression
- ${\bf VPD} \quad {\rm Vehicle \ Production \ Data}$

### 1. Introduction

A modern car is composed of round about 30,000 parts [93]. Components that bust over time, need to be replaced during the maintenance process. Therefore, spare parts are needed at the right place, in the right quality and quantity, for replacement of broken parts to keep the car working. As of Biedermann [7], this is controlled by spare part management. Due to the steadily increasing complexity of the products of the automotive industry over the last decades the spare part management activities also gained intricacy. This enlarged the economic importance of the spare part sector for the automotive companies. The after sales services, including all activities following the sale of the car, are holding a profit share nearly ten times larger than the car sales [86]. The spare part business generates around 50% to 70% of this revenue. According to a study of McKinsey & Company [70], this market will further grow in the next decade. This expanding market will also increase the importance of the spare part management.

The steadily growing revenues and the increasing complexity of the spare part management raise the need of optimization. This works focus is set on the optimization of the spare part demands of a worldwide operating automotive company by using computational intelligence techniques to predict future demands, based on the available historic demand data, minimizing over- or underestimations of the real demand. According to Klug [57], future spare part demands should be predicted as accurate as possible to optimize the spare part management related costs, like production, storage and transport expense, to gain a competitive advantage and raise earnings of the spare part sector.

Since 2014 IBM developed plenty of models for long-term spare part demand prediction with several worldwide operating car manufacturers. In contrast to short-term predictions these models forecast the spare part demand for a much longer time span, than the period of historic demand available for model training. Each of these models uses the historic demand data of a particular class of spare parts, to apply the approache's characteristic strengths, aligned



Figure 1.1.: Spare part demand time series.

for the category of parts. The requirements of long-term predictions and of the different spare part classes arise the need of specialized models. Within this work young and fast-moving spare parts are covered. This class of parts is characterized by only a short historic demand period and by regular and frequent demands [34]. IBM already developed a model for this category of spare parts, the Short-Term Prediction Model (STPM). This existing model is at an expansion stage, that allows further refinement, to increase the prediction quality.

Figure 1.1 shows the demand history of a spare part, whose demand will be predicted within this work. The abscissa represents the time and the ordinate shows the spare part demand. The curve on the left side of the vertical line represents the data that is available for training of the model. The area on the right side shall be predicted. It may be noted that this part is a reference part with a much longer demand history than available for the actual parts of the above-mentioned category. Nevertheless, this part once fell into the young and fast-moving spare part class and can now be used for model evaluation. The plot illustrates some of the challenges of this prediction task. Only a few data are available for model training. Based on this information the pattern of the future demand needs to be predicted. The training data not always represents the future pattern. The demand curve underlies plenty of unknown influence factors. These points could be further extended but they already substantiate that forecasting under these conditions is a tough task, that should be dealt with in this thesis.

#### 1.1. Motivation and Targets

Several works have underlined the economic importance of the spare part business for automotive companies. Klug [57] states that an optimal spare part management is crucial to business success in the automotive industry. Schuh and Stich [82], as well as McKinsey & Company [70], predict a growth of the after sales market, including the spare part business for the next years. Furthermore, Dombrowski and Schulze [29] attest the spare part management a large share of the after sales revenue. All these points underline an economic need of spare part management and its optimization.

Demand predictions are used for many purposes, one example is contract negotiations with suppliers. The more accurate the forecast, the better the starting position for negotiations. Not used spare parts are bounded capital that produces costs by storage and maintenance instead of producing revenues. Therefore, an overestimation must be regarded as negative. Underestimation of demands could lead to bottlenecks in spare part supply. This could in worst case result in unnecessary downtime of the cars, which reduces customer satisfaction and damages the brand overall. According to Klug [57], a good working spare part supply is nowadays an important factor regarding the customers purchase decision. These points summarize the economic need of accurate forecasts of spare part demand for an automotive car manufacturer.

Plenty of works proposed models for spare part demand forecasting. Croston [21] published a model based on Simple Exponential Smoothing for spare part demand forecasting. Syntetos and Boylan [90] enhanced Crostons estimator by adding smoothing parameter. Willemain et al. [99] applied bootstrapping for spare part demand forecasting. Chiou et al. [18] used the grey theory to forecast spare part demands. Hua and Zhang proposed a Support Vector Machine based model and Gutierrez et al. [41] applied a neural network for spare part demand. According to Bontempi et al. [8] machine learning approaches obtained promising results in the area of time series forecasting

in the last decade. This trend is not recognizable for spare part demand forecasting, which is a related area.

This motivates the identification of the characteristics of spare part demand time series to perform a literature review for determination of possible computational intelligence approaches, applicable to the spare part demand forecasting problem of this thesis. Artificial Neural Networks stand out by their ability to capture patterns within the data. Proof of Concept tests showed promising results applying neural networks to the spare part demand prediction problem even if there is only few data available for model training. Based on the literature review and the results of the Proof of Concept tests the following research question is phrased for this thesis:

#### Could an Artificial Neural Network based prediction model forecast the young fast-moving spare part demand with higher accuracy than the currently applied model?

This research question is split up into several parts:

- What computational intelligence models are suitable to forecast the demand of young fast-moving spare parts?
- Can the currently applied model be improved, so that an Artificial Neural Network approach is not needed at all?
- How needs the Artificial Neural Network model be configured to achieve best possible results?

### 1.2. Structure of Thesis

The next chapter describes the economic fundamentals of spare part management. It introduces the spare part life cycle model that is important for understanding of demand patterns. Further spare part classification possibilities and influence factors for spare part demand are discussed. Chapter 3 introduces the fundamental concepts of time series. Based on an extensive literature review, concepts used for time series and especially spare part demand forecasting are declared and related work is discussed. Furthermore, the fundamental concepts of Artificial Neural Networks are introduced. In Chapter 4 the spare part demand data provided by a large automotive manufacturer is discussed. Furthermore, the currently applied model is analyzed and possible enhancements are proposed and reviewed. Chapter 5 then proposes the artificial neural network based, especially a deep learning based model for spare part demand forecasting. The potential parameter configurations of the model are discussed and statistically evaluated by plenty experiments to determine the best possible configuration. In Chapter 6 the proposed model is compared to the currently applied model and its suggested enhancements. Finally, Chapter 7 summarizes the findings of the thesis, critically reviews them and provides a research outlook.

## Fundamentals of Automotive Spare Part Demand Management

This chapter gives a brief overview of the economic fundamentals of spare part management. It defines some of the terms of relevance for this thesis and explains their relationship among each other. The spare part life cycle model as an important background for spare part demand forecasting is introduced. Further different approaches for spare part classification are presented and the scope of this work is restricted accordingly. Finally, some influencing factors of spare part demand are discussed to give a brief introduction into the economically complexity of spare part demand forecasting.

Spare part management is used across all industries. The focus of this work is in the automotive sector and all definitions and explanations could be regarded as of the automotive industry.

#### Spare Part

Products are generally composed of plenty of parts. As of DIN24420-1 [27] spare parts are "parts, groups of parts (also called components) or complete products, that are needed to replace damaged, worn or missing parts, groups of parts or products." According to Schroeter [81] spare parts are secondary products. They are elements that could be replaced to restore or keep the operating functionality of the primary products during their whole lifetime. This concludes that a spare part demand could only exist after the purchase of the primary products, which are cars in case of this thesis. Strunz [88] declares spare parts as elements that get worn during the usage of the primary product and need to be replaced, and states this action as fundamental activity of the maintenance process.

According to DIN31051 [28] spare parts could be further differentiated into backup parts, usage parts and small parts. Strunz [88] describes backup parts as parts that are kept for a potential part failure of a particular primary product, usage parts as parts that are typically worn during the usage, depending on the intensity of the usage and small parts as universal, often standardized parts of small value.

Based on the origin spare parts could be classified into the following three groups [57]:

- Original spare parts are parts that are produced from the Original Equipment Manufacturer (OEM).
- Foreign spare parts are identical parts produced from other manufactures than the OEM.
- Used spare parts are used, recycled or refurbished parts.

In the context of this work all spare parts are OEM parts. Further possibilities of spare part classification are covered in Section 2.2 about classification of spare parts.

#### Spare Part Management

According to Biedermann [7] spare part management or spare part logistics deals with all management activities, which assure that a spare part is at the right time, in the right quality and quantity at the right place at minimal costs. Klug [57] adds that the spare part management connects all activities around maintenance and spare parts. As of Schuh and Stich [82] it is the target of the spare part management to control all involved processes in the right way to accomplish an economically optimized spare part stock. Schroeter [81] supplements that due to the high complexity and uncertainty of spare part demand estimation often a security stock is kept buffering potential underestimations. This influences the capital commitment costs. An optimal spare part stock tries to minimize the security stock, and this results in less fixed capital, minimized costs for storage and if estimated correctly, still in a minimization of downtimes. Nevertheless, the determination of an optimal spare part stock is a nontrivial process and includes plenty influence factors. Furthermore, Schuh and Stich [82] state that the spare part management could be regarded from two different perspectives. On the one hand side from the viewing point of a customer and on the other hand side it is regarded from the viewing point of a manufacturer. The latter one is the perspective used for this thesis. Klug [57] adds that an effective spare part management has also influence on the customer satisfaction because in an ideal case there is nearly no downtime of the product.

#### **After Sales Services**

The spare part management is part of a car manufacturer's after sales services. According to Klug [57] the after sales services are a marketing tool that includes all activities to increase the customer retention after a purchase. Customers should be satisfied, and the customer loyalty of the brand should be strengthened. Vahrenkamp and Kotzab [94] add the fact that a high degree of service can be a criterion for a product decision at all or regarding future decisions. Therefore, the period of after sales, especially the spare part management, involves a high potential of customer retention. Satisfied and convinced customers potentially recommend the brand, which also has a positive influence regarding new customers. As of Pfohl [75] there is also feedback from service entities that could be used for improvement of the after sales services or even for future designs. Klug [57] therefore concludes that the after sales services are nowadays an important competitive differentiation for car manufacturers.

According to Schuh and Stich [82] the profit of the after sales is steadily increasing over the last years. They have become an important area for car manufacturers. The after sales services market contains high potential profit margins and is often more profitable than the primary product market. Figure 2.1 shows the proportion of the worldwide profit of car manufacturers from 2014 in billions of Euro and underlines the importance of after sales services. The earnings of the after sales exceeds the return of new car sales by a factor of over 9. Between 50% and 70% of the total after sales revenue of a car manufacturer are generated by the spare part business state Dombrowski and Schulze [29]. According to a study of McKinsey & Company [70] the global market value of automotive aftermarket will grow from approximately 760 billion USD in 2015 to 1200 billion USD by 2030. Therefore, the spare part sector will even grow in business importance.

Inderfurth and Kleber [50] noted in their paper that the lifetime of a car lasts usually at least fifteen years, often longer. As stated by Hagen [43] according



Figure 2.1.: Worldwide profit of car manufacturers 2014 [86].

to legal requirements car manufacturers are forced to provide spare parts for their products for a period of ten years after the end of production. Klug [57] found most OEMs to use this requirement to their marketing benefit and extend this period of after sales services to an average time span of 15 years after the end of production. He also added that this long period of spare part supply results in high bound capital and storage costs, which underlines the need of optimization of spare part demand estimation.

#### 2.1. Spare Part Life Cycle Model

To understand and predict the spare part demand the life cycle model of spare parts is of high importance. Figure 2.2 shows the life cycle model of a spare part, also called the all-time pattern. Based on the work of Fortuin [33], Klug [57] describes the model in detail, where different phases for the spare part demand could be derived. Dombrowski and Schulze [29] state that the model assumes, that the primary product and the spare part demand follow some rules from the beginning of production until the end of life of the primary product. The demand pattern of a spare part is always related to the demand of its primary products, which is related to the cumulated sales of this. As of Hagen [43] the model assumes also an ideal-typical demand pattern, which is not always the case in reality. Nonetheless, this does not reduce the significance of the life cycle model.



Figure 2.2.: Spare part demand life cycle model [57].

There are some relative dates in the life cycle of a spare part that are used to describe the phases of its life [32]:

- Start of Production (SOP): At the SOP the production of the primary product begins.
- End of Production (EOP): The serial production of the primary product ends.
- End of Delivery Obligation (EDO): The warranty related, supplier contract related or self-obligated spare part availability ends.
- End of Service (EOS): The service of the primary product by the OEM ends. OEM spare parts are no longer distributed.
- End of Life (EOL): The primary product and the spare parts disappear from the market.

Based on the above defined dates basically three major life cycle phases with different impact on the spare part demand are distinguished by Klug [57]. The absolute dates of these phases differ in literature from author to author. Despite the impact of the exact dates is relatively small for this thesis, the concept of Klug [57] is seen as the most important.

#### **Initial Phase**

The beginning of the initial phase is the SOP, a new car reaches the market. This phase ends within the first third until half of the serial production period. Klug [57] states the difficulty to estimate the spare part demand besides the used parts for the primary product due to the lack of historic knowledge about spare part failure rates and demand patterns as characteristic for this phase. Nevertheless, to ensure an unimpaired service level high security demands are stocked, as stated already in the work of Fortuin [33]. Klug [57] describes that these security stocks are used for immediate reaction to keep the image of the product on a high level. Often these security stocks are overestimated and involve an optimization potential. Schroeter [81] notes, that it is also beneficial to be able to forecast the demands in terms of manufacturer contracts and capacity planning.

All parts that are used to forecast demands within the scope of this thesis are in the initial phase of their lifetime.

#### Normal Phase

The second phase lasts from the end of the initial phase until the EOP of the primary product. According to Klug [57] this phase is characterized by a stabilized demand of the primary product. The OEM has already gained some knowledge about the parts used in the car. Klug [57] also notes that the market consistency of the primary product doesn't result in the demand patterns of the spare parts. Due the today's high complexity of cars, which results for an OEM in a broad spectrum of parts, the ever shorter innovation cycles, long spare part warranty periods and the random nature of part failure it is still difficult to estimate the spare part demands precisely during this phase but the forecasts are already more accurate than in the initial phase, as stated by Klug [57] and also by Schroeter [81].

#### **Final Phase**

The final phase begins with the car's EOP and lasts until the EOL. According to Klug [57] the main characteristic of the final phase is the steadily decreasing primary product stock in the market. Fortuin [33] notes that the production of parts is reduced to the aftermarket demand and is abandoned for plenty of

parts over time. Due to the decreasing part demand the production of expiring parts gets more and more expensive according to Schroeter [81]. Foreign parts get an increasing market share. The production of parts that are not used in other car models becomes unprofitable, which results in the end of their manufacturing. Klug [57] underlines that during this phase a strategy to satisfy all delivery obligations, e.g. because of warranty periods, needs to be chosen. To handle spare part demands in the time after the end of part production the OEMs often use the all-time requirement, where the spare part demand until the end of life is estimated and spare parts are stocked accordingly as stated by Fortuin [33] and by Klug [57].

### 2.2. Classification of Spare Parts

Spare parts are differentiated in literature in many ways. First possibilities, e.g. based on the origin of the spare part, were already introduced in the spare part definition and the spare part lifecycle. According to Loukmidis and Luczak [67] not every prediction technique is applicable to every type of demand pattern. Because each class of spare parts has its own characteristics, a specialized demand forecasting approach should be applied to each. This specialization of the prediction technique results in the need of spare part classification as stated by Klug [57].

Based on the categorization criteria some of the most common used and for this work important classifications are discussed in the following. An overview of classification approaches for spare parts is given in Figure 2.3.

One of the most common classification techniques, according to Bacchetti and Saccani [3], is the ABC analysis. Schuh and Stich [82] describe the classification as based on the relevance of the spare parts for the company. This method tries to estimate the revenue value share of the parts and their demand patterns to classify them either as A, which make about 80% proportion of the overall spare part revenue value, class B with about 15% share of the revenue value and C with the remaining 5%. Klug [57] adds that the ABC analysis makes use of the Pareto principle and the Lorenz curve. An enhancement exists in the XYZ analysis, which adds a demand regularity based approach as described by Loukmidis and Luczak [67]. It uses features of the demand predictability for the classification scheme. Parts of class X are easy to predict, parts of class Y are characterized by an unstable demand, which makes them more difficult



Figure 2.3.: Spare part classification approaches [66].

to predict and class Z parts are very difficult to forecast already within a short horizon because of their chaotic demand pattern. The combined analysis results in nine different classes. Additionally Schuh and Stich [82] noted that there exist also modifications, which make use of the demand frequency instead of economic relevance in terms of revenue value as ABC classification features.

It is also possible to categorize spare parts based on the demand characteristics. One popular approach was published by Boylan et al. [11]. Based on the mean inter-demand interval, that averages the interval between two successive demand occurrences, the mean demand size and the coefficient of variation of the demand sizes, this approach sets up six different classes: intermittent, slow moving, erratic, lumpy and clumped. Fortuin and Martin [34] explain a general distinction based on the demand frequency over a period in two main classes, which are slow-moving and fast-moving parts, which also is a widely used approach. Slow-moving spare parts are characterized by an irregular and infrequent demand. Fast-moving parts on the opposite have a regular and frequent demand.

In the scope of this work this approach is used. Furthermore, only fast-moving spare parts are covered through the model.

Further categorization influence factors that exceed the scope of this work are the costs in case of a failure of the primary product, the spare part logistic costs, the cost for storage of parts, the costs for acquisition of parts and the replaceability of the parts. The interested reader is referred to the work of Bacchetti and Saccani [3], as to the book of Loukmidis and Luczak [67] and to the work of Schuh and Stich [82] for a detailed review of spare part classification approaches.

### 2.3. Influence Factors for Spare Part Demand

As pointed out by Loukmidis and Luczak [67] spare part demand is influenced by many different factors, each with different impact. Literature generally distinguishes between influence factors related to the primary product, related to the spare part itself, factors related to maintenance and influence factors related to the spare part market as well as other exogenous factors.

According to Loukmidis and Luczak [67] spare part demand is by its nature a derivative need. The demand is strongly related to the number of primary products purchased. The more primary products are on the market, the higher the spare part demand potential. Furthermore, Pfohl [75] states, that the age structure and the utilization intensity of primary products in use influence the demand. Also, lifetime, exploitation and recycling of the cars after the end of usage affect the spare part demand pattern. If it comes to demand forecasting planned sales of the primary product are also influencing factors of the primary product to be considered as noted by Klug [57].

The second class of influence factors is part related. According to Loukmidis and Luczak [67] the major factor is the estimated lifetime of the part. It is generally dependent on the type of the part, the utilization intensity and on the type of use. Furthermore, Klug [57] adds that the composition of the primary product of standard parts, modules or specialized parts has an influence on the demand pattern. In the scope of forecasting the known failure rate of the parts, the security stocks and the demand history additionally influence the future demand as stated by Pfohl [75].

Furthermore, Loukmidis and Luczak [67] mention that the strategy of maintenance also influences the spare part demand. Either maintenance could be done on a regular basis, so to say preventive, it also could be done based on the usage or condition of the primary product, or maintenance could be done only in case of failure. Each strategy has different influence on the spare part demand. Klug [57] notes that usually a mixture of these strategies is applied in reality, which results in a mixture of stochastic and deterministic demand influence factors. According to future demands historic knowledge of the maintenance influence, e.g. service intervals, can affect the demand as well.

Finally, Loukmidis and Luczak [67] point out that the spare part portfolio on the market has influence on the spare part demand. Parts offered from different vendors than the OEM or from different sources, like recycled or refurbished parts affect the demand pattern. The purchase of a new primary product instead of maintenance also has its share, related itself by the age structure of the primary products. Pfohl [75] adds that new technologies and upgrades or changing legal requirements have an influence too.

These are only the most important influence factors and by far not all of them. Interested readers are referred to the work of Loukmidis and Luczak [67] as a starting point. Regarding the above discussed factors, Klug [57] notes that the estimation of spare part demands already becomes a very complex task. Plenty of the factors are hidden and cannot be made visible exactly. Also, the influence of each of these factors is not clearly derivable for each demand. In the scope of this work the historic demand pattern, the historic primary product sales and the planned car sales are used for demand forecasting of spare parts within the initial phase.

## Fundamentals of Time Series and Spare Part Demand Forecasting

This chapter provides an introduction to the area of time series forecasting and in particular, spare part demand forecasting. First some basic terms and principles are defined, and special characteristics of time series are reviewed. Then the concepts of spare part demand forecasting, from the early beginnings until today's machine learning approaches are introduced. One of the most recently emerging approaches, the Artificial Neural Network (ANN) model for time series forecasting is reviewed in more detail. Furthermore, the for this work relevant concepts of Recurrent Neural Networks and deep learning for time series forecasting are discussed.

### 3.1. Definitions

This section defines the basic concepts, common to all approaches of time series and spare part demand forecasting. It builds the basis for the later work.

#### **Time Series**

Palit and Popovic [73] define a time series as a series of values, observations or measurements  $x_1, x_2, ..., x_t$  that is sampled or ordered sequentially by a feature of time. The data is indexed by time with equal distance  $\Delta t$ . Chattfield [16] adds, that the measurements can be taken continuously trough time in case of a continuous time series or at discrete time steps in case of a discrete time series. The values itself can be either continuous or discrete. Often continuous time series are converted to discrete time series by sampling in discrete time intervals. The frequency is called the sampling rate. Typically, the data of discrete time series is distributed over equal time intervals. It is also possible to aggregate the data over a period of time, e.g. daily data can be aggregated by weeks or months. Laengkvist et al. [64] noted, that the values of the time series usually are composed of a deterministic signal component and a stochastic noise component, originating from the measurement, corrupting the series. Often it is not clear if the available information is enough to fully understand the generating process and its included dependencies. In the scope of this work only discrete time series are of relevance and all further descriptions are related to discrete time series.

Besides the time as main feature, time series are characterized by linearity, trend, seasonality and stationarity, as described by Palit and Popovic [73].

- Linearity indicates, that the time series could be represented by a linear model, based on the past and present data. Time series that cannot be represented by a linear function are called non-linear. In real scenarios both types are often mixed, e.g. a time series shows local linearity but global non-linearity, which makes according to Palit and Popovic [73] a differentiation and appropriate model selection difficult.
- **Trend** is described by Chatfield [16] as a long-term decrease or increase in the mean level of the time series. Long-term covers a period of several successive time steps and is not clearly defined in literature, as well there exists no fully satisfying mathematical definition for trend. Palit and Popovic [73] add, that the decomposition of variation into seasonal components and trend components is handled differently in literature, mostly originating from the difficulty to separate the pure time series signal from the influences of seasonality, trend and noise.
- Seasonality, as defined by Chatfield [16], characterizes the periodical fluctuating behavior of a time series. Similar patterns repeat at certain periods of time with varying influence. Additive seasonality is independent of the local mean level, the mean of a short period of time, and multiplicative seasonal variation is proportional to the local mean level. This means for example in case of an upward trend, the variation influence because of seasonality also increases.
- Stationarity describes the behavior of the mean and the variance of the time series data, as defined by Chatfield [16]. If both values are nearly

constant over time the series is called stationary, else it is called nonstationary. Palit and Popovic [73] mentioned, that stationary time series are characterized by a flat looking pattern with small influence of trend or seasonality.

As of Chatfield [16], time series can be further distinguished according to the number of predictor features. Univariate time series sample only a single time dependent process. Multivariate time series are composed of more than one feature. Each point in time is described by simultaneously sampled values from each of the underlying time dependent processes.

#### Time Series Forecasting

According to the book of Chatfield [16], time series forecasting tries to compute future values of a time series based on the observed present and past data. It is part of the area of predictive analytics. Given a time series  $x_1, x_2, ..., x_t$  forecasting means to compute future values, such as  $x_{t+h}$ . The positive integer h is called the lead time or forecasting horizon. The forecast at time t for h steps ahead is denoted by  $\hat{x}_t(h)$ . The case of h = 1 is called one step ahead forecast. If h defines a range it is called a range forecast. Forecasting methods can be distinguished in objective forecasts, univariate forecasts and multivariate forecasts.

- Objective forecasts, as described by Chatfield [16], are based on the judgement of experts and their knowledge. These forecasts include a subjective bias. A popular approach is the Delphi-method [22], where experts are surveyed in several rounds and the estimations are combined to a forecast.
- Univariate forecasts are based on a time series originating from a single underlying process, as defined by Chatfield [16]. Palit and Popovic [73] mention, that a model based on a univariate time series tries to extrapolate the pattern from the generating process.
- Multivariate forecasts, according to Chatfield [16], take into account more than one time defined process for forecasting. Palit and Popovic [73] further describe, that each generating process has its own influence on the time series. A multivariate model tries to combine the generating

processes, to estimate the time series pattern and to derive the influence of each underlying process.

Chatfiled [16] argues, that except of some special cases, usually statistical approaches are superior to objective forecasts. Often the above mentioned classes are combined to use the best from each world for forecasting, e.g. expert knowledge is included into a multivariate forecasting model. Palit and Popovic [73] mention, that time series forecasting can be further classified based on the complexity of the approach or on the human interaction need. In the scope of this work only univariate and multivariate forecasting approaches are used and further descriptions are only related to these two classes.

# 3.2. General Spare Part Demand and Time Series Prediction Models

Time series forecasting can be applied in different areas. If the to be forecasted series is composed of timely dependent spare part demands it is called spare part demand forecasting. As of Callegaro [13], first methods used were classical statistical models originating from economics and time series modeling, with no specialization for spare part characteristics, like Simple Exponential Smoothing (SES), Autoregressive (AR) models or Moving Average (MA) approaches, as combinations and modifications of these, e.g. like models of the Autoregressive–Moving-Average (ARMA) family. Bartezzaghi et al. [4] noted, that all these methods assume a certain degree of stability in the environment, which is often not given for spare part demand time series. According to Boylan and Syntetos [10], this ignorance of particular properties of demand series led to substantial overestimation of future demands and to too small forecast horizons that could be predicted with a sufficient degree of accuracy. Because of the need of accurate forecasts in plenty of areas researchers began to develop approaches specialized for spare part demands.

In the following some of these specialized models, but also general time series prediction approaches applicable for spare part demand are discussed. The above mentioned classical statistical models would exceed the scope of this work. The interested reader may be referenced to the work of Callegaro [13] for an extensive overview of statistical models used for demand forecasting.

#### 3.2.1. Statistical Models

One of the first, and for a long time most widely used, approach developed was Crostons Method [21]. He proved that SES overestimates lumpy demand because the latest time step gets the highest weight. This results in a high forecast after demand occurred, even if in the next time step no demand occurs. To solve this problem, he constructed a SES based model, composed of the size of the demands and the average interval between demand occurrences. A forecast based on Crostons Method is calculated with the following recursive formula:

$$\hat{z}_{t+1} = \hat{z}_t + \alpha (x_t - \hat{z}_t)$$
(3.1)

$$\hat{p}_{t+1} = \hat{p}_t + \alpha (q_t - \hat{p}_t)$$
(3.2)

$$\hat{x}_{t+1} = \frac{\hat{z}_{t+1}}{\hat{p}_{t+1}} \tag{3.3}$$

 $\alpha$  is the smoothing parameter,  $x_t$  is the demand at time t and  $q_t$  is the time distance between the occurrence of the current and the previous demand.  $\hat{z}_t$ represents the exponential smoothed demand.  $\hat{p}_t$  equals the positive demand interval at time t, forecasting the time step with the next demand occurrence by SES. Both are only updated in case of a demand occurrence. A difficulty of Crostons Method is to choose an appropriate  $\alpha$  value.

Syntetos and Boylan [89] showed 2001 that Crostons Method is biased, depending on the smoothing parameter. They provided an extension of the original method, which is known as Syntetos-Boylan Approximation (SBA) [90]. To deal with the bias an adapted smoothing parameter is added to Crostons Method and the forecast is calculated as of Equation 3.4. With extended simulation experiments on 3000 stock keeping units from the automotive industry, Syntetos and Boylan showed the superiority of their approach, compared to Crostons Method, MA and SES. The difficulty of choosing an appropriate smoothing parameter value remains in their enhanced approach.

$$\hat{x}_{t+1} = (1 - \frac{\alpha}{2})\frac{\hat{z}_{t+1}}{\hat{p}_{t+1}}$$
(3.4)

Another statistical method used for time series forecasting is bootstrapping. The basic bootstrapping approach was published by Efron in 1979 [30]. It is a sampling technique to calculate statistical measurements from an unknown underlying distribution by taking plenty samples with replacement and aggregating the statistics over each sample. Bootstrapping was applied to forecasting of intermittent spare part demand by Willemain et al. [99]. They modified the approach to take spare part characteristics into account and evaluated the proposed model on nine industrial data sets against SES and Crostons Method to show the approaches superiority. Gardner and Koehler [36] criticized the results according to the experimental methodology which is questioning the model at all. Later Porras and Dekker [76] applied the approach, proposed by Willemain et al. to spare part demand data of a large oil refinery with promising results. Nonetheless, the research interest according to bootstrapping and spare part demand forecasting is decreasing.

Furthermore, a statistical model used for spare part demand forecasting is the Grey Prediction Model (GPM). It is motivated on the Grey theory developed by Deng [25]. The GPM is based on the Grey generating function GM(1, 1), a time series function that uses the variation in the underlying system to find relations between the sequential data. Interested readers are referred to the work of Deng [26] for details on the theory of the GPM. The approach is characterized by the ability of forecasting with limited amount of data and requires no prior knowledge of the time series. Chiou et al. [18] used the GPM to forecast spare part demands. They state the Grey forecasting model to be superior for short term predictions, compared to other (unnamed) time series models and SES, but for the mid and long term not suitable.

In 2011 Lee and Tong [60] published a modified version of the GPM. They augmented the model by incorporating genetic programming. By experimental evaluation on the energy consumption of China Lee and Tong showed the superiority of their approach, compared to the basic GPM and simple linear regression. Hamzacebi and Es [44] applied a parameter optimized GPM for forecasting the annual energy consumption of Turkey. The optimized GPM was evaluated against the basic model. The proposed approach outperformed the classical GPM and also increased the forecast accuracy for the midterm.

#### 3.2.2. Machine Learning Approaches

Besides the methods based on statistical models Bontempi et al. [8] noted that machine learning approaches gained more research attendance in the last decades. In the following some of these models are discussed.

#### Support Vector Machines

Support Vector Machine (SVM) models are one of these computational intelligence techniques frequently used for time series forecasting. This approach is based on a paper by Vapnik et al. [95]. A SVM creates a hyperplane to linearly separate the data into classes by placing the hyperplane between the data-points. The distance of the data-points to the hyperplane is maximized by constrained based optimization. To deal with non-linear separable problems a so-called kernel trick is applied. The data is transferred to a higher dimensional space, where the problem becomes linear separable. By adjusting the constraint based optimization according to a generalization of the data-points instead of the maximization of the margin between the classes, SVMs could also be used for regression problems, like time series forecasting. If used for regression problems they are sometimes called Support Vector Regression (SVR).

In 2003 Cao and Tay [14] used a SVM model to forecast financial time series. They compared the forecast performance of a SVM model against a Multi Layer Perceptron (MLP) neural network and against a Radial Basis Function (RBF) neural network on five real world financial data sets. In all but one case the SVM outperformed the other models. They explained the superiority of the SVM by the fact that this model finds the global optimum of the optimization, whereas the ANN could get stuck in local optima. Furthermore, an extended version of the SVM model with adaptive hyperparameters, parameters that are set before the learning of the actual parameters by the machine learning approach takes place, for handling the non-linearity of financial time series is proposed. This enhanced model outperformed the classical SVM approach on the evaluated data sets, but adds complexity by setting the hyperparameters correctly.

Hua and Zhang [48] proposed a hybrid SVM approach for intermittent spare part demand forecasting in 2006. They used the SVM model to forecast the occurrences of nonzero demands and integrated this information with explanatory variables into a composed model. Experimental results on 30 real world data sets from the petrochemical industry showed that their proposed approach outperformed SES, Crostons Method and the basic SVR. They also stated that their approach is suitable for scenarios with limited historical information.

Another approach using SVM to predict short-term traffic flow was published by Lippi et al. [63] in 2013. To deal with the high seasonality of the traffic flow

time series a seasonal kernel, to capture repeating patterns, was used in their model. Experimental evaluation was performed on data from the California Freeway Performance Measurement System. The seasonal kernel SVR was compared against several other approaches, like AR models, ANN and SVM models with different kernels. Based on the experiments the seasonal AR with integrated MA (SARIMA) performed best, but the seasonal kernel SVM was found competitive to the computational expensive superior models. They also confirmed that the seasonal pattern is a key feature for time series forecasting.

In the same year Kazem et al. [54] published a paper about SVM to forecast stock market prices. They proposed a 3-fold model. To overcome the nonlinearity of these time series a phase space reconstruction, originating from dynamic systems theory, is applied as a data pre-processing step. In the second step the hyperparameters of the SVM are optimized by a chaotic firefly algorithm, a nature inspired meta-heuristic optimization algorithm. In the last step the SVM is trained to forecast the stock market prices. Due to the iterative behavior of the approach it is computational expensive. An experimental evaluation against ANN and basic SVM showed the superiority of the proposed model.

An ensemble model of SVM for building energy consumption forecasting was proposed by Zhang et al. [101]. The hyperparameters of each SVM and the weights for each ensemble member are optimized with Differential Evolution (DE), an evolutionary optimization algorithm. Experimental evaluation was performed with different optimization algorithms for hyperparameter estimation and each member of the ensemble was compared against the proposed model, which outperformed all separate components. Unfortunately, the proposed approach is not evaluated against other models.

In 2017 Kanchymalay et al. [52] published a paper about multivariate time series forecasting by SVM. They choose nine different features to represent the time series and evaluated the forecasting performance of SVR against MLP and Holt-Winter exponential smoothing. The experimental evaluation on a crude palm oil price data set showed that SVM slightly outperformed the MLP and was clearly superior to Holt-Winter exponential smoothing.

The above-mentioned works are by far only an excerpt of the extensively used SVM model. Interested readers are referred to the works of Cheng et al. [17] and Deb et al. [23], both including an extensive literature review as a starting point.

### **Fuzzy Models**

Another class of computational intelligence models, used for time series forecasting, are Fuzzy time series. The concept was introduced by Song and Chissom [85] in 1993. The time series of this model are represented by fuzzy sets in a universe of disclosure, corresponding membership functions and fuzzy logical relations of different order. Singh [83] used Fuzzy time series in 2007 to forecast wheat production. He evaluated his model on two real world data sets and showed its competitiveness. Pei [74] used fuzzy time series for energy consumption predictions. He improved the classical model by extending the fuzzification by a K-Means algorithm. The proposed approach showed a higher forecast accuracy on the evaluated data set. Nonetheless, all fuzzy models require a high degree of expert knowledge for defining the universe of disclosure and for definition of the fuzzy rules describing the relations.

### Hybrid Models

Hybrid models composed of ideas from the above mentioned approaches and other machine learning algorithms are used for time series forecasting as well. According to Deb et al. [23] these models try to combine advantages of the involved algorithms and are usually more robust. These enhancements are often bought by computational expensiveness and algorithmic complexity. In the area of spare part demand forecasting the already described hybrid SVM model suggested by Hua and Zhang [48] shall be mentioned here too. Furthermore, Lin et al. [62] proposed a hybrid model, composed of elements from ANN, fuzzy systems, evolutionary and cultural algorithms. They evaluated their model on three chaotic time series, a special kind of non-linear time series, against other evolutionary models and showed its superiority. Nonetheless, a comparison against typical time series forecasting approaches is missing, so no conclusion about the revenue of the highly complex approach can be drawn. Ravi et al. [77] suggest a model composed of elements from chaotic systems, MLP and multi-objective evolutionary algorithms, to predict financial time series. The proposed model was evaluated on four financial real world data sets and showed promising results according to forecast accuracy.

The above discussed hybrid models exemplary should show the manifold possible combinations of approaches. A more extensive review of hybrid approaches,

by far would exceed the scope of this thesis. The work of Deb et al. [23] is recommended for an overview.

The discussed models are frequently used approaches for time series forecasting. All of them have their own strengths, weaknesses and specialties. The basic statistical models, Crostons Method and Syntetos-Boylan Approximation are easy to compute and both later ones are designed especially for spare part demand. Nonetheless, research showed that plenty machine learning approaches outperform these models according to forecast accuracy. Other statistical models add complexity and often showed promising results only for particular time series problems. Support Vector Machines as widely used machine learning approach protrude by the optimal solution found, what makes them competitive against all other models. Nevertheless, hyperparameter derivation is a nontrivial process and computation can get complex. Fuzzy time series feature a great descriptive power but require a lot of expert knowledge. Hybrid models are usually effective for a particular problem but often add high computational complexity. In the next section another widely used machine learning approach, the Artificial Neural Network is discussed in detail.

# 3.3. Artificial Neural Networks for Time Series Forecasting

In the following the fundamental concepts of Artificial Neural Networks are introduced. The basic principle of an ANN is explained and its components are discussed. A literature review underlines the importance of ANNs for time series forecasting. Furthermore, the concepts of Recurrent Neural Networks are introduced and relevant literature is reviewed. Finally, deep Artificial Neural Networks are discussed.

# 3.3.1. Fundamentals of Artificial Neural Networks

According to Mitchell [71] Artificial Neural Networks are partly biological inspired mathematical, massively parallel, supervised learning models, containing layer-wise organized units, so called neurons, that are connected. Each connection directs from the output of a neuron to the input of a neuron and



Figure 3.1.: Artificial Neural Network Model [73].

has a variable weight assigned. The model could be represented by a directed, weighted graph. The input is processed from the input-layer to the outputlayer via several optional hidden layers. Each neuron calculates its output by an activation function and passes the result to the next neuron, until the output-layer is reached. The parameters of the model, e.g. the particular weights of the connections, are learned during a training phase. An exemplary graphical representation of the model, in particular of a Multi Layer Perceptron, a special kind network, also called feed forward network, where each neuron of a layer is connected to each neuron of the next layer, can be found in Figure 3.1. The number of successive layers is called the depth of the network, the number of units per layer are called the width of the network. The overall structure including the depth, width, types of layers or units and how they are connected is defined by the topology, or architecture of the ANN. According to Palit and Popovic [73], ANNs have been successfully applied to problems of signal analysis, classification, pattern recognition, feature extraction and many more. Among other things, they are characterized by the ability of capturing functional relationships among the data, universal function approximation capabilities and the ability of recognizing non-linear patterns in the data.

Figure 3.2 shows the model of a single neuron, in particular a Perceptron. The Perceptron, originating from a paper by Widrow and Hoff [98], is one of the most widely used basic units of an ANN. The outcome of the Perceptron is calculated according to Equation 3.5. The weighted inputs and a bias, representing a threshold value, are used to calculate the output of the summing element,  $v = w^T x + w_0$ . It may be noted that bold lower case characters are representing vectors. The result of the nonlinear element is generated by



Figure 3.2.: Model of a Neuron: Perceptron [73]

the unit step function defined in Equation 3.6, which is applied as activation function. This means, that the Perceptron is only activated, sometimes also referred to as firing, in case of  $v = \boldsymbol{w}^T \boldsymbol{x} + w_0 \ge 0$ , which is controlled by the learned weights and the bias.

$$y_0 = f(\sum_{i=1}^n w_i x_i + w_0) \tag{3.5}$$

$$f(v) = \begin{cases} 0 & \text{for } v < 0\\ 1 & \text{for } v \ge 0 \end{cases}$$
(3.6)

### **Activation Functions**

According to Palit and Popovic [73], the sigmoid activation function, as shown in Equation 3.7 was widely used for a long time since the early days of ANN. As of Goodfellow et al. [40], the preferred activation functions changed over time and specialized functions were developed. In the scope of this work further the Rectified Linear Unit (ReLU), as defined in equation 3.8, is used. Glorot et al. [39] found, that the ReLU activation function is superior for the training of more complex networks than the Sigmoid function. Furthermore, a modification of this function, the leaky ReLU, as defined by equation 3.9 is used in the scope of this work. According to Maas et al. [69], leaky ReLU adds a small gradient, even if the unit is not active. Last but not least the SoftPlus activation function will be used, as defined by Equation 3.10. Glorot



Figure 3.3.: Activation Functions f(v).

et al. [39] describe this function as a smoothed version of the ReLU activation function, which results in a different behavior of the gradient based learning.

$$f(v) = \frac{1}{1 + \exp(-v)}$$
(3.7)

$$f(v) = \begin{cases} 0 & \text{for } v < 0\\ v & \text{for } v \ge 0 \end{cases}$$
(3.8)

$$f(v) = \begin{cases} 0.01v & \text{for } v < 0\\ v & \text{for } v > 0 \end{cases}$$
(3.9)

$$f(v) = \ln(1 + \exp^{v})$$
 (3.10)

An graphical overview of the four activation functions is given in Figure 3.3. It may be noted that the leaky ReLU factor of 0.01 in case of v < 0 was changed to 0.05 for plotting, as of visualization purposes. Nonetheless, these are only

a few of common activation functions. Interested readers are referred to the book of Goodfellow et al. [40] for an overview.

### Learning for Artificial Neural Networks

During the training phase the learning of the weights as a supervised learning process is performed. According to Palit and Popovic [73], the Backpropagation algorithm is the most widely used learning approach. As of Schmidhuber [80] the concepts originate back to the 1960s and 1970s. The approach gained popularity after the publication of the paper of Rumelhart et al. [79] in 1986. As of Palit and Popovic [73], the principle of the algorithm can be described in the following way: While the training data is processed through the network in a forward direction, the error of the network is computed based on the output value of the ANN and the output intended by the data. This error is then propagated in backward direction, from the output- to the input-layer of the network, to adjust the weights of the connections accordingly. The Backpropagation algorithm is used to calculate the gradient, which in turn is used for optimization of the weights. This approach is applied in an iterative way, several times for the whole training data set. The number of iterations is called the training epochs of the ANN. The training could be finished after a fixed number of epochs or if the error has reached a lower bound, e.g. by an approach called early stopping.

### **Optimization Approaches**

Different optimization algorithms are used for calculation of the weights. An introductive overview can be found in the work of Schmidhuber [80] or in the paper of Ruder [78]. In the scope of this work three different approaches are of importance: Stochastic Gradient Descent (SGD), RMSprop and Adam. According to Bottou [9], SGD is nowadays one of the most used optimization algorithms in the area of ANN, therefore it can be understood as the general-purpose optimization approach in the area of neural networks. Instead of precisely computing the gradient based on all training samples at once it estimates the gradient for each epoch in an iterative way based on the currently picked sample  $z_t$ . The gradient is calculated by Equation 3.11, where Q(z, w) is an error function, e.g. the mean squared error, given the current sample and a particular parameter set w. According to SGD, the weight is updated as

stated in Equation 3.12, after each sample was processed. t indicates the training epoch and  $\eta$  is the learning rate, controlling the speed of convergence. It may be noted, that the hyperparameter  $\eta$  needs to be adjusted carefully. Too large  $\eta$  values lead to oscillation, so the (local) optimum is not reached and too small values will not reach the optimum within the given epochs at all. SGD is characterized by a good convergence rate for comparable low computational cost.

$$g_t = \nabla_w Q(\boldsymbol{z}_t, \boldsymbol{w}_t) \tag{3.11}$$

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta g_t \tag{3.12}$$

To overcome the problem of a fixed learning rate several adaptations of SGD were published. According to Ruder [78] RMSprop, an adaptive learning rate optimization approach, is often used in more complex ANNs. The documentation of the Keras framework [55], the for this thesis used ANN framework, states that RMSprop is suitable also for Recurrent Neural Networks, a special kind of ANNs that will be discussed in detail in a later section. RMSprop was proposed in an introduction lecture about neural networks and machine learning by Hinton [45]. The learning rate is adapted by an exponentially decaying average of squared gradients, which is described in the recursive Equation 3.13. g is the gradient as defined in Equation 3.11.  $\gamma$  is a factor that weights the previous average and the current squared gradient, which is like a momentum that takes the gradient partly further to its previous direction. Equation 3.14 shows the weight update according to RMSprop, after each training example is presented to the ANN.  $\eta$  is the learning rate, as described for SGD and  $\epsilon$  is a small constant, to avoid division by 0. The by Hinton recommended value for  $\gamma$  is 0.9 and 0.001 for  $\eta$ .

$$E[g^2]_t = \gamma E[g^2]_{t-1} + (1-\gamma)g_t^2$$
(3.13)

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}}$$
(3.14)

Adam is another optimization approach, heavily used for complex ANN, proposed by Kingma and Ba [56]. It also makes use of an adaptive learning rate. The adaptive decay rates  $m_t$  and  $v_t$  are defined in Equations 3.15 and 3.16. Kingma and Ba note that they are biased towards zero during the initial time steps and when the decay rates become small. Because of this they correct these biases by Equation 3.17 and 3.18. The weight update for Adam is computed as defined in Equation 3.19. The default values, proposed by the authors, are 0.9 for  $\beta_1$ , 0.999 for  $\beta_2$  and  $10^{-8}$  for  $\epsilon$ . Experimental evaluation of the approach showed good convergence results, also for non-stationary problems, which makes this optimization approach a good choice for time series problems solved by ANNs.

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t \tag{3.15}$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2 \tag{3.16}$$

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t} \tag{3.17}$$

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t} \tag{3.18}$$

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t \tag{3.19}$$

### Weight Initialization

To achieve good optimization results the initialization of the parameters at the beginning of the training is an important task, according to Schmidhuber [80]. As of Palit and Popovic [73] a simple random optimization does not always lead to good results. Often an approach, inspired by convex combination methods is applied, where each weight of a weight-vector is initialized by  $1/\sqrt{n}$ , where n is the dimension of the vector. Glorot and Bengio [38] proposed an initialization approach that draws samples from a uniform distribution as described in equation 3.20, where  $w_{in}$  and  $w_{out}$  are the dimension of the inputand output-weight-vector. They found their approach to lead to faster convergence and better results at all, especially if activation functions similar to ReLU are used. If not stated other, this initialization approach will be used.

$$\mathcal{U}(-\sqrt{\frac{6}{w_{in} - w_{out}}}, \sqrt{\frac{6}{w_{in} - w_{out}}})$$
(3.20)

### 3.3.2. Artificial Neural Network Literature Review

In the following some works that make use of ANN for time series prediction are discussed to underline the importance of this approach. Karunasinghe and Liong [53] used an ANN, in particular a MLP, for prediction of nonlinear time series. They evaluated the models on synthetic and real world chaotic time series. Because of the non-linearity of these data series this is a challenging task. The MLP was found to have a very satisfying forecast accuracy. The models were further evaluated, after adding noise to the test data. This resulted in decreased forecast accuracy but still good results.

Gutierrez et al. [41] used an ANN for forecasting of lumpy spare part demands in 2008. According to the authors this was the first time this kind of model was applied to lumpy spare part demand forecasting. They used a 3-layer MLP model. As input the current demand and the period between the last two successive demand occurrences were taken. Gutierrez et al. compared the performance of the ANN with the classical demand forecasting approaches: Crostons Method, Simple Exponential Smoothing and Syntetos-Boylan Approximation. Despite the simple topology of the neural network it was found to outperform the other models.

Han and Wang used a 4-layer Multi Layer Perceptron for forecasting of multivariate chaotic time series. As preprocessing steps they used phase space reconstruction based on Takens Theorem [91] to find strange attractors, describing the time series underlying dynamical system in a higher dimensional space and Principal Component Analysis, a statistical transformation to exclude correlated features to shrink the dimension of the input data. The model was evaluated on several synthetic and real life data sets, performing with a satisfying overall forecast accuracy.

Ak et al. [1] applied a hybrid model composed of an ANN and multi-objective genetic algorithms to the problem of wind speed forecasting. The parameters of the neural network are optimized by NSGA-II [24], a multi-objective genetic optimization algorithm following the concepts of Pareto optimality and dominance to find a parameter set that is optimal according to several conditions regarding several objectives. Experimental evaluation on real world wind data sets according to different optimization approaches showed NSGA-II to be the best choice. The overall accuracy of the prediction was very high for short term horizon predictions.

In 2013 Zhang et al. [102] proposed a Radial Basis Function neural network model for forecasting of sensor data of an E-Nose. A RBF neural network is a special type of Artificial Neural Network, which makes use of radial basis functions as activation functions. As preprocessing step phase space reconstruction according to Takens embedding theorem [91] was applied. The model was evaluated on collected sensor data and obtained satisfying prediction results, also for the long-term predictions. Unfortunately, a comparison against other models is missing.

Jaipuria and Mahapatra [51] used a hybrid model composed of a wavelet transformation component and an ANN. The time series is transformed according to discrete wavelet transformation and passed to the ANN to learn the underlying pattern of the data. The proposed model was evaluated on different demand time series and compared against traditional statistical demand forecasting approaches. The hybrid model outperformed the statistical models. It was also found that the ANN approach reduces the bullwhip effect, which describes the amplification of demand noise as demand progresses up its supply chain.

Lolli et al. [65] published a paper about ANN models for the prediction of intermittent spare part demand. Different neural networks were tested with several inputs and hyperparameters, and compared with Crostons Method and SBA. In an expensive statistical evaluation it is showed that the ANN models outperform Crostons Method and SBA. Despite the fact that the Recurrent Neural Network (RNN) was not the best performing model, Lolli et al. noted that the model improves its performance, compared to the other ANN models if the forecast horizon is increased. Among other things, this fact and the well-fitting properties of Recurrent Neural Network models for time series data they are covered in detail in the next section.

# 3.3.3. Fundamentals of Recurrent Neural Networks

In their book Palit and Popovic [73] describe that the need of networks that can produce a time dependent, non-linear input-output mapping motivated the research of Recurrent Neural Network models. These specialized types of neural networks add the time dimension to its topology and thus introduce memory features to the neural network. One of the first popular recurrent network topology was published in 1990 by Elman [31]. The exemplary structure of the Elman RNN is shown in Figure 3.4. Elman extended the network by a context-layer, which is fed by the hidden layer. The output of the context layer is passed back to the hidden layer in the next time step. Thus, he introduced a one-step delay unit, also referred to as local feedback path. According to Palit and Popovic [73], recurrent networks introduce a kind of loop to the input processing through the network and thus add complexity to the



Figure 3.4.: Model of a Recurrent Neural Network: Elman Network [73].

network, which also results in the capability to detect time dependent patterns that could not be detected by basic feed forward networks, like a MLP.

### Backpropagtion Through Time

The learning of RNNs is done by Backpropagtion Through Time (BPTT). The idea of this approach was proposed by several authors, among others by Werbos [97]. BPTT basically works like the basic Backpropagation approach. In difference, to deal with the recurrent layers of the ANN, these layers are unfolded for each iteration of training. The network is trained as a feed forward network with an additional (hidden) layer each training iteration, originating from the recurrent time component. With increasing training iterations, the ANN gets more complex, or deeper, by an increased number of layers. Gradient based training in deep networks arises the vanishing or exploding gradient problem, as stated by Goodfellow et al. [40]. By unfolding the network for too many time steps the gradients for some weights get too small or large and take the optimization in a wrong direction. This led to the development of recurrent units that can solve this problem.

### Long Short Term Memory

The Long Short Term Memory (LSTM) is one of these recurrent units that is solving the vanishing or exploding gradients problem. This approach was proposed by Hochreiter and Schmidhuber [46] in 1997. The LSTM has the ability to model long-term dependencies and short-term dependencies within one unit. It learns what data is stored for how long, as well when and how this data is updated. This is realized by so called gated units within the LSTM unit. A graphical representation of a LSTM unit can be found in Figure 3.5. The LSTM unit is composed of an input-layer, a memory block and an outputlayer. The memory block contains adaptive multiplicative gate units to control the information flow, self-connections for modeling the recurrent behavior, as well input- and output-gates for activation of the memory block. The primary unit of the memory block is the Constant Error Carousel (CEC). The CEC processes the information flow within the memory block and represents the state of the LSTM unit. It controls the gated units and therefore manages, which input is processed, when the state of the memory block is reset by the forget-gate and which information is forwarded to the output-layer. According to Hochreiter and Schmidhuber [46], the CEC keeps the network error constant and therefore solves the vanishing or exploding gradients problem. The data is processed through the LSTM by the following equations:

$$g(x) = \frac{4}{1 + \exp^{-x}} - 2 \tag{3.21}$$

$$h(x) = \frac{2}{1 + \exp^{-x}} - 1 \tag{3.22}$$

$$i_t = \sigma(W_{ix}x_t + W_{im}m_{t-1} + W_{ic}c_{t-1} + b_i)$$
(3.23)

$$f_t = \sigma(W_{fx}x_t + W_{fm}m_{t-1} + W_{fc}c_{t-1} + b_f)$$
(3.24)

$$c_t = f_t \odot c_{t-1} + i_t \odot g(W_{cx}x_t + W_{cm}m_{t-1} + b_c)$$
(3.25)

$$o_t = \sigma(W_{ox}x_t + W_{om}m_{t-1} + W_{oc}c_t + b_o)$$
(3.26)

$$m_t = o_t \odot h(c_t) \tag{3.27}$$

$$y_t = W_{ym}m_t + b_y \tag{3.28}$$

 $i_t, o_t, f_t$  represent the output of the input-gate, the output-gate and the forgetgate.  $c_t$  is the activation vector for each cell and  $m_t$  the output of the memory block respectively. W and b are the weight matrices and bias vectors of the LSTM unit, connecting all components.  $\odot$  represents the scalar product of two vectors and  $\sigma$  is an activation function. The final output of the LSTM unit is computed according to Equation 3.28. Learning of the LSTM unit is done by truncated Backpropagtion Through Time, a modified version of BPTT, where the update is performed only every k time steps and backwards only for a fixed number of time steps.



Figure 3.5.: Long Short Term Memory unit [68].

# 3.3.4. Recurrent Neural Network Literature Review

Because of their specialty to capture time dependent patterns, Recurrent Neural Network models have been heavily used for time series forecasting. An introductory overview, also about other recurrent network types, which exceed the scope of this thesis can be found in the work of Bianchi et al. [6]. In the following a few selected recent works are discussed. Besides the overview Bianchi et al. [6] also performed a comparative study and evaluated several recurrent networks, including Elman RNN, LSTM, Gated Recurrent Units, Non-linear Autoregressive Exogenous model and Echo State Network on synthetic and real world data sets. They found that there is no general solution and that each task has specific requirements to the model. They also found Elman RNN to outperform the more complex gated RNNs, like LSTM on some time series problems, whereas the LSTM outperformed the other tested networks in case the time series is non-linear.

Smith and Jin [84] applied RNN for chaotic time series prediction. They used a multi-objective evolutionary optimization algorithm to train an ensemble of Elman RNN. The proposed model was evaluated on the Mackey-Glass time series and the Sunspot data set, both containing highly non-linear patterns. They achieved satisfactory forecast results with their approach for these problems, that are difficult to predict.

Chitsaz et al. [19] used a RNN for short term electricity load forecasting. The proposed model extracts wavelets, transformations of the data, from the time

series and uses these as inputs for a RNN. Experimental evaluation showed that the recurrent approach is superior to feed forward ANNs supplemented by wavelet transformations, which underlines the utility of RNNs for time dependent prediction tasks.

Chandra [15] proposed a RNN model, supplemented by a competitive cooperative co-evolution optimization, a nature inspired optimization approach. The proposed model was evaluated on several chaotic time series. An extensive comparison against several models from literature showed that recurrent ANNs are superior to the other evaluated approaches. The non-linearity of the chaotic time series was captured with higher accuracy, which resulted in a better forecast accuracy, compared to models like MLP or RBF neural networks.

Gers et al. [37] applied a LSTM model for prediction of non-linear time series data. They tried to evaluate, when to use complex approaches like LSTM compared to simple feed forward networks like MLP. Evaluation on several time series data showed that the LSTM model should be applied only if a simpler approach fails to capture the structure of the data with satisfying accuracy. Furthermore, they propose to combine the LSTM with simpler structures if needed but did not evaluate this proposal.

Ma et al. [68] published a LSTM model for traffic speed prediction. The model was evaluated on travel speed data collected by sensors on an expressway in Beijing. An extensive evaluation against other recurrent ANNs, Support Vector Regression and classical statistical models was done and the LSTM was found to outperform the other models in terms of accuracy and stability. The authors conclude that this underlines the ability of the LSTM to capture characteristics of the time series, like seasonality and trend.

In 2017 Hsu [47] proposed a LSTM model augmented by an autoencoder. An autoencoder is a special ANN that is used for data extraction to get a compressed representation of this. Hsu argues that the LSTM can capture the long-term dependencies of the time series, but has difficulties to capture shortterm relations correctly, which he tries to overcome by combining the LSTM with an autoencoder. Experimental evaluation on four data sets, including chaotic time series, shows that the proposed model is superior to other state of the art time series prediction approaches.



Figure 3.6.: Deep Artificial Neural Network [92]

# 3.3.5. Deep Learning for Time Series Forecasting

In recent years more and more complex ANN gained research interest and steadily obtained better results. If the (unfolded) graph of the neural network gets deep, which means that it has many layers, it is called Deep Learning, as stated by Schmidhuber [80] and Goodfellow et al. [40]. The number of layers is also referred to as the depth of the ANN. In literature it is not clearly defined, how many layers a neural network at least needs, to call it deep. For this work networks with at least three hidden layers are regarded as deep. RNN can be regarded as deep by its nature because unfolding of recurrent units adds automatically depth to the unfolded network graph with each processed timestep. An exemplary graph of a deep ANN is shown in Figure 3.6. The structure of the network, defined the depth, width and types of layers, is called the network architecture or topology. Taweh [92] describes that each layer of a deep network learns a level of abstraction of the given data until the desired complexity of the representation is reached. Mathematically the data is transferred from one space to another by each layer until the solution space is reached.

Busseti et al. [12] proposed a deep ANN for electricity load prediction. They compared deep feed forward networks with deep RNN and other state of the art models on real world data sets of the electricity sector. The deep RNN was found to be superior according to the forecast accuracy. The authors also

state, that the performance of the deep ANN highly depends on the network topology. They showed that deep architectures can deal with the non-linearity and seasonality of the electricity load time series.

Kuremoto et al. [58] published a deep model composed of several layers of Restricted Boltzmann machines, a special type of neural network. They used a combination of Backpropagation and Particle Swarm Optimization to train the ANN. The proposed model was evaluated on the CATS benchmark data sets [61] and several chaotic time series. Evaluation showed the superiority of the deep model compared to simpler ANN.

Yeo [100] applied a deep LSTM model to chaotic time series data. The output layer was modified to return a confidence interval instead of precise forecasts. Experimental evaluation on several synthetic chaotic and real world data sets showed the proposed model to reach a satisfying forecast accuracy, even if the data is highly non-linear. Yeo concludes that deep models are a powerful tool for prediction of dynamical systems.

These are only a few selected examples of deep ANN in the area of time series forecasting. Interested readers are referred to the work of Laengkvist et al. [64] and the paper of Gamboa [35] for an introductory overview. Both mentioned surveys conclude that deep learning is an emerging approach with promising results (also) in the area of time series prediction.

To the authors best knowledge there is currently no published work, applying deep learning techniques beyond RNNs for spare part demand forecasting.

# 4. Data Basis and Current Model

This chapter provides a description of the data, its features and briefly summarizes the data preparation steps. Furthermore, the current modeling approach is discussed and analyzed. Possible enhancements of the current model that could improve the forecast accuracy are proposed and reviewed.

# 4.1. Spare Part Demand Data

The real world data used for this thesis is provided by a large, worldwide operating, automotive OEM. The data contains plenty features and several additional derived features. For the scope of the model to be developed only a selection of the provided data is needed. This works focus is set on young fastmoving spare parts with or without Vehicle Production Data (VPD). A part is regarded as fast-moving if the Average Demand Interval (ADI), the average of all intervals between two successive demands is less than 1.51 months. A part is considered as young part if the last month with demand is within the current year and the period between the first demand occurrence and the last demand occurrence, the demand period, is within the interval of 12 to 59 months. Furthermore, an average monthly demand greater than 7 is taken into account as selection condition. Table 4.1 summarizes the selection criteria of the parts that are covered by the model developed within this work.

For evaluation sufficient historic demand data for each part is needed. Thus, the data also contains parts that fulfilled the selection criteria in the past and now provide demand data for a longer period. In total data of 7191 different parts with VPD and 4989 parts without VPD is available. The data ranges from January 2007 until December 2017. Figure 4.1 shows the distribution of demand intervals, the range from first until last demand occurrence per part,

|                         | STPM-VPD            | STPM                |
|-------------------------|---------------------|---------------------|
| Average Demand Interval | < 1.51              | < 1.51              |
| Demand period in months | $12 \le t \le 59$   | $12 \le t \le 59$   |
| Last demand occurrence  | within current year | within current year |
| Average monthly demand  | > 7                 | > 7                 |
| Vehicle Production Data | available           | not available       |
| Number of parts         | 7191                | 4989                |

Table 4.1.: Criteria for data selection.

for all 12180 different parts contained in the data. Most parts have a history larger than 60 months. This is useful for the evaluation process. For evaluation of the models a hold-out-sample will be used. The model will be trained on a fixed period, namely the first 24 months after the first demand occurrence and evaluation is done on the complete period until the last demand occurrence. This evaluates on the one hand side how well the model could fit the training data and on the other hand side how accurate the future is predicted by the model, which is evaluated by the remaining historic demand data, not used for model training, the so-called hold-out-sample.

Data pre-processing steps, e.g. outlier detection and removal, are done by IBM before the data is passed to the model. In the scope of this work only the cleaned data is used, so a detailed description of the pre-processing and data cleansing steps is abandoned.

The data available for this thesis contains the following features:

- An explicitly identifying **part-number** (anonymized due to data privacy constraints)
- The **month**, as a continuous number composed of year and month in the format *YYYYMM*
- The historic **demand** of each month as integer
- The historic and future **vehicle production** of each month as integer (optional)

The data was aggregated on a monthly basis. As provided by the OEM the historic demand is on a daily level. Tests, performed by IBM showed that the current model can handle data best if the demand is aggregated monthly.



Figure 4.1.: Histogram: Demand period per part.

Aggregated by months the time series becomes smoother and the non-linearity is decreased, which results in data, easier to forecast. Figure 4.2 shows the demand for an exemplary part over the same period. The abscissa shows time and the ordinate shows demand. The data is aggregated on a daily, weekly and monthly level. The daily data is intermittent, which means that there are periods with no demand at all, with a broad spectrum, which is indicated by plenty peaks in the demand curve. The weekly data only has a broad spectrum, but the demand curve is already smoother than for the daily data. The weekly data also rarely has periods without demand. The monthly data has a less wider spectrum and usually no periods without demand at all. It could be assumed that the order process of the parts, based on the exact dates, is performed on a monthly basis. This results in a strong seasonality within a month, which is removed if aggregated to months. The demand curve usually gets smoother the higher the aggregation level becomes. A higher level than monthly aggregation is dismissed because the data points available for training the model get too low. The Vehicle Production Data is provided on a yearly



Figure 4.2.: Same period of demand on different aggregation levels.

basis. Because of the monthly aggregation level the VPD is equally distributed over all months of a year.

# 4.2. Current Model

The Short-Term Prediction Model, short-term representing the short period of historic demand data available for model training, is based on a regression approach. It exists a model for parts with VPD, taking the multivariate time series as input and a model for parts without VPD, using the univariate data respectively.

### 4.2.1. STPM-VPD Model

The STPM-VPD model takes the historic demand and the VPD as multivariate time series input. Based on six different parameters a regression model is build to forecast the spare part demand. The parameters are

- $\alpha_f$  as part failure rate,
- $\alpha_d$  as decay / increase rate of the part failure rate,
- $\alpha_o$  as offset, when part failures start to affect the demand,
- $\beta_f$  as vehicle depletion rate,
- $\beta_d$  as decay / increase rate of the vehicle depletion rate,
- $\beta_o$  as offset, when vehicles start to disappear from market.



Figure 4.3.: Examples for STPM-VPD predictions.

Based on the training data these parameters are initially guessed. The forecast is calculated based on all six parameters, weighting the cumulative amount of in the market remaining vehicles for each time-step, the guessed part failure rates and the historic demand. According to a one-dimensional optimization the vehicle depletion rate  $\beta_f$  is systematically tweaked to minimize the error between the prediction, based on the current parameter set and the true historic demand. The final prediction is then calculated according to the optimized vehicle depletion rate. Figure 4.3 shows the prediction of the STPM-VPD model exemplary for two different spare parts with VPD. The spare part demand is represented on the right ordinate and the VPD is shown with different scale on the left. The first diagram shows a rather overestimated demand prediction, whereas the second one visualizes a forecast that very accurately captures the structure of the demand.

### 4.2.2. STPM Model

The STPM model takes the historic spare part demand as univariate time series input. Based on a linear regression approach two trend parameters  $\alpha_t$ and  $\beta_t$  are derived for each time step of the historic demand. According to the two parameters a first model is fitted to the training data. The pre-processed demand data is supplemented by a demand of 0 at the guessed End of Life of the part to force the model to a prediction, decreasing to zero until the end of the prediction horizon. In a second step this time series then is used as input for a cubic spline interpolation model. The cubic spline model is finally applied to forecast the values in between the end of the demand history used for model training and the guessed EOL. Some exemplary predictions of the STPM model are shown in Figure 4.4. The diagram of the first part shows a prediction overestimating the demand. The second plot shows a satisfactory prediction.

# 4.3. Enhancements of Current Model

One of the targets of this work is to evaluate, whether the forecast accuracy of the current model could be improved. Based on an analysis of the current model flaws have been identified. The following sections describe some of



Figure 4.4.: Examples for STPM predictions.

these weaknesses of the current models and try to overcome them by proposing improvements that shall increase the forecast accuracy of the approaches. Each of these improvements is described, the performance of the enhancements is compared against the currently applied model and the outcome is discussed.

### 4.3.1. Enhancements of STPM-VPD Model

One of the weaknesses of the STPM-VPD model is that only one of its parameters is optimized, the others are guessed. This motivated the idea to apply a constrained based multi objective optimization approach, which involves all six parameters. The constraints were defined based on previous STPM-VPD experiences, to shrink the solution space. For optimization a Downhill-Simplex approach [72] was applied. The models were evaluated on a random sample of 40 parts, which according to IBM showed good generalization properties in past experiments. The models are trained on the first 24 months of demand history and evaluated on the complete available data. The forecast accuracy was rated according to Chi-Squared-Distance as defined in Equation 4.1.  $x_t$ and  $y_t$  are the historic and the predicted demand at time t, each normalized by their overall sum. T is the total number of time-steps.

$$\chi^2 = \frac{1}{2} \sum_{t=1}^T \frac{(x_t - y_t)^2}{(x_t + y_t)}$$
(4.1)

For evaluation the results of a version of the currently applied model with and without the enhancement are run on the same sample and the forecasts for each part are compared according to their Chi-Squared-Distance to the historic demand. Optimization of all six parameters led to an increased forecast accuracy according to Chi-Squared-Distance for 45% of the parts of the tested sample. If only  $\alpha_d$ ,  $\beta_f$ ,  $\beta_d$  and  $\beta_o$  are optimized and the other parameters are guessed, as before, the forecast accuracy according to Chi-Squared Distance is increased for 52.5% of the parts. Due to the increased computational complexity the improvement of the forecast accuracy is a rather small benefit. It may be noted that different optimization approaches, e.g. Differential Evolution [87] performed worse, than the applied algorithm.

Another enhancement tries to overcome the assumption that the VPD is equally distributed over a year. To smooth the VPD a polynomial is fit to the data. A polynomial of degree 15 was found to perform best according



Figure 4.5.: Comparison STPM-VPD versus STPM-VPD-enh predictions.

to the forecast accuracy of the STPM-VPD model. The model with polynomial smoothed VPD input increased the forecast performance for 60.5% of the parts, nevertheless the enhancements were rather small compared to the overall accuracy. It may be noted, that the smoothing by a polynomial does not keep the original sum of vehicles per year. Prototypical tests with another linearization technique that keeps the original sum of vehicles per year showed an improvement of prediction accuracy for only 37% of parts. This concludes, that it seems to be more important to smooth the input data than keeping the actual sum.

Figure 4.5 presents tow plots of the predictions of the enhanced, denoted as STPM-VPD-enh and the basic STPM-VPD model on exemplary spare parts. The accuracy of the forecast of diagram 4.5a was further decreased by the proposed enhancements, even stronger overestimating the spare part demand. Plot 4.5b features a prediction that is boosted in terms of accuracy by the improvements to the multivariate time series model, unfortunately still slightly overestimating the demand. Concluding, these are only a few possible enhancements of the STPM-VPD model. To cover all possibilities, e.g. forecast plausibility checks or additional parameters, would exceed the scope of this work. Summarizing it can be stated that all improvements have a rather small influence on the forecast performance compared to the real spare part demand. Furthermore, the changes to the model influence each other and the effects do not always sum up positive. Therefore, increasing the model performance is possible but becomes a tough and extensive task, which benefits the idea of a fundamental different approach.

### 4.3.2. Enhancements of STPM Model

The STPM model overestimates the demand for plenty of parts. This is caused by the limited amount of data and the amplification of a demand growth in the first months of demand history. To overcome this overestimation a forecast plausibility check is added to the model. As benchmarks the slope of a straight linear curve of the first few predicted months and the relation between the average historic demand and the average predicted demand are applied. Rules with estimated threshold values check whether the prediction is plausible or not. In latter case a down-scaling is performed. Therefore, a guessed value, a multiple of the average historic demand, is assumed at the point in time with



Figure 4.6.: Comparison STPM versus STPM-enh predictions.

the highest forecast value and the STPM model is calculated again according to the historic data supplemented with the assumed demand value.

An enhanced version and the currently applied model are compared on a sample of 40 spare parts, selected by IBM based on previous experimental experiences. Like for the model with VPD, the first 24 months of demand history are used for model training and the complete historic demand data is used for evaluation. The plausibility check of the prediction led to an improvement of forecast accuracy according to Chi-Squared-Distance for 78% of the tested parts compared to the currently applied model. Nevertheless, the scaled predictions still often overestimate the real demand. The derivation of the rule threshold values is an expensive task that gets even more complex, if the number of different rules applied grows.

Figure 4.6 shows a comparison of the enhanced univariate time series model, denoted as STPM-enh with the basic STPM model on some exemplary parts. The plot of 4.6a shows a case where neither the enhanced version, nor the basic version satisfactory predicted the spare part demand. The diagram in 4.6b represents a part, the forecast is improved by the proposed enhancement compared to the basic model. Nevertheless, due to the limited information, fitting the STPM model is a tough task. Even if the plausibility check improved the forecast performance for plenty of parts the overall accuracy related to the real demand is still not satisfying. Because of the overall prediction accuracy and the limited possibilities to tune the model the current approach should be questioned at all.

# Deep Learning based Approach for Spare Part Demand Forecasting

Based on the theoretical foundations and literature review from Chapter 2 and 3 this section introduces a deep learning based model for spare part demand forecasting. The current model has some weaknesses, as described in Chapter 4, that should be dealt with by a fundamentally different approach. First the new approach is introduced. Then the hyperparameters of the model are derived and statistically evaluated. Finally, the findings of this chapter are summarized and discussed.

# 5.1. Deep Learning based Model

Time series are characterized by features like linearity, trend, seasonality and stationarity. All these features require a model that is capable of representing these properties. Based on the literature review from Chapter 3 Support Vector Regression and Artificial Neural Network models are the two most promising approaches, recently often applied in research, that are capable of dealing with these features. Support Vector Regression stands up by the ability to find always an optimal solution. ANNs feature by outstanding pattern recognition capabilities. Both techniques are sensible to hyperparameter configuration. As also seen from literature review, which model is superior depends on the task. There exists no model that outperforms all the others. Because both models are promising alternatives to the current approach a Proof of Concept (POC) test was performed with SVR and ANN for spare part demand forecasting based on the provided data. This should assist as a decision basis, which technique should be evaluated in detail.

The POC showed, that SVR is not competitive compared to the currently applied model, whereas a simple Multi Layer Perceptron was already performing well. One possible explanation of this result is that there is too few training data available for a SVR approach to find an optimal solution. Al-Saba and El-Amin [2] found ANN to perform well, even if there is a low amount of training data. Nonetheless, the POC was not of statistical accuracy. The promising results of the MLP could, for example depend on lucky parameter initialization.

Literature review furthermore showed Recurrent Neural Network models and deep ANNs to perform well on time series forecasting tasks. In case of RNNs this is based on their capability of learning time dependent patterns and in case of deep networks the ability of representing highly non-linear relations within the data can be mentioned. So, the POC was extended by these approaches to get an overview, which models are suitable for the current task and if the limited amount of training data is enough to even train more complex neural networks. ANNs with recurrent and densely connected layers, like the layers of a MLP, showed the most promising results.

To the authors best knowledge, such an approach was not applied to spare part demand forecasting yet, even if some works like the paper of Busseti et al. [12] and the work of Yeo [100] proposed similar models for different time series problems. Lolli et al. [65] applied single hidden layer ANN for spare part demand forecasting, which can be regarded as a work motivating the idea of applying more complex networks, as stated in their outlook. The abovementioned points led to the decision to detailed evaluate a deep learning based model for the task of spare part demand forecasting.

Deep Learning is characterized by many hyperparameters that could be tuned. According to Busseti et al. [12] the topology of a deep ANN is the most important of these influence factors. For this work hidden layers of three different types of layers are used, as described in Section 3.3.1 and 3.3.3:

- **Densely connected** layers are layers, where each input is connected to each neuron and the output of each unit is forwarded to each neuron of the next layer. The densely connected layer works as an input processing unit, learning patterns and transforming the data in space. An ANN composed of densely connected layers is shown in Figure 3.1 on page 27.
- Elman layer, or simple recurrent layer, is a layer, where the output is delayed one time step and used as additional input in the next time step

via a context layer. The Elman layer represents a short-term memory. The structure of an Elman network is shown in Figure 3.4 on page 35.

• Long Short Term Memory is a layer, that independently learns what information is stored, for what periods. The LSTM function as a longand short-term memory layer, storing information that is regarded as important by the deep ANN. Figure 3.5 on page 37 visualizes the structure of a LSTM unit.

The special capabilities of the three types of layers shall learn the time series features from the training data and accurately predict the future by one-stepahead forecasts. The densely connected layers are regarded as pattern learning units that shall prepare the input for the recurrent layers and learn autocorrelations between the different features of the multivariate time series data. The recurrent layers shall learn time dependent features. The Elman layer is regarded as short-term memory, connecting only to the previous time step. The LSTM is regarded as self-learning memory that independently decides, which information is important for the current time series. The depth and width of the ANN are derived experimentally in a later section. To limit the space of possible topology, building blocks are defined. Each recurrent layer is followed by a densely connected layer to process the output and prepare it for the next recurrent layer. Furthermore, the different possible depths and widths are also limited.

As stated in section 3.3.1, different optimization algorithms could be applied for ANN parameter learning. Stochastic Gradient Descent, as one of the most used optimizer, is applied as a baseline. Furthermore, RMSprop and Adam as specialized optimizer for deep and recurrent ANNs are evaluated. The learning-rate as hyperparameter of the optimizer is derived experimentally in combination with the optimizer and is described in more detail in a related section later. Mean Squared Error (MSE) is applied as error function to optimize. MSE is defined in Equation 5.1, where  $\boldsymbol{x}$  is the historic demand vector,  $\hat{\boldsymbol{x}}$  the predicted demand vector and T the number of time steps, or dimension of the vector.

$$E_{MSE} = \frac{1}{T} \sum_{t=1}^{n} (x_t - \hat{x}_t)^2$$
(5.1)

As activation functions ReLU, leaky ReLU and SoftPlus, as defined in Section 3.3.1 are applied. According to literature, e.g. by Glorot et al. [39], these



Figure 5.1.: Order of hyperparameter determination.

are the most suitable functions for recurrent and deep ANN. Further hyperparameters considered are the number of training epochs and the size of the sliding window. The sliding window size defines how many past values are used as input for each time step. The window is then moved sequential trough the data. The number of training epochs defines how many training cycles for the given training data are completed until the optimization of the network parameters is finished. Additionally, data augmentation as input related optimization process is evaluated. By data augmentation the training data is extended by artificial variations to evaluate the influence of a larger number of training instances available.

All mentioned hyperparameters are derived by statistical experiments to build a separate deep learning based model for parts with VPD, in the following referred to as DL-STPM-VPD, and for parts without VPD, referred to as DL-STPM. As input for the DL-STPM-VPD model the historic demand, the VPD and the cumulative VPD at time t are used. Based on the historic demand and the VPD, the model should learn the relation of both, e.g. part depletion rate. The cumulative VPD shall help the model to determine the remaining cars in the market. Further inputs like the future VPD are omitted based on experiences from the POC. For the DL-STPM model only the historic demand at time t is available as input. For all models the training horizon is fixed at 24 months, meaning the training data contains 24 different time steps. This constraint is assumed because of convenience for evaluation, clearly separating training and validation data.

To derive the hyperparameters the experiments are performed in a sequential process. The results of the completed experiments are used as configuration input for the successive tests. In deep learning literature exists no golden road for hyperparameter determination. Based on recommendations and best practices the order of hyperparameter as seen in Figure 5.1 is followed in the next sections.

# 5.2. Experimental Setup

The following section describes the framework for the experiments. The used evaluation functions are introduced, and the selection of appropriate spare part samples are discussed. Furthermore, the significance evaluation as major quality measure is introduced.

# 5.2.1. Evaluation Functions

To evaluate the forecast accuracy of the proposed model different evaluation functions will be used. In the following  $\boldsymbol{x}$  and  $\hat{\boldsymbol{x}}$  represent the historic demand vector and the predicted demand vector, both of same length and T is the dimension of the vector, representing the number of time steps. As main evaluation measure the Root Mean Squared Error (RMSE) is chosen. This scale dependent distance-based error function is widely used in literature. As MSE is used for weight optimization of the ANN, Root Mean Squared Error is preferred for evaluation because it is in the same scale as the data. It is defined in Equation 5.2. Additionally the Chi-Squared-Distance [59], as distance-based error function that has been used by IBM previously in the project and is therefore known by the customer as quality measure, as well as the Correlation Coefficient (CC) as similarity-based error function are introduced in Equation 5.3 and 5.4 respectively. These shall supplement the results of the main evaluation function RMSE and avoid misleading conclusions by relying on only one evaluation function. For the both first mentioned evaluation functions a smaller value indicates that the prediction is closer to the real demand. The values for the CC are in the interval [1, -1]. Values closer to 1 indicate a stronger correlation between the historic and predicted demand, which means that the prediction is similar to the history. Even though there exist plenty other evaluation measures, a review of several functions can be found in the work of Hyndman and Koehler [49], this selection was chosen based on the literature analysis and previous project experiences.

$$E_{RMSE} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (x_t - \hat{x}_t)^2}$$
(5.2)

$$E_{\chi^2} = \frac{1}{2} \sum_{t=1}^{T} \frac{(x_t - \hat{x}_t)^2}{(x_t + \hat{x}_t)}$$
(5.3)

$$E_{CC} = \frac{T(\sum_{t=1}^{T} x_t \hat{x}_t) - (\sum_{t=1}^{T} x_t)(\sum_{t=1}^{T} \hat{x}_t)}{\sqrt{(T\sum_{t=1}^{T} x_t^2 - (\sum_{t=1}^{T} x_t)^2)(T\sum_{t=1}^{T} \hat{x}_t^2 - (\sum_{t=1}^{T} \hat{x}_t)^2)}}$$
(5.4)

To evaluate, which model performed best on a particular part in an experiment a tournament evaluation is applied. The approach is described in Algorithm 1. The error vectors for each model or configuration on each part, containing the error values of all runs of the model, are calculated according to the defined evaluation functions in Line 5. For tournament evaluation the median error of each error vector is considered, which is extracted in Line 7. For a spare part of the evaluated sample a ranking according to each evaluation function is created in Line 9. A model gets a point for each model it outperformed according to an evaluation function, as defined by Line 10. These points are summed for each model over all evaluation functions, resulting in a final score for that particular part in Row 12. The model with the highest score is regarded as best model for this particular part. This process is performed for all parts of a sample to get the best model for each part. If the score is summed for each model over all parts of a sample, the best model of the sample can be found. This optional step is performed in Line 14. If not stated else, all three above described evaluation measures are taken into account for tournament scoring.

| Algorithm 1 Algorithm of tournament evaluation.                  |  |  |
|------------------------------------------------------------------|--|--|
| 1: for each p in Spare parts do                                  |  |  |
| 2: <b>for each</b> e in Evaluation functions <b>do</b>           |  |  |
| 3: for each m in models do                                       |  |  |
| 4: <b>for each</b> r in Runs of model <b>do</b>                  |  |  |
| 5: $ErrorVector[e, m, r] \leftarrow e(p, m)$                     |  |  |
| 6: end for                                                       |  |  |
| 7: $MedianError[e, m] \leftarrow Median(ErrorVector[e, m])$      |  |  |
| 8: end for                                                       |  |  |
| 9: $Ranking[e] \leftarrow CreateRanking(e, MedianError[e])$      |  |  |
| 10: $Score[model, p, e] \leftarrow NumberOfModels - RankOfModel$ |  |  |
| 11: end for                                                      |  |  |
| 12: $Score[model, p] \leftarrow \sum_{e} Score[p, model, e]$     |  |  |
| 13: end for                                                      |  |  |
| 14: $Score[model] \leftarrow \sum_{p} Score[model, p]$           |  |  |
| 1                                                                |  |  |

# 5.2.2. Sample Selection

For evaluation random samples of the parts are drawn because calculation on all available parts would simply take too much time with available computational resources. For each evaluation step, deriving the deep learning based model, a sample of 40 parts is used. A sample of that size showed good generalization results during other tests performed by IBM with the current data set. The sample-size can be calculated according to the Cochran formula [20], shown in Equation 5.5. Z is the z-score, describing the area under the bell curve of a Gaussian distribution, according to a desired confidence interval, which could be derived from a Standard Gaussian z-Table. For this work we assume a confidence interval of 95%, which results in a z-score of 1.96. p represents the proportion of the desired outcome. As this proportion is unknown, 0.5 is assumed, which is usually taken as value for p if the true proportion of the classes in the sample, in this case parts, where a model is superior to the other model, is unknown. q is 1 - p and e represents the margin of error, within which the results should range.

$$n_0 = \frac{Z^2 pq}{e^2} \tag{5.5}$$

According to Cochran's formula a sample size of 40 with a confidence interval of 95% results in a margin of error of 15% for both models. This margin of error

is accepted in favor of the computation time of the experiments, even though it allows wide spread results that could lead to a wrong direction in worst case. Furthermore, the sample size calculation assumes a Gaussian distribution. As the distribution of error is not known to be normally distributed, each experiment need to be repeated several times. As of the central limit theorem [42], a sampled error distribution is normal distributed if a large enough number of independent random samples with replacement are taken from the error distribution. A rule of thumb states that at least 30 samples should be taken. Thus, each experiment will be repeated 31 times. For each experiment a new sample of 40 parts is drawn from the multivariate and univariate time series data for the model with and without VPD respectively. On the one hand side this should avoid overfitting of the model on a particular training sample and on the other hand side better generalization capabilities of the model should be achieved.

# 5.2.3. Significance Test

To ensure statistical significance of the results and to avoid decisions by coincidence, a significance test will be applied to the experimental outcomes. As significance test the Wilcoxon-Rank-Sum-Test, also known as Mann-Whitney-U test, will be applied. As stated by Walpole et al. [96] this non-parametric significance test has weaker requirements to the compared distributions than for example the paired t-Test. The significance test checks whether a null-hypothesis is correct or not. In our case the null-hypothesis states that both compared error vectors are sampled from the same distribution. The test estimates a p-value. If the p-value is less than or equal to a significance level  $\alpha = 0.05$ , the null-hypothesis is rejected, which means that both error vectors are drawn from different distributions and the result can be regarded as significant.

To find the best performing model according to the significance test, tow significance measures are defined in the following. The *best-model-significance* of a model M, short  $\psi_{bm}$ , is defined by the total number of models that performed significantly worse on parts, where M performed best. To determine  $\psi_{bm}$ , for each part it is calculated, which model or configuration performed best according to the applied evaluation functions. The error vector, containing the errors of all runs of the best model on this part according to the in the previous section defined primary evaluation function RMSE, is compared to the error vectors of the other models or configurations of a particular experiment on this part. If the p-value of one of these tests is less than or equal to 0.05 the tested model or configuration is considered as significantly worse than M. Over all parts these significant worse models or configurations are counted and summed up for each best performing model, resulting in a *best-model-significance* value for each model taking part in the experiment. The model or configuration that in the end has the highest  $\psi_{bm}$  value is regarded as the significant best model of the particular experiment. The maximal reachable  $\psi_{bm}$  score is calculated according to Equation 5.6, where N is the number of models involved in the evaluation process and P is the number of parts, contained in the sample.

$$\psi_{bm-max} = (N-1)P \tag{5.6}$$

The second significance measure introduced is the *spare-part-significance*, short  $\psi_{sp}$ . To determine  $\psi_{sp}$  for a model M, for each part of the sample the best performing model as of  $E_{RMSE}$ ,  $E_{\chi^2}$  and  $E_{CC}$  is identified. For each spare part the RMSE error vector of the for this part best model is taken as reference vector. This reference vector is compared with the error vector of M for the particular part and a p-value for that part is calculated. In case this p-value is less than or equal to 0.05 it is stating that M performed significantly worse than the best model of this part. This process is done for all spare parts of a sample and the number, M performed significantly worse is counted over all parts of a sample, resulting in the  $\psi_{sp}$  measure. The spare-part-significance indicates, whether a model M produces competitive results on parts of a sample itself were found not to perform best. Smaller values are better, representing a model less often significantly worse than the best model per part. The minimal value is zero in case the model performed never significantly worse than another and the maximum value is equal to the number of parts contained in the sample used for evaluation.

## 5.3. Hyperparameter Determination

As stated in section 5.1, the proposed model contains plenty of hyperparameters that could be configured and tuned to achieve an optimal result. This section will describe the experiments that have been performed to determine the hyperparameters of the model. Each hyperparameter considered will be

| Hyperparameter      | Value   |
|---------------------|---------|
| Optimizer           | RMSprop |
| Learning-rate       | 0.003   |
| Activation function | ReLU    |
| Training epochs     | 100     |
| Sliding window size | 5       |

Table 5.1.: Initial hyperparameter configuration.

statistically evaluated. The experiments build upon one another. The results of an evaluation will be used in the following experiments. For the order of hyperparameter derivation exists no golden road. In literature different possibilities based on the authors favors could be found. The following order is based upon experiences gained in the POC phase and best practices seen during literature review.

In the beginning all hyperparameters are guessed based on the empirical knowledge from the POC. Adaptation takes place after each experiment. The initial hyperparameter configuration is assumed according to Table 5.1. This configuration was found producing promising results, so it is used as a starting point for the evaluation of the approach.

## 5.3.1. Network Architecture

During the POC several different network architectures were applied to the spare part data set. Some performed promising and some were not competitive compared to the current model. Busseti et al. [12] found in their research that the architecture has big impact on the performance of a deep learning based model. Therefore, the first evaluated hyperparameter is the topology of the proposed model.

Networks with a densely connected layer as first hidden layer showed good results during the POC, whereas networks with a recurrent layer as first one showed promising outcomes only in some cases. This could be explained by the capability of this layer type to transform the input data by projecting to another space and learning what values of the input vector deserve higher or lower weights. In case of the multivariate time series model one can argue that this first layer learns the auto-correlation between the demand and the VPD. This leads to a densely connected layer as first hidden layer for all architectures. The following building blocks are used for the subsequent hidden layers:

- $\bullet~\mathbf{RD}:$  Elman layer followed by a densely connected layer
- LD: Long Short Term Memory layer followed by a densely connected layer

These three different layer-types are placed between an input-layer containing a neuron for each element of the input vector and an output-layer with only one unit, returning the one-step-ahead forecast. To downsize the space of possible network topology constraints according width and depth are set up. The depth is limited to either 3, 5 or 7 hidden layers. The width of each layer is limited to 5 different values. Based on these constraints all permutations of above described layer types with a first hidden layer fixed as densely connected, five different widths and three depths could be calculated according to Equation 5.7, where d = (3, 5, 7) are the different depths and w = 5 is the number of different widths.

$$a = \sum_{d} w^{d} 2^{\frac{d-1}{2}} \tag{5.7}$$

This results in a total of 637,750 possible network architectures. This is by far too much to statistically test all topology with the available computational resources. To overcome this infeasibility 1000 random sampled architectures will be run three times on a sample of 40 parts. The 50 best models then will be evaluated statistically and run 31 times on another 40 parts sample. This solution was favored over the strategy to thoroughly test 150 architectures, because it was preferred to touch a wider range of the space of topology, compared to the in-depth tested smaller range, even though results of three runs could be achieved by coincidence, which shall be overruled by the subsequent detailed test. Both approaches approximately use the for this experiment at maximum possible computational calculation time.

A depth of three hidden layers is regarded as on the border to deep learning, but as in favor of a less complex model this depth is taken into account. Deeper networks than five and seven hidden layers were neglected, because it is assumed that not enough data is available for training of such a model. Furthermore, the space of topology grows exponentially related to the network depth. The latter one also holds for more possible values related to the network width. Less potential width values are dismissed because they will restrict the

| Depth | Layer | DL-STPM-VPD        | DL-STPM             |
|-------|-------|--------------------|---------------------|
|       | H1    | 15, 18, 22, 26, 30 | 5, 7, 10, 13, 15    |
| 3     | H2    | 9, 11, 13, 15, 18  | 3, 5, 7, 9, 11      |
|       | H3    | 3, 5, 7, 9, 11     | 3, 5, 7, 9, 11      |
|       | H1    | 15, 18, 22, 26, 30 | 5, 7, 10, 13, 15    |
|       | H2    | 11, 13, 15, 17, 19 | 5, 7, 9, 11, 13     |
| 5     | H3    | 8, 10, 12, 14, 16  | 4,6,8,10,12         |
|       | H4    | 5, 7, 9, 11, 13    | 3, 5, 7, 9, 11      |
|       | H5    | 3, 5, 7, 9, 11     | 2, 4, 6, 8, 10      |
|       | H1    | 15, 18, 22, 26, 30 | 5, 7, 10, 13, 15    |
|       | H2    | 13, 15, 17, 19, 21 | 5, 7, 9, 11, 13     |
|       | H3    | 11, 13, 15, 17, 19 | 4,  6,  8,  10,  12 |
| 7     | H4    | 9, 11, 13, 15, 17  | 3, 5, 7, 9, 11      |
|       | H5    | 7, 9, 11, 13, 15   | 2, 4, 6, 8, 10      |
|       | H6    | 5, 7, 9, 11, 13    | 2, 3, 5, 7, 9       |
|       | H7    | 3, 5, 7, 9, 11     | 2, 3, 4, 5, 6       |

Table 5.2.: Possible network widths per layer for each depth.

model more than the chosen setup. Table 5.2 shows all possible widths for each layer per model depths. The width of the first hidden layer is derived according to the dimension of the input vector. In case of the DL-STPM-VPD model the input contains three different time series, each for five time steps because of the sliding window size, resulting in a minimal width for the first hidden layer of 15. The maximal width 30 is twice the dimension of the input vector. In case of the DL-STPM the minimum width of the first hidden layer is equal to the dimension of the input vector and the maximum width is three times the input-dimension. The widths for the first hidden layer in-between the minimum and maximum are equally distributed. The first hidden layer is the same for all depths. All other layers are equally distributed according to a funnel-like shape, benefiting architectures with a wider first hidden layer among other things, narrowing with each layer until the last one. This should support the change of dimension from the multi-dimensional input to a onedimensional output, which is the predicted next time-step.

Using the layer type building blocks and the widths, for each depth all permutations for both models are created. From these permutations respectively 40 3-layer, 480 5-layer and 480 7-layer architectures are randomly sampled per

|    | Architecture               | Score |    | Architecture                | Score |
|----|----------------------------|-------|----|-----------------------------|-------|
| 1  | DRDRD-30-17-16-7-9         | 82376 | 26 | DRDLD-26-19-10-7-9          | 75443 |
| 2  | DRDLD-22-13-16-9-11        | 81833 | 27 | DLDRDLD-26-19-19-13-15-11-9 | 75412 |
| 3  | DRDRD-22-17-12-5-11        | 80815 | 28 | DRDLDLD-30-19-19-11-15-11-7 | 75408 |
| 4  | DRDRD-26-13-16-13-7        | 80530 | 29 | DRD-18-13-11                | 75381 |
| 5  | DRDRD-18-17-12-11-11       | 80262 | 30 | DRDRD-30-19-14-5-5          | 75380 |
| 6  | DRDRD-18-15-8-7-11         | 79361 | 31 | DLDRDLD-30-17-13-9-13-13-11 | 75374 |
| 7  | DRDRD-15-13-12-9-11        | 78670 | 32 | DRDRD-15-19-12-11-11        | 75300 |
| 8  | DRD-26-9-9                 | 78542 | 33 | DLDRD-15-11-8-9-7           | 74875 |
| 9  | DRDRD-15-11-16-9-9         | 78438 | 34 | DRDLDLD-15-21-19-9-15-13-3  | 74794 |
| 10 | DRDRD-26-17-8-7-9          | 78412 | 35 | DRDRD-30-19-14-5-9          | 74742 |
| 11 | DRDRD-15-17-10-11-7        | 78391 | 36 | DRDRD-30-11-10-7-11         | 74737 |
| 12 | DRD-26-11-11               | 77815 | 37 | DRDRD-18-13-10-11-9         | 74511 |
| 13 | DRDLDLD-30-21-19-17-13-9-5 | 77748 | 38 | DRDLD-26-11-12-9-5          | 74469 |
| 14 | DRDLD-15-11-8-11-7         | 77725 | 39 | DRDRD-15-11-14-11-5         | 74370 |
| 15 | DRDRD-22-17-14-7-9         | 77545 | 40 | DRDRD-26-15-12-11-11        | 74279 |
| 16 | DRD-18-15-11               | 77403 | 41 | DRDRD-26-19-12-7-7          | 74200 |
| 17 | DRDRD-22-19-8-13-7         | 76936 | 42 | DRDRD-22-19-14-9-7          | 74076 |
| 18 | DRDRD-18-13-8-11-9         | 76934 | 43 | DRDLDLD-26-21-19-15-11-11-7 | 74017 |
| 19 | DRDRD-30-13-8-5-7          | 76756 | 44 | DRD-26-18-9                 | 73992 |
| 20 | DRDRD-15-19-12-13-11       | 76622 | 45 | DRDLDLD-30-21-19-11-9-11-5  | 73930 |
| 21 | DRDRD-15-11-10-7-7         | 76347 | 46 | DRDLD-26-13-12-11-7         | 73926 |
| 22 | DRDRD-26-15-16-11-5        | 76099 | 47 | DRDRD-15-17-14-13-7         | 73897 |
| 23 | DRD-15-13-5                | 75881 | 48 | DRD-30-11-5                 | 73732 |
| 24 | DRD-15-18-7                | 75619 | 49 | DRDRD-15-11-12-13-7         | 73726 |
| 25 | DRDRD-15-13-12-13-9        | 75576 | 50 | DRDRD-22-11-8-7-11          | 73651 |

Table 5.3.: Ranking of 50 best architectures for DL-STPM-VPD.

model. The sample proportion is based on the size of each topology space and the favor of less complex solutions, by proportional covering a larger share for less complex architectures. These 1000 architectures are run three times each. According to the tournament scoring system described in section 5.2.1 a ranking of the tested topology is created. The ranking of the best 50 architectures is given in Table 5.3 and 5.4 respectively. Each architecture is described by the layer-types, D for densely connected, R for Elman layer and L for LSTM, followed by the widths of each layer, separated by - symbol. The maximal reachable score in the tournament ranking was 120,000 (1000 models  $\times$  3 evaluation functions  $\times$  40 parts).

These 50 architectures for each model are run on another spare part sample to statistically evaluate, which network topology should be chosen for subse-

|    | Architecture              | Score |    | Architecture              | Score |
|----|---------------------------|-------|----|---------------------------|-------|
| 1  | DRDRD-7-7-12-5-4          | 82449 | 26 | DRDLD-7-5-8-9-6           | 75418 |
| 2  | DRDLD-5-7-10-7-10         | 81528 | 27 | DRDRD-10-5-10-5-10        | 75384 |
| 3  | DLDRDLD-15-9-6-3-10-9-2   | 78976 | 28 | DRDLDLD-15-13-6-11-10-3-6 | 75378 |
| 4  | DRDRDRD-15-9-12-11-6-5-6  | 78117 | 29 | DLDLDLD-15-13-10-9-10-3-6 | 75282 |
| 5  | DRDLD-13-9-10-5-10        | 77637 | 30 | DRDRDRD-15-13-10-3-4-7-6  | 75249 |
| 6  | DRDRDLD-13-5-12-3-2-5-5   | 77358 | 31 | DRDLDRD-7-9-4-5-4-2-3     | 75186 |
| 7  | DRDLD-5-7-4-7-8           | 77236 | 32 | DRD-5-9-11                | 75139 |
| 8  | DRDLD-13-9-12-3-8         | 77135 | 33 | DLDLDRD-13-9-12-11-4-2-4  | 75131 |
| 9  | DRDLD-10-7-4-7-10         | 77109 | 34 | DRDLD-5-5-8-3-6           | 75049 |
| 10 | DRDLDRD-10-9-4-11-10-9-5  | 76971 | 35 | DRDRD-7-11-6-5-10         | 74939 |
| 11 | DRDLD-15-9-10-3-10        | 76736 | 36 | DRDRD-7-13-12-3-10        | 74913 |
| 12 | DRDLD-10-13-4-7-10        | 76725 | 37 | DLDLDLD-15-5-6-11-4-2-6   | 74788 |
| 13 | DRDLDLD-15-11-4-11-8-7-5  | 76513 | 38 | DRDRDRD-13-7-8-3-4-7-6    | 74720 |
| 14 | DRDLDRD-10-11-12-7-10-3-3 | 76415 | 39 | DLDLD-10-7-6-9-2          | 74653 |
| 15 | DRDLD-7-5-4-7-8           | 76409 | 40 | DRDLDLD-5-9-12-7-6-3-6    | 74639 |
| 16 | DLDLD-13-11-8-3-2         | 76372 | 41 | DRDRDLD-7-5-8-7-2-5-3     | 74571 |
| 17 | DRDRDLD-10-5-8-3-8-3-4    | 76171 | 42 | DLD-7-5-9                 | 74528 |
| 18 | DLDRDLD-5-13-10-11-10-2-5 | 75945 | 43 | DRDLD-15-13-4-9-10        | 74521 |
| 19 | DRDRD-13-11-4-5-2         | 75869 | 44 | DRDLD-15-7-10-7-6         | 74428 |
| 20 | DRDLDLD-10-11-12-5-6-2-2  | 75662 | 45 | DRDRD-10-9-6-3-2          | 74372 |
| 21 | DLDLDLD-15-9-12-7-10-2-3  | 75650 | 46 | DLDRD-15-11-6-7-4         | 74301 |
| 22 | DRDRD-10-13-4-5-4         | 75537 | 47 | DRDLDRD-13-7-10-5-6-7-3   | 74298 |
| 23 | DRDLD-10-11-10-9-4        | 75528 | 48 | DRDRDRD-7-9-12-11-2-9-3   | 74280 |
| 24 | DLDRD-5-9-6-5-4           | 75495 | 49 | DLDRDRD-13-9-10-5-2-5-2   | 74263 |
| 25 | DRDRDRD-13-11-8-5-10-2-4  | 75450 | 50 | DLDLDLD-5-11-10-11-2-5-5  | 74233 |

Table 5.4.: Ranking of 50 best architectures for DL-STPM.

quent experiments. From the results the median performing network run of the 31 runs, according to RMSE, of each tested architecture is selected for tournament ranking. By tournament ranking the best performing architecture for each part, according to RMSE, Chi-Squared-Distance and CC is found. This best performing architecture on each part is used as reference to calculate the significance of the results, as described in section 5.2.3. Therefore, the error vector of the best topology of a part is compared by significance test to the error vectors of the other architectures, resulting in a  $m \times n$  matrix of p-values, where m is the number of parts of the sample and n is the number of architectures tested. The matrix is used to calculate  $\psi_{bm}$  and  $\psi_{sp}$  for this particular experiment. The results of the significance evaluation can be found in Appendix Table A.1 and A.2 respectively.

|    | Architecture                | $\psi_{bm}$ | $\psi_{sp}$ |
|----|-----------------------------|-------------|-------------|
| 1  | DRD-26-18-9                 | 90          | 12          |
| 2  | DRD-30-11-5                 | 88          | 21          |
| 3  | DRD-18-15-11                | 73          | 8           |
| 4  | DRD-26-11-11                | 58          | 13          |
| 5  | DRDRD-30-17-16-7-9          | 49          | 14          |
| 6  | DLDRD-15-11-8-9-7           | 48          | 15          |
| 7  | DRDRD-15-19-12-11-11        | 48          | 16          |
| 8  | DLDRDLD-26-19-19-13-15-11-9 | 42          | 25          |
| 9  | DRDRD-18-17-12-11-11        | 35          | 16          |
| 10 | DRDLD-22-13-16-9-11         | 32          | 13          |
| 11 | DRDLDLD-26-21-19-15-11-11-7 | 30          | 22          |
| 12 | DLDRDLD-30-17-13-9-13-13-11 | 27          | 21          |
| 13 | DRDRD-15-11-10-7-7          | 23          | 17          |
| 14 | DRDRD-30-19-14-5-5          | 22          | 20          |
| 15 | DRD-15-18-7                 | 19          | 16          |
| 16 | DRDRD-22-11-8-7-11          | 17          | 15          |
| 17 | DRD-18-13-11                | 15          | 10          |
| 18 | DRDRD-30-11-10-7-11         | 14          | 16          |
| 19 | DRDRD-15-19-12-13-11        | 13          | 15          |
| 20 | DRDLD-26-13-12-11-7         | 12          | 18          |
| 21 | DRDRD-22-19-8-13-7          | 12          | 16          |
| 22 | DRDRD-22-17-12-5-11         | 10          | 16          |
| 23 | DRDRD-22-17-14-7-9          | 9           | 14          |
| 24 | DRDRD-15-17-14-13-7         | 8           | 16          |
| 25 | DRD-15-13-5                 | 5           | 19          |
| 26 | DRD-26-9-9                  | 5           | 12          |
| 27 | DRDRD-30-19-14-5-9          | 1           | 11          |

Table 5.5.: Significance ranking of 27 best architectures for DL-STPM-VPD.

Based on the significance test a ranking of the best models can be created. Table 5.5 shows the ranking according to  $\psi_{bm}$  for the DL-STPM-VPD model. Due to convenience only architectures that achieved a  $\psi_{bm}$  score greater zero are displayed. The maximal reachable  $\psi_{bm}$  score for this experiment is 1960. A 3-layer ANN, composed of a densely connected, an Elman and a densely connected layer performed best on the given sample of spare parts. It makes use of a funnel shape width, representing the transformation from multi-dimensional input to one-dimensional output. Most of the top ten architectures show this structure, underpinning the benefit of this hypothesis. Furthermore, the top four architectures are all 3-layer topology. This indicates that a simpler ANN is capable of learning the multivariate time series features, whereas more complex structures tend to have problems, for example the 7-layer architectures are usually significantly worse than the best architecture of a particular part for half of all spare parts of the evaluated sample. It also seems that Elman layer is preferred over LSTM layer. One could argue that the low amount of training data may be a reason for this. Probably the LSTM was not capable of finding the time dependent relations within that few training data. Furthermore, the best model, DRD-26-18-9 has a  $\psi_{sp}$  value of 12, meaning it performed significantly worse than the best architecture only on 12 out of 40 parts of the sample. This supports the selection of this topology because this is the 4th-lowest value.

The  $\psi_{bm}$  ranking resulting from significance test for the model without VPD is shown in Table 5.6. Due to convenience only models that achieved a  $\psi_{bm}$  score greater zero are listed. For this time series problem also a 3-layer architecture, with same layer-types as for the DL-STPM-VPD model, but with different widths performed best. The structure formed by the width of the layers is inverted compared to the model for the multivariate time series problem. It goes from 5 over 9 to a width of 11 for the last hidden layer. There is no funnel like structure recognizable at the best architectures, concluding the hypothesis of transforming from multi-dimensional input space to a lower-dimensional space does not hold for the univariate time series problem. One reason for this may be the lower dimension of the input vector, compared to the multivariate time series. The model seems to learn a representation of the time series in a higher-dimensional space than the input space. In general, the mixture of architectures, which performed promising is more diverse, compared to the DL-STPM-VPD model. One could argue that this underpins the difficulty of the task to learn a model based only on few information. In contrast to

|    | Architecture              | $\psi_{bm}$ | $\psi_{sp}$ |
|----|---------------------------|-------------|-------------|
| 1  | DRD-5-9-11                | 111         | 10          |
| 2  | DRDLD-7-5-4-7-8           | 80          | 15          |
| 3  | DRDLD-10-13-4-7-10        | 71          | 12          |
| 4  | DRDLD-7-5-8-9-6           | 50          | 14          |
| 5  | DLDLDLD-15-5-6-11-4-2-6   | 45          | 17          |
| 6  | DRDRD-7-13-12-3-10        | 38          | 11          |
| 7  | DRDLD-13-9-10-5-10        | 37          | 13          |
| 8  | DLDRD-15-11-6-7-4         | 34          | 20          |
| 9  | DRDRDLD-7-5-8-7-2-5-3     | 34          | 16          |
| 10 | DRDRDRD-13-11-8-5-10-2-4  | 34          | 16          |
| 11 | DRDLD-10-7-4-7-10         | 32          | 13          |
| 12 | DRDLDLD-10-11-12-5-6-2-2  | 31          | 17          |
| 13 | DRDLD-5-7-10-7-10         | 27          | 14          |
| 14 | DRDRD-7-11-6-5-10         | 27          | 10          |
| 15 | DLDLDLD-15-13-10-9-10-3-6 | 26          | 20          |
| 16 | DRDLD-15-9-10-3-10        | 25          | 10          |
| 17 | DLDLD-13-11-8-3-2         | 23          | 19          |
| 18 | DLDLDLD-15-9-12-7-10-2-3  | 20          | 16          |
| 19 | DLDRDLD-15-9-6-3-10-9-2   | 17          | 19          |
| 20 | DRDRD-10-13-4-5-4         | 16          | 12          |
| 21 | DRDLDLD-15-11-4-11-8-7-5  | 11          | 19          |
| 22 | DRDRDLD-10-5-8-3-8-3-4    | 8           | 15          |
| 23 | DRDRD-7-7-12-5-4          | 6           | 13          |
| 24 | DRDLDLD-5-9-12-7-6-3-6    | 3           | 14          |
|    |                           |             |             |

Table 5.6.: Significance ranking of 24 best architectures for DL-STPM.

the multivariate model, where several 3-hidden-layer architectures with the same layer-types were under the most successful, there is no architecture type superior to the other for the model without VPD. Nonetheless, the DRD-5-9-11 architecture has with a  $\psi_{sp}$  value of 10 one of the lowest number of models it is significantly worse compared to. This underlines that this rather simple topology has better generalization capabilities than the other best performing architectures, which are significant worse for more than 10 models, supporting the decision to continue evaluating this topology.

#### 5.3.2. Optimizer and Learning-rate

Based on the results from the previous section the optimizer of the network weights and the related learning-rate are experimentally derived in the following. As of Bengio [5], the learning-rate and the optimization algorithm are two very important hyperparameters of model training. The in Section 3.3.1 introduced optimization algorithms, Stochastic Gradient Descent, Adam and RMSprop are evaluated with different learning-rates, that are derived from the default learning-rate of Adam and RMSprop: 0.001. During the POC a higher learning-rate than the default was applied. Therefore, a lower rate is regarded as not promising, why 0.0005 as half of the default rate is applied as lower bound. Furthermore, 10 times the default learning-rate and two values in-between, 0.0033 and 0.0066 are evaluated. Finally 0.1, the default rate by factor 100 as upper bound and 0.05 as the mean of both latter multiples of the default learning-rate is used. The proposed learning-rates logarithmic amplify, originating from the default rate. The distance between two successive learning-rates increases with the basis of the logarithm. This strategy favors rates in similar range as the default learning-rate, but also includes larger rates, even though the risk of gradient oscillation increases. Smaller learning-rates, than the chosen ones are neglected. Based on the experiences from the POC, lower rates than the default learning-rate do not reach the (local) optimum within the available training epochs. This behavior is expected to be statistically proven, therefore only one rate smaller than default will be tested. Due to limitation of computational resources a more detailed test, e.g. the relation between learning-rate and training-epochs, could not be conducted.

Each optimizer is evaluated with each of the seven learning-rates. Therefore, the models of the previous section are run 31 times, each on a third 40 spare parts sample. Any of the 21 above described optimization algorithm / learning-rate combinations are tested for DL-STPM-VPD model, as well as for the DL-STPM model. Besides the learning-rate default parameter for other optimizer parameters, as described in section 3.3.1, are applied to the optimizer. As in the network architecture section the best performing configuration for each part is determined by tournament ranking evaluation. Furthermore, the significance ranking is calculated the same way, based on the RMSE error vectors as described in the previous section, to get the  $\psi_{bm}$  and  $\psi_{sp}$  values. For the experiments to determine the optimizer and learning-rate combination a maximal  $\psi_{bm}$  score of 800 is possible. The results of the significance test can be found in Appendix Table A.3 and A.4.

The ranking of optimizer and learning-rate combinations for the DL-STPM-VPD model can be found in Table 5.7. The Adam algorithm with a learningrate of 0.01 performed superior to the other configurations. Adam outperforming SGD confirms literature review because of the adaptive learning-rate as enhancement. RMSprop performed competitive. If regarded on a learning-rate level RMSprop is clearly better performing than SGD for the same learningrate, but Adam is less often significantly worse than RMSprop on the same learning-rate. This indicates that the estimation of the decay rate performed by Adam is more suitable to the data than that of RMSprop. Furthermore, it may also be possible that Adam can better handle the low amount of training data than RMSprop, which should be scientifically examined in another study.

The learning-rate of 0.01 may also depend on the amount of training data. A probable explanation of a rate, ten times the default learning-rate is that because of a smaller number of data points, larger steps along the gradient are preferred over smaller ones. For Adam and RMSprop the  $\psi_{sp}$  value grows if the learning-rate falls under 0.0066 or if the rate goes beyond 0.01, e.g. Adam with learning-rate of 0.01 is significant worse than seven other configurations. If the learning rate becomes 0.05 this number raises to 38 and in case of 0.0033 it grows to 19. This indicates that the range between both latter mentioned learning-rates lies within a (local) minimum that should be further evaluated in more detail. The previously mentioned effect applies for Adam and RMSprop. Due to the limitations for this study, this needs to be postponed to a later research. This also holds for the relation of learning-rate would perform better, if it has more time for training than in the current setup.

|    | Learning-rate | Optimizer | $\psi_{bm}$ | $\psi_{sp}$ |
|----|---------------|-----------|-------------|-------------|
| 1  | 0.01          | Adam      | 229         | 7           |
| 2  | 0.01          | RMSprop   | 84          | 16          |
| 3  | 0.0066        | RMSprop   | 73          | 15          |
| 4  | 0.0033        | RMSprop   | 53          | 14          |
| 5  | 0.0066        | Adam      | 43          | 6           |
| 6  | 0.001         | Adam      | 31          | 25          |
| 7  | 0.0033        | Adam      | 29          | 19          |
| 8  | 0.01          | SGD       | 16          | 35          |
| 9  | 0.05          | RMSprop   | 13          | 39          |
| 10 | 0.0066        | SGD       | 11          | 34          |
| 11 | 0.0005        | SGD       | 0           | 39          |
| 12 | 0.001         | SGD       | 0           | 39          |
| 13 | 0.0033        | SGD       | 0           | 36          |
| 14 | 0.05          | SGD       | 0           | 31          |
| 15 | 0.1           | SGD       | 0           | 28          |
| 16 | 0.0005        | Adam      | 0           | 30          |
| 17 | 0.05          | Adam      | 0           | 38          |
| 18 | 0.1           | Adam      | 0           | 38          |
| 19 | 0.0005        | RMSprop   | 0           | 28          |
| 20 | 0.001         | RMSprop   | 0           | 28          |
| 21 | 0.1           | RMSprop   | 0           | 37          |

Table 5.7.: Significance ranking of optimizer / learning-rate for DL-STPM-VPD.

Table 5.8 summarizes the results of the significance test for the model without VPD. Adam outperformed the other optimization approaches for the univariate time series too, but with a slightly smaller learning-rate than for the DL-STPM-VPD model. RMSprop performed worst, indicating that its learning-rate adaptation needs more data than available. This is underpinned by SGD outperforming RMSprop without any learning-rate adaptation. If regarded the  $\psi_{sp}$  values Adam slightly outperformed SGD, outperforming RM-Sprop. The slightly smaller learning-rate of 0.0066 compared to the model with VPD may be explained by the lower dimension of the input space, resulting in smaller network width and less connections a weight needs to be learned for. Therefore, a smaller step-size along the gradient is possible in

|    | Learning-rate | Optimizer | $\psi_{bm}$ | $\psi_{sp}$ |
|----|---------------|-----------|-------------|-------------|
| 1  | 0.0066        | Adam      | 80          | 20          |
| 2  | 0.05          | SGD       | 70          | 15          |
| 3  | 0.01          | Adam      | 61          | 20          |
| 4  | 0.0066        | SGD       | 47          | 22          |
| 5  | 0.001         | SGD       | 36          | 23          |
| 6  | 0.01          | SGD       | 35          | 20          |
| 7  | 0.001         | RMSprop   | 31          | 15          |
| 8  | 0.0005        | RMSprop   | 27          | 14          |
| 9  | 0.0005        | SGD       | 17          | 27          |
| 10 | 0.0005        | Adam      | 17          | 11          |
| 11 | 0.0033        | SGD       | 14          | 21          |
| 12 | 0.0033        | RMSprop   | 10          | 21          |
| 13 | 0.1           | SGD       | 8           | 23          |
| 14 | 0.001         | Adam      | 5           | 20          |
| 15 | 0.0033        | Adam      | 0           | 19          |
| 16 | 0.05          | Adam      | 0           | 21          |
| 17 | 0.1           | Adam      | 0           | 25          |
| 18 | 0.0066        | RMSprop   | 0           | 27          |
| 19 | 0.01          | RMSprop   | 0           | 36          |
| 20 | 0.05          | RMSprop   | 0           | 28          |
| 21 | 0.1           | RMSprop   | 0           | 30          |

Table 5.8.: Significance ranking of optimizer / learning-rate for DL-STPM.

this case. Furthermore, an adaptation of the learning-rate still is preferable by outperforming the optimizer with a fixed learning-rate.

Even tough Adam with a learning-rate of 0.0066 has achieved the highest  $\psi_{bm}$  value, itself performed significant worse on 50% of the parts, compared to the particular best models. This indicates that this configuration had problems learning time series features for some spare parts, but performed strong on others. Nonetheless Adam with a learning-rate of 0.0066 is preferred over the second-best configuration, which seems to have slightly better performance regarding the  $\psi_{sp}$  results, but outperformed less configurations, which is regarded as more important performance indicator in this case. The chosen model performed better than the mean, which was outperformed on round

about 22 out of 40 spare parts. This also indicates that the results are not that precise as for the model with VPD, originating in the difficulty of the task of univariate time series prediction. Further on, it may be noted that Adam and RMSprop with a learning-rate of 0.0005 performed competitive related to the best configurations per part. This presumed generalization capability of smaller learning rates in relation with the training epochs could be evaluated in detail in a future study.

## 5.3.3. Activation Functions

This section evaluates different combinations of activation functions on a fourth sample of 40 spare parts. As of Palit and Popovic [73] the activation functions are a connecting component of network architecture and the process of network training, influencing the network output and the backpropagated error. In section 3.3.1 four activation functions were introduced: Sigmoid, ReLU, leaky ReLU and SoftPlus. The latter three will be evaluated in the following. According to literature these are the most promising activation functions for deep learning and recurrent models. Due to limitation of computational resources not every combination of activation functions, distributed over the three hidden layers of both models could be examined. To overcome this limitation the activation functions are only permuted layer-type-wise. The same layer-type is combined with the same activation function over the whole model. For a model with three hidden layers, where two layers are of the same type, in our case densely connected, this results in nine different combinations of activation functions. For evaluation each combination is run 31 times, making use of the hyperparameters derived in the previous sections, to get the related error vectors for significance test. The results of the significance evaluation can be found in Appendix Table A.5 for the model with VPD input and Table A.6 for the model without VPD. A maximal  $\psi_{bm}$  value of 320 is reachable.

The summarized results from the significance test for the DL-STPM-VPD model can be found in Table 5.9, showing the applied activation function for each hidden layer and the related  $\psi_{bm}$  and  $\psi_{sp}$  values. A combination of leaky ReLU, as activation function for the densely connected layers and basic ReLU for the Elman layer outperformed the other combinations in terms of  $\psi_{bm}$ . If regarded for how many parts each model performed significantly worse than the best model for this part all configurations did not perform

|   | H1                    | H2                    | H3                    | $\psi_{bm}$ | $\psi_{sp}$ |
|---|-----------------------|-----------------------|-----------------------|-------------|-------------|
| 1 | leakyReLU             | $\operatorname{ReLU}$ | leakyReLU             | 51          | 21          |
| 2 | leakyReLU             | SoftPLus              | leakyReLU             | 32          | 25          |
| 3 | $\operatorname{ReLU}$ | leakyReLU             | $\operatorname{ReLU}$ | 27          | 24          |
| 4 | leakyReLU             | leakyReLU             | leakyReLU             | 26          | 18          |
| 5 | SoftPLus              | SoftPLus              | SoftPLus              | 25          | 20          |
| 6 | $\operatorname{ReLU}$ | $\operatorname{ReLU}$ | $\operatorname{ReLU}$ | 21          | 18          |
| 7 | SoftPLus              | leakyReLU             | SoftPLus              | 17          | 28          |
| 8 | SoftPLus              | ReLU                  | SoftPLus              | 5           | 21          |
| 9 | ReLU                  | SoftPLus              | ReLU                  | 0           | 29          |

Table 5.9.: Significance ranking of activation functions for DL-STPM-VPD.

that well. The lowest  $\psi_{sp}$  value was achieved by ReLU or leaky ReLU applied for all three layers, with being significantly worse on 18 parts out of 40. The above-mentioned combination of leaky ReLU and ReLU was significantly worse than the best model on 21 spare parts, which is still one of the best values. This indicates that there is no combination of activation functions that has good generalization capabilities, clearly outperforming the others. Therefore, the combination, achieving the best  $\psi_{bm}$  result was chosen as hyperparameter configuration for further experiments. Even though the results do not strongly emphasize a combination of activation functions, leaky ReLU as activation function for densely connected layers seems to be a good choice, as most of the best performing configurations apply this activation function for this layertype. A reason for that may be the small gradient, added by leaky ReLU even if the unit is not active. This may benefit the training in case of only few training data, resulting in better performance.

Table 5.10 summarizes the results of the significance evaluation for the model without VPD. A combination of leaky ReLU as activation function for all three layers significantly outperformed the most combinations of activation functions on parts it was found to be the best. This configuration also showed the best generalization capabilities and was only for 7 spare parts out of 40 found to perform significantly worse than the best model per part. This is one of the best  $\psi_{sp}$  values among all combinations of activation functions, underpinning the superiority of this model. In case of the univariate time series the advantage of also having a small gradient if the unit is not active seems to benefit the training even more than in case of the multivariate time series problem, as

|   | H1        | H2        | H3                        | $\psi_{bm}$ | $\psi_{sp}$ |
|---|-----------|-----------|---------------------------|-------------|-------------|
| 1 | leakyReLU | leakyReLU | leakyReLU                 | 40          | 7           |
| 2 | SoftPlus  | leakyReLU | SoftPlus                  | 32          | 10          |
| 3 | ReLU      | ReLU      | ReLU                      | 14          | 19          |
| 4 | SoftPlus  | SoftPlus  | $\operatorname{SoftPlus}$ | 14          | 19          |
| 5 | ReLU      | leakyReLU | ReLU                      | 12          | 7           |
| 6 | ReLU      | SoftPlus  | ReLU                      | 7           | 16          |
| 7 | SoftPlus  | ReLU      | SoftPlus                  | 7           | 18          |
| 8 | leakyReLU | SoftPlus  | leakyReLU                 | 4           | 18          |
| 9 | leakyReLU | ReLU      | leakyReLU                 | 3           | 19          |

Table 5.10.: Significance ranking of activation functions for DL-STPM.

the leaky ReLU activation function is used for all hidden layer. This may be explained by the even less information available for training, compared to the time series containing VPD. Furthermore, leaky ReLU is used for the recurrent layer for all of the models, showing the best generalization capabilities. In opposite to the model with VPD some combinations of activation functions are superior to the other configurations, achieving better  $\psi_{bm}$  and  $\psi_{sp}$  values than other configurations. This states that in case of the univariate time series some combinations of activation functions, like leaky ReLU for all layers, can handle the data better than other by showing superiority in terms of  $\psi_{bm}$  and satisfactory generalization by a good  $\psi_{sp}$  value. This may originate in the onedimensional nature of the time series, implying less relations within the data, making it easier to find a combination capable of dealing with the underlying structure of the data producing processes.

### 5.3.4. Sliding Window Size

The size of the sliding window that is moved through the input data is covered in the following. This hyperparameter controls the format of the input data. As of Goodfellow et al. [40], model tuning related to the input data has also great impact on the performance of a deep ANN. The size of the sliding window defines how many  $x_t$  are combined in the input vector of a single time step. It specifies the dimension of the input vector, e.g. in case of a window size w = 3 the input for each time step is composed out of  $x_{t-2}$ ,  $x_{t-1}$  and  $x_{t-0}$ . This window is then moved through the data like a queue, adding the

|   | window size | $\psi_{bm}$ | $\psi_{sp}$ |
|---|-------------|-------------|-------------|
| 1 | w=3         | 24          | 9           |
| 2 | w=2         | 24          | 12          |
| 3 | w=4         | 18          | 10          |
| 4 | w=8         | 12          | 16          |
| 5 | w=9         | 11          | 16          |
| 6 | w=5         | 10          | 13          |
| 7 | w=7         | 8           | 16          |
| 8 | w=6         | 0           | 15          |

Table 5.11.: Significance ranking of sliding window sizes for DL-STPM-VPD.

youngest value on the one end and removing the oldest value on the other end. The larger the sliding window, the more information is aggregated in one input vector, but the less data is available for network training because the number of available data points for training is always reduced by the size of the sliding window. The sliding window approach adds time related information to each input data point by transforming it to a higher space, additional containing information of past time steps. In time series literature this approach is usually applied for simplification of learning of time dependent relations by artificially providing more information for each time step.

The impact of the sliding window size on both models will be evaluated in the following. Therefore each model is run on a fifth sample of 40 spare parts with different sliding window sizes from the interval [2, 9]. Two is the smallest possible window size and nine is regarded as maximum, minimizing the amount of training data drastically. To calculate statistical significance each configuration is again run 31 times to get the appropriate error vector. Because of the number of tested window sizes a maximal  $\psi_{bm}$  score of 280 could be achieved in the significance evaluation. The results of the significance test of the sliding window size experiment can be found in Appendix Table A.7 and A.8 for the model without VPD respectively.

Table 5.11 summarizes the results of the significance test of the DL-STPM-VPD model. The sliding window sizes two and three performed equally, regarded how many models were found to be significantly worse for spare parts these models performed best. This indicates that a smaller sliding window performs better because of more available data points for network training.

|   | window size | $\psi_{bm}$ | $\psi_{sp}$ |
|---|-------------|-------------|-------------|
| 1 | w=2         | 65          | 13          |
| 2 | w=9         | 21          | 28          |
| 3 | w=3         | 19          | 15          |
| 4 | w=6         | 15          | 16          |
| 5 | w=4         | 10          | 10          |
| 6 | w=5         | 6           | 15          |
| 7 | w=7         | 6           | 23          |
| 8 | w=8         | 6           | 28          |

Table 5.12.: Significance ranking of sliding window sizes for DL-STPM.

This theory is supported by the  $\psi_{sp}$  results. Originating from a sliding window size of three, the number of models that performed superior steadily increases with the window size increasing. Also, a sliding window size of two is outperformed on 12 parts, which are more parts than in case of a window size of three. Therefore, the latter configuration is regarded as best model of this experiment. Nonetheless, the results of this evaluation questions the sliding window approach at all. If the highest amount of training data is preferred, the model should be evaluated without any sliding window applied to the input data in future research. Furthermore, it may be questioned if the input data should be extended by the time dependent relations or whether the model should not be constrained beforehand, instead learning the relations by its own from more available data.

The results of the sliding window experiment for the model without VPD are shown in Table 5.12. In case of the univariate time series the sliding window approach is also questioned by the outcome of the evaluation at all. A window size of two clearly outperformed the other configurations in terms of  $\psi_{bm}$ . Also, if regarded on the performance of the models over all parts, all, except a sliding window of size four were significant worse than the respectively best model on more than 13 spare parts, which is the result for the sliding window of size increase is verified for the univariate time series problem in more clarity. This concludes that the restriction by artificially increased time related input does not benefit the model. One can argue that the model should learn this relation by itself, without any constraints made by the input. These findings could be further evaluated and proven in a future study.

#### 5.3.5. Data Augmentation

The following section covers the evaluation of the data augmentation step. According to Goodfellow et al. [40] this step is highly recommended during optimization of a deep learning model. Data augmentation adds artificial data to the training data. On the one hand side this should evaluate the influence of more data for model training and on the other hand side the generalization capabilities of a model shall be strengthened. The latter effect would require the addition of noise data to the time series or to extend the multivariate time series by additional features. Due to the few training information available, complexity reasons and the difficulty to extend the time series in a beneficial way the latter data augmentation approach is abandoned. The first mentioned impact is discussed in the following.

To artificially extend the data the mean of two successive time steps  $x_t$  and  $x_{t+1}$  is added in-between them, as defined in Equation 5.8. This process can be recursively repeated, extending the time series to length  $T_a$ , according to Equation 5.9. T is the original length of the time series and d is the depth of recursion, starting at one with the first artificial extension. It may be noted that this kind of augmentation can be regarded as data smoothing. The data is smoothed by stretching along the time dimension. Nevertheless, it adds data points to the training data and the influence could be evaluated. Artificially extension of the time series beyond the proposed method becomes a tough task that could be reliably solved only if more information about the data generating processes is available.

$$x_a = \frac{x_t + x_{t+1}}{2} \tag{5.8}$$

$$T_a = (2^d T - 2^{d-1}) - 1 \tag{5.9}$$

For evaluation each model is run 31 times on a sixth sample of 40 spare parts. The models are configured according to the above derived hyperparameters. No augmentation, represented by a degree of zero, data augmentation of degree one and two are compared. Greater recursion depths are neglected because of the smoothing character of the applied augmentation, assuming no further information gain. The models are trained on the augmented data. For prediction the original input is used, otherwise the prediction horizon would be reduced by the degree of augmentation, resulting in a less accurate forecast for the same period because more time steps need to be predicted, if the horizon is

|   | Degree | $\psi_{bp}$ | $\psi_{sp}$ |
|---|--------|-------------|-------------|
| 1 | d=0    | 24          | 6           |
| 2 | d=2    | 6           | 17          |
| 3 | d=1    | 5           | 12          |

Table 5.13.: Significance ranking of data augmentation for DL-STPM-VPD.

extended. The results of the significance evaluation could be found in Table A.9 and A.10 respectively, resulting in a maximal  $\psi_{bp}$  value of 80.

Table 5.13 shows the results of the evaluation of the data augmentation process for the model with VPD. The results clearly suggest that data augmentation does not benefit the model. A degree of zero outperformed the other tested configurations in terms of models that were found to perform significantly worse on parts the model without data augmentation performed best. This also holds if compared, for how many parts a model performed significantly worse than the best model for that particular part. The number of models by whom a particular configuration is outperformed steadily grows with the degree of recursion of the data augmentation.

Reasons for this result could be manifold. The current hyperparamter configuration was derived on not smoothed data. The influence of the augmentation on the data's structure the model is capable of learning could be that strong, that it results in a performance decrease if this structure changes to a certain degree. Furthermore, the model could already be overfitting the data structure and therefore lack in generalization. Last but not least, the augmentation could add the wrong information to the data. The timely stretched data could influence the time related pattern, like trend or seasonality in a way, that the model cannot learn to transform these relations to the original input data. The first and last-mentioned explanation, which are related by certain degree, seem most plausible. Because of the low amount of information that is available for training the model is sensible to changes of these. Overfitting, as justification of the results is discarded for the moment, because countermeasures, like the exchange of the samples for each particular evaluation should protect against it. Nonetheless, overfitting should not be dismissed totally and the influence of changes to the input data should be evaluated in a future study.

Table 5.14 summarizes the results of the significance test for the data augmentation evaluation for the DL-STPM model. The outcome is similar to

|   | Degree | $\psi_{bm}$ | $\psi_{sp}$ |
|---|--------|-------------|-------------|
| 1 | d=0    | 15          | 8           |
| 2 | d=2    | 9           | 7           |
| 3 | d=1    | 1           | 10          |

Table 5.14.: Significance ranking of data augmentation for DL-STPM.

the model with VPD but not that severe. Even though a degree of zero performed best in terms of models that performed significantly worse on spare parts no data augmentation achieved the best results, augmentation of degree two is competitive, according to its  $\psi_{sp}$  score. No augmentation is preferred because it was found to be the best model according to the tournament ranking based on the evaluation functions on 50% of the parts contained in the sample, whereas a degree of two only was found to be the best one on 13 parts. Thus, the question, if the DL-STPM model could be supported by data augmentation remains unacknowledged and should be investigated in more detail in a later study. Based on the results it could not be stated if artificial changes to the training data benefit the model or not, which underpins the toughness of the univariate time series problem in general.

#### 5.3.6. Training Epochs

The last hyperparameter evaluated is the number of training epochs. It controls for how many iterations the training data is completely processed through the ANN, to learn the connection weights. In an ideal case the optimization algorithm finds the global optimum within the given training epochs. Often this process gets stuck in local optima and the error of the ANN is not minimized further, because the training algorithm cannot get out of the local optimum. Further training iterations after the optimization reached the local optimum do not change the network output significantly and training could be aborted. This strategy, called early stopping, could be automated e.g. by a network error threshold or a number of iterations, the error did not change noticeable. If such a threshold is reached, training is stopped early. Nonetheless, it is difficult to derive a threshold value. In case of this study, where an ANN for each spare part is trained, it is more useful to derive the at least needed number of training epochs and accept possible useless iterations, than trying to find a

|   | Training epochs | $\psi_{bm}$ | $\psi_{sp}$ |
|---|-----------------|-------------|-------------|
| 1 | $e{=}70$        | 30          | 8           |
| 2 | e=200           | 11          | 11          |
| 3 | e=100           | 6           | 8           |
| 4 | e=400           | 4           | 12          |
| 5 | e = 800         | 4           | 16          |

Table 5.15.: Significance ranking of training epochs for DL-STPM-VPD.

general early stopping criterion, because it is regarded as more important to ensure quality of the results, than minimization of computational effort.

During the POC the prototype networks usually reached a local optimum within 70 to 90 epochs. Based on these experiences the number of training epochs *e* was set to 100 for the previous experiments. For the current evaluation 70, 100, 200, 400 and 800 training epochs are tested. 70 is regarded as minimum, based on the empirical knowledge from the POC. 100 as hyperparameter used for the previous evaluation steps is also considered. Furthermore, the number of epochs is doubled, until a maximum of 800 is reached. The two biggest values are expected to bring no improvements to the training process anymore.

As usual, each configuration will be run 31 times on a fresh sample of 40 spare parts for the DL-STPM-VPD and DL-STPM model, configured based on the derived hyperparameters. According to the different configurations and the size of the spare part sample a  $\psi_{bp}$  score of maximal 160 could be reached in the significance test. The results of could be found in Appendix Table A.11 for the multivariate time series and A.12 for the univariate demand data respectively.

Table 5.15 summarizes the results of the significance test for the multivariate time series model. 70 training epochs clearly outperform the other configurations in terms of  $\psi_{bm}$ . Concerning spare parts, a model performed significantly worse than the best configuration on this part, the two smallest numbers of training epochs performed equally well. For the other tested number of epochs the performance decreases proportional to increase of iterations. This confirms the expectation that a larger amount of training epochs will not benefit the model. Due to the few training data the model relatively fast reaches a local optima. Further training rather increases the training error by ending on the

|   | Training epochs | $\psi_{bm}$ | $\psi_{sp}$ |
|---|-----------------|-------------|-------------|
| 1 | e=200           | 40          | 25          |
| 2 | e=800           | 29          | 31          |
| 3 | e=70            | 22          | 17          |
| 4 | e=100           | 18          | 21          |
| 5 | e = 400         | 12          | 27          |

Table 5.16.: Significance ranking of training epochs for DL-STPM.

borders of the local optima, but not at the actual local minimum. In case a larger number of training epochs performed best on a particular part, often the other configurations did not perform significantly worse. This also underpins that a larger number of iterations does not bring any advantage, compared to the found best amount e = 70. Anyhow, an approach making use of early stopping should be evaluated in a subsequent study, to check, whether a dynamical approach could bring a larger benefit than a fixed number of epochs. This study could incorporate the findings of these experiments, to ensure the usually at least needed number of training epochs in case the early stopping criteria is not reached.

The results of significance evaluation for the model without VPD can be found in Table 5.16. For the univariate time series the outcome of the experiment differs from the above discussed. 200 training epochs significantly outperformed the most models on spare parts it were found to perform best. If regarded for how many spare parts a configuration performed significantly worse than the best model for each part, the tendency is the same. The higher the number of training epochs gets, the higher the  $\psi_{sp}$  value. It may be noted that the  $\psi_{sp}$  values are approximately twice as high as for the multivariate time series experiment. As well, the differences between configurations for each part are more severe than for the DL-STPM-VPD model. In case of the univariate time series the best configuration for a spare part more often significantly outperformed the other models on that particular part, than it was the case for the time series containing VPD. This indicates that the generalization based on less information is more difficult. Concluding, this supports the hypothesis that it is difficult to find a hyperperameter set with desirable generalization capabilities for the univariate time series problem, which may be lead back to the small amount of data available, to derive knowledge from.



Figure 5.2.: Exemplary network structure.

## 5.4. Summary

The in the previous sections derived hyperparameters are only a selection that is regarded as containing the most important ones. There are several more that could be evaluated and tuned, like further hyperparameter for network training, e.g. momentum, or regularization strategies and so on. The experiments could be extended by a broader range of values or options. Nevertheless, the evaluated hyperparameters are regarded as a solid mixture of architecture and training optimization and the available resources, with respect to computational time for experiments, were fully used. A different order of the tests or different configurations may have led to other results. The optimal technique for hyperparameter estimation for deep learning is still an active research topic and a not yet solved problem.

Figure 5.2 exemplary shows the architecture of the deep ANN, which is regarded as the most important hyperparameter. Both models, with and without VPD make use of the same topology, as visualized by Figure 5.2, mere with different widths for each model. Table 5.17 summarizes the experimental

| Hyperparameter      | DL-STPM-VPD        | DL-STPM            |
|---------------------|--------------------|--------------------|
| Architecture        | Densely connected, | Densely connected, |
|                     | Elman,             | Elman,             |
|                     | Densely connected  | Densely connected  |
| Optimizer           | Adam               | Adam               |
| Learning-rate       | 0.01               | 0.0066             |
| Activation function | leaky ReLU (H1),   | leaky ReLU (H1),   |
|                     | ReLU (H2),         | leaky ReLU (H2),   |
|                     | leaky ReLU (H3)    | leaky ReLU (H3)    |
| Training epochs     | 70                 | 200                |
| Sliding window size | 3                  | 2                  |
| Data augmentation   | no                 | no                 |

Table 5.17.: Experimentally derived hyperparameter configuration.

derived hyperparameters for both models. These configurations will be used for the evaluation of the proposed model in comparison to the current model and its enhancements, to answer the research hypothesis of this work in the following chapter.

# 6. Evaluation and Comparison of Proposed Models

This section compares the currently by IBM applied model, it's in section 4.3 proposed enhancements and the in this study derived deep learning model using in the previous section derived hyperparameter configurations, to answer the research question of this thesis. Each model is evaluated on a set of 365 spare parts, sampled from the multi- and univariate time series data respectively. Because of the larger samples than the ones used for experimental hyperparameter estimation a more accurate prediction of the overall model performance could be done. According to Equation 5.5 for calculation of sample size the margin of error for a sample of 365 parts is 5%, with a confidence interval of 95%. This holds for both samples, even though the margin of error for the sample without VPD is slightly less than for the multivariate time series data because of the smaller number of parts, but this difference ranges in per mill region. The experiments will be repeated 31 times. A comparison is done by the same approach as for the experiments. First the best performing model according to the evaluation functions for each spare part is determined. Then the related p-values are calculated and the  $\psi_{bm}$  and  $\psi_{sp}$  values for each model are derived. According to the number of spare parts contained in the sample and the in the significance evaluation involved models a maximal  $\psi_{bm}$ score of 730 could be achieved.

# 6.1. DL-STPM-VPD

The ranking of the multivariate models can be found in table 6.1, aggregating the results from the significance test, which could be found in table A.13. The deep learning based approach performed superior to the enhanced STPM-VPD model, followed by the currently applied model in terms of  $\psi_{bm}$ . This

|   | Model        | $\psi_{bm}$ | $\psi_{sp}$ |
|---|--------------|-------------|-------------|
| 1 | DL-STPM-VPD  | 296         | 180         |
| 2 | STPM-VPD-enh | 194         | 241         |
| 3 | STPM-VPD     | 185         | 254         |

Table 6.1.: Significance ranking versus current model for DL-STPM-VPD.

confirms the research question, whether an ANN based approach is capable of predicting the spare part demand with higher accuracy for the model with Vehicle Production Data. This is also supported by the  $\psi_{sp}$  values. The deep ANN achieved with 180 the best result, followed by the enhanced STPM model. The worst  $\psi_{sp}$  value was measured for the currently applied STPM model. Concluding the results of the significance test, the deep learning based approach achieves a higher forecast accuracy in terms of RMSE as the currently applied model and its proposed enhanced version if regarded at the whole sample evaluated. Nevertheless, this could be stated only because the ANN was found to be the best model according to the evaluation functions on the majority of the parts. The high  $\psi_{sp}$  values indicate that the models were usually significant worse than the best model of a particular part. This suggests that in many cases, if the model was not found to be the best on a spare part according to the tournament ranking evaluation, it performed not competitive compared to the other. This means that the deep learning based approach could predict a larger number of parts than the currently applied model with higher accuracy, but performs not satisfying on all parts of the sample. Yet this is still an improvement to the currently applied model.

Figure 6.1 summarizes the direct tournament ranking comparison of either the currently applied model or the enhanced version of the STPM-VPD model against the deep learning based approach. For each part of the sample the results according to the three evaluation functions, RMSE, Chi-Squared-Distance and CC are compared. A model is considered as better than the other approach if it was found to outperform it for at least two out of three evaluation functions. In the end, it is counted for each model for how many parts of the sample it performed superior to the compared approach.

Figure 6.1a compares the performance of the currently applied model with the deep learning based approach. The DL-STPM-VPD model performs better according to the tournament ranking for 57% of the spare parts contained in the sample. This underpins the results from the significance test, neither of



Figure 6.1.: Comparison against DL-STPM-VPD according to tournament ranking.

both can generalize all spare parts contained in the sample. Nonetheless, the proportion of the deep learning based approach is larger than the share of the currently applied model, what concludes that the proposed model improved the overall accuracy of the demand forecast. Furthermore, this encourages the analysis of the two resulting classes of spare parts, build by superior model performance in future work.

The results of the comparison of the enhanced version of the STPM-VPD model with the proposed deep learning approach is visualized in Figure 6.1b. The deep learning based model slightly performed better than the enhancement of the currently applied model by a proportion of 52% of the spare parts of the sample. On one side this confirms the achievements of the enhancements to the currently applied model by decreasing the proportion of parts the deep ANN performed better, compared to the previous comparison. On the other side it reduces the benefit of the proposed model because it only increased forecast accuracy for a few parts, compared to the enhanced version of the STPM-VPD model.

Figure 6.2 shows some exemplary diagrams, comparing the forecasts of the STPM-VPD and deep learning based model. Plot 6.2a and 6.2b present two parts the deep ANN outperformed the currently applied model. The proposed model was able to learn the relation between the demand and the VPD, resulting in a very accurate forecast, as long as vehicle data is available. As no further VPD is accessible the model starts to predict an average demand

value. This concludes that it is necessary that the VPD is available for the whole forecast horizon.

The Diagrams 6.2c and 6.2d show parts where the currently applied model outperformed the proposed approach. In the first case the deep ANN was not able to learn the relation of an increasing demand if the cumulative sum of vehicles grows, resulting in an underestimation of the real spare part demand. In the second case the missing VPD after a few time steps forced the deep model to rely on the demand data only, misconstruing the last months of training data and ignoring that no further vehicles are added to the market. This ends in a substantially overestimated spare part demand.

Figure 6.2e represents a case both compared models had difficulties to learn the demand pattern. The apparently not from market vanishing cars result in a steadily increasing demand. Both models were not able to capture this by the training data. Whereas in Plot 6.2f both models were able to learn the same demand increasing phenomena. A potential explanation could be the slightly stronger increasing demand within the training data in the latter case.

Figure 6.3 presents some exemplary spare part forecasts, comparing the STPM-VPD-enh and DL-STPM-VPD model. Diagrams 6.3a and 6.3b show parts the deep learning based approach performed better than the enhanced version of the currently applied model in terms of forecast accuracy. Either the STPM-VPD-enh model over- or underestimated the true demand. This may originate in a misleading vehicle depletion rate, learned by the regression model in both cases.

The Plots 6.3c and 6.3d are representatives of spare parts the enhanced currently applied model outperformed the deep ANN. In both cases the neural network was not able to learn the correct relation between the VPD, the vehicle depletion and the demand. This results in substantial over- or underestimation of the real spare part demand. Both visualized parts contradict the spare parts where the DL-STPM-VPD model performed better, because there is no obvious difference between all four spare parts. Nevertheless, the reasons should be investigated in a future study.

Finally, Figure 6.3e shows a part both models having trouble to accurately predict the spare part demand. Neither the deep ANN, nor the STPM-VPD-enh model were able to detect the correct relations and patterns describing this part. Therefore both models underestimated the demand. Plot 6.3f represents



(b) DL-STPM-VPD better

Figure 6.2.: Example parts showing STPM-VDP and DL-STPM-VDP forecast.



(d) STPM-VDP better

Figure 6.2.: Example parts showing STPM-VDP and DL-STPM-VDP forecast cont.



(f) both satisfactory

Figure 6.2.: Example parts showing STPM-VDP and DL-STPM-VDP forecast cont.



(b) DL-STPM-VPD better

Figure 6.3.: Example parts showing STPM-VDP-enh and DL-STPM-VDP forecast.



(d) STPM-VDP-enh better

Figure 6.3.: Example parts showing STPM-VDP-enh and DL-STPM-VDP forecast cont.



(f) both satisfactory

Figure 6.3.: Example parts showing STPM-VDP-enh and DL-STPM-VDP forecast cont.

|   | Model    | $\psi_{bm}$ | $\psi_{sp}$ |
|---|----------|-------------|-------------|
| 1 | DL-STPM  | 353         | 168         |
| 2 | STPM-enh | 203         | 228         |
| 3 | STPM     | 131         | 291         |

Table 6.2.: Significance ranking versus current model for DL-STPM.

a part predicted satisfactory by both models by learning the right relation between vehicles, vanishing vehicles and the occurring demand.

The visualized results support the already drawn conclusions, that there are categories of parts each model is superior to the other. To further increase the prediction accuracy these classes need to be analyzed and potential model optimization steps need to be identified.

#### 6.2. DL-STPM

Table 6.2 summarizes the results of the significance test for the model without VPD. The deep learning based model clearly outperformed both other models in terms of  $\psi_{bm}$ . This result is confirmed by the  $\psi_{sp}$  values, DL-STPM achieving the lowest value, followed by STPM-enh and the currently applied model. The high  $\psi_{sp}$  scores indicate that the models usually performed significantly worse than the best model for a particular spare part. This concludes that each model has its group of parts it can handle better than the other models. These groups should be evaluated in a later study, whether the results could lead to new spare part classes, making use of all evaluated models. Nonetheless, the number of spare parts the deep learning based approach achieved a higher accuracy than the current model or its enhancement is greater than for the currently applied model, stating that the deep learning based approach achieved a higher forecast accuracy regarded for the whole sample as the STPM and STPM-enh model. This confirms the research question of this thesis in case of the univariate time series problem too.

Figure 6.4 shows the results if the currently applied model and the STPM-enh model are compared with the deep learning based model for the univariate time series based on the tournament ranking system. A model is again considered as better if it outperforms the compared one in at least two out of three evaluation



Figure 6.4.: Comparison against DL-STPM according to tournament ranking.

functions. Plot 6.4a visualizes the currently applied model versus the deep ANN. The DL-STPM model performed better for 74% of the evaluated spare parts. This is a clear improvement in terms of forecast accuracy, stating that the neural network approach is more suitable for the univariate time series problem than the currently applied model. Nevertheless, the resulting two classes of parts need to be investigated further to verify whether a solution containing both approaches is even more promising.

Image 6.4b represents the comparison of the enhanced version of the currently applied model with the deep learning based approach. The deep ANN model outperformed the proposed enhanced version of the currently applied model for 59% of the sampled spare parts. This leads to similar conclusions as for the multivariate time series. The proposed enhancements of the currently applied model are effective and reduce the superiority of the deep learning based model. Nonetheless, the DL-STPM model is still noticeable increasing the forecast accuracy compared to the STPM-enh model.

Figure 6.5 shows exemplary plots for selected spare parts, comparing the forecast of the currently applied model with the prediction of the proposed deep learning based approach. The Diagrams 6.5a and 6.5b visualize spare parts the deep ANN outperformed the STPM model. Whereas the DL-STPM model was able to capture the pattern of the time series data to some extent, the STPM model substantially overestimated the true demand.

The case of STPM outperforming the proposed deep learning based model is shown in Figure 6.5c and 6.5d. The parameters of the currently applied model were able to map the demand pattern based on the training data. The deep ANN had problems to detect the relations within the data, which lead to a mean value, predicted few time steps after the end of training data, resulting in inaccurate estimations of the true demand.

Figure 6.5e represents a spare part both models were not able to satisfactory predict the future demand. Nevertheless, to predict the increasing demand pattern based on the available information in the training data is a tough task. Finally, Plot 6.5f shows a case both models produce similar results, that could be regarded as satisfactory based on the training input. It may be noted that in most cases either the one or the other model predicts the demand more or less correct. The case of both models doing a good job is rather seldom.

Image 6.6 visualizes the predictions of the STPM-enh and univariate deep ANN for some selected spare parts. The Plots 6.6a and 6.6b represent spare parts the proposed deep learning based approach achieved a higher accuracy than the enhanced version of the currently applied model. The DL-STPM model was able to learn the relations within the historic demand, even though the prediction accuracy decreases with increasing forecast horizon and becomes more and more an average demand like prediction. Nevertheless, both spare parts prove that the proposed approach could learn demand patterns from the few available data for training.

The Diagrams 6.6c and 6.6d present spare parts the STPM-enh model performed superior to the deep learning based approach. The latter one was able to fit a model to the training data, but the prediction performance decreases rapidly with increasing forecast horizon, resulting in not satisfactory demand predictions. The enhanced version of the currently applied model conversely predicted the demand with higher accuracy. This underpins the hypothesis of two classes of spare parts, same as for the multivariate time series problem.

Plot 6.6e shows a part the deep ANN and the STPM-enh model performed rather bad in terms of prediction accuracy. Both models can deal well with the training data but cannot follow the upward trend of the demand curve. As sated earlier, this is a tough task if this trend was not indicated by the training data. Last but not least, Figure 6.6f visualizes the predictions for a spare part both models could forecast with satisfactory accuracy.

The above discussed exemplary spare parts underline the toughness of the univariate time series problem. It is difficult to accurately predict the future demand with that few information available for model training. In case the





(b) DL-STPM better

Figure 6.5.: Example parts showing STPM and DL-STPM forecast.



(d) STPM better

Figure 6.5.: Example parts showing STPM and DL-STPM forecast cont.



Figure 6.5.: Example parts showing STPM and DL-STPM forecast cont.



(b) DL-STPM better

Figure 6.6.: Example parts showing STPM-enh and DL-STPM forecast.



(d) STPM-enh better

Figure 6.6.: Example parts showing STPM-enh and DL-STPM forecast cont.



(f) both satisfactory

Figure 6.6.: Example parts showing STPM-enh and DL-STPM forecast cont.

training data is much different from the later demand pattern the model often has no chance to place an accurate spare part demand prediction. Furthermore, the forecast horizon is shorter than for the multivariate time series data.

The final evaluation of the proposed deep learning model against the currently applied model and its suggested enhanced version showed that the deep ANN approach is superior. Therefore, the initial hypothesis of this thesis, if an Artificial Neural Network based prediction model forecasts the young fastmoving spare part demand with higher accuracy than the currently applied model, could be answered with yes. Even tough, this answer is stronger in case of the univariate model than in case of the multivariate, where only a slight performance increase was achieved. The results already showed promising research directions, to further increase the performance of the models.

## 7. Conclusion and Future Work

This work covered the development of a model for automotive spare part demand forecasting of young and fast-moving spare parts. The economic need of a model that optimizes the demand prediction and therefore supports the spare part management was discussed. Fundamental principles of the spare part management were introduced, and the characteristics of spare parts were analyzed. Furthermore, influence factors of the spare part demand were discussed to pave the way for a requirements driven analysis of possible approaches for demand prediction. To gain an overview an extensive literature review revealed models, that are applied for spare part demand forecasting, as well as models, that are suitable to meet the specified requirements. In parallel to the literature review the basic concepts of these models were introduced. According to state of the art research an Artificial Neural Network based approach was regarded as most promising. To form a basis for the evaluation of the model, the data available for evaluation were introduced and the currently for this task applied model, which should be outperformed in terms of forecast accuracy by the proposed approach was discussed. Furthermore, it was shown that enhancements of the currently applied model are possible but are elaborately and the gain is rather small.

Based on the requirements analysis and the results from literature review a deep learning based model, composed of densely connected, Elman and Long Short Term Memory layers was proposed in Chapter 5. Deep ANN are characterized by plenty of hyperparameters that could be tuned to improve forecasting performance. Due to the huge parameter space the optimal hyperparameters for the proposed model are experimentally derived and statistically evaluated on real world data, provided by a worldwide operating automotive company, by means of a sequential development process. The following hyperparameters were derived: the network architecture, the applied optimization algorithm and the related learning-rate, the activation function for each layer, the size of the sliding window moved through training data, augmentation of the training data and the number of training epochs.

According to the developed hyperparameters the proposed model was compared with the currently applied model and its suggested enhanced version. The deep learning based model for automotive spare part demand forecasting was found to outperform both other tested approaches. The results were discussed in detail and weaknesses of the proposed model were identified, as well as possible solutions and starting points for further research.

#### 7.1. Critical Summary

According to the results from the experimental evaluation of the proposed model, its superiority compared to the currently applied model and its enhancements is verified. This confirms reaching the primary target of this thesis of finding a model that could predict the spare part demand of young fastmoving spare parts with higher accuracy than the currently applied model. A limitation is, that this holds only if regarded for the whole sample of spare parts. There are spare parts for which the prediction accuracy was improved and there are parts for which the currently applied model is superior to the proposed approach. The deep ANN is regarded as superior because it outperforms the currently applied model for more than 50% of the spare parts, which in total is an improvement. Unfortunately, the applied evaluation measures only state whether a model outperformed the compared approach or not. For future research the evaluation measure should be changed in a way, that statements about the margin of enhancement are possible.

Furthermore, there have been some flaws identified. The applied significance evaluation measure introduced a bias to the derivation of the deep learning based approach. It prefers models that were found to be the best according to the tournament ranking system for the largest number of spare parts of the evaluated sample over models that performed satisfactorily, but were not the best on most of the spare parts. The bias holds for  $\psi_{bm}$ , counting only the number of significantly worse models for the best model of a spare part, as well as for  $\psi_{sp}$ , creating better results if a model was more often the reference vector. This bias prefers overfitting over generalization. Even though the likelihood of overfitting is rather low for the current scenario because of the few training data that could be overfitted. Nevertheless, this should be kept track of. To overcome this bias an evaluation, significantly comparing all models for all parts, could be applied.

Continuously, a different order of hyperparameter derivation could have led to other results. In literature there exist no best practice in which order a deep ANN should be tuned. There are only recommendations, based on the expected effects of the hyperparameters, nonetheless these differ from task to task. Based on the experiences from this work, the order of hyperparameters derivations could be changed. The format of the input data, influenced by the data augmentation and the sliding window should be incorporated to the architecture design, because the architecture and the input are heavily related. Unfortunately, this increases the computational complexity of architecture derivation, which is expensive anyway.

An extension of the solution space regarding the hyperparameters is also recommended. Due to computational limitations the hyperparameters needed to be constrained for this study. This restriction should be reduced, and a wider parameter space evaluated. This implies a less restricted deep ANN, which could result in increased prediction accuracy. Nonetheless this produces a larger computational complexity for evaluation.

Last but not least, the sample selection should be mentioned. The sample size for hyperparameter evaluation allows a large margin of error, which in turn to some extent allows misleading conclusions. An increase of the sample size could reduce the margin of error but also requires a larger computational effort. Nevertheless, this is regarded as important because a larger sample probably better represents the true distribution, resulting in well-founded outcomes.

### 7.2. Outlook

Based on the results from the hyperparameter derivation and the comparison against the current model further research possibilities were identified. There seem to exist two classes of spare parts, one the deep ANN is superior and one the currently applied approach, or rather the enhanced version of the current model outperforms the proposed model. These two classes should be analyzed, and the characteristics of the particular spare parts should be identified. This could lead to an approach, where the spare part data is split, and each model is applied to the subset it is more suitable for. This would further increase the forecast performance by using the more appropriate model for each spare part. Nonetheless, identification of the selection criteria for each subset could become a tough task.

The proposed model could be supplemented by a plausibility check of the forecast, similar to the approach suggested for the currently applied model. If this forecast fails to verify the plausibility of the outcome of the deep learning based model, the prediction is repeated with the currently applied model or its enhancement. This could overcome spare parts the neural network was not able to learn the demand pattern but the currently applied model or its modification is able to. A combination of both models via a plausibility check can improve the performance for spare parts, either of both approaches is capable of satisfactory predictions but not for parts, both models fail to forecast with sufficient accuracy. Nevertheless, the derivation of the rules to define prediction plausibility represents a future research point.

Furthermore, literature review identified several promising approaches. These not yet covered models could be evaluated on their own or combined to an ensemble. The ensemble approach would benefit from the advantages of all models. Verification of possible approaches capable of increasing the forecast performance compared to the currently applied model and the proposed deep ANN could be a starting point for further research. The combination of these to an ensemble extends this idea, but it is questionable if the computational effort needed to obtain the final model is feasible and useful.

The proposed approach could be evaluated for other spare part classes. It may be an interesting research point, how the deep architectures will perform on spare parts with a larger demand history and therefore more data available for model training. This could also increase the prediction accuracy for other classes of spare parts not covered yet.

Last but not least, changes to the input data should be evaluated more detailed. In the scope of this study a training period of 24 months was assumed. In reality this period ranges within 12 to 59 months, as of the selection criteria. The influence of different amounts of training data to the proposed model should be evaluated, to ensure its performance also under changing conditions. Continuously, the input data could be supplemented by expert knowledge, like expected spare part failure rates or usage statistics from the authorized workshops, to further support the model by finding the time series related patterns. This additional information will also influence the needed amount of training data, as seen in the differences between the multivariate and univariate time series, used for model evaluation within this work. Pursuing, other theories, like phase space reconstruction of dynamical systems theory, could be evaluated to analyze if they could support the model by detecting the demand series underlying processes, to finally increase the spare part demand forecast accuracy.

Concluding, there are many directions for further research. This study revealed some new insights to the area of spare part demand forecasting, confirming that deep learning based models are capable of predicting future demand based on the historic spare part demand. This paves the way for future studies, possibly further increasing the prediction accuracy and therefore optimize the spare part management.

## Bibliography

- R. Ak, Y.-F. Li, V. Vitelli, and E. Zio. Multi-objective genetic algorithm optimization of a neural network for estimating wind speed prediction intervals. Technical report, HAL, 2013.
- [2] T. Al-Saba and I. El-Amin. Artificial neural networks as applied to long-term demand forecasting. Artificial Intelligence in Engineering, 13(2):189 – 197, 1999.
- [3] A. Bacchetti and N. Saccani. Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice. Omega, 40(6):722 - 737, 2012. Special Issue on Forecasting in Management Science.
- [4] E. Bartezzaghi, R. Verganti, and G. Zotteri. A simulation framework for forecasting uncertain lumpy demand. *International Journal of Produc*tion Economics, 59(1):499 - 510, 1999.
- [5] Y. Bengio. Neural Networks: Tricks of the Trade, chapter Practical Recommendations for Gradient-Based Training of Deep Architectures, pages 437–478. Springer-Verlag, Berlin, Heidelberg, 2nd edition, 2012.
- [6] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen. An overview and comparative analysis of recurrent neural networks for short term load forecasting. *Computing Research Reposi*tory, abs/1705.04378, 2017.
- H. Biedermann. Ersatzteilmanagement: Effiziente Ersatzteillogistik f
  ür Industrieunternehmen. Springer-Verlag, Berlin, Heidelberg, 2nd edition, 2008.
- [8] G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne. Business Intelligence: Second European Summer School, chapter Machine Learning Strategies for Time Series Forecasting, pages 62–77. Springer-Verlag, Berlin, Heidelberg, 2013.

- [9] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Y. Lechevallier and G. Saporta, editors, *Proceedings of COMP-STAT'2010*, pages 177–186, Heidelberg, 2010. Physica-Verlag HD.
- [10] J. E. Boylan and A. A. Syntetos. Spare parts management: a review of forecasting research and extensions. *IMA Journal of Management Mathematics*, 21(3):227-237, 2010.
- [11] J. E. Boylan, A. A. Syntetos, and G. C. Karakostas. Classification for forecasting and stock control: a case study. *Journal of the Operational Research Society*, 59(4):473–481, Apr 2008.
- [12] E. Busseti, I. Osband, and S. Wong. Deep learning for time series modeling. *Technical report, Stanford University*, 2012.
- [13] A. Callegaro. Forecasting nethods for spare parts demand. PhD thesis, University of Padova, 2010.
- [14] L. J. Cao and F. E. H. Tay. Support vector machine with adaptive parameters in financial time series forecasting. *IEEE Transactions on Neural Networks*, 14(6):1506–1518, Nov 2003.
- [15] R. Chandra. Competition and collaboration in cooperative coevolution of elman recurrent neural networks for time-series prediction. *IEEE Transactions on Neural Networks and Learning Systems*, 26(12):3123–3136, Dec 2015.
- [16] C. Chatfield. *Time-series forecasting*. Chapman, 1st edition, 2000.
- [17] C. Cheng, A. Sa-Ngasoongsong, O. Beyca, T. Le, H. Yang, Z. J. Kong, and S. T. Bukkapatnam. Time series forecasting for nonlinear and nonstationary processes: a review and comparative study. *IIE Transactions*, 47(10):1053-1071, 2015.
- [18] H.-K. Chiou, G.-H. Tzeng, C.-K. Cheng, and G.-S. Liu. Grey prediction model for forecasting the planning material of equipment spare parts in navy of taiwan. *Proceedings World Automation Congress*, 2004, 17:315– 320, 2004.
- [19] H. Chitsaz, H. Shaker, H. Zareipour, D. Wood, and N. Amjady. Shortterm electricity load forecasting of buildings in microgrids. *Energy and Buildings*, 99:50 – 60, 2015.

- [20] W. G. Cochran. Sampling techniques. Wiley series in probability and mathematical statistics. Wiley, New York, 2nd edition, 1963.
- [21] J. D. Croston. Forecasting and stock control for intermittent demands. Operational Research Quarterly (1970-1977), 23(3):289-303, 1972.
- [22] N. Dalkey and O. Helmer. An experimental application of the delphi method to the use of experts. *Management Science*, 9(3):458-467, 1963.
- [23] C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah. A review on time series forecasting techniques for building energy consumption. *Renewable* and Sustainable Energy Reviews, 74:902 - 924, 2017.
- [24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: Nsga-ii. *IEEE Transactions on Evolu*tionary Computation, 6(2):182–197, Apr 2002.
- [25] J. L. Deng. Control problems of grey systems. Systems & Control Letters, 1(5):288 - 294, 1982.
- [26] J. L. Deng. Introduction to grey system theory. The Journal of Grey System, 1(1):1-24, Nov. 1989.
- [27] Deutsches Institut f
  ür Normung. Din24420-1: Lists of spare parts; general, Sept. 1976.
- [28] Deutsches Institut für Normung. Din31051: Fundamentals of maintenance, Sept. 2012.
- [29] U. Dombrowski and S. Schulze. Beiträge zu einer Theorie der Logistik, chapter Lebenszyklusorientiertes Ersatzteilmanagement: neue Herausforderungen durch innovationsstarke Bauteile in langlebigen Primärprodukten, pages 439–462. Springer-Verlag, Berlin, Heidelberg, 2008.
- [30] B. Efron. Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7(1):1–26, Jan. 1979.
- [31] J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179 211, 1990.
- [32] Y. Finke. Kostenoptimale produktions- und bevorratungsstrategie nach end of production (eop). Technical report, Technische Universität Dortmund, 2010.

- [33] L. Fortuin. The all-time requirement of spare parts for service after sales—theoretical analysis and practical results. International Journal of Operations & Production Management, 1(1):59-70, 1980.
- [34] L. Fortuin and H. Martin. Control of service parts. International Journal of Operations & Production Management, 19(9):950-971, 1999.
- [35] J. C. B. Gamboa. Deep learning for time-series analysis. Computing Research Repository, abs/1701.01887, 2017.
- [36] E. S. Gardner and A. B. Koehler. Comments on a patented bootstrapping method for forecasting intermittent demand. *International Journal of Forecasting*, 21(3):617 – 618, 2005.
- [37] F. A. Gers, D. Eck, and J. Schmidhuber. Applying lstm to time series predictable through time-window approaches. In *Neural Nets WIRN Vietri-01*, pages 193–200, London, 2002. Springer London.
- [38] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9, pages 249-256. PMLR, 13-15 May 2010.
- [39] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15, pages 315–323. PMLR, 11–13 Apr 2011.
- [40] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.
- [41] R. S. Gutierrez, A. O. Solis, and S. Mukhopadhyay. Lumpy demand forecasting using neural networks. *International Journal of Production Economics*, 111(2):409 – 420, 2008.
- [42] R. Hable. Einführung in die Stochastik. Springer-Lehrbuch. Springer Spektrum, Berlin, 2015.
- [43] M. Hagen. Methoden, Daten- und Prozessmodell f
  ür das Ersatzteilmanagement in der Automobilelektronik. PhD thesis, Technische Universit
  ät Dresden, Dec. 2003.
- [44] C. Hamzacebi and H. A. Es. Forecasting the annual electricity consumption of turkey using an optimized grey model. *Energy*, 70:165 – 171, 2014.

- [45] G. Hinton. Neural networks for machine learning: Lecture 6a overview of mini-batch gradient descent. http://www.cs.toronto.edu/~tijmen/ csc321/slides/lecture\_slides\_lec6.pdf, 2014. Accessed: 2018-05-1.
- [46] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.
- [47] D. Hsu. Time series forecasting based on augmented long short-term memory. Computing Research Repository, abs/1707.00666, 2017.
- [48] Z. Hua and B. Zhang. A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts. *Applied Mathematics and Computation*, 181(2):1035 – 1048, 2006.
- [49] R. J. Hyndman and A. B. Koehler. Another look at measures of forecast accuracy. *International Journal of Forecasting*, 22(4):679 688, 2006.
- [50] K. Inderfurth and R. Kleber. Modellgestützte flexibilitätsanalyse von strategien zur ersatzteilversorgung in der nachserienphase. Zeitschrift für Betriebswirtschaft, 79(9):1019, Sept. 2009.
- [51] S. Jaipuria and S. Mahapatra. An improved demand forecasting method to reduce bullwhip effect in supply chains. *Expert Systems with Applications*, 41(5):2395 - 2408, 2014.
- [52] K. Kanchymalay, N. Salim, A. Sukprasert, R. Krishnan, and U. Raba'ah Hashim. Multivariate time series forecasting of crude palm oil price using machine learning techniques. *IOP Conference Series: Materials Science and Engineering*, 226(1):012117, 2017.
- [53] D. S. Karunasinghe and S.-Y. Liong. Chaotic time series prediction with a global model: Artificial neural network. *Journal of Hydrology*, 323(1):92 - 105, 2006.
- [54] A. Kazem, E. Sharifi, F. K. Hussain, M. Saberi, and O. K. Hussain. Support vector regression with chaos-based firefly algorithm for stock market price forecasting. *Applied Soft Computing*, 13(2):947-958, 2013.
- [55] Keras. Keras documentation. https://keras.io/, 2018. Accessed: 2018-04-30.
- [56] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. Computing Research Repository, abs/1412.6980, 2014.

- [57] F. Klug. Logistikmanagement in der Automobilindustrie : Grundlagen der Logistik im Automobilbau. Springer-Verlag, Berlin, Heidelberg, 2nd edition, 2018.
- [58] T. Kuremoto, S. Kimura, K. Kobayashi, and M. Obayashi. Time series forecasting using a deep belief network with restricted boltzmann machines. *Neurocomputing*, 137:47 – 56, 2014.
- [59] K. Lange. Numerical Analysis for Statisticians. Springer NY, New York, 2nd edition, 2010.
- [60] Y.-S. Lee and L.-I. Tong. Forecasting energy consumption using a grey model improved by incorporating genetic programming. *Energy Conver*sion and Management, 52(1):147 – 152, 2011.
- [61] A. Lendasse, E. Oja, O. Simula, and M. Verleysen. Time series prediction competition: The cats benchmark. In *International Joint Conference on Neural Networks*, pages 1615–1620. IEEE, July 2004.
- [62] C. J. Lin, C. H. Chen, and C. T. Lin. A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications. *IEEE Transactions on Systems, Man,* and Cybernetics, Part C (Applications and Reviews), 39(1):55-68, Jan 2009.
- [63] M. Lippi, M. Bertini, and P. Frasconi. Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning. *IEEE Transactions on Intelligent Transportation Sys*tems, 14(2):871–882, June 2013.
- [64] M. Längkvist, L. Karlsson, and A. Loutfi. A review of unsupervised feature learning and deep learning for time-series modeling. *Pattern Recognition Letters*, 42:11 – 24, 2014.
- [65] F. Lolli, R. Gamberini, A. Regattieri, E. Balugani, T. Gatos, and S. Gucci. Single-hidden layer neural networks for forecasting intermittent demand. *International Journal of Production Economics*, 183:116– 128, 2017.
- [66] G. Loukmidis. *Adaptive Ersatzteilbedarfsplanung*. PhD thesis, RWTH Aachen, Aachen, 2014.

- [67] G. Loukmidis and H. Luczak. Erfolgreich mit After Sales Services: Geschäftsstrategien für Servicemanagement und Ersatzteillogistik, chapter Lebenszyklusorientierte Planungsstrategien für den Ersatzteilbedarf, pages 251–270. Springer-Verlag, Berlin, Heidelberg, 2006.
- [68] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. *Transportation Research: Emerging Technologies*, 54:187 – 197, 2015.
- [69] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In *Proceedings of the 30 th International Conference on Machine Learning*, 2013.
- [70] McKinsey&Company. The changing aftermarket game and how automotive suppliers  $\operatorname{can}$ benefit from arisopportunities. https://www.mckinsey.de/2017-07-11/ ing autobranche-aftersales-geschaeft-waechst-jaehrlich-um-3-prozent, 2017. Accessed: 2018-03-02.
- [71] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, 1st edition, 1997.
- [72] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 7(4):308-313, 1965.
- [73] A. K. Palit and D. Popovic. Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications. Advances in Industrial Control. Springer-Verlag London Limited, 2005.
- [74] A. Pei. Load forecasting based on fuzzy time series. Proceedings of the 3rd International Conference on Material, Mechanical and Manufacturing Engineering, Aug. 2015.
- [75] H.-C. Pfohl. Logistiksysteme: betriebswirtschaftliche Grundlagen. Springer-Verlag, Berlin, 8th edition, 2010.
- [76] E. Porras and R. Dekker. An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods. *European Journal of Operational Research*, 184(1):101 – 132, 2008.
- [77] V. Ravi, D. Pradeepkumar, and K. Deb. Financial time series prediction using hybrids of chaos theory, multi-layer perceptron and multi-objective

evolutionary algorithms. Swarm and Evolutionary Computation, 36:136 – 149, 2017.

- [78] S. Ruder. An overview of gradient descent optimization algorithms. Computing Research Repository, abs/1609.04747, 2016.
- [79] E. D. Rumelhart, E. G. Hinton, and J. R. Williams. Learning representations by back propagating errors. *Nature*, 323:533–536, Oct. 1986.
- [80] J. Schmidhuber. Deep learning in neural networks: An overview. Computing Research Repository, abs/1404.7828, 2014.
- [81] M. Schröter. Strategisches Ersatzteilmanagement in Closed-Loop Supply Chains : ein systemdynamischer Ansatz. Gabler Edition Wissenschaft. Dt. Univ.-Verl., Wiesbaden, 1st edition, 2006.
- [82] G. Schuh and V. Stich. Logistikmanagement: Handbuch Produktion und Management. Springer-Verlag, Heidelberg, 2nd edition, 2013.
- [83] S. Singh. A simple method of forecasting based on fuzzy time series. Applied Mathematics and Computation, 186(1):330 - 339, 2007.
- [84] C. Smith and Y. Jin. Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction. *Neurocomput*ing, 143:302 - 311, 2014.
- [85] Q. Song and B. S. Chissom. Fuzzy time series and its models. Fuzzy Sets and Systems, 54(3):269 - 277, 1993.
- [86] Statista. Erzielter profit im weltweiten vertrieb von pkw im jahr 2014 nach segmenten (in milliarden euro). https: //de.statista.com/statistik/daten/studie/461183/umfrage/ automobilvertrieb-globaler-gewinn-mit-pkw/, 2017. Accessed: 2018-02-28.
- [87] R. Storn and K. Price. Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. *Journal of Global Optimization*, 11(4):341–359, Dec. 1997.
- [88] M. Strunz. Instandhaltung : Grundlagen Strategien Werkstätten. Springer Vieweg, Heidelberg, 2012.
- [89] A. A. Syntetos and J. E. Boylan. On the bias of intermittent demand estimates. International Journal of Production Economics, 71(1):457 – 466, 2001.

- [90] A. A. Syntetos and J. E. Boylan. The accuracy of intermittent demand estimates. *International Journal of Forecasting*, 21(2):303 – 314, 2005.
- [91] F. Takens. Dynamical Systems and Turbulence, chapter Detecting strange attractors in turbulence, pages 366–381. Springer-Verlag, Berlin, Heidelberg, 1981.
- [92] B. I. Taweh. Introduction to Deep Learning Using R. Apress, 1 edition, 2017.
- [93] Toyota Motor Corporation. How many parts is each car made of? http: //www.toyota.co.jp/en/kids/faq/d/01/04/, 2018. Accessed: 2018-05-25.
- [94] R. Vahrenkamp and H. Kotzab. Logistik : Management und Strategien. Management 10-2012. Oldenbourg, München, 7th edition, 2012.
- [95] V. Vapnik, S. E. Golowich, and A. J. Smola. Support vector method for function approximation, regression estimation and signal processing. In Advances in Neural Information Processing Systems 9, pages 281–287. MIT Press, 1997.
- [96] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye. Probability & Statistics for Engineers & Scientists. Pearson AIDS Education and Prevention, 9th edition, 2012.
- [97] P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market model. *Neural Networks*, 1(4):339 356, 1988.
- [98] B. Widrow and M. E. Hoff. Adaptive switching circuits. 1960 IRE WESCON Convention Record, pages 96-104, 1960.
- [99] T. R. Willemain, C. N. Smart, and H. F. Schwarz. A new approach to forecasting intermittent demand for service parts inventories. *Interna*tional Journal of Forecasting, 20(3):375 – 387, 2004.
- [100] K. Yeo. Model-free prediction of noisy chaotic time series by deep learning. Computing Research Repository, abs/1710.01693, 2017.
- [101] F. Zhang, C. Deb, S. E. Lee, J. Yang, and K. W. Shah. Time series forecasting for building energy consumption using weighted support vector regression with differential evolution optimization technique. *Energy* and Buildings, 126:94 – 103, 2016.

[102] L. Zhang, F. Tian, S. Liu, L. Dang, X. Peng, and X. Yin. Chaotic time series prediction of e-nose sensor drift in embedded phase space. *Sensors* and Actuators B: Chemical, 182:71 – 79, 2013.

# A. Significance tables

| \$ 77-27-                                                 |                           | -           |        |             |          |             |          |             |        |        |          |        |        |               |        |        |        |        |        |          |        |        |        |        |          |          |                          |                           |          |        |          |        |          |                            |                            |                          |                            |              | Π                  |                           |              |
|-----------------------------------------------------------|---------------------------|-------------|--------|-------------|----------|-------------|----------|-------------|--------|--------|----------|--------|--------|---------------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|----------|----------|--------------------------|---------------------------|----------|--------|----------|--------|----------|----------------------------|----------------------------|--------------------------|----------------------------|--------------|--------------------|---------------------------|--------------|
| 5-77-77-57-07140740                                       | 0.2681                    | 0.0000      | 0.6245 | 0.1688      | 0.0009   | 0.2118      | 0.0130   | 0.0366      | 0.0589 | 0.0009 | 0.0014   | 0.0649 | 0.1364 | 0.4498        | 0.0045 | 0.0000 | 0.7691 | 0.5569 | 0.0000 | 0.0294   | 0.0097 | 0.0808 | 0.0034 | 0.3199 | 0.0001   | 0.8888   | 0.97777                  | 0.2933                    | 0.0913   | 0.3199 | 0.0013   | 0.1778 | 0.1327   | 0.3777                     | 0.0886                     | 0.0859                   | 0.7162                     | 0.0055       | 0.0859             | 0.0001                    | 16           |
| 127-57-57-57-57-57-67-67-67-67-67-67-67-67-67-67-67-67-67 | 0.0551                    | 0.0031      | 0.1645 | 0.0353      | 0.0006   | 0.1645      | 0.2224   | 0.7267      | 0.1440 | 0.0026 | 0.0043   | 0.3854 | 0.7906 | 0.4498        | 0.0125 | 0.0002 | 0.0136 | 0.2805 | 0.000  | 0.0023   | 0.0017 | 0.0066 | 0.1479 | 0.7798 | 0.0043   | 0.2933   | 0.1089                   | 0.2170                    | 0.9554   | 0.1688 | 0.0194   | 0.2118 | 0.4498   | 0.8558                     | 0.0021                     | 0.1058                   | 0.3777                     | 0.0187       | 0.2933             | 0.0005                    | 17           |
| 22017757 030000                                           | 0.1479                    | 0.0063      | 0.1778 | 0.0808      | 0.0001   | 0.8558      | 0.2445   | 0.3199      | 0.0516 | 0.0001 | 0.3627   | 0.2868 | 0.1058 | 0.1186        | 0.2278 | 0.0000 | 0.3553 | 0.1327 | 0.0000 | 0.0030   | 0.0736 | 0.0010 | 0.0166 | 0.6955 | 0.0000   | 0.1824   | 0.0392                   | 0.0886                    | 0.0317   | 0.0202 | 0.0218   | 0.2743 | 1.0000   | 0.8014                     | 0.0305                     | 0.1824                   | 0.5759                     | 0.0007       | 0.0180             | 0.0003                    | 17           |
| 6-07-67 & O70140                                          | 0.4668                    | 0.0153      | 0.0466 | 0.0466      | 0.000    | 0.3064      | 0.3338   | 0.4250      | 0.0048 | 0.000  | 0.0294   | 0.5663 | 0.5569 | 1.0000        | 0.0736 | 0.0040 | 0.0450 | 0.0435 | 0.000  | 0.0020   | 0.2868 | 0.3268 | 0.8999 | 0.0028 | 0.0000   | 0.0353   | 0.9110                   | 0.0284                    | 0.6749   | 0.9888 | 0.0006   | 0.8014 | 0.0110   | 0.5019                     | 0.0004                     | 0.0691                   | 0.0406                     | 0.0002       | 0.1027             | 0.0187                    | 22           |
| 1-17-57-57-58-17-70340                                    | 0.0136                    | 0.0141      | 0.2933 | 0.3268      | 0.0005   | 0.4414      | 0.0421   | 0.3199      | 0.0082 | 0.0187 | 0.0516   | 0.1688 | 0.4414 | 0.7267        | 0.1479 | 0.3481 | 0.4498 | 0.0125 | 0.0000 | 0.0008   | 0.1645 | 0.0180 | 0.5199 | 0.0736 | 0.0000   | 0.0235   | 0.4755                   | 1.0000                    | 0.8014   | 0.1824 | 0.0450   | 0.8014 | 0.0036   | 0.0998                     | 0.0120                     | 0.0106                   | 0.0913                     | 0.0006       | 0.1871             | 0.0000                    | 18           |
| 5627-77-52-0760 DEC 17-75-82                              | 0.0551                    | 0.0366      | ~      |             |          | 0.9443      |          | 3           |        |        |          |        |        | 0.0628        |        |        | 4      |        |        |          | 0.0736 |        |        |        | 0.0000   |          | 0.0202                   | 0.6955                    |          |        |          |        | 0.0002   | 0.3553                     | 0.0018                     | 0.0998                   | 0.4930                     | 0000.0       | 0.2503             | 0106                      | 20           |
| 77-5-5-17-5-17-70340                                      | 0.1733 (                  | 0.0007      |        |             | _        | 0.7372 (    |          |             |        |        | 1        |        |        | 0.7584 (      |        |        |        |        |        |          |        |        |        |        | 0.0000   |          | 0.6049                   | 0.3409 (                  |          |        | 0.1027   |        | 0.0533 0 | 0.1220 0                   | 0.0013 0                   | 0.1440 (                 | 0.0670                     | 0.0002 (     | 0.1153 (           | 8000                      | 13           |
| 2-77-2-17-2-17-2-17-2-                                    | 0.0691 (                  | 0.1520 0    |        |             |          |             | 0.0082 ( |             |        |        | ~        |        |        |               |        |        |        |        | _      |          |        |        |        |        | 0.0000 0 | 0.1561 ( | 0.6955 (                 | 0.6147 (                  | 0.4755 ( |        | 0.0043 ( |        | 0.0136 ( | 0.1918 0                   | 0.0000 0                   | 0.0589 (                 | 0.8339 (                   | 0.0014 (     | 0.0264 (           | 0063                      | 21           |
| 05 77 57 0740740                                          | 0.0998 (                  | 0.0050 (    | 3      | 0.5951 0    | 0.0570 0 | 0.9221 0    | 0.0078 ( |             | _      |        | 0.2503 0 |        |        | 0.2388 (      |        |        |        |        | _      | 0.0649 0 |        |        |        |        |          | 0.6345 ( | 0.2445 (                 | 0.5382 (                  | 0.3481 ( |        | 0.0000   |        | 0.0024 ( | 0.1290 (                   | 0.1089 0                   | 0.5854 (                 | 0.0317 (                   | 0.0019 (     | 0.0166 (           | 1.0000 0                  | 15           |
| 577 GE (7)40                                              | 0.2933                    | 0.0002      | 0.0254 |             | 0.0038   | 0.6955      | 0.0254   | 0.1027      |        |        |          | -      |        | 0.4668        | -      | +      | +      | -      | -      |          | -      | -      | -      |        |          | -        | 0.0001                   |                           | 0.0011   | -      | 0.0194   | -      | 0.0274   | 0.0072                     | 0.0003                     | 0.0078                   | 0.2805                     | 0.0406       | 0.1520             | 0.040                     | 21           |
| 66.9 OBO                                                  | 0.0244                    | 0.1401      | 0.0244 | 0.5382      | 0.0551   | 0.8888      | 0.8122   | 0.4755      | 0.1688 | 0.0284 | 0.0001   | -      |        | 0.3131        | 0.0406 | -      | - 1    | -      | 0.5290 | 0.0736   |        |        | 0.0002 | 0.2868 | 0.6955   | 0.4755   | 0.0016                   | 0.6955                    | 0.0085   | 1.0000 | 0.2743   | 0.2805 | 0.0940   | 0.0859                     | 0.0940                     | 0.0040                   | 0.9332                     | 0.9888       | 0.1918             | 0.0072                    | 12           |
| 6.87 & OUO                                                | 0.0466                    | 0.000.0     |        | -           | 0.0516   | 0.0833      | 0.2681   | 0.4250      |        |        | -        | -      |        | 1.0000        | -      | _      | -      | -      | -      | 0.0000   | 0.6546 |        |        |        |          | -        | 0.0006                   | 0.9666                    |          | -      | 0.4088   | -      | 0.0202   | 0.0031                     | 0.8668                     | 0.3854                   | 0.6955                     | 0.5854       | 0.8122             | 0274                      | 12           |
| 17-17-92-0740                                             | 0.0714                    | 0.0000      | 0.4583 |             | 0.0055   | 0.8888      | 0.8888   |             | 0.7372 |        | ~        |        |        | 0.5951        | ~      | -      | -      |        |        |          | _      |        |        |        |          | 0.6345   | 0.0000                   | 0.6147                    |          |        | 0.3777   |        | 0.0101   | 0.0366                     | 0.9221                     | 0.2998                   | 0.5199                     | 1.0000       | 1.0000             | 090                       | 13           |
| 17 57 57 67 60 10                                         | 0.0589                    | 0.0106      | 0.0649 | 0.3064      | 1.0000   | 0.2224      | 0.0913   | 0.9888      | 0.1364 | 0.0450 | 0.000    | 0.8778 | 0.1186 | 0.3409        | 0.4088 | 0.000  | 0.1778 | 0.0736 | 0.0833 | 0.0033   | 0.0714 | 1.0000 | 0.0069 | 0.2118 | 0.4755   | 0.8778   | 0.1440                   | 0.8339                    | 0.0421   | 0.3702 | 0.7906   | 0.9110 | 0.4414   | 0.5475                     | 0.0940                     | 0.3064                   | 0.0886                     | 0.1121       | 0.2067             | 0900.0                    | ~            |
| 17 57 57 (JUA)                                            | 0.0482                    | 0.4332      | 0.1967 | 0.0649      | 0.1220   | 0.3702      | 0.9554   | 0.0784      | 0.0466 | 0.1058 | 0.0153   | 0.2743 | 0.4930 | 0.4009        | 0.0125 | 0.0406 | 0.1967 | 1.0000 | 0.0833 | 0.0005   | 0.2805 | 0.0048 | 0.0069 | 0.3199 | 0.0075   | 0.3627   | 0.0305                   | 0.1967                    | 0.0969   | 0.3854 | 0.1967   | 0.4088 | 0.4930   | 0.4088                     | 0.9443                     | 0.5854                   | 0.3931                     | 0.6749       | 0.3131             | 0.0628                    | 10           |
| - st st old                                               | 0.1871                    | 0.0057      | 0.1027 | 0.0075      | 0.1186   | 0.0218      | 1.0000   | 0.0450      | 0.0017 | 0.0760 | 0.0000   | 0.6647 | 0.4583 | 0.1967        | 0.0392 | 0.0001 | 0.1327 | 0.6851 | 0.0466 | 0.0052   | 0.0628 | 0.0859 | 0.0392 | 0.1440 | 0.2621   | 0.2681   | 0.0005                   | 0.7162                    | 0.0466   | 0.7058 | 0.7691   | 0.3409 | 0.0052   | 0.0859                     | 0.0328                     | 0.0784                   | 0.4930                     | 0.4498       | 0.6851             | 0.0055                    | 16           |
| SET STOR                                                  |                           | 0.0173      | 0.0264 | 7000.0      | 0.0147   | 1.0000      | 0.0004   | 0.1967      | 0.9221 | 0.0130 | 0.000.0  | 0.8999 | 0.3777 | 0.0366        | 0.0007 | 0.0045 | 0.0002 | 0.9110 | 0.3338 | 0.0691   | 0.0284 | 0.2621 | 0.0001 | 0.0570 | 0.6345   | 0.3064   | 0.0003                   | 0.6345                    | 0.0000   | 0.4250 | 0.2998   | 0.3553 | 0.0392   | 0.0000                     | 0.0002                     | 0.0808                   | 0.2170                     | 0.1918       | 0.7162             | 0.0012                    | 19           |
| $\psi_{bm}$                                               | ×                         | 9 40        | 10     | 12          | 43       | 5           | 19       | 5           | 23     |        | 7 30     | _      | ŝ      | 1             | 14     | 45     | 18     | 15     | 43     | _        | -      | 30     | 32     | 13     | 43       | 12       | 17                       | 12                        | 6        | 5      | 14       | 1      | 23       | 5                          | 26                         | 12                       | 10                         | 41           | 17                 | 48                        | $\psi_{sp}$  |
|                                                           | ut 1 DRDRD-15-19-12-11-11 |             |        | -           | <u> </u> | -           |          |             |        |        |          |        | _      |               | -      | -+     |        |        | _      | -        |        |        | -      |        |          | _        | ut 27 DRDRD-22-11-8-7-11 | wt 28 DRDLD-26-13-12-11-7 |          | -      | -        |        |          | wt 34 DRDRD-18-17-12-11-11 | ut 35 DRDRD-15-19-12-11-11 | ut 36 DRDRD-30-19-14-5-5 | urt 37 DRDRD-22-17-12-5-11 | -            | ut 39 DRD-26-11-11 | ut 40   DLDRD-15-11-8-9-7 |              |
|                                                           | Part 1 DRDF               | Part 2 DLDR |        | Part 4 DRDF |          | Part 6 DRD- |          | Part 8 DRDF |        |        |          | _      | -      | Part 14 DRD-: |        | -+     |        | -      | _      | -        |        | -      |        |        |          | -        | _                        | Part 28 DRDL              |          | -      | -        |        | _        | Part 34 DRDF               | Part 35 DRDF               | Part 36 DRDF             | Part 37 DRDF               | Part 38 DRD- | Part 39 DRD-       | ŀ                         | Part 40 DLDR |

 Table A.1.: Significance evaluation of 50 best architectures for DL-STPM 

 VPD.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                    | <u> </u>                    | r                  |                      |              |             | 1           |                     |                    |             | 1                           |                             | _                   |             |                      |             |                      |              | _           |                    |                          | _            |         |                      |             |                    | _                  |                     |                    |         |          |                    | r                  |                      |         |                    |                     | 1            |              |                   | _           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------|----------------------|--------------|-------------|-------------|---------------------|--------------------|-------------|-----------------------------|-----------------------------|---------------------|-------------|----------------------|-------------|----------------------|--------------|-------------|--------------------|--------------------------|--------------|---------|----------------------|-------------|--------------------|--------------------|---------------------|--------------------|---------|----------|--------------------|--------------------|----------------------|---------|--------------------|---------------------|--------------|--------------|-------------------|-------------|
| 2 27 37 27 50 00 Malla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3481               | 0.001                       | 0.3064             | 0.3481               | 0.0005       | 0.3627      | 0.4332      | 0.5663              | 0.3481             | 0.0101      | 0.0340                      | 0.2743                      | 0.2681              | 0.3931      | 0.8558               | 0.0055      | 0.3131               | 0.0736       | 0.000.0     | 0.0940             | 0.0482                   | 0.0649       | 0.0998  | 0.7584               | 0.0366      | 0.0649             | 0.0264             | 0.1918              | 0.1645             | 0.0940  | 0.6445   | 0.6049             | 0.0760             | 0.1255               | 0.0141  | 0.4930             | 0.4332              | 0.0038       | 0.3481       | 0.0001            | 12          |
| TEN SOLVER OF ALLON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0886               | 0.0001                      | 0.6345             | 0.7162               | 0.0018       | 0.5199      | 0.0022      | 0.4169              | 0.0353             | 0.0120      | 0.0450                      | 0.4169                      | 0.1401              | 0.7162      | 0.9221               | 0.0000      | 0.0066               | 0.1778       | 00000       | 0.1058             | 0.0048                   | 0.0235       | 0.0227  | 0.8014               | 0.0040      | 1.0000             | 0.0110             | 0.1290              | 0.4842             | 0.4332  | 0.5108   | 0.1733             | 0.3854             | 0.3931               | 0.1153  | 0.7691             | 0.1824              | 0.0069       | 0.098        | 0.0001            | 16          |
| 2871 87 TE CILOUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2118 (             | 0.000.0                     |                    | ~                    |              |             |             |                     | 0.2743 0           | _           |                             |                             |                     |             | 0.5500 (             |             | 0.2743 0             | 0.0218 (     | 00000       | 0.1121 (           | 0.1255 0                 | 0.0406 (     |         | 0.2868 (             | 0.0002 (    |                    |                    |                     |                    |         |          | 0.9221 (           | 0.0499 (           | 0.2278 (             |         |                    | 0.2561 (            |              |              | 005               |             |
| 6277 LE CILOLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31 0.2               |                             |                    |                      |              |             |             |                     |                    |             |                             |                             |                     |             |                      |             |                      |              |             |                    |                          |              |         |                      |             |                    |                    |                     |                    |         |          |                    |                    |                      |         |                    |                     |              |              |                   | 12          |
| 113 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1561               | 0000"0                      | 0.3338             | 0.5951               | 0.0002       |             | 0.5759      | 0.1733              | 0.1089             |             |                             | 0.2868                      | 0.2933              | 0.7691      | 0.8778               | 0.0254      | 0.4842               | 0.5759       | 0000"0      | 0.7798             | 0.0136                   | 0.1186       |         | 0.6647               | 0.0180      |                    | 0.1561             | 0.1479              | 1.0000             | 0.4332  | 0.2067   | 0.3331             | 0.0482             | 0.5290               | 0.0305  | 0.8449             |                     |              |              | 0.001             | 14          |
| 11-5-51-11-75-07407HQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0147               | 0.0005                      | 0.5475             | 0.0187               | 0.0011       | 0.5019      | 0.0153      | 0.7798              | 0.0998             | 0.0018      | 0.0482                      | 0.3331                      | 0.0859              | 0.1401      | 0.7267               | 0.0002      | 0.2743               | 0.4250       | 0.0000      | 0.1220             | 0.0072                   | 0.0254       | 0.001   | 0.9221               | 0.0085      | 0.0340             | 0.1602             | 0.0691              | 0.3409             | 0.2332  | 0.6851   | 0.3338             | 0.3702             | 0.6245               | 0.1561  | 0.2445             | 1.0000              | 0.0082       | 0.0998       | 0.001             | 16          |
| 17-2-8-17-22-0740740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1364               | 0.0019                      | 0.0589             | 0.0859               | 0.0027       | 0.7906      | 0.2388      | 0.4414              | 0.8999             | 0.0264      | 0.2224                      | 0.1561                      | 0.2998              | 0.6245      | 0.2503               | 0.0005      | 0.2332               | 0.0227       | 0.000.0     | 0.2224             | 0.0075                   | 0.0031       | 0.0001  | 0.8558               | 0000.0      | 0.0379             | 1.0000             | 0.0736              | 0.0913             | 2600.0  | 0.4755   | 0.5759             | 0.3702             | 0.5475               | 0.0003  | 0.5019             | 0.3338              | 7100.0       | 0.1089       | 0.0001            | 15          |
| DRIDRA LE LT - LE - LL - LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0353               | 0.0015                      | 0.3199             | 1.0000               | 0.0048       | 0.1153      | 0.0379      | 0.8668              | 0.0913             | 0.0034      | 0.0089                      | 0.0998                      | 0.2561              | 0.4498      | 0.9332               | 0.0001      | 1.0000               | 0.3627       | 00000       | 0.0589             | 0.0284                   | 0.0166       | 0.0649  | 0.7906               | 0.0366      | 0.2170             | 0.1824             | 0.3199              | 0.6647             | 0.2503  | 0.6049   | 0.2067             | 0.1327             | 1.0000               | 0.0284  | 0.2933             | 0.0210              | 0.0005       | 0.0075       | 0.0003            | 9           |
| הונטונט ופינפיפיריו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0589 0             | 0.000.0                     |                    |                      |              |             |             |                     | 0.0340 (           |             |                             |                             | 0.0340 (            |             | 0.8122 (             |             | 0.0317               | 0.0533 (     | 0.000.0     |                    | 0 2600.0                 | 0.0366 (     |         | 0.6445 (             | 0.0005 (    |                    |                    |                     |                    |         | 0.8230 ( | 0.4009 (           | 0.4930 (           | 0.2017               |         | 0.0516 (           |                     |              |              | 9008              |             |
| 677 SET ST DUDUO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03 01                |                             |                    |                      |              |             |             |                     |                    |             |                             |                             |                     |             |                      |             |                      |              |             |                    |                          |              |         |                      |             |                    |                    |                     |                    |         |          |                    |                    |                      |         |                    |                     |              |              | 0.0008 0.         | 17          |
| 67707-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2503               | 000010 6                    |                    |                      |              |             | 0.0736      |                     | 3 0.0649           |             |                             |                             |                     | 0.1089      | 1 0.0166             |             | 0.1871               | 0.3199       | 000000      | 5 0.4414           | 1 0.0317                 | 3 0.0589     |         | 0.7058               | 0.0006      |                    |                    |                     |                    |         |          | 0.4930             | 0.3702             | 0.6647               |         | 0.3338             |                     |              |              |                   | 12          |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0808               | 0,0019                      | 0.3777             | 0.4332               | 0:0030       | 0.2170      | 0.1401      | 0.3409              | 0.0406             | 2600*0      | 0.0008                      | 0.7372                      | 0.8122              | 0.2278      | 0.0421               | 00000       | 0.0670               | 0.0808       | 00000       | 0.0305             | 0.0421                   | 0.0366       | 01010   | 0.6245               | 0.0589      | 0.1824             | 0.2561             | 0.7267              | 0.7058             | 0.5569  | 0.2681   | 0.3854             | 0.6049             | 0.2278               | 0.049   | 0.3481             | 0.9888              | 0000         | 0.0435       | 0.001             | 16          |
| 17 ET ET ET ET ET ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1645               | 0.0227                      | 0.0379             | 0.4169               | 0.0125       | 0.1688      | 0.4088      | 0.3553              | 0.0194             | 0.0024      | 0.3199                      | 0.9221                      | 0.2017              | 0.4668      | 0.7162               | 0.0005      | 0.1290               | 0.0913       | 0,0000      | 0.0072             | 0.0366                   | 0.0030       | 0.0057  | 1.0000               | 0.0115      | 0.4009             | 0.0760             | 0.1186              | 0.9332             | 0.3931  | 1.0000   | 0.4930             | 0.4088             | 0.1255               | 0.9110  | 0.0328             | 0.5475              | 0.0028       | 0.2621       | 00000             | 15          |
| 17-77-27-67-67-67-67-67-67-67-67-67-67-67-67-67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000               | 2000.0                      | 0.3553             | 0.8778               | 0.0010       | 0.0036      | 0.1918      | 0.1121              | 0.2445             | 0.0008      | 0.0969                      | 0.0063                      | 0.5663              | 0.2332      | 1.0000               | 0°001       | 0.3409               | 0.0499       | 0.000       | 0.2017             | 0.0691                   | 0.0353       | 0.0166  | 0.7162               | 0.0027      | 0.2805             | 0.0015             | 0.1967              | 0.7691             | 0.4332  | 0.1918   | 0.4755             | 0.5108             | 0.2933               | 1.0000  | 0.5199             | 0.0499              | 0.0010       | 0.0379       | 0.0002            | 16          |
| LET TI LE COLOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1688               | 0.0173                      |                    |                      | 0.0274       |             |             |                     | 0.0017             |             |                             |                             | 1.0000              | 1.0000      | 0.1479               | 0.0010      | 0.3627               | 0.1327       | 00000       | 0.0045             | 0.0173                   | 0.0366       |         | 0.1440               | 0.0227      |                    |                    |                     |                    |         |          | 0.3627             | 0.9332             |                      |         |                    |                     |              |              | 027               | _           |
| - The letter of the letter the le | 88                   |                             |                    |                      |              |             |             |                     |                    |             |                             |                             |                     |             |                      |             |                      |              |             |                    |                          |              |         |                      |             |                    |                    |                     |                    |         |          |                    |                    |                      |         |                    |                     |              |              |                   | 16          |
| 11027-0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4088               | 00003                       |                    |                      |              |             |             |                     |                    |             |                             |                             | 0.0317              | 0.5759      | 0.1733               |             | 0.1561               | 0.0808       | 000000      | 0.0392             | 0.0043                   | 8 0.1688     |         | 0.2388               | 0.0570      |                    |                    |                     |                    |         | 0.5290   | 0.5019             | 0.3777             | 0.8778               |         | 0.2017             | 0.5108              |              |              | 00001             | 13<br>13    |
| 17 BETERSTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2868               | 0.0001                      | 0.0392             | 0.098                | 0.0023       | 0.1121      | 0.0066      | 0.4583              | 0.0024             | 0900.0      | 0.0106                      | 0.2445                      | 0.0940              | 0.2332      | 0.5382               | 0.0063      | 0.3064               | 0.2067       | 0.000       | 0.2561             | 0.001                    | 0.0153       | 0.0284  | 0.7267               | 00000       | 0.098              | 0.0833             | 0.1733              | 0.6749             | 0.6345  | 0.2805   | 0.2170             | 0.1290             | 0.5569               | 0.0406  | 0.2681             | 0.5500              | 0.0010       | 0.3064       | 0.0003            | 16          |
| CELEVEL CORDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0570               | 0.0110                      | 0.8778             | 0.0516               | 0.0002       | 0.1153      | 0.0317      | 0.4169              | 0.0998             | 0.0166      | 0.0050                      | 0.2118                      | 0.3131              | 0.9666      | 0.9888               | 00000       | 0.0482               | 0.0938       | 0.000.0     | 0.0227             | 0110.0                   | 0.0450       | 0.0153  | 0.9110               | 0.0499      | 0.0010             | 0.4498             | 0.1918              | 0.4842             | 0.2561  | 0.7058   | 0.0913             | 0.5569             | 0.6851               | 0.7584  | 0.0141             | 0.1824              | 0.1058       | 0.0736       | 0.0004            | 16          |
| Contration of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2561               | 0.0533                      | 0.4583             | 0.0736               | 0.0015       | 0.1778      | 0/2010      | 0.0736              | 0.0533             | 0.0093      | 0.0125                      | 0.9888                      | 0.0421              | 0.1520      | 0.5951               | 0.0055      | 0.8122               | 0.6546       | 0.000       | 0.1027             | 0.0284                   | 0.0069       | 0.0013  | 0.3338               | 0.0002      | 0.7906             | 0.5382             | 0.3199              | 0.2118             | 0.0628  | 0.2445   | 0.5854             | 0.1401             | 0.5475               | 0.2388  | 0.2332             | 0.5108              | 0.0018       | 0.1479       | 0.0001            | 12          |
| ψpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                    | 40                          |                    | 5                    | 43           | 5           | 61          |                     | 33                 |             | 8                           | 2                           | er                  | 1           | 14                   |             | 18                   | 5            | 43          | 38                 | 27                       | ଳ            | ଞ       |                      | 43          |                    |                    | 5                   | 6                  | 5       | 14       | 1                  | ន                  | 5                    | 26      |                    | 10                  |              |              | 48                | $\psi_{sp}$ |
| Best model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DRDRD-15-19-12-11-11 | DLDRDLD-26-19-19-13-15-11-9 | DRDRD-30-19-14-5-5 | DRDRD-18-17-12-11-11 | DRD-18-15-11 | DRD-15-13-5 | DRD-15-18-7 | DRDRD-15-17-14-13-7 | DRDRD-30-17-16-7-9 | DRD-26-18-9 | DRDLDLD-26-21-19-15-11-11-7 | DLDRDLD-26-19-19-13-15-11-9 | DRDRD-15-17-14-13-7 | DRD-26-18-9 | DRDRD-15-19-12-11-11 | DRD-30-11-5 | DRDRD-18-17-12-11-11 | DRD-18-13-11 | DRD-30-11-5 | DRDRD-30-17-16-7-9 | DLDRDLD-30-17-13-9-13-11 | DRD-18-15-11 |         | DRDRD-15-19-12-13-11 | DRD-26-18-9 | DRDRD-22-19-8-13-7 | DRDRD-22-11-8-7-11 | DRDLD-26-13-12-11-7 | DRDRD-22-17-14-7-9 |         |          | DRDRD-30-19-14-5-9 | DRDRD-15-11-10-7-7 | DRDRD-18-17-12-11-11 |         | DRDRD-30-19-14-5-5 | DRDRD-22-17-12-5-11 | DRD-26-11-11 | DRD-26-11-11 | DLDRD-15-11-8-9-7 |             |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Part 1               | Part 2                      | Part 3             | Part 4               | Part 5       | Part 6      | Part 7      | Part 8              | Part 9             | Part 10     | Part 11                     | Part 12                     | Part 13             | Part 14     | Part 15              | Part 16     | Part 17              | Part 18      | Part 19     | Part 20            | Part 21                  | Part 22      | Part 23 | Part 24              | Part 25     | Part 26            | Part 27            | Part 28             | Part 29            | Part 30 | Part 31  | Part 32            | Part 33            | Part 34              | Part 35 | Part 36            | Part 37             | Part 38      | Part 39      | Part 40           |             |

 Table A.1.: Significance evaluation of 50 best architectures for DL-STPM-VPD cont.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |                             | _                  |                     | _           |             |             | -                   | _                  | T           |                             | _                           | _                   |             | _                            | _       |                      |          | _           |                    |                             |             |                     | 1                   |             | -1                 | T                  | -1      |                    |            | _                  |                    |                    |                     |                              |                    | _       |             |             | _                 | _           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------|---------------------|-------------|-------------|-------------|---------------------|--------------------|-------------|-----------------------------|-----------------------------|---------------------|-------------|------------------------------|---------|----------------------|----------|-------------|--------------------|-----------------------------|-------------|---------------------|---------------------|-------------|--------------------|--------------------|---------|--------------------|------------|--------------------|--------------------|--------------------|---------------------|------------------------------|--------------------|---------|-------------|-------------|-------------------|-------------|
| CHILLON SHELLEN LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0353               | 0.5019                      | 0.3199             | 0.3553              | 0.0000      | 0.8449      | 0.0000      | 0.0482              | 0.0101             | 0.0000      | 0.0760                      | 0.0714                      | 0.6749              | 0.1561      | 0.9666                       | 0.0000  | 0.0034               | 0.0130   | 0.0000      | 0.0969             | 0.8668                      | 0.0012      | 0.0019              | 0.0003              | 0.0000      | 0.0004             | 0.9777             | 0.0010  | 0.8778             | 0.0649     | 0.0153             | 0.3481             | 0.0180             | 0.4009              | 0.0000                       | 0.0000             | 0.0784  | 0.0000      | 0.0218      | 0.0000            | 23          |
| \$ 77 8 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | -                           | -                  |                     |             | -           | -           | -                   |                    | -           | -                           | -                           | -                   | -           | -                            | -       | -                    | -        | -           | -                  | -                           | -           | -                   |                     | -           | -                  |                    | -       | -                  | -          | -                  | -                  | -                  | -                   | -                            |                    | -       | -           |             | -                 | -           |
| S-11-S-12-12-12-02-03010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1602               | 0.2503                      | 0.0886             | 0.1520              | 0.0000      | 0.3199      | 0.1602      | 0.2017              | 0.0254             | 0.0000      | 0.6749                      | 0.3777                      | 0.5019              | 0.3702      | 0.1918                       | 0.000   | 0.0002               | 0.0008   | 0.0000      | 0.0784             | 0.2067                      | 0.0003      | 0.2681              | 0.0036              | 0.0000      | 0.0006             | 0.2503             | 0.001   | 0.2388             | 0.1186     | 0.3268             | 0.6445             | 0.0072             | 0.2933              | 0.000                        | 0.0002             | 0.0244  | 0.0000      | 0.0036      | 0.0000            | 19          |
| 2- 17 ST - 17 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                             |                    |                     |             |             |             |                     |                    |             |                             |                             |                     |             |                              |         |                      |          |             |                    |                             |             |                     |                     |             |                    |                    |         |                    |            |                    |                    |                    |                     |                              |                    |         |             |             |                   |             |
| ראנטציטציט-שאינשינאיריייויי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1871               | 0.7691                      | 0.1153             | 0.7058              | 0.0000      | 0.1967      | 0.0006      | 0.7798              | 0.0063             | 0.0000      | 0.4755                      | 0.2561                      | 0.3854              | 0.5569      | 0.9110                       | 0.0000  | 0.0078               | 0.0000   | 0.0000      | 0.0038             | 0.7162                      | 0.0254      | 0.1220              | 0.0009              | 0.0000      | 0.0036             | 0.7798             | 0.0015  | 0.4930             | 0.4498     | 0.3064             | 0.0955             | 0.0063             | 0.2621              | 0.0000                       | 0.0000             | 0.0450  | 0.0000      | 0.0097      | 0.0000            | 21          |
| 2-17-77-57-57-57-7-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                             |                    |                     |             |             |             |                     |                    |             |                             |                             |                     |             |                              |         |                      |          |             |                    |                             |             |                     |                     |             |                    |                    |         |                    |            |                    |                    |                    |                     |                              |                    |         |             |             |                   |             |
| ראונטרטרטיפאיבו-ועיןיי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4498               | 0.6749                      | 0.1824             | 0.2805              | 0.0000      | 0.5509      | 0.0023      | 0.5199              | 0.0063             | 0.0000      | 1000                        | 0.1824                      | 0.6049              | 0.8668      | 0.9443                       | 0.0000  | 0.0082               | 0.0005   | 0.0000      | 0.0180             | 01100                       | 0.0012      | 0.4583              | 0.0000              | 0.000       | 0.0011             | 0.6147             | 0.001   | 0.1220             | 0.0082     | 0.0254             | 0.1520             | 0.0328             | 0.6345              | 0.0000                       | 0.0001             | 0.3268  | 0.0000      | 0.0097      | 0.000             | 22          |
| E ET 57 6 67- 12-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |                    |                     | _           |             |             |                     |                    |             |                             |                             |                     |             |                              |         |                      | _        |             |                    |                             |             |                     |                     |             |                    |                    |         |                    |            | _                  |                    |                    |                     |                              | _                  |         | _           |             |                   |             |
| Chick Child and a start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4088               | 0.9110                      | 0.2067             | 0.4583              | 0.0000      | 0.3409      | 0.1824      | 0.1121              | 0.0000             | 0.0001      | 0.2170                      | 0.5854                      | 0.6245              | 0.5663      | 0.4250                       | 0.0000  | 0.0305               | 0.0000   | 0.0000      | 0.0998             | 0.6647                      | 0.008       | 0.0034              | 0.0000              | 0.0000      | 0.0003             | 0.7906             | 0.0089  | 0.2621             | 0.8449     | 0.0020             | 0.0136             | 0.0000             | 0.4169              | 0.0000                       | 0.0000             | 0.1255  | 0.0000      | 0.0043      | 0.0000            | 21          |
| 17. £7. £7. 6 £7- 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                             |                    |                     |             |             |             |                     |                    |             |                             |                             |                     |             |                              |         |                      |          |             |                    |                             |             |                     |                     |             |                    |                    |         |                    |            |                    |                    |                    |                     |                              |                    |         |             |             |                   |             |
| Deputition and the series of t | 0.2743               | 0.0353                      | 002010             | 0.8230              | 0.0000      | 0.2017      | 0/90'0      | 0.1327              | 0.0043             | 0.0000      | 0.1733                      | 0.6851                      | 0.8014              | 0.1520      | 0.1200                       | 0.0004  | 0.0305               | 0.0000   | 0.0000      | 0.0608             | 1.0000                      | 0.0166      | 0.0589              | 0.0001              | 0.000       | 0.0194             | 0.2224             | 0.004   | 0.5663             | 0.6546     | 0.0000             | 0.8230             | 0.0000             | 0.2933              | 0.0000                       | 0.0001             | 0.0435  | 0.0000      | 0.0072      | 0.001             | 21          |
| 677572767-0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                             |                    |                     |             |             |             |                     |                    |             |                             |                             |                     |             |                              |         |                      |          |             |                    |                             |             |                     |                     |             |                    |                    |         |                    |            |                    |                    |                    |                     |                              |                    |         |             |             |                   |             |
| CRONDER BRIEFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1440               | 1.0000                      | 0.1255             | 0.3553              | 0.0000      | 0.5382      | 0.0187      | 0.2868              | 0.0003             | 0.0000      | 0.0392                      | 1.0000                      | 0.5108              | 0.8888      | 0.9332                       | 0.0000  | 0.0001               | 0.0000   | 0.0000      | 0.0097             | 0.7691                      | 0.0011      | 0.0023              | 0.0000              | 0.0000      | 0.0005             | 0.0235             | 0.0002  | 0.1027             | 0.9777     | 0.0002             | 0.2561             | 0.0000             | 0.2681              | 0.0000                       | 0.0000             | 0.0052  | 0.0000      | 0.0001      | 0.0000            | 25          |
| 6 577 67 10 00 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1121               | 0.000                       | 0.5108             | 0.4009              | 0.0031      | 0.1089      | 0.0115      | 0.6955              | 0.7267             | 0.0466      | 0.0608                      | 0.9221                      | 0.0833              | 0.6345      | 0.4668                       | 0.0002  | 0.2017               | 0.0551   | 0.0000      | 0.1778             | 0.0057                      | 0.0353      | 0.1220              | 0.1364              | 0.0003      | 0.4842             | 0.5475             | 0.1327  | 0.3553             | 0.0714     | 0.3702             | 1.0000             | 0.0859             | 0.1824              | 0.1220                       | 0.2118             | 0.1440  | 0.0060      | 0.1121      | 0.001             | 11          |
| series a analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0264               |                             | 1.0000             |                     | 0.0007      | 0.1027      |             |                     | 1                  |             |                             | 0.4088                      |                     |             |                              | 0.0218  |                      |          |             |                    |                             |             |                     |                     |             |                    |                    |         |                    |            | 0.0833             |                    |                    |                     |                              |                    |         |             |             | 900               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o.                   |                             | =                  |                     |             | 0           | ö           | 3                   | 1                  |             | 3                           | ð                           | 0                   | °           |                              |         |                      |          |             | 0                  | 0                           |             |                     |                     |             |                    |                    | o'      | o.                 | °.         | 3                  | 0                  | o'                 | 0                   | ö                            |                    |         |             |             |                   | 20          |
| 6-191-17 00 0940940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2017               | 0.0000                      | 0.5759             | 0.4088              | 0.0034      | 0.1602      | 0.1479      | 0.7267              | 1.0000             | 0.0002      | 0.1688                      | 0.0516                      | 0.0913              | 0.5019      | 0.6049                       | 0.0001  | 0.9110               | 0.0466   | 0.0000      | 1.0000             | 0.0859                      | 0.0833      | 0.0063              | 0.6647              | 0.0048      | 0.2067             | 0.0202             | 0.3268  | 0.5108             | 0.0969     | 0.3199             | 0.8122             | 0.0274             | 0.3777              | 0.3854                       | 0.5951             | 0.0026  | 0.0036      | 0.0421      | 0.001             | 14          |
| 2357 Ar anana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0670               | 0.0000                      | 0.2503             | 0.0466              | 0.0010      | 0.2170      | 0.0075      | 0.1220              | 0.0589             | 0.0000      | 0.1089                      | 0.7162                      | 0.9666              | 0.5951      | 0.0130                       | 0.0007  | 0.0969               | 0.3931   | 0.0000      | 0.0136             | 0.0005                      | 0.0969      | 0.0125              | 0.2118              | 0.0004      | 0.0649             | 0.4668             | 0.4930  | 0.0649             | 0.2098     | 0.3702             | 0.8122             | 0.0808             | 0.2118              | 0.1824                       | 0.4668             | 0.6546  | 0.0060      | 0.1967      | 0.0005            | 14          |
| 17-207-17-00-00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                   | 00                          | 66                 | 54                  | 14          | 13          | 52          | 5                   | 21                 | 02          | 8                           | =                           | 55                  |             |                              | 8       | 38                   | 36       | 00          | 18                 | 41                          | 1           | 34                  |                     |             | 8                  | 8                  | 99      | 14                 | =          | 8                  | 8                  | 5                  | 18                  | 34                           | 19                 | 6       | 05          | 79          | 10                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2868               | 0.0000                      | 0.0499             | 0.3064              | 0.0014      | 0.0913      | 0.1327      | 0.0551              | 0.0421             | 0.0002      | 0.0533                      | 0.7691                      | 0.4755              | 0.8449      | 0.0998                       | 0.000   | 0.2998               | 0.0136   | 0.0000      | 0.0218             | 0.0141                      | 0.0691      | 0.0034              | 1.0000              | 0.0000      | 0.0886             | 0.0886             | 0.0366  | 0.8014             | 0.1401     | 1.0000             | 0.2998             | 0.5951             | 0.2118              | 0.0784                       | 0.5019             | 0.5019  | 0.0005      | 0.0379      | 0.0001            | 16          |
| 1-1-27-50 00 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5951               | 0.0001                      | 0.7267             | 0.3627              | 0.0034      | 0.6345      | 0.2805      | 0.5199              | 0.6245             | 0.0159      | 0.0886                      | 0.7372                      | 0.3481              | 0.8668      | 0.9666                       | 0.0001  | 0.9666               | 0.0940   | 0.0000      | 0.1089             | 0.0130                      | 0.1824      | 0.0043              | 0.8014              | 0.0101      | 0.7906             | 0.0435             | 0.2224  | 0.3199             | 0.5475     | 0.6049             | 0.6955             | 0.0649             | 0.6445              | 0.1688                       | 0.3777             | 0.4583  | 0.0082      | 0.0589      | 0.0003            | 11          |
| ezszy seanana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0516               | 0.0000                      | 0.2933             | 0.0450              | 0.0082      | 0.0466      | 0.0859      | 0.2503              | 0.0691             | 0.0002      | 0.0264                      | 0.1918                      | 0.1220              | 0.3338      | 0.6445                       | 0.0001  | 0.0649               | 0.1220   | 0.0000      | 0.3481             | 0.0305                      | 0.1121      | 0.0392              | 0.0024              | 0.0006      | 0.1479             | 0.0691             | 0.2445  | 0.2278             | 0.0218     | 0.7372             | 0.6647             | 0.0328             | 0.2067              | 0.0082                       | 0.3931             | 0.6049  | 0.0130      | 0.1290      | 0.0002            | 17          |
| SIL ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24                   |                             |                    |                     | _           |             |             |                     |                    |             |                             |                             |                     |             |                              |         |                      |          |             |                    |                             |             |                     |                     |             |                    |                    |         |                    |            |                    |                    | _                  |                     |                              |                    |         |             |             |                   |             |
| 17-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1824               | 0.0000                      | 0.3268             | 0.0589              | 0.0030      | 0.3627      | 0.2743      | 0.6049              | 0.0264             | 0.0015      | 0.0136                      | 0.0153                      | 0.1602              | 0.8122      | 0.3199                       | 0.000   | 0.0173               | 0.3064   | 0.0000      | 0.0264             | 0.1153                      | 0.0072      | 0.0328              | 0.7478              | 0.0153      | 0.8668             | 0.0166             | 0116.0  | 0.5759             | 0.0166     | 0.5019             | 0.7691             | 0.0120             | 0.2224              | 0.4009                       | 0.5951             | 0.3931  | 0.0006      | 0.1364      | 0.0003            | 18          |
| 17. 17 - 12 - 15 - 15 - 17 - 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7772-0               | 0.0000                      | 0.8014             | 0.6955              | 0.0055      | 0.0760      | 0.7058      | 0.9666              | 0.3702             | 0.0034      | 0.3199                      | 0.7162                      | 0.3553              | 0.9332      | 0.7691                       | 0.0003  | 0.4169               | 0.1733   | 0.0000      | 0.0340             | 0.0482                      | 0.0482      | 0.0649              | 0.2118              | 0.0244      | 0.2118             | 0.2118             | 0.1220  | 0.3553             | 0.4583     | 0.4169             | 0.6147             | 0.1255             | 0.5108              | 0.7691                       | 0.3268             | 0.0482  | 0.0011      | 0.1645      | 0.0002            | 12          |
| ¢<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                    | 40                          | 9                  | 12                  | 43          | 5           | 19          | ŝ                   | 53                 | 46          | 30                          | 2                           | 3                   |             | 14                           | 45      | 18                   |          |             |                    |                             |             | 32                  | 13                  | 43          | 12                 |                    |         | 6                  |            | 14                 | 1                  | 23                 | 5                   | 26                           | 12                 |         | 41          |             | 48                | $\psi_{sp}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 5-11-9                      |                    |                     |             |             |             |                     |                    |             | 2-11-1)                     | 2-11-9                      |                     |             |                              |         |                      |          |             |                    | 13-11                       |             |                     |                     |             |                    |                    |         |                    |            |                    |                    |                    |                     |                              |                    |         |             |             |                   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-11-               | -19-13-1                    | -5-5               | -11-11-             |             |             |             | -13-7               | -1-0               |             | -19-15-                     | -19-13-                     | -13-7               |             |                              |         | 11-11-               |          |             | -7-9               | -13-9-IE                    |             | 9-11                | -13-11              |             | 13-7               | 2-11               | -11-2   | -7-9               |            | 11-2-              | -5-9               | -2-2               | 11-11-              | 11-11-                       | -5-5               | -5-11   |             |             | 27                |             |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 - 19 - 12          | D-26-19                     | 0-19-14            | 8-17-12             | 5-11        | 3-5         | 52          | 5-17-14             | 0-17-16            | 53          | 0-26-21                     | 0-26-19                     | 5-17-14             | g           | 5-19-12                      | 1-5     | 8-17-12              | 3-11     | 1-5         | 0-17-16            | 0.30.17                     | 211         | 2-13-16             | 5-19-12             | 5g          | 2-19-8             | 2-11-8-1           | 6-13-12 | 2-17-14            | _<br>م     | 0-11-10            | 0-19-14            | 5-11-10            | 8-17-12             | 5-19-12                      | 0-19-14            | 2-17-12 | 1-11        | Ξ           | 5-11-8.6          |             |
| Best model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DRDRD-15-19-12-11-11 | DLDRDLD-26-19-19-13-15-11-9 | DRDRD-30-19-14-5-5 | DRDRD-18-17-12-11-1 | DRD-18-15-1 | DRD-15-13-5 | DRD-15-18-7 | DRDRD-15-17-14-13-7 | DRDRD-30-17-16-7-9 | DRD-26-18-9 | DRDLDLD-26-21-19-15-11-11-7 | DLDRDLD-26-19-19-13-15-11-9 | DRDRD-15-17-14-13-7 | DRD-26-18-9 | SDRD-1                       | {D-30-1 | DRDRD-18-17-12-11-11 | RD-18-1. | DRD-30-11-5 | DRDRD-30-17-16-7-9 | DLDRDLD-30-17-13-9-13-13-11 | DRD-18-15-1 | DRDLD-22-13-16-9-11 | DRDRD-15-19-12-13-1 | DRD-26-18-9 | DRDRD-22-19-8-13-7 | DRDRD-22-11-8-7-10 | RDLD-2  | DRDRD 22-17-14-7-9 | DRD-26-9-9 | DRDRD-30-11-10-7-1 | DRDRD-30-19-14-5-9 | DRDRD-15-11-10-7-7 | DRDRD-18-17-12-11-1 | RDRD-1                       | DRDRD-30-19-14-5-0 | RDRD-2  | DRD-26-11-1 | DRD-26-11-1 | DLDRD-15-11-8-9-7 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 2                           | -                  |                     |             |             |             | -                   | -                  | -           | -                           | -                           | _                   | 14 DF       | Part 15 DRDRD-15-19-12-11-11 |         |                      |          |             |                    | _                           |             |                     |                     |             |                    | 27 DF              |         |                    | -          | _                  | _                  |                    |                     | Part 35 DRDRD-15-19-12-11-11 | 36 DE              |         |             | 30 DE       | 40 DI             |             |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Part 1               | Part                        | Part 3             | Part 4              | Part 5      | Part 6      | Part 7      | Part 8              | Part 9             | Part 10     | Part 11                     | Part 12                     | Part 13             | Part 14     | Part                         | Part    | Part 17              | Part     | Part 19     | Part 20            | Part 21                     | Part 22     | Part 23             | Part 24             | Part 25     | Part 26            | Part 27            | Part    | Part 29            | Part 30    | Part 31            | Part 32            | Part 33            | Part 34             | Part                         | Part 36            | Part    | Part 38     | Part 39     | Part 40           |             |

 Table A.1.: Significance evaluation of 50 best architectures for DL-STPM-VPD cont.

| - 10                   |                 |           |                 |        | -         | -                 |        | 1                      |           |                   |           |                      |           |                      |                      |           |          |         |         |         |         |         |         |              |          |           |                   |                     |                           |                     |           |                            |         |           | <u> </u>  |           |                     |                     |         |              |             |
|------------------------|-----------------|-----------|-----------------|--------|-----------|-------------------|--------|------------------------|-----------|-------------------|-----------|----------------------|-----------|----------------------|----------------------|-----------|----------|---------|---------|---------|---------|---------|---------|--------------|----------|-----------|-------------------|---------------------|---------------------------|---------------------|-----------|----------------------------|---------|-----------|-----------|-----------|---------------------|---------------------|---------|--------------|-------------|
| \$27.2507030           | 0.4250          | 0.0000    | 0.0570          | 0.0227 | 0.0317    | 0.2743            | 0.8668 | 0.2246                 | 0.6955    | 0.0030            | 0.4414    | 0.0784               | 0.1220    | 0.0940               | 0.1479               | 0.0057    | 0.8999   | 0.3931  | 0.0003  | 0.1121  | 0.1121  | 0.6245  | 0.1209  | 0.0066       | 0.2743   | 0.0450    | 0.8778            | 0.0003              | 0.0130                    | 0.4498              | 0.0005    | 0.0078                     | 0.0066  | 0.0379    | 0.0998    | 0.7478    | 0.0466              | 0.8339              | 0.6647  | 0.1290       | 15          |
| 01_101_2 5 070000      | 0.0998          | 0.000     | 0.3064          | 0.0533 | 0.9777    | 0.6955            | 0.7162 | 0.6415                 | 0.3199    | 0.0886            | 0.1220    | 0.1027               | 0.0007    | 0.0115               | 0.4414               | 0.0570    | 0.9110   | 1.0000  | 0.0000  | 0.0969  | 0.0243  | 0.5951  | 0.0487  | 0.0097       | 0.6049   | 0.1220    | 0.1778            | 0.0001              | 0.0210                    | 0.1121              | 0.0000    | 0.0009                     | 0.0052  | 0.001     | 0.0038    | 1.0000    | 0.2332              | 0.8449              | 0.0913  | 0.4583       | 14          |
| oloco 228 2 C          | 0.0078          | 0.0003    | 0.0450          | 0.2017 | 0.2681    | 0.3553            | 0.5108 | 0.7581                 | 0.0886    | 0.1602            |           | 0.0379               | 0.0551    | 0.0130               | 0.0317               | 0.5951    | 0.8014   | 0.0649  | 0.3199  | 0.0450  | 0.0406  | 0.6147  | 0.3374  |              |          | 0.0060    | 0.0052            | 0.0913              | 0.0421                    | 0.7584              | 0.0097    | 0.0048                     | 0.1327  | 0.2017    | 0.0194    | 0.2332    | 0.0015              | 0.7162              |         | 0.4755       | 17          |
| 00000 120 10 2 10 2 10 | 0.0115          | 0.0033    | 0.0254          | 0.2933 | 0.5475    | 0.6955            |        | 0.1740                 | _         | 0920.0            |           | 1.0000               | 0.4930    | 0.1058               | 0.4088               | 0.1602    | 0.3338   |         |         |         |         | 1       |         |              | 0.4498   | 0.1871    | 0.1561            | _                   | 0.0153                    | 0.7478              | 0.0244    | 0.3775                     |         | 0.0002    | 0.1089    | 0.0886    | 0.1290              |                     |         | 0.3553       |             |
| 520725707070           | 290 0.          | 0.0001 0. | 0.0499 0.       |        | 0.0218 0. | 0.0649 0.         |        | 0.5812 0.              | 0.9666 0. | 0.1479 0.         | 0.7798 0. | 0.1089 1.            | 0.0000 0. | 0.0264 0.            |                      | 0.0353 0. |          |         |         |         |         |         |         | ľ            |          | 0.0353 0. | 0.0106 0.         |                     | 0.0018 0.                 | 1.0000 0.7          | 0.0000 0. | 0.0098 0.                  |         | 0.0000 0. | 0.0043 0. | 0.0153 0. |                     | 0.3131 0.           |         | 0.4088 0.    | 10          |
| Office .               | 0.5290          | 0.0       | 0.0             | 0.0    | 0.0       | 0.0               | 0.9332 | 0.5                    | 6.0       | $0.1^{\circ}$     | 0.7       | 0.1                  | 0.0       | 0.0                  | 0.3481               | 0.0       | 0.1871   | 0.6     | 0.0     | 0.0     | 0.1     | 0.0     | 0.8     | 0.0          | 0.9221   | 0:0       | 0.0               | 0.0                 | 0.0                       |                     | 0.0       | 0.0                        | 0.3     | 0.0       | 0.0       | 0.0       | 0.0691              | 0.3                 | 0.1290  | 0.4          | 20          |
| ON OF THE TELE TO TO   | 0.2445          | 0.0002    | 0.3777          | 0.0886 | 0.1918    | 0.0113            | 0.9221 | 0.0025                 | 0.9666    | 0.2561            | 0.3338    | 0.0085               | 0.0254    | 0.0202               | 0.0551               | 0.8230    | 0.0714   | 0.5475  | 0.0166  | 0.1778  | 0.0365  | 0.2067  | 0.0338  | 0.0482       | 0.2868   | 0.0808    | 0.0998            | 0.0001              | 0.2170                    | 0.1778              | 0.0000    | 0.0219                     | 0.5019  | 0.0006    | 0.0013    | 0.0180    | 0.8339              | 0.0649              | 0.0210  | 0.1186       | 17          |
| 5 £ 27 6 £7 07000      | 0.0106          | 0.0027    | 0.0110          | 0.1520 | 0.8888    | 0.0317            | 0.6851 | 0.3776                 | 0.6749    | 0.1255            | 0.1561    | 0.0969               | 0.0000    | 0.0294               | 0.3199               | 0.0187    | 0.8014   | 0.4583  | 0.0784  | 0.0589  | 0.0952  | 0.1479  | 0.0231  | 0.0305       | 0.2868   | 0.0101    | 0.0913            | 0.0125              | 0.0435                    | 0.3338              | 0.0006    | 0.1439                     | 0.2224  | 0.0034    | 0.0153    | 0.0589    | 0.0085              | 0.9110              | 0.0115  | 0.0063       | 18          |
| 07 5 07 6 £1 (D 20)00  | 0.3064          | 0.0000    | 0.3409          | 0.0296 | 0.3409    | 0.0328            | 0.4842 | 0.9031                 | 0.7584    | 0.4583            | 0.8999    | 0.0426               | 0.1220    | 0.6749               | 0.0886               | 0.0450    | 0.6245   | 0.3268  | 0.0000  | 0.8449  | 0.1198  | 0.8449  | 0.0523  | 0.1918       | 0.1089   | 1.0000    | 0.0036            | 0.0030              | 0.2388                    | 0.8339              | 0.0001    | 0.1610                     | 0.4414  | 0.0033    | 0.0012    | 0.0340    | 0.3199              | 0.3553              | 0.0235  | 0.4755       | 13          |
| 0127201 0000           | 0.5759          | 0.0001    | 0.0274          |        | 0.2224    | 0.3268            | 0.3931 | 0.6415                 | 0.4169    | 0.2681            |           | 0.0353               | 0.0082    | 0.0940               | 0.3409               | 0.8668    | 0.6245   |         |         |         |         |         | _       |              | 0.8778   | 0.5108    | 0.1089            |                     | 0.0023                    | 0.8230              | 0.0004    | 0.0000                     |         | 0.0001    | 0.0043    | 0.0194    | 0.2868              | 1.0000              |         | 0.9221       | 13          |
| MORD TO TATUD          | 0.2445 (        | 0.000.0   | 0.8014 0        | 0.0736 | 0.4088 (  | 0.0340 (          |        | 0.1932 (               |           | 0.1918 (          |           | 0.1089               | 0.0589    | 0.0670 (             | 1.0000 (             | 0.0670    | 0.9110 ( |         | 5       |         |         |         | _       | ,            | 1.0000 ( | 0.0551 (  | 0.1520 0          | _                   | 0.0101                    | 0.4414 (            | 0.0000    | 0.0068                     |         | 0.0041    |           | 0.0499 (  |                     |                     |         | 0.0218 (     | 12          |
|                        | 0               |           |                 | 0      | 0         | •                 | 0      | 0                      |           |                   | 0         | 0                    | 0         |                      |                      |           | 0        |         |         |         | 0       | 0       |         |              | 1        | 0         | 0                 |                     |                           | 0                   |           |                            |         |           |           | •         | 0                   |                     |         |              |             |
| 0600 10 10 10 10 10    | 0.1121          | 0.004     | 0.7584          | 0.0499 | 0.6851    | 0.1027            | 0.8888 | 0.2979                 | 0.4414    | 0.0406            | 0.6749    | 0.4842               | 0.0048    | 0.0235               | 0.4930               | 0.0136    | 0.0691   | 0.8122  | 0.0000  | 0.0115  | 0.1561  | 0.4088  | 0.1553  | 0.0028       | 0.4498   | 0.6546    | 0.2561            | 0900.0              | 0.0030                    | 0.8778              | 0.0005    | 0.0289                     | 0.2067  | 0.0000    | 0.0173    | 0.1220    | 0.7162              | 0.1058              | 0.0173  | 0.0235       | 17          |
| hegaesawaya            | 0.0173          | 0.0366    | 0.0069          | 0.0141 | 0.2933    | 1.0000            | 0.2017 | 0.5910                 | 0.0063    | 0.0284            | 0.0833    | 0.0808               | 0.0125    | 0.0001               | 0.2868               | 0.1561    | 0.6955   | 0.5199  | 0.0202  | 0.0210  | 0.1089  | 0.0106  | 0.1562  | 0.0180       | 0.0141   | 0.0008    | 0.9777            | 0.0023              | 0.0736                    | 0.3777              | 0.0019    | 0.0202                     | 0.0516  | 0.1688    | 0.0859    | 0.1364    | 0.0063              | 0.2503              | 0.0027  | 0.0030       | 20          |
| 129719700000           | 0.7162          | 0.0000    | 0.1153          | 0.0499 | 0.2426    | 0.2503            | 0.0959 | 0.1362                 | 0.5382    | 0.0305            | 0.5569    | 0.0210               | 0.000.0   | 0.0274               | 0.1364               | 0.1290    | 0.4169   | 0.2067  | 0.0294  | 0.0003  | 0.2956  | 0.0130  | 0.0322  | 0.0010       | 0.0328   | 0.0004    | 0.9554            | 0.0063              | 0.6647                    | 0.0886              | 0.0001    | 0.0048                     | 0.0159  | 0.0003    | 0.3199    | 0.2067    | 1.0000              | 0.4842              | 0.0063  | 0.0001       | 20          |
| DEDED LE LL & EZ       | 0.0003          | 0.0015    | 0.0001          | 0.0670 | 0.6831    | 0.2388            | 0.0533 | 0.4232                 | 0.0125    | 0.001             | 0.0570    | 0.0011               | 0.0254    | 0.0008               | 0.0000               | 0.0093    | 0.3199   | 0.0589  | 0.5290  | 0.0003  | 0.4360  | 0.1364  | 0.1624  | 0.0008       | 0.0011   | 0.0004    | 0.4088            | 1.0000              | 0.1918                    | 0.4583              | 0.1824    | 0.0023                     | 0.2067  | 0.1918    | 0.9221    | 0.0023    | 0.0328              | 0.1602              | 0.0004  | 0.0000       | 19          |
| 5692-01-07070          | 0.0002          | 0.0000    | 0.0002          | 0.0180 | 0.0155    | 0.1327            | 0.1220 | 0.0097                 | 0.0013    | 0.0000            | 0.7798    | 0.0011               | 0.0000    | 0.0010               | 0.0005               | 0.0874    | 0.2278   | 0.0048  | 0.3338  | 0.0000  | 0.3826  | 0.3409  | 0.2017  | 0.0001       | 0.0023   | _         | 0.0886            | 0.0608              | 0.3627                    | 0.6647              | 0.3481    | 0.0350                     | 0.0003  | 0.1364    | 0.7267    | 0.0187    | 0.0008              | 0.8122              | 0.2388  | 0.0003       | 22          |
| 77 65 000              | 0.6049          | 0.4668    | 0.0340          | 1.0000 | 0.3627    | 0.5290            | 0.8230 | 0.2719                 |           | 0.9888            | 0.4414    | 0.4414               | 0.1645    | 0.4250               | 0.5951               | 0.1778    | 0.9443   |         | 0.0406  |         |         |         | 0.6085  |              | 0.7478   | 0.1327    | 0.0002            |                     | 0.0027                    | 0.4755              | 0.0038    | 0.7467                     | 0.6851  | 0.0089    | 0.0034    | 0.0202    | 0.0714              | 0.2388              |         | 1.0000       | 10          |
| <sup>6</sup> 52 070    |                 | 0.0002    | 0.1186          | 0.0018 | 0.1520    | 0.7906            | 0.9110 | 0.5424                 |           | 0.3553            | 0.5290    | 0.5759               | 0.0000    | 0.0328               | 0.1688               | 0.0691    | 0.9666   | 0.1967  | 0.0000  |         |         | 0.1688  | 0.0278  | 0.0082       | 0.9221   | 0.6345    | 0.9888            | 0.0000              | 0.0005                    | 0.8449              | 0.0000    | 0.0000                     | 0.0002  | 0.0166    | 0.0075    | 0.5108    | 0.1290              | 0.1058              | 0.2681  | 0.4088       | 16          |
| ψ <sub>bm</sub>        | 34              |           | 35              | 12     | 9         | 9                 | ŝ      | ÷                      | 21        | 29                | 4         | 25                   | 28        | 38                   | 29                   | ×         | 0        | 15      | 16      | 24      | 9       |         | 10      | 38           | 32       | 37        | 12                | 23                  | 17                        | 0                   | 34        | 20                         | Ξ       | 26        | 19        | 27        | 34                  | 4                   | 27      | 34           | $\psi_{sp}$ |
| Best model             | DRDLD-7-5-4-7-8 | -         | DRDLD-7-5-8-9-6 |        | -         | DRDRD-7-11-6-5-10 | -      | DRDLDLD-5-9-12-7-6-3-6 |           | ) DRDLD-7-5-4-7-8 |           | 2 DRDLD-15-9-10-3-10 |           | I DRDRD-7-13-12-3-10 | 5 DRDLD-10-13-4-7-10 |           |          |         |         |         |         |         |         | t DRD-5-9-11 |          |           | 7 DRDLD-7-5-4-7-8 | 8 DLDLD-13-11-8-3-2 | 9 DLDRDLD-15-9-6-3-10-9-2 | ) DRDLD-15-7-10-7-6 |           | 2 DLDLDLD-15-9-12-7-10-2-3 | _       | -         | -         | -         | 7 DLDRD-15-11-6-7-4 | 8 DRDLD-10-7-4-7-10 |         | ) DRD-5-9-11 |             |
| Part                   | Part 1          | Part 2    | Part 3          | Part 4 | Part 5    | Part 6            | Part 7 | Part 8                 | Part 9    | Part 10           | Part 11   | Part 12              | Part 13   | Part 14              | Part 15              | Part 16   | Part 17  | Part 18 | Part 19 | Part 20 | Part 21 | Part 22 | Part 23 | Part 24      | Part 25  | Part 26   | Part 27           | Part 28             | Part 29                   | Part 30             | Part 31   | Part 32                    | Part 33 | Part 34   | Part 35   | Part 36   | Part 37             | Part 38             | Part 39 | Part 40      |             |

Table A.2.: Significance evaluation of 50 best architectures for DL-STPM.

| ē.                                          |                 |                          |                 |            |                  |                   |                 |                        |                   |                 |                   |                            |                       |                    |                            |                        |                    |                 |                   |                   |                       |                           |                            |                    |                            | Т                          |                         | Т                 | Т       | Т                               | Т                        | 1                        | Γ                       |                         |                           |                   |                           |            |                      | ٦              |
|---------------------------------------------|-----------------|--------------------------|-----------------|------------|------------------|-------------------|-----------------|------------------------|-------------------|-----------------|-------------------|----------------------------|-----------------------|--------------------|----------------------------|------------------------|--------------------|-----------------|-------------------|-------------------|-----------------------|---------------------------|----------------------------|--------------------|----------------------------|----------------------------|-------------------------|-------------------|---------|---------------------------------|--------------------------|--------------------------|-------------------------|-------------------------|---------------------------|-------------------|---------------------------|------------|----------------------|----------------|
| SSS COLOGIC CONCONCINCION                   | 0.0015          | 0.0328                   | 0.0000          | 0.0736     | 0.2332           | 0.3702            | 0.3627          | 0.4869                 | 0.0101            | 0.0000          | 0.8122            | 0.0051                     | 0.0003                | 0.0003             | 0.0006                     | 0.5854                 | 0.2933             | 0.0125          | 0.9666            | 0.0002            | 0.3627                | 0.0210                    | 0.8796                     | 0.0052             | 0.0000                     | 0.0000                     | 0.1255                  | 0.9066            | 1 3968  | 0.0499                          | 0.7245                   | 0.0760                   | 0.2933                  | 0.0628                  | 0.0093                    | 0.0033            | 0.0533                    | 0.0001     | 0.0000               | 30             |
| Se.07-77-4                                  | -               |                          |                 |            |                  | -                 | _               | -                      | -                 | -               | -                 | -                          | -                     | -                  | -                          | -                      | -                  | -               | -                 | -                 | -                     | -                         | -                          | -                  | -                          |                            |                         |                   | 1       |                                 | Ť                        |                          |                         | -                       | -                         | -                 | -                         | -          | -                    | -              |
| SEON TO | 0.0028          | 0.0125                   | 0.0040          | 0.6172     | 0.2369           | 0.3627            | 0.7691          | 0.5143                 | 0.0024            | 0.0000          | 0.0305            | 0.0392                     | 0.0002                | 0.0006             | 0.0093                     | 0.1778                 | 0.8339             | 0.0075          | 0.8668            | 0.0024            | 0.2910                | 0.1089                    | 0.2398                     | 0.0012             | 0.0000                     | 0.0002                     | 0.1027                  | 0.1871            | 0.0833  | 0.0913                          | 0.0228                   | 0.5951                   | 0.6647                  | 0.1778                  | 0.1287                    | 0.0004            | 0.4755                    | 0.0012     | 0.0000               | 19             |
| 26012500-                                   |                 |                          |                 |            |                  |                   |                 |                        |                   | _               |                   |                            |                       |                    |                            |                        |                    | _               |                   | •                 |                       |                           |                            | _                  | •                          | _                          |                         |                   |         |                                 |                          |                          |                         |                         | -                         | _                 |                           |            |                      |                |
| Station of the second second                | 0.0063          | 0.0833                   | 0.0004          | 0.4859     | 0.5382           | 0.3702            | 0.0608          | 0.3547                 | 0.0130            | 0.0000          | 0.5290            | 0.0001                     | 09000                 | 0.0020             | 0.0041                     | 0.1089                 | 0.4009             | 0.0379          | 0.2332            | 0.0002            | 0.7058                | 0.2561                    | 0.2068                     | 0.0019             | 0.0052                     | 0.0034                     | 0.2561                  | 0.0570            | 0.0001  | 0.0210                          | 0.0048                   | 0.6851                   | 0.4930                  | 0.2170                  | 0.0159                    | 0.0194            | 0.1733                    | 0.0043     | 0.0001               | 61             |
| Ferrin 21 65.                               | 0               |                          |                 | ۳.         |                  |                   | 2               |                        | 0                 |                 |                   | 1                          | 7                     | 6                  | 5                          |                        |                    |                 |                   |                   |                       |                           |                            |                    |                            |                            |                         |                   |         |                                 |                          | 6                        |                         |                         | 9                         | ~                 |                           | 4          |                      |                |
| PERIORONO CONTRACTOR                        | 0.0000          | 0.0833                   | 0.0000          | 0.0495     | 0.3702           | 0.1479            | 0.0097          | 0.1431                 | 0.0120            | 0.0000          | 0.9443            | 0.0021                     | 0.0017                | 0.0009             | 0.0005                     | 0.0715                 | 0.0516             | 0.0120          | 0.1255            | 0.0000            | 0.4583                | 0.2998                    | 0.4068                     | 0.0003             | 0.0000                     | 0.0000                     | 0.8778                  | 0.0969            | 02000   | 0 1778                          | 0.2213                   | 0.0019                   | 0.1479                  | 0.2805                  | 0.0466                    | 0.0097            | 0.4842                    | 0.0004     | 0.0003               | 30             |
| SSENTON SCHOOL                              | 90              | 22                       | 11              |            |                  | 80                | 4               | 5                      | 33                | 03              | 4                 | 36                         | 0                     | 5                  | 90                         | _                      |                    | 92              | -                 | 01                | x                     | 10                        | 2                          | 14                 | 10                         | o                          |                         | 20                |         |                                 |                          |                          | x                       | 5                       | 99                        | 14                | 5                         | ~          | 1                    |                |
| 0101010                                     | 0.0106          | 0.0032                   | 0.0001          | 0.5199     | 0.6749           | 0.1058            | 0.4414          | 0.8692                 | 0.0003            | 0.0003          | 0.3854            | 0.0166                     | 0.0010                | 0.0075             | 0.0106                     | 0.6831                 | 0.5019             | 0.0136          | 0.6647            | 0.0340            | 0.4498                | 0.1255                    | 0.0617                     | 0.0004             | 0.0001                     | 0.0000                     | 0.3777                  | 0.5108            | 0.1645  | 0.6147                          | 0.0890                   | 0.2933                   | 0.2388                  | 0.6345                  | 0.0166                    | 0.0004            | 0.0886                    | 0.7372     | 0.0001               | 11             |
| EE 01 201 0 00                              | 3               | 4                        | 5               |            |                  |                   | ~               |                        | 0                 | 0               |                   |                            | 3                     | 2                  | 0                          |                        |                    |                 | _                 | 5                 |                       |                           |                            | -                  | 0                          | 。                          |                         |                   |         |                                 |                          |                          |                         |                         |                           | 9                 |                           |            | 4                    |                |
| 2.5.01-1-51-050-030303030                   | 0.0003          | 0.0194                   | 0.0002          | 0.7058     | 0.7162           | 0.2017            | 0.7058          | 0.7191                 | 0.0050            | 0.0000          | 0.3702            | 0.0886                     | 0.0003                | 0.0022             | 0.0000                     | 0.4095                 | 0.2445             | 0.0340          | 0.2170            | 0.0202            | 0.4947                | 0.1645                    | 0.5303                     | 0.000              | 0.0000                     | 0.000                      | 0.9332                  | 0.8558            | 0.02.0  | 0.0760                          | 1 0000                   | 0.4668                   | 092010                  | 0.4583                  | 0.1645                    | 0.040(            | 0.3064                    | 0.0000     | 0.0004               | 16             |
| Serry See                                   | 4               |                          |                 |            |                  | ~                 | ~               | ~                      | 5                 | 9               |                   | 8                          | ~                     | 5                  | 4                          |                        |                    | 6               |                   | ñ                 |                       | 5                         | _                          | ñ                  |                            | 。                          | ~                       |                   |         |                                 |                          |                          |                         |                         | 1                         |                   |                           | _          | 0                    |                |
| 927-77-95557-0909090                        | 0.0244          | 0.1089                   | 0.001           | 0.9443     | 0.2933           | 0.1058            | 0.0998          | 0.8132                 | 0.0075            | 0.0006          | 0.1918            | 0.032                      | 0.3268                | 0.0005             | 0.0007                     | 0.7798                 | 0.2067             | 0.0089          | 0.1027            | 0.0115            | 0.1871                | 0.0435                    | 0.0559                     | 0.0005             | 0.0000                     | 0.0000                     | 0.0017                  | 0.4755            | 1/01.0  | 0.0516                          | 0.1399                   | 0.6851                   | 1.0000                  | 1.0000                  | 0.2224                    | 0.0013            | 0.4930                    | 0.0001     | 0.0000               | 11             |
| 3£07607 £1.                                 |                 |                          |                 |            |                  |                   |                 |                        |                   |                 |                   |                            |                       |                    |                            |                        |                    |                 |                   |                   |                       |                           |                            |                    |                            |                            |                         |                   |         |                                 |                          |                          |                         |                         | _                         |                   |                           |            |                      |                |
| STOLEOL THE COLORIDA                        | 0.0052          | 0.001                    | 2600.0          | 1.0000     | 0.1220           | 0.0940            | 0.0366          | 0.9829                 | 0.0482            | 0.0041          | 0.4250            | 0.1967                     | 0.0015                | 0.0284             | 0.0784                     | 0.4088                 | 0.3481             | 0.0202          | 0.3409            | 0.0003            | 0.8122                | 1.0000                    | 0.0258                     | 0.0002             | 0.0020                     | 0.0069                     | 0.4332                  | 0.1255            | 0.1440  | 0.0021                          | 0.0629                   | 1.0000                   | 0.1401                  | 0.8778                  | 0.0060                    | 0.0093            | 0.6851                    | 0.0005     | 0.0000               | 20             |
| 6.6 0                                       | 0.0022          | 0.4088                   | 0.0000          | 0.4755     | 0.0859           | 0.2805            | 0.6245          | 0.9372                 | 0.0019            | 0.0305          | 0.3702            | 0.1688                     | 0.6345                | 0.0075             | 2600.0                     | 0.7584                 | 0.7372             | 0.5951          | 0.4755            | 0.4414            | 0.7798                | 0.0000                    | 0.1209                     | 0.0969             | 0.0069                     | 0.0015                     | 0.6955                  | 0.9632            | 0.4408  | 0.8330                          | 0.1610                   | 0.3131                   | 0.1824                  | 0.4414                  | 0.0649                    | 0.0305            | 0.0254                    | 0.0264     | 0.0153               |                |
|                                             | 0.0             | 0.4                      | 0.0             | 0.4        | 0.0              | 0.2               | 0.6             | 0.9                    | 0.0               | 0.0             | 0.3               | 0.J(                       | 0.6                   | 0.0                | 0.0                        | 2.0                    | 2.0                | 23.0<br>0       | 0.4               | 0.4               | 2.0                   | 0.0                       | 0.1                        | 0.0                | 0:0                        | 0:0                        | 80                      | 5.0               | 0 0     | 80                              | 0                        | 0.3                      | ñ.0                     | 0.4                     | 0.0                       | 0.0               | 0.0                       | 0:         | 0.0                  | 13             |
| 01-501-507-0140140                          | 0.2998          | 0.2681                   | 0.2503          | 0.4755     | 0.0398           | 0.2278            | 0.5108          | 0.2534                 | 0.2868            | 9996.0          | 0.4930            | 0.0305                     | 0.0110                | 0.1327             | 0.0180                     | 0.5569                 | 1.0000             | 0.3481          | 0.0628            | 0.3777            | 0.2561                | 0.0082                    | 0.0150                     | 0.1364             | 0.0328                     | 0.4668                     | 0.0159                  | 0.0147            | 0.6851  | 0.0002                          | 0.5084                   | 0.8558                   | 0.0013                  | 0.0072                  | 0.0913                    | 0.1255            | 0.2998                    | 0.0499     | 0.8449               | 14             |
| PS7ET                                       | 01              |                          |                 |            |                  |                   |                 |                        |                   |                 |                   |                            |                       |                    |                            |                        |                    |                 |                   |                   |                       |                           |                            |                    |                            |                            |                         |                   |         |                                 |                          |                          |                         |                         |                           |                   |                           |            |                      | -              |
| ******* anavava                             | 0.0010          | 0.9332                   | 0.2621          | 0.2170     | 0.2868           | 0.9777            | 0.9777          | 1.0000                 | 0.4930            | 0.3268          | 0.8558            | 0.0969                     | 0.4842                | 0.0093             | 0.0097                     | 7770-0                 | 0.8999             | 0.6049          | 1.0000            | 0.5019            | 0.2128                | 0.0089                    | 0.1512                     | 0.1220             | 0.0141                     | 0.0392                     | 0.0284                  | 0.0040            | 0.5475  | 0.0013                          | 0.5666                   | 0.1401                   | 0.3481                  | 0.4414                  | 0.0093                    | 0.0153            | 0.1918                    | 0.3131     | 0.0085               | 13             |
| 1-SET-L-LOUGUA                              | 0.0016          | 1172-0                   | 0.4842          | 0.3064     | 1.0000           | 0.2743            | 0.7798          | 0.6622                 | 0.1778            | 0.6049          | 0.2118            | 0.3627                     | 0.4250                | 0.0033             | 0.0608                     | 0.9554                 | 0.5108             | 0.3777          | 0.3064            | 0.5108            | 0.1058                | 0.0045                    | 0.0597                     | 0.0017             | 0.1520                     | 0.0159                     | 0.0210                  | 0.0218            | 0.5200  | 0.001                           | 0.8143                   | 0.2743                   | 0.0002                  | 0.0159                  | 0.0024                    | 0.1401            | 0.2933                    | 0.0670     | 0.0210               | _              |
| 00°°                                        | 0               |                          |                 | 3          | 2                | 0                 | 0.              | 3                      | 0.                | 3               | 0.                | 0                          | 0.                    |                    |                            | 3                      | o.                 | 3               | 9                 | 0                 |                       |                           | 3                          |                    |                            | <u>.</u>                   | o<br>I                  |                   |         |                                 |                          | <u> </u>                 |                         |                         |                           |                   | 0.                        | 3          | <u>-</u>             | 13             |
| 01 E 21 ET LOUGUO                           | 0.0120          | 0.7906                   | 0.0028          | 0.5854     | 0.3064           | 0.1561            | 0.7058          | 0.4603                 | 0.6851            | 0.1121          | 0.3131            | 0.0760                     | 0.8122                | 1.0000             | 0.0097                     | 0.6546                 | 0.0714             | 0.8122          | 0.8449            | 0.9888            | 0.1401                | 0.0069                    | 0.1773                     | 0.3064             | 0.0167                     | 0.1479                     | 0.1733                  | 0.0589            | 1092 U  | 0.0014                          | 0.4019                   | 0.1479                   | 0.0018                  | 0.0034                  | 0.0075                    | 0.0031            | 0.1645                    | 0.5290     | 0.2998               | =              |
| ansann-canana                               | 0.1440          | 0.0004                   | 0.1561          | 0.2998     | 0.8014           | 1.0000            | 0.8888          | 0.6336                 | 1.0000            | 0.8668          | 0.2332            | 0.2224                     | 0.8449                | 0.0516             | 0.1824                     | 0.4556                 | 0.1645             | 0.4755          | 0.8668            | 0.2067            | 0.0187                | 0.0305                    | 0.1867                     | 131                | 0.1290                     | 0.0007                     | 0.0050                  | 0.0072            | 0.4414  | 0.008                           | 0.9298                   | 0.8558                   | 0.0001                  | 0900.0                  | 0.0808                    | 0.0499            | 0.2998                    | 0.4414     | 401                  |                |
| -0000<br>2.5.                               | 0.1             |                          |                 |            |                  |                   |                 |                        |                   |                 |                   |                            |                       |                    |                            |                        |                    |                 |                   |                   |                       |                           |                            |                    |                            |                            |                         | +                 | +       | 1                               | 1                        | t                        |                         |                         |                           |                   |                           |            |                      | 9              |
| ESTITET OUOUO                               | 0.0066          | 0.4668                   | 0.0000          | 0.4088     | 0.1186           | 0.4583            | 0.9221          | 0.2397                 | 0.1918            | 0.0159          | 0.2278            | 0.0760                     | 0.3268                | 0.0173             | 0.0001                     | 0.8778                 | 0.2445             | 0.5854          | 0.5382            | 0.8014            | 0.2332                | 0.0115                    | 0.2340                     | 0.0516             | 0.0001                     | 0.0000                     | 0.9332                  | 0.2868            | 0.5108  | 0.0305                          | 0.6489                   | 0.8888                   | 0.9554                  | 0.8888                  | 0.0859                    | 0.0005            | 0.1089                    | 0.0082     | 0.0210               | 12             |
| 3055-1-03000                                |                 | 0.0005                   | 1.0000          | 0.0089     | 0.9332           | 0.5663            | 0.8122          | 0.3854                 | 0.7478            | 0.1918          | 0.8449            | 0.4250                     | 0.0001                | 0.0528             | 0.2388                     | 0.0784                 | 0.3131             | 1.0000          | 0.0000            | 0.0001            | 0.1602                | 0.4169                    | 0.8231                     | 0.0097             | 0.6647                     | 0.2743                     | 0.4169                  | 0.0000            | 0.6445  | 00000                           | 0.0042                   | 0.0011                   | 0.0093                  | 0.0499                  | 0.0023                    | 0.0482            | 0.7372                    | 0.8449     | 0.2868               | 14             |
| s-19-5-LOJOUG                               |                 |                          |                 |            |                  |                   |                 |                        |                   |                 |                   |                            |                       |                    |                            |                        |                    |                 |                   |                   |                       |                           |                            |                    |                            |                            |                         |                   |         |                                 | +                        |                          |                         |                         | _                         |                   |                           |            |                      | -              |
| - Ologo                                     |                 | 0.0000                   | 0.1871          | -          |                  | 0.2445            | 1.0000          |                        |                   |                 |                   |                            |                       |                    |                            | 0.0305                 |                    |                 |                   |                   | -                     | -                         | 0.3987                     |                    |                            |                            |                         | 0.0018            |         |                                 |                          | 0.0136                   | 0.0421                  | 0.0187                  | 0.0210                    | 0.1645            | 0.4842                    |            | -                    | $\psi_{sp}$ 15 |
| thom                                        |                 |                          | 35              | 12         | 9                | 9                 | 5               |                        | 21                | 29              | 4                 | 25                         | 28                    | 38                 | 29                         | ×                      | 0                  | 15              | 16                | 24                | -                     | _                         | 10                         | 38                 | 32                         | 37                         | 12                      |                   | 1       | -                               |                          | -5 11                    | 3 26                    | 9 19                    | 27                        | 34                | 4                         | 27         | 34                   | Ψ.             |
|                                             |                 | DRDLDLD-10-11-12-5-6-2-2 |                 |            |                  | 0                 |                 | 7-6-3-6                | 0                 |                 |                   | 10                         | 7-2-5-3               | 10                 | 10                         | 3-8-3-4                | 10                 |                 | 4                 |                   | 7-2-5-3               | DLDLDLD-15-13-10-9-10-3-6 | 91                         |                    | 9                          | 9                          |                         | DLDLD-13-11-8-3-2 | 0-T0-9- | 8.5.10.5                        | DLDLDLD-15-9-12-7-10-2-3 | DRDLDLD-15-11-4-11-8-7-5 | DLDLDLD-15-5-6-11-4-2-6 | DLDLDLD-15-5-6-11-4-2-6 | 0                         | 4                 |                           |            |                      |                |
|                                             | 5-4-7-8         | -10 - 11 - 1             | 5-8-9-6         |            | 7-12-5-4         | 11-6-5-1          | 5-4-7-8         | -5-9-12-               | 11-6-5-1          | 5-4-7-8         | -7-4-7-1          | -9-10-3-                   | -7-5-8-7              | 13-12-3-           | 13.4.7                     | 0-10-5-8               | -5-10-5-           | 9-6-8-5         | -13-4-5-          | 7471              | -7-5-8-7              | -15-13-1                  | -13-47-                    |                    | 13.4.7                     | -9-10-5-                   | 5-4-7-8                 | 11-8-5-           | 2107    | 13.112                          | 15.9.12                  | -15-11-4                 | -15-5-6.                | -15-5-6-                | 7-10-7-1                  | -11-6-7-          | -7-4-7-1                  |            | _                    |                |
| Best model                                  | DRDLD-7-5-4-7-8 | DLDLD.                   | DRDLD-7-5-8-9-6 | DRD-5-9-11 | DRDRD-7-7-12-5-4 | DRDRD-7-11-6-5-10 | DRDLD-7-5-4-7-8 | DRDLDLD-5-9-12-7-6-3-6 | DRDRD-7-11-6-5-10 | DRDLD-7-5-4-7-8 | DRDLD-10-7-4-7-10 | DLD-15                     | DRDRDLD-7-5-8-7-2-5-3 | DRDRD-7-13-12-3-10 | DLD-10                     | DRDRDLD-10-5-8-3-8-3-4 | DRDRD-10-5-10-5-10 | DRDLD-7-5-8-9-6 | DRDRD-10-13-4-5-4 | DRDLD-10-7-4-7-10 | DRDRDLD-7-5-8-7-2-5-3 | DLDLD.                    | DLD-10                     | D-5-9-1            | DLD-10                     | DLD-13                     | DLD-7-(                 | DLDLD-13-11-8-3-2 | DLD 15  | <u>nanan</u>                    | DLDLD.                   | DLDLD                    | DLDLD.                  | DLDLD.                  | DLD-5-                    | DLDRD-15-11-6-7-4 | DLD-10                    | DRD-5-9-11 | D-5-9-1.             |                |
| Best                                        |                 | -                        | -               |            |                  |                   |                 |                        |                   | 0 DR1           | 1 DR1             | Part 12 DRDLD-15-9-10-3-10 |                       | 4 DRI              | Part 15 DRDLD-10-13-4-7-10 | 6 DR1                  |                    |                 |                   |                   |                       | 2 DLI                     | Part 23 DRDLD-10-13-4-7-10 | Part 24 DRD-5-9-11 | Part 25 DRDLD-10-13-4-7-10 | Part 26 DRDLD-13-9-10-5-10 | Part 27 DRDLD-7-5-4-7-8 |                   |         | Part 31 DBDBDBD-13-11-8-5-10-24 | 2 DLI                    |                          | 4 DLI                   |                         | Part 36 DRDLD-5-7-10-7-10 |                   | Part 38 DRDLD-10-7-4-7-10 | 19 DR1     | Part 40   DRD-5-9-11 |                |
| Part                                        | Part 1          | Part 2                   | Part 3          | Part 4     | Part 5           | Part 6            | Part 7          | Part 8                 | Part 9            | Part 10         | Part 11           | Part 1                     | Part 13               | Part 14            | Part 1                     | Part 16                | Part 17            | Part 18         | Part 19           | Part 20           | Part 21               | Part 22                   | Part 2                     | Part 2             | Part 2                     | Part 2                     | Part 2                  | Part 28           | Part 2  | Part 3                          | Part 32                  | Part 33                  | Part 34                 | Part 35                 | Part 3                    | Part 37           | Part 3                    | Part 39    | Part 4               |                |

Table A.2.: Significance evaluation of 50 best architectures for DL-STPM cont.

| 5-a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1               | 1                        |                 |            |                  |                   |                 |                        |                   |                 |                   |                                             |                       |                    |                    |                        |                    |                 |                   |                   |                       |                           |                    |            | _                  |                    |                | T               | Т                      | Т               | T                        | Т                        | Т                        | Т                       |                        |                   |                   | П                 |             |            | ٦              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|-----------------|------------|------------------|-------------------|-----------------|------------------------|-------------------|-----------------|-------------------|---------------------------------------------|-----------------------|--------------------|--------------------|------------------------|--------------------|-----------------|-------------------|-------------------|-----------------------|---------------------------|--------------------|------------|--------------------|--------------------|----------------|-----------------|------------------------|-----------------|--------------------------|--------------------------|--------------------------|-------------------------|------------------------|-------------------|-------------------|-------------------|-------------|------------|----------------|
| CHICHICST & LEVILER &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001           | 0.0317                   | 0.0002          | 0.7091     | 0116-0           | 0.0833            | 0.4842          | 0.9258                 | 0.0106            | 0.0027          | 0.1220            | 0.0043                                      | 0.1186                | 0.0006             | 0.0001             | 0.5854                 | 0.3627             | 0.3131          | 0.1220            | 0.2278            | 0.9443                | 0.0002                    | 0.2340             | 0.0180     | 0.0000             | 0.0011             | 0.7584         | 0.9221          | 0.4383                 | 0.977           | 0.0000                   | 0.7350                   | 0.1364                   | 0.6851                  | 0.6955                 | 0.2278            | 0.0052            | 0.2118            | 0.0106      | 0.0015     | 15             |
| DRIDHORD SALELLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0002          | 0.6245                   | 0.0060          | 0.5829     | 0.0069           | 0.1181            | 0.0570          | 0.0930                 | 0.1871            | 0.1918          | 0.0210            | 0.0017                                      | 0.6831                | 0.0000             | 0.0045             | 0.1220                 | 0.1733             | .2008           | 0.3131            | 0.2868            | 0.3244                | 0.0027                    | 0.0310             | 0.0519     | .0037              | 0.1602             | .0005          | 0.0026          | 0.2721                 | cq/T/0          | 0.10.0                   | 0.1345                   | 0.5019                   | 0.0028                  | 0.0130                 | 0.0125            | 0.0013            | .1058             | 0.5663      | 0.0063     | 2              |
| S. Prov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                          | •               | 0          | -                | -                 | 0               | 0                      | 0                 | 0               | 0                 | 0                                           | -                     | •                  | 0                  | -                      | •                  | -               | 0                 | -                 | 0                     | -                         | -                  | -          | -                  | -                  | •              |                 |                        | -               |                          |                          |                          |                         | -                      | •                 | •                 | -                 | +           | +          | -              |
| Selation or a server and server                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0353          | 0.6049                   | 0.0040          | 0.5951     | 0.1520           | 0.0104            | 0.4930          | 0.4841                 | 0.0833            | 0.1290          | 0.2388            | 0.0028                                      | 0.4169                | 0.0030             | 0.0141             | 0.9258                 | 0.2681             | 0.4930          | 0.2721            | 0.0955            | 0.1232                | 0.0000                    | 0.0169             | 0.2224     | 0.2998             | 0.0406             | 0.0714         | 0.9103          | 0.0000                 | 17260           | 0.610.0                  | 0.489/                   | 0.205                    | 0.1364                  | 0.0227                 | 0.0284            | 0.0628            | 0.0353            | 0.1645      | 0.0153     | 14             |
| and a strate of the state of th | 0.0075          | 0.0093                   | 0.0001          | 0.6523     | 0109.0           | 1690'0            | 0.0886          | 0.9943                 | 0.7584            | 0.0886          | 0.0031            | 0.0509                                      | 0.2278                | 0.0026             | 0.0063             | 1.0000                 | 0.2370             | 0.2118          | 0.0969            | 0.7568            | 0.1834                | 0.0089                    | 0.3374             | 0.0020     | 0.2621             | 0.0097             | 0.0130         | 0.0227          | 0.0533                 | 0.5555          | 2/00.0                   | 0.4272                   | 0.4088                   | 0.3931                  | 0.4668                 | 0.0482            | 0.1688            | 0.0421            | 0.0027      | 0.1871     | 15             |
| Pryne Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                          |                 |            |                  |                   |                 |                        |                   |                 |                   |                                             |                       |                    |                    |                        |                    |                 |                   |                   |                       |                           |                    |            |                    |                    |                |                 |                        |                 |                          |                          |                          |                         |                        |                   |                   |                   |             | 1          |                |
| DRIDRID-LELL Southers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0002          | 0.9221                   | 0.0000          | 0.1733     | 0.1645           | 0.0589            | 0.8230          | 0.5714                 | 0.0808            | 0.0057          | 0.2805            | 0.0499                                      | 0.4414                | 0.0009             | 0.0130             | 0.3627                 | 0.3702             | 0.1290          | 0.2017            | 0.0736            | 0.6123                | 0.0048                    | 0.2514             | 0.0159     | 0.0001             | 0.0011             | 0.5199         | 0.5019          | 8161°0                 | 96/ / 70        | TINUU                    | 65620                    | 0.0194                   | 0.5854                  | 0.4930                 | 0.0072            | 0.0060            | 0.0406            | 0.0055      | 0.0017     | 91             |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0001          | 0.0969                   | 0.0001          | 0.5951     | 0.6523           | 0.1186            | 0.208           | 0.5133                 | 0.0340            | 0.0057          | 0.0859            | 0.0305                                      | 1.0000                | 0.0018             | 0.0055             | 0.4668                 | 0.1645             | 0.0147          | 0.3338            | 0.1520            | 1.0000                | 0.0340                    | 0.3255             | 0.0004     | 0.0019             | 0.0000             | 0.4009         | 0.5475          | 0.3854                 | 0.004/          | 0.3///                   | 0.745/                   | 0.7058                   | 0.1327                  | 0.9221                 | 0.0050            | 0.0013            | 0.5759            | 0.0120      | 0.0000     | 16             |
| Collocores is series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6345          | 0.4169                   | 00000           | 0.8888     | 0.7798           | 1692'0            | 0.8009          | 0.6518                 | 0.0649            | 0.0002          | 0.2868            | 0.0714                                      | 0.0379                | 0.0003             | 0.0018             | 0.0833                 | 0.2743             | 0.0034          | 0.8014            | 0.1561            | 0.0335                | 0.0153                    | 0.1046             | 0.0089     | 0.0011             | 0.0066             | 0.8558         | 0.8009          | 0.54/5                 | 19320           | 0.5/1/                   | 05000                    | 0.9888                   | 0.4842                  | 0.6955                 | 0.0589            | 0.0007            | 0.5382            | 0.0274      | 0.0005     |                |
| 19.80.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3               | ò                        | 3               | 07         | 0.               | .0                | 07              | 00                     | 0.0               | 0               | 0                 | 0.0                                         | 3                     | 3                  | 0                  | 3                      | 0                  | 3               | 07                | 0                 | 0                     | 0                         | 0.                 | 3          | 0                  | 3                  | 3              | 3               | 0                      | 0               | 3 8                      | 3                        | 5                        | ð                       | 3                      | 3                 | 3                 | 0                 | -           | 3          | 4              |
| DRIDROP IN SAFA FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0004          | 0.3854                   | 0.0153          | 0.8778     | 0.7798           | 0.3064            | 0.5382          | 0.7364                 | 0.0180            | 0.0024          | 0.4755            | 0.1058                                      | 0.1290                | 0.0055             | 0.0066             | 1.0000                 | 0.2503             | 0.3131          | 0.8009            | 0.4169            | 0.3931                | 0.1479                    | 0.0638             | 0.0016     | 0.0000             | 0.0006             | 0.3481         | 0.1733          | 0.5409                 | 01:05:0         | / 00010                  | 0.4019                   | 0.0130                   | 0.0284                  | 0.5200                 | 0.1520            | 0.0019            | 0.1871            | 0.0033      | 0.0006     | 15             |
| Conconcertar a far far far far far far far far far                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0001          | 0.4755                   | 0.0019          | 0.2681     | 0.1520           | 0.1967            | 0.8778          | 0.1400                 | 0.0015            | 0.0004          | 0.7584            | 0.0379                                      | 0.0244                | 0.0120             | 0.0007             | 0.5108                 | 0.1327             | 0.0125          | 0.2621            | 0.0218            | 0.3141                | 0.0005                    | 0.1244             | 0.0008     | 0.0000             | 0.0000             | 0.4169         | 0.4668          | 0.0504                 | 00//30          | 0,1533                   | 0.47 L3                  | 0.1520                   | 0.6445                  | 0.1440                 | 0.1778            | 0.0014            | 0.2445            | 0.0028      | 0.0000     | 11             |
| * Incmire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                          |                 |            |                  | (                 |                 |                        |                   |                 |                   |                                             | ~                     |                    | 7                  |                        |                    |                 |                   |                   |                       | 2                         |                    | _          | 1                  | <b>.</b>           |                |                 |                        |                 |                          |                          |                          | _                       |                        | _                 | _                 |                   | _           |            |                |
| Ser.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.018           | 0.0052                   | 0.0000          | 0.1024     | 0.0516           | 0.0340            | 0.0110          | 0.2534                 | 0.3777            | 0.0060          | 0.1058            | 0.0574                                      | 0.0057                | 0.0075             | 0.0027             | 0.0649                 | 0.0940             | 0.5569          | 0.3409            | 0.1871            | 0.2454                | 0.0057                    | 0.2824             | 0.0063     | 0.0024             | 0.004              | 0.8122         | 0.2118          | 0.4250                 | 0.0030          | 0.03/9                   | 0.1997                   | 0.7162                   | 0.0499                  | 0.8099                 | 0.0033            | 0.0173            | 0.2805            | 0.0328      | 0.0000     | <u>9</u>       |
| CHICKER WARTER WAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0025          | 0.0003                   | 0.0183          | 0.0180     | 0.0324           | 0.1116            | 0.0052          | 0.0104                 | 0.0406            | 0.0011          | 0.0040            | 0.0006                                      | 0.0004                | 0.0003             | 0.0082             | 0.0738                 | 0.5108             | 0.0194          | 0.0115            | 0.0173            | 0.2341                | 0.0055                    | 0.2889             | 0.0005     | 0.0001             | 0.0005             | 0.0002         | 0.3131          | 0.0085                 | 0.22/8          | 60900                    | 8600.0                   | 0.0227                   | 0.0041                  | 0.0808                 | 0.0089            | 0.0499            | 0.0736            | 0.0969      | 0.0009     | 8              |
| S. S. M. L. P. Y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                          |                 |            |                  |                   |                 |                        |                   |                 |                   |                                             |                       |                    |                    |                        |                    |                 |                   |                   |                       |                           |                    |            |                    |                    |                |                 |                        |                 |                          |                          |                          |                         |                        |                   |                   |                   |             |            |                |
| טענטייטעומיוויינייל אומיניי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0005          | 0.0202                   | 0.0004          | 0.2332     | 0.5663           | 0.0714            | 0.0911          | 0.1018                 | 0.0038            | 0.0050          | 0.4930            | 0.0482                                      | 0.0450                | 0.003              | 0.0000             | 0.4583                 | 1772.0             | 0.0570          | 0.8014            | 0.0082            | 0.6345                | 0.0050                    | 0.2698             | 0.0353     | 0.0466             | 0.0031             | 0.4755         | 0.1255          | 0.4005                 | 00000           | 1.0204                   | 0.5500                   | 0.2805                   | 0.8122                  | 0.6749                 | 0.0886            | 0.0048            | 0.2805            | 0.0063      | 0.0003     | 23             |
| DE DE DE SALES REE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0166          | 0.0940                   | 0.0015          | 0.4250     | 0.1550           | 0.3931            | 0.5019          | 1.0000                 | 0.1186            | 0.0069          | 0.1327            | 0.0691                                      | 0.0009                | 0.0023             | 0.4088             | 0.7999                 | 0.0760             | 0.0284          | 0.3409            | 0.0022            | 0.2201                | 0.1520                    | 0.3749             | 0.0078     | 0.0180             | 0.0000             | 0.5759         | 0.1733          | 0.2445                 | 0.3854          | 0.2300                   | 0.0337                   | 0.9777                   | 0.0210                  | 0.9554                 | 0.3931            | 0.0017            | 0.6445            | 0.0649      | 0.0023     | 14             |
| Sty Mp 17 See.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                          |                 |            |                  |                   |                 |                        |                   |                 |                   |                                             |                       |                    |                    |                        |                    |                 |                   |                   |                       |                           |                    |            |                    |                    |                |                 |                        |                 |                          |                          |                          |                         |                        |                   |                   |                   | 1           |            |                |
| Dellogence - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0003          | 0.0002                   | 0.0015          | 0.3866     | 0.7162           | 0.0628            | 0.2503          | 0.2635                 | 0.2118            | 0.0000          | 0.1871            | 0.0166                                      | 0.0570                | 0.0254             | 0.0406             | 0.3854                 | 0.5475             | 0.0066          | 0.7906            | 1.0000            | 0.5638                | 0.6647                    | 0.2454             | 0.13.27    | 0.0006             | 0.0009             | 0.7798         | 0.1733          | 901170                 | 8/77/0          | 10:00                    | 0.3464                   | 0.3854                   | 0.0060                  | 0.4842                 | 0.0227            | 0.0006            | 0.9443            | 0.9888      | 0.0001     | 15             |
| Chicken Land Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                          |                 |            |                  |                   | 7               |                        | 3                 | 3               |                   | 4                                           | _                     |                    |                    | 5                      |                    |                 |                   | _                 |                       |                           | ~                  |            |                    | +                  |                |                 |                        |                 |                          |                          |                          | _                       |                        |                   | ~                 |                   |             |            |                |
| Officerore .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0019          | 0.0002                   | 0.1121          | 0.1918     | 0.3521           | 0.1153            | 0.0097          | 0.1251                 | 0.0466            | 0.0006          | 0.0691            | 0.0294                                      | 0.0000                | 0.0850             | 0.1918             | 0.0045                 | 0.7584             | 0.1327          | 0.2332            | 0.000             | 0.1338                | 0.7162                    | 0.0123             | 0.000      | 0.0040             | 0.0264             | 0.3481         | 0.0166          | 0.0/84                 | 0.67.0          | GF00.0                   | 0.0082                   | 1.000                    | 0.042                   | 0.3406                 | 0.2388            | 0.0317            | 0.5759            | 0.4332      | 0.0482     | 9              |
| טינטנטנט. וואירו לביצוליי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01              | 8                        | 01              | 54         | 4                | 25                | 8               | 6                      | 05                | 03              | 8                 | 33                                          | 28                    | 8                  | 05                 | 54                     | 8                  | 5               | 66                | 89                | 12                    | 57                        | 25                 | 75         | 01                 | 11                 | ¥              | 1               | 8                      | 8               | 8 9                      | 2                        | 1                        | 8                       | ¥.                     | 6                 | 8                 | 2                 | 8           | 8          |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1.000                    |                 |            |                  | 0.1967            | 0.4668          |                        | 0.0005            | 0.0003          | 0.1733            | 0.0833                                      |                       | -                  |                    | 0.9554                 | -                  |                 |                   |                   | 0.0821                | 0.005                     | 0.0657             | -          | -                  |                    |                |                 |                        |                 |                          | 1                        | +                        | +                       | -                      | -                 |                   |                   | -           | +          | $\psi_{sp}$ 17 |
| ¢hm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34              | 2-2 31                   | 35              | 12         | 9                | 9                 | 5               |                        | 21                | 20              | 4                 | 25                                          | 8                     | 8                  |                    | _                      | 0                  | 15              | 16                | 24                | 9                     |                           | 10                 | 8          | 32                 | 37                 | 13             |                 |                        |                 |                          | +                        |                          | 1                       |                        | 27                | ¥.                | 4                 | 5           | <u>8</u>   | Ψ <sub>1</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _               | 12-5-6-2                 |                 |            | 4                | 017               | ~               | 2.7.6.3.6              | -10               | ~               | -10               | 3-10                                        | 17-2-5-3              | 3-10               | 7-10               | 8.3.8.3.4              | 5-10               |                 | 5-4               | -10               | 17-2-5-3              | 10-9-10                   | 7-10               |            | 2-10               | 2-10               | ~              | 22              | 0-3-10-9-              | (-p             |                          | 7-1-1-21                 | 4-11-87                  | 6-11-4-2-               | 6-11-4-2-              | 9                 | 74                | 9                 |             |            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-5-4-7-8       | II-01-07                 | 7-5-8-9-6       | Ę          | 7.7.12.5         | 7-11-6-5          | 7-5-4-7-8       | D-5-9-1                | 7-11-6-5          | 7-5-4-7-8       | 10.747            | 15.9 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | LD-7-5-8              | 7-13-12            | 10-13-4-           | LD-10-5-               | 10-5-10            | 7-5-8-9-0       | -10-13-4          | 10.7.4.7          | LD-7-5-8              | .D-15-13                  | 10-13-4-           | =          | 10-13-4-           | 13.9-10-           | 7-5-4-7-8      | 13-11-8.        | -6-01-011              | -10-7-10-       | RU-LIA-L                 | -seller                  | 11-91-011                | N-19-54                 | Delsey.                | 5.7-10.7          | 15-11-6-          | 10747             | <u>=</u>  - |            |                |
| Best model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DRDLD-7-5-4-7-8 | DRDLDLD-10-11-12-5-6-2-2 | DRDLD-7-5-8-9-6 | DRD-5-9-11 | DRDRD-7-7-12-5-4 | DRDRD-7-11-6-5-10 | DRDLD-7-5-4-7-8 | DRDLDLD-5-9-12-7-6-3-6 | DRDRD-7-11-6-5-10 | DRDLD-7-5-4-7-8 | DRDLD-10-7-4-7-10 | DRDLD-15-9-10-3-10                          | DRDRDLD-7-5-8-7-2-5-3 | DRDRD-7-13-12-3-10 | DRDLD-10-13-4-7-10 | DRDRDLD-10-5-8-3-8-3-4 | DRDRD-10-5-10-5-10 | DRDLD-7-5-8-9-6 | DRDRD-10-13-4-5-4 | DRDLD-10-7-4-7-10 | DRDRDLD-7-5-8-7-2-5-3 | DLDLDLD-15-13-10-9-10-3-6 | DRDLD-10-13-4-7-10 | DRD-5-9-11 | DRDLD-10-13-4-7-10 | DRDLD-13-9-10-5-10 | DRDLD-7-54-7-8 | DLDLD-13-11-8-3 | DLDKDLD-13-90-3-10-9-2 | DRULU-1-G-ULUAU | DRDRDRD-13-11-S-3-10-2-4 | DUDUDUD-19-9-12-7-10-2-3 | DRDLDLD-15-11-4-11-8-7-5 | DLDLDLD-15-5-6-11-4-2-6 | DLDLDLD-15-56-11-4-2-6 | DRDLD-5-7-10-7-10 | DLDRD-15-11-6-7-4 | DRDLD-10-7-4-7-10 | DRD-5.9-11  | DRD-5-9-11 |                |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Part 1 1        | Part 2 1                 |                 | Part 4 1   | -                | Part 6 1          | Part 7 1        | Part 8 1               | Part 9 1          | Part 10 1       | Part 11 1         | Part 12 1                                   |                       |                    |                    |                        | _                  |                 | _                 |                   | Part 21 1             | Part 22 1                 |                    |            |                    | -                  |                | -               | _                      | _               | -                        | -                        | _                        |                         | -                      |                   |                   |                   | _           | Part 40    |                |
| ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | per             | ۳Ľ.                      | d,              | d,         | р£Г              | d,                | Ч               | Р                      | Р                 | P.              | P.                | d,                                          | d,                    | ц,                 | d,                 | d,                     | ц.                 | d,              | d,                | d,                | d,                    | d.                        | d.                 | d.         | H.                 | Ц                  | Ц              | ц,              | 4                      | 4               | ц (f                     | 4                        | -   f                    | 1                       | <u>п</u>               | ц,                | ц,                | <u>ni</u>         | <u>п</u> р  | <u>п</u> - |                |

Table A.2.: Significance evaluation of 50 best architectures for DL-STPM cont.

| day Ship 70               | 0.0010     | 0.0000         | 0.0015                      | 0.0000       | 0.0000         | 0.0000         | 0.0014     | 0.0000               | 0.0039     | 0.000          | 0.0000     | 0.0000    | 0.0000          | 0.0000         | 0.0000        | 0.0000        | 0.0000         | 0.0000     | 0.000      | 0.0000        | 0.0000      | 0.0570       | 0.0809     | 0.000        | 0.000                      | 0.000          | 0.0000    | 0.000          | 0.0000     | 0.0000    | 0.0000      | 0.0007        | 0.0000     | 0.0000       | 0.3268       | 0.0000         | 0.0000        | 0.0000        | 0.000     | 0.000        |             |
|---------------------------|------------|----------------|-----------------------------|--------------|----------------|----------------|------------|----------------------|------------|----------------|------------|-----------|-----------------|----------------|---------------|---------------|----------------|------------|------------|---------------|-------------|--------------|------------|--------------|----------------------------|----------------|-----------|----------------|------------|-----------|-------------|---------------|------------|--------------|--------------|----------------|---------------|---------------|-----------|--------------|-------------|
| ding the soo              | 0.0066 0.  | 0.0000         | 0.0004 0.                   | 0 0000 0     | 0.0000         | 0.0000         | 0.0003 0   | 0.0000               | 0.0000     | 0.0000         | 0.0000     | 0.0002 0. | 0.0000          | 0.0000 0.      | 0 00000       | 0.0000        | 0.0000 0.      | 0.0000     | 0.0000     | 0.0000 0.     | 0.0000      |              |            |              | 0.0000                     |                |           |                |            |           | 0.0000 0.   | 0.0003 0.     | 0 0000 0   | 0.0000 0.    | 1.0000 0.    | 0.0000         | 0.0000 0.     | 0 0000 0      |           | 0000         | 39 37       |
| darts JULL 100            | 0.0379 0   | 0.7058 0       | 0 00000                     | 0.3931 0     | 0.3268 0       | 0.4755 0       | 0.4668 0   | 0.0886 0             | 0.0141 0   | 0.6749 0       | 0.1561 0   | 0.0033 0  | 1.0000 0        | 0.3131 0       | 0 8000.0      | 0.4414 0      | 0.0036 0       | 0.0006 0   | 0.0136 0   | 0.0482 0      | 0.0024 0    |              | _          |              | 0.2332 0                   |                |           |                | _          |           | 0.0000 0    | 1.0000 0      | 0.0736 0   | 1.0000 0     | 0.3064 1.    | 0.1967 0       | 0.9666 0      | 0.0000 0      | -         | 1.0000 0     | 6 3         |
| and Margane               | 0.0210 0   | 1.0000 0       | 0.0000 0                    | 0.9110 0     | 0.2503 0       | 1.0000 0       | 0.6851 0   | 0.0969 0             | 0.0000 0   | 0.4668 0       | 0.0940 0   | 0.0001 0  | 0.0379 1        | 0.4755 0       | 0.0264 0      | 0.8230 0      |                | 0.0019 0   | 0.0353 0   | 0.0028 0      | 0.0052 0    |              |            |              | 0.7058 0                   |                | _         |                |            |           | 0.0007 0    | 0.8778 1      | 0.2503 0   | 0.9443 1     | 0.5108 0     | 1.0000 0       | 0.0421 0      | 0.0001 0      |           | 0.2743 1     | 1           |
| Constantine on the second | 261 O.     | 0.2868 1.0     | 0.0043 0.                   | 0.085 0.9    | 1.0000 0.5     | 0.0274 1.(     | 0.5475 0.6 | 1.0000 0.0           | 0.0000     | 1.0000 0.4     | 0.1364 0.0 | 0.0194 0. | 0.4930 0.1      | 1.0000 0.4     | 0.9110 0.1    |               | 1.0000 0.1     | 0.0284 0.1 | 0.4332 0.1 | 0.6345 0.     | 0.6445 0.   |              | _          |              | 0.1778 0.7                 |                |           |                | 0.0379 0.1 |           | 0.0173 0.   |               | 0.3854 0.5 | 0.1479 0.9   | 0.0000 0.2   | 0.6345 1.(     | 0.0202 0.0    | 0.0031 0.     |           | 0.5290 0.5   | 15          |
| 5000                      | 0.2561     | 0.28           | 0.0                         |              |                |                | 0.5        | 1.0                  | 0.0        | 1.0            |            |           | 0.49            | 1.0(           | 0.9           | 0.6851        | 1.0(           | 0.0        | 0.43       | 0.6           | 0.6         |              | 0.0        |              |                            | 0.2561         | 0.0       |                |            |           |             | 0.4088        | 0.3        |              | 0.0          | 0.6            |               | 0.0           |           | 0.5          | 14          |
| and the loss              | 0.2445     | 0.0000         | 0.0004                      | 0.0000       | 0.0406         | 0.0499         | 0.7798     | 0.8778               | 0.0714     | 0.2388         | 0.001      | 0.0450    | 0.0097          | 0.0340         | 0.1327        | 0.0017        | 0.5290         | 0.0000     | 0.0002     | 0.0000        | 0.2868      | 0.0008       | 0.1327     | 0.1967       | 0.000                      | 0.1479         | 0.0194    | 0.0000         | 0.0294     | 0.0000    | 0.0005      | 0.2805        | 0.0003     | 0.0000       | 0.0000       | 0.001          | 0.0264        | 0.0004        | 0.0000    | 0.0101       | 28          |
| the states and            | 0.2868     | 0.0000         | 0.0082                      | 0.0000       | 0.0034         | 0.0913         | 0.1364     | 0.3627               | 0.6345     | 0.1688         | 0.0055     | 0.0014    | 0.0038          | 0.1688         | 0.0736        | 0.0027        | 0.0294         | 0.0000     | 0.0022     | 0.0006        | 0.3854      | 0.0000       | 0.1121     | 0.1153       | 0.0000                     | 0.0019         | 0.0000    | 0.0041         | 0.0000     | 0.0000    | 0.0036      | 0.0628        | 0.0001     | 0.0000       | 0.0000       | 0.0000         | 0.0005        | 0.0000        | 0.0000    | 0.0007       | 28          |
| O.L. Selen                | 0.0008     | 0.0000         | 0.0002                      | 0.0000       | 0.0000         | 0.0000         | 0.0001     | 0.0000               | 0.0000     | 0.0000         | 0.0000     | 0.0000    | 0.0000          | 0.0000         | 0.0000        | 0,0000        | 0.0002         | 0.0000     | 0.0000     | 0.0000        | 0.0000      | 0.0005       | 0.7162     | 0.0001       | 0.0000                     | 0.0000         | 0.0000    | 0.0000         | 0.0000     | 0.0000    | 0.0000      | 0.0017        | 0.0000     | 0.0000       | 0.3131       | 0.0000         | 0.0000        | 0.0000        | 0.0000    | 0.0000       | 38          |
| are feller                | 0.000.0    | 0.000.0        | 0.0005                      | 0.000.0      | 0.000.0        | 0.0003         | 0.0012     | 0.000.0              | 0.000.0    | 0.000.0        | 0.000.0    | 0.000.0   | 0.000.0         | 0.000.0        | 0.000.0       | 0.000.0       | 0.0001         | 0.000.0    | 0.000.0    | 0.000.0       | 0.000.0     |              | _          |              | -                          | -              | -         | _              | -          | _         | -           | 0.0030        | 0.000.0    | 0.000.0      | 0.3931       | 0.000.0        | 0.000.0       | 0.0002        |           | 0000         | 38          |
| 10 pp 100                 | 0.000      | 0.7798 (       | 0.0000                      | 1.0000 (     | 0.2332 (       | 0.3268 (       | 1.0000 0   | 0.7906 (             | 0.0210 (   | 0.7584 0       | 1.0000     | 1.0000    | 0.7267 (        | 0.7372 0       | 0.6546 (      | 1.0000 (      | 0.6147 (       | 1.0000 (   | 1.0000     | 0.0052 (      | 0.0130 (    |              |            |              | 1.0000                     |                |           |                | -          | -         | 0.7906 0    | 0.0736 0      | 1.0000     | 0.7267 (     | 0.0000       | 0.1027 0       | 1.0000 0      | 0.3131 0      |           | 0.3268 (     | 7           |
| and the                   | 0.0000     | 0.9221         | 0.0001                      | 0.0760       | 0.3854         | 0.2388         | 0.8999     | 0.9221               | 0.0089     | 0.9666         | 0.1778     | 0.2998    | 0.2224          | 0.7798         | 0.5199        | 0.9332        | 0.4842         | 0.5759     | 0.8449     | 0.1602        | 1.0000      | 0.1645       | 0.0000     | 0.7058       | 0.6647                     | 0.1220         | 0.0141    | 0.0998         | 0.0998     | 0.6955    | 1.0000      | 0.2868        | 0.8999     | 0.3854       | 0.0000       | 0.1778         | 0.4930        | 1.0000        | 0.2067    | 0.1027       | 6           |
| Contra fellen             | 0.0406     | 0.0760         | 0900.0                      | 0.0000       | 0.0998         | 0.4583         | 0.5854     | 0.9332               | 0.0691     | 0.3268         | 0.0063     | 0.0130    | 0.4009          | 0.6749         | 1.0000        | 0.6955        | 0.2998         | 0.0089     | 0.2388     | 1.0000        | 0.3702      | 0.0036       | 0.0001     | 0.0450       | 0.0078                     | 0.8778         | 0.0317    | 0.0218         | 0.0027     | 0.1058    | 0.6147      | 0.8999        | 0.0043     | 0.0002       | 0.0000       | 0.0089         | 0.0031        | 0.8339        | 0.0022    | 0.6955       | 19          |
| 1000 Marine               | 0.6049     | 0.0000         | 0.0264                      | 0.0000       | 0.0004         | 0.0055         | 0.5108     | 1.0000               | 1.0000     | 0.2681         | 0.0004     | 0.001     | 0.0274          | 0.0284         | 0.2118        | 0.0034        | 0.0736         | 0.0010     | 0.0317     | 0.0649        | 0.1645      | 0.0000       |            |              | 0.0000                     | 0.1479         | 0.1220    | 0.0002         | 0.0015     | -         | 0.9110      | 0.9110        | 0.0002     | 0.0000       | 0.0001       | 0.0014         | 0.0024        | 0.0000        | 0.0000    | 0.0055       | 25          |
| anne felen                | 0.4250     | 0.0002         | 0.3409                      | 0.0000       | 0.0028         | 0.4583         | 0.0115     | 0.8778               | 0.5199     | 0.0034         | 0.0005     | 0.0000    | 0.0027          | 0.0202         | 0.0328        | 0.0003        | 0.0760         | 0.0000     | 0.0024     | 0.0000        | 0.0147      | 0.0001       | 0.3064     | 0.3268       | 0.0000                     | 0.0030         | 0.0031    | 0.0001         | 0.0000     | 0.0000    | 1.0000      | 0.0235        | 0.0001     | 0.0000       | 0.3409       | 0.0000         | 0.0040        | 0.0014        | 0.0000    | 0.0033       | 30          |
| 0.9870                    | 0.6245     | 0.0450         | 0.4842                      | 0.0000       | 0.0002         | 0.0760         | 0.2868     | 0.0001               | 0.1186     | 0.0012         | 0.0009     | 0.0202    | 0.0136          | 0.0000         | 0.4755        | 0.0007        | 0.1561         | 0.0000     | 0.0000     | 0.6749        | 0.5854      | 0.0284       | 0.6749     |              | 0.0000                     | _              | _         |                | _          | _         | 0.2743      | 0.0340        | 0.0004     | 0.0000       | 0.0000       | 0.0000         | 0.0000        | 0.0194        |           |              | 28          |
| oce aco                   | 0.6445     | 1000.0         | 0.8778                      | 0.0000       | 0.0000         | 0.0097         | 0.1220     | 0.0000               | 0.1290     | 0.0002         | 0.0000     | 0.0002    | 0.0010          | 0.0000         | 0.0016        | 0.0328        | 0.0180         | 0.0000     | 0.001      | 0.0466        | 0.0736      |              | 0.1520     |              | 0.0000                     | _              | -         | 0.0000         | 0.0000     | _         | 0.1027      | 0.0141        | 0.0000     |              | 0.0859       | 000000         | 0.0000        | 0.0066        |           | 0.0235       | 31          |
| OS 100                    | 1.0000     | 0.0000         | 1.0000                      | 0.0000       | 0.0000         | 0.0000         | 0.0141     | 0.0000               | 0.0244     | 0.0075         | 0.0000     | 0.1602    | 0.0001          | 0.0000         | 0.0001        | 0.0008        | -              | 0.000      | 0.0000     | 0.0018        | 0.000       |              | -          | $\vdash$     | 0.0000                     | _              | _         | _              | _          | -         | 0.0366      | 0.0063        | 0.0000     | 0.0000       | 0.0011       | 0.0000         | 0.0000        | 0.0130        | _         |              | 35          |
| OSS STOR                  | 1.0000     | 0.0000         | 0.3931                      | 0.000 0.0000 | 0.0000         | 0.0000         | 0.0010     | 00000                | 0.0533     | 0.0057         | 00000      | 0.0340    | 0.0000          | 0.0000         | 000000        | 0.0000 0.0012 | 0.0006         | 0.0000     | 0.0000     | 0.0093        | 0.0015      | 0.0097       | 0.2445     | 0.0101       | 00000                      | 0.0000 0.0000  | 0.0000    | 0.0000 0.0036  | 0.0000     | 0.0570    | 0.0691      | 0.0030        |            | 0.0000       | 0.0004       | 0.0000         | 00000         | 0.0000 0.0005 | 00000     |              | 34          |
| OSCIENCO                  | 0.8014     | 0.000 0.0000   | 0.0033 0.0075 0.0450 0.3931 |              | 000000         | 0.000.0 0.0000 | 0.0006     | 0.0003 0.0000 0.0000 | 0.0305     | 0.0004         | 00000      | 0.0012    | 1000 <b>.</b> 0 | 0.0000         | 000000 000000 |               | 0.001          | 0.000.0    | 00000.0    | 0.0060 0.0093 | 0.0033      |              | 0.1688     | 0.1918       | 00000 0.0000 0.0000 0.0000 |                |           |                |            |           | 0.0833      | 0.0075 0.0030 | 0000.0     | 0.000.0      | 0.0366       | 00000.0        | 0.0000 0.0000 |               | 0.0000    | 00000        | 36          |
| 005 1000                  | 0.0227     | 00000          | 0.0075                      | 00000        | 000000         |                | 0.0007     | 0.0003               | 0.0235     | 00000          | 0.0000     | 0.0000    | 0.0000          | 0.0000         | 000000        | 0.0033        | 0.0001         | 000000     | 0.0000     | 0.0000        | 0.0000      |              | 0.1255     | 0.0106       | 0.0000                     |                |           | _              |            | _         |             | 0.0026        | 0.0000     | 0.0000       | 0.0011       | 000000         | 0.0000        | 000000        |           |              | 39          |
| ogo geo                   | 0.0010     | 0.000          | 0.0033                      | 0.000        | 0.001          | 0.000          | 0.0007     | 0.000.0              | 0.0180     | 0.0000         | 0.0000     | 0.0002    | 0.000           | 0.000          | 00000.0       | 0.000         | 0.0141         | 0.000.0    | 0.0000     | 0.0000        | 0.0002      | 0.0000       | 0.1058     | 0.0000       | 0.0000                     | 0.0000         | 0.001     | 0.0003         | 0.0000     | 0.000     | 0.0130      | 0.0005        | 0.000      | 0.000        | 0.0066       | 0.0000         | 0.0000        | 0.0000        | 0.0000    | 0.0000       | 39          |
| $\psi_{bm}$               | 11         | 15             | 16                          | 17           | 15             | 13             | 10         | =                    | 13         | 12             | 16         | 18        | 16              | 14             | 13            | 15            | 12             | 19         | 17         | 16            | 13          | 14           | 7          | 12           | 16                         | 13             | -         | _              | 17         | 13        | 12          | 12            | 16         | 16           | 13           | 16             | 18            | 18            | 18        | 14           | $\psi_{sp}$ |
| Best model                | 0.0066-SGD | 0.0066-RMSprop | 0.01-SGD                    | 0.01-Adam    | 0.0033-RMSprop | 0.0066-RMSprop | 0.01-Adam  | 0.001-Adam           | 0.001-Adam | 0.0033-RMSprop | 0.01-Adam  | 0.01-Adam | 0.01-RMSprop    | 0.0033-RMSprop | 0.0033-Adam   | 0.01-Adam     | 0.0033-RMSprop | 0.01-Adam  | 0.01-Adam  | 0.0033-Adam   | 0.0066-Adam | 0.01-RMSprop | 0.001-Adam | 0.01-RMSprop | 0.01-Adam                  | 0.0066-RMSprop | 0.01-Adam | 0.0066-RMSprop | 0.01-Adam  | 0.01-Adam | 0.0066-Adam | 0.01-RMSprop  | 0.01-Adam  | 0.01-RMSprop | 0.05-RMSprop | 0.0066-RMSprop | 0.01-Adam     | 0.0066-Adam   | 0.01-Adam | 0.01-RMSprop |             |
| Part                      | 1          | 2              | ŝ                           | 4            | 5              | 9              | 7          | ×                    | 6          | 10             | Ξ          | 12        | 13              | 14             | 15            | 16            | 17             | 18         | 19         | 20            | 21          | 22           | 23         | 24           | 25                         | 26             | 27        | 28             | 29         | 30        | 31          | 32            | ŝ          | 34           | 35           | 36             | 37            | 38            | 39        | 40           |             |

Table A.3.: Significance evaluation of optimizer / learning-rate for DL-STPM-VPD.

| CANAL CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0689      | 0.6473   | 0.4839      | 0.0002      | 0.0019      | 0.0258      | 0.2161   | 0.0096    | 0.0004         | 0.0214   | 0.0240    | 0.0672   | 0.0025         | 0.0000   | 0.0000    | 0.0000    | 0.2846  | 000      | 0.0796     | 0.0000      | 0.0183   | 0.0000         | 0.4841     | 0.0018        | 0.0001     | 0.0000      | 0.0028     | 0.0368     | 0.1952     | 0.0000    | 0.0000   | 0.0000   | 0.0001    | 0.0000        | 0.0000    | 0.0001     | 0.0000      | 0.1174      | 0.000    | 0.0194   |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-------------|-------------|-------------|-------------|----------|-----------|----------------|----------|-----------|----------|----------------|----------|-----------|-----------|---------|----------|------------|-------------|----------|----------------|------------|---------------|------------|-------------|------------|------------|------------|-----------|----------|----------|-----------|---------------|-----------|------------|-------------|-------------|----------|----------|-------------|
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.0        |          |             |             |             |             |          |           |                |          |           |          |                |          |           |           |         |          |            |             |          |                |            |               |            |             |            |            |            |           |          |          |           |               |           |            |             |             | _        |          | 30          |
| CRANTING OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0132      | 0.0784   | 0.7081      | 0.0033      | 0.0000      | 0.0281      | 0.4840   | 0.0132    | 0.0000         | 0.0036   | 092010    | 0.6704   | 2000.0         | 0.0000   | 0.0000    | 0.0000    | 0.1857  | 0.0000   | 0.3175     | 0.0000      | 0.0048   | 0.0000         | 0.2455     | 0.0000        | 0.0000     | 0.0000      | 0.1251     | 0.0000     | 0.0559     | 0.0000    | 0.0000   | 0.0000   | 0.0000    | 0.0000        | 0.0299    | 0.0000     | 0.0000      | 0.1024      | 0.0000   | 0.3983   | 8           |
| CANAL STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0052      | 0.0152   | 0.2608      | 0.0004      | 0.0000      | 0.0096      | 0.0100   | 0.0053    | 0.0060         | 0.0000   | 0.0020    | 0.0018   | 0.0012         | 0.0000   | 0.0000    | 0.0000    | 0.0002  | 0.2737   | 0.0000     | 0.0057      | 0.0000   | 0.0000         | 0.0000     | 0.0002        | 0.2369     | 0.0012      | 0.0187     | 0.0000     | 0.0009     | 0.0000    | 0.0466   | 0.0000   | 0.0003    | 0.0003        | 0.0000    | 0.0000     | 0.0057      | 0.1733      | 0.0000   | 0.0054   | 8           |
| CONCEPTION OF CO | 0.1249      | 0.0170   | 0.1327      | 0.0030      | 0.0000      | 0.0050      | 0.1639   | 0.9829    | 0.0371         | 0.0005   | 0.0670    | 0.0392   | 0.0057         | 0.0004   | 0.0000    | 0.1561    | 0.0000  | 0.0435   | 0.0000     | 0.0264      | 0.0109   | 0.0001         | 0.0000     | 0.0052        | 0.2051     | 0.0551      | 0.3627     | 0.0000     | 0.0001     | 0.0002    | 0.2017   | 0.0000   | 0.1520    | 0.0222        | 0.0069    | 0.0065     | 0.3481      | 0.6445      | 0.0141   | 0.0000   | 27          |
| CONTRACTOR OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0116.0      | 0.5951 0 | 0.1255 (    | 0.0913      | 0.0113 (    | 0.0136 (    | 0.3409 ( | 0.9777 (  | 1.0000         |          |           |          |                |          | 0.0000    | 0.1186 (  |         | 0.0120   |            |             |          |                |            |               |            |             |            |            |            |           |          |          |           |               |           |            |             |             |          | 005      |             |
| Charles and a start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 0.0       |          |             |             |             |             |          |           |                |          |           |          |                |          |           |           |         |          |            |             |          |                |            |               |            |             |            |            |            |           |          |          |           |               |           |            |             |             |          |          | 21          |
| 990<br>91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6955      | 0.7058   | 0.0833      | 0.5759      | 0.2170      | 0.1153      | 0.8558   | 0.0057    | 0.7478         | 0.1733   | 0.6245    | 0.6851   | 0.5759         | 0.8778   | 0.0000    | 0.1778    | 0.0235  | 0.1186   | 0.0012     | 0.0235      | 0.3409   | 0.9221         | 0.0004     | 1.0000        | 0.8230     | 0.0005      | 0.0002     | 0.0000     | 0.0435     | 09/00     | 0.1290   | 0.7162   | 0.129     | 1.0000        | 0.0048    | 0.0147     | 0.5951      | 0.0406      | 0.0024   | 0.0244   | 15          |
| CONTRACTOR OF THE OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4332      | 0.2445   | 0.0294      | 0.0187      | 0.1220      | 0.2278      | 0.4930   |           | 0.7478         | 0.6245   | 0.0101    |          | 1.0000         | 0.6049   | 0.0000    | 0.0001    | 0.1089  | 0.6147   | 0.3931     | 0.0366      | 0.6546   | 1.0000         | 0.3064     | 0.7267        | 0.3627     |             |            | 0.0000     | 0.0466     | 0.1220    | 1.0000   | 0.0570   | 0.2278    | 0.0305        | 0.0001    | 0.9777     | 0.4668      | 0.1121      | 0.0050   | 0.0110   | 14          |
| THE T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0288      | 0.5108   | 0.2224      | 0.0274      | 0.0000      | 0.0280      | 0.9221   | 0.1778    | 0.0085         | 0.4009   | 0.0106    | 0.8999   | 0.0028         | 0.0001   | 0.0000    | 0.0000    | 0.6445  | 0.0000   | 0.8668     | 0.0000      | 0.7691   |                | -          | 0.0018        | 0.0120     | 0.0000      | 0.0075     | 0.5382     | 0.0392     | 0.0000    | 0.0000   | -        | -         |               | 0.2388    | 0.1027     | 0.0000      | 0.8230      | 0.0000   | 0.9221   | 25          |
| Day Fridd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0137      | 0.9110   | 0.1688      | 0.1220      | 0.0000      | 0.0136      | 0.2933   | 0.0501    | 0.0050         | -        | 0.4842    | 0.6955   | 0.0089         |          | 0.0000    | 0.0027    | 0.2621  | 0.0000   | 0.5199     | 0.2332      |          |                | 0.0048     | 0.0089        | 0.5569     |             |            |            | 0.0913     | 0.0000    |          | -        |           |               | 0.2017    | 0.0048     | 0.0000      | 0.1778      | 0.0001   | 0.9332   | 21          |
| THE TO STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4169      | 0.0353   | 0.7267      | 0.0833      | 0.0000      | 0.0960      | 0.5951   | 1.0000    | 0.8778         | 0.0000   | 1.0000    | 0.6749   | 0.0000         | 0.0913   | 0.0000    | 1.0000    | 0.0000  | 0.0007   | 0.0000     | 0.9554      | 0.2621   | 0.0000         | 0.0000     | 0.0608        | 0.8778     | 0.1290      | 0.0031     | 0.0000     | 0.0101     | 1.0000    | 0.0264   | 0.000    | 1.0000    | 0.0305        | 0.0125    | 0.0022     | 0.7478      | 0.7798      | 0.0000   | 0.0159   | 20          |
| Inni and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000      | 0.0940   | 1.0000      | 1.0000      | 0.0000      | 1.0000      | 0.1967   | 0.3481    | 0.6749         | 0.0001   | 0.7906    | 0.1479   | 0.000.0        | 0.1479   | 0.0000    | 0.7267    | 0.0000  | 0.0153   | 0.0000     | 1.0000      | 0.5475   | 0.0000         | 0.0020     | 0.0466        | 0.8339     | 1.0000      | 0.0649     | 0.0000     | 0.0000     | 0.0089    | 0.0379   | 0.000    | 0.5569    | 0.0002        | 0.0002    | 0.0000     | 1.0000      | 1.0000      | 0.0000   | 0.0000   | 20          |
| DELES TRUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6345      | 0.1401   | 6960.0      | 0.4755      | 0.0009      | 0.7691      | 0.6546   | 0.1824    | 0.5199         | 0.0000   | 0.3131    | 0.3338   | 0.0000         | 0.5569   | 0.0000    | 0.9443    | 0.0000  | 0.0078   | 0.0002     | 0.0244      | 0.0833   | 0.0435         | 0.0000     | 0.2170        | 0.8888     | 0.3854      | 0.0002     | 0.0000     | 0.0078     | 0.8339    | 0.0120   | 0.0998   | 0.8339    | 0.0052        | 0.0000    | 0.0000     | 0.9110      | 0.1153      | 0.001    | 0.0000   | 19          |
| Dell' Frend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5951      | 0.6147   | 0.0317      | 0.0998      | 0.6749      | 0.4498      | 0.6647   | 0.0093    | 0.4668         | 0.0328   | 0.8230    | 0.5854   | 0.0328         | 0.0317   | 0.0000    | 0.1027    | 0.4169  | 0.0294   | 0.0003     | 0.2118      | 0.5019   | 0.0060         | 0.0000     | 0.0969        | 1.0000     | 0.0147      | 0.0106     | 0.0000     | 0.0000     | 0.3268    | 0.0026   | 0.2017   | 0.6245    | 0.0010        | 0.0000    | 0.0244     | 0.5199      | 0.3481      | 0.0060   | 0.0147   | 8           |
| UNE THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6546      | 0.4009   | 0.0649      | 0.0608      | 1.0000      | 0.5663      | 0.2561   | 0.0008    | 0.7162         | 0.6749   | 0.0482    | 0.4088   | 0.6147         | 0.1733   | 0.0000    | 0.0052    | 0.3064  | 0.0110   | 0.1401     | 0.0886      | 0.5854   | 0.6851         | 0.0009     | 0.2332        | 0.2224     | 0.0000      | 0.8230     | 0.0000     | 0.0028     | 0.1967    | 0.1479   | 0.5475   | 0.8339    | 0.0998        | 0.0003    | 0.1364     | 0.9666      | 0.5663      | 0.0202   | 0.0608   | =           |
| O.S. IO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0886 (    | 0.6814 ( | 0.0000      | 1.0000      | 0.0000      | 0.0120 (    | 1.0000   | 0.0000    | 0.2743 (       | 0.0456 ( |           | _        | 0.7691 (       | 0.0002 0 | 0.0000    | 0.0001    | 1.0000  | 0.3854   | 0.0002 (   | 0.1027 (    |          |                | _          | _             | _          | _           | _          | _          |            |           | -        | -        | 0.1733    | _             | 0.0006    |            | 0.3931 (    | 0.0040      |          | 0012     | 8           |
| OF AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0784      | 1.0000   | 0.7567      | 0.8449      | 0.0000      | 0.0516      | 0.6647   | 0.0008    | 0.4088         | 1.0000   | 0.0095    |          | 0.7058         | 1.0000   | 0.0000    | 0.0301    | -       | 1.0000   | _          | 0.0194      |          | -              | -          |               |            | -           | -          | -          | -          |           |          |          | 0.2017    | 0.2332        | 0.0005    | -          | 0.1153      | 0.0911      |          | 0.0110   | 15<br>I     |
| O.S. NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0317      | 0.7584   | 0.0264      | 0.5951      | 0.0000      | 0.0406      | 0.8558   | 0.0023    | 0.0998         | 0.3338   | 0.0570    | 0.6851   | 0.6245         | 8886.0   | 0.0000    | 0.0066    | 0.7798  | 0.0202   | 0.1602     | 0.0007      | 1.0000   | 0.0004         | 0.0020     | 0.0000        | 0.7162     | 0.0000      | 0.4498     | 0.0000     | 0.2067     | 0.1364    | 0.0115   | 0.000    | 0.0008    | 0.0000        | 0.0000    | 0.6445     | 0.0000      | 0.2388      | 1.0000   | 1.0000   | 20          |
| OSE BERN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0317      | 0.8668   | 0.0284      | 0.4414      | 0.0000      | 0.0466      | 0.8449   | 0.0043    | 0.0153         | 0.2998   | 0.0202    | 0.3338   | 0.4332         | 0.8888   | 0.0002    | 0.0000    | 0.4498  | 0.0009   | 1.0000     | 0.001       | 0.5475   | 0.0000         | 1.0000     | 0.0000        | 0.2933     | 0.0000      | 1.0000     | 0.0000     | 1.0000     | 0.0003    | 0.0012   | 0.0000   | 0.0002    | 0.0000        | 0.0003    | 0.5569     | 0.0000      | 0.4755      | 0.0808   | 0.3338   | 22          |
| OSE SAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0159      | 0.4930   | 0.0244      | 0.2388      | 0.0000      | 0.0353      | 0.9110   | 0.001     | 0.0173         | 0.2743   | 0.0147    | 0.6147   | 0.0516         | 0.3627   | 0.5019    | 0.0000    | 0.9777  | 0.0000   | 0.5663     | 0.0000      | 0.9888   | 0.0000         | 0.0969     | 0.0000        | 0.4009     | 0.0000      | 1690'0     | 0.0021     | 0.5108     | 0.0000    | 0.0000   | 0.0000   | 0.0001    | 0.0000        | 0.0006    | 1.0000     | 0.0000      | 0.6647      | 0.8888   | 0.9110   | 21          |
| OSC NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0406      | 0.2805   | 0.0141      | 0.0589      | 0.0000      | 0.0406      | 0.7798   | 0.0000    | 0.0008         | 0.1967   | 0.0000    | 0.8668   | 0.0608         | 0.1918   | 1.0000    | 0.0000    | 0.6955  | 0.0000   | 0.1967     | 0.0000      | 0.5854   | 0.0000         |            | 0.0000        | 0.2561     |             |            | 0.3268     | 0.5663     | 0.000     | 0.000    | 0.000    | 0.001     | 0.0000        | 1.0000    | 0.1479     | 0.0000      | 0.0235      | 0.0120   | 0.4755   | 23          |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0110        | 0.6749   | 0.0913      | 0.0294      | 0.0000      | 0.0202      | 0.8339   | 0.0001    | 0.0004         | 0.1153   | 0.0013    | 0.0940   | 0.0045         | 0.0012   | 0.0913    | 0.0000    | 0.6851  | 0.0000   | 0.4842     | 0.0000      | 0.2278   | 0.0000         | 0.4009     | 0.0000        | 0.0031     | 0.0000      | 0.0328     | 1.0000     | 0.3338     | 0.0000    | 0.0000   | 0.0000   | 0.0000    | 0.0000        | 0.0001    | 0.0057     | 0.0000      | 0.0000      | 0.0004   | 0.1645   | 27          |
| $\psi_{bm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6           | 3        | 7           | 7           | 17          | 13          | _        | 14        | 0I             | 01       | П         | 4        | 12             | 6        | 18        | 14        | 7       | 16       | 01         | 14          | 5        |                | 14         | 14            | 5          | 15          | Н          | 17         | 12         | 12        | 14       | 14       | 9         | 17            | 8         | 14         | 11          | 4           | 18       | 12       | $\psi_{sp}$ |
| Best model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0066-Adam | 0.05-SGD | 0.0066-Adam | 0.0066-Adam | 0.0005-Adam | 0.0066-Adam | 0.1-SGD  | 0.01-Adam | 0.0033-RMSprop | 0.05-SGD | 0.01-Adam | 0.05-SGD | 0.0005-RMSprop | 0.05-SGD | 0.001-SGD | 0.01-Adam | 0.1-SGD | 0.05-SGD | 0.0066-SGD | 0.0066-Adam | 0.01-SGD | 0.0005-RMSprop | 0.0066-SGD | 0.001-RMSprop | 0.001-Adam | 0.0066-Adam | 0.0066-SGD | 0.0005-SGD | 0.0066-SGD | 0.01-Adam | 0.05-SGD | 0.05-SGD | 0.01-Adam | 0.001-RMSprop | 0.001-SGD | 0.0033-SCD | 0.0066-Adam | 0.0066-Adam | 0.01-SGD | 0.01-SGD |             |
| Part I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 (         | 2 0      | 3           | 4 0         | 5           | 9           | 2        | 8         | 6              | 10       | 11 0      | 12 0     | 13 0           | 14 0     | 15 0      | 16 O      | 17 0    | 18       | 0<br>61    | 20 0        | 21 0     |                | 23 0       |               | 25 0       |             |            | 28 0       | 29         |           |          |          |           |               | 35 0      | 36 0       | 37 0        | 88          | 39 0     | 40 0     |             |

Table A.4.: Significance evaluation of optimizer / learning-rate for DL-STPM.

| D'AND CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                     |                               |                        |                               |                          |                |                               | Τ                            |                               |                                                              |                       | T                   | T                          |                             |                    |                |                          |                             |                     |                          |                             |                             |                             |                                                                 |                            |                |                              |                        |                              |                            |                          |                |                          |                              |                     | Τ                        |                          |                            | 7              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|-------------------------------|------------------------|-------------------------------|--------------------------|----------------|-------------------------------|------------------------------|-------------------------------|--------------------------------------------------------------|-----------------------|---------------------|----------------------------|-----------------------------|--------------------|----------------|--------------------------|-----------------------------|---------------------|--------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------------------------------------------|----------------------------|----------------|------------------------------|------------------------|------------------------------|----------------------------|--------------------------|----------------|--------------------------|------------------------------|---------------------|--------------------------|--------------------------|----------------------------|----------------|
| The let a the set of t |                              | _                   |                               |                        |                               |                          |                |                               |                              |                               |                                                              |                       |                     |                            |                             |                    | _              |                          |                             |                     | _                        |                             |                             |                             |                                                                 |                            |                |                              |                        |                              |                            | _                        |                |                          |                              |                     |                          |                          |                            |                |
| Lenter Rest C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3199                       | 0.0013              | 1.0000                        | 0.0235                 | 1.0000                        | 0.001                    | 0.3131         | 1.0000                        | 0.0.36                       | 1.0000                        | 1600.0                                                       | 512U-U                | 0.0049              | 0.0516                     | 0.7058                      | 0.3777             | 00000          | 0.1186                   | 0.1121                      | 0.7906              | 0.000                    | 0.0089                      | 0.3409                      | 9667.0                      | 0.1401                                                          | 0.000.0                    | 0.0159         | 0.2118                       | 0.0784                 | 0.009                        | 0.0000                     | 000000                   | 0.3064         | 0.0000                   | 0.0006                       | 0.5475              | 0.000                    | 00000                    | 0.001                      | 18             |
| . The strate of  |                              |                     |                               |                        |                               |                          |                |                               |                              |                               |                                                              |                       |                     |                            |                             |                    |                |                          |                             |                     |                          |                             |                             |                             |                                                                 |                            |                |                              |                        |                              |                            |                          |                |                          |                              |                     |                          |                          |                            |                |
| Marken Contraction of the second state of the  | .0000                        | 0.0000              | 0.0001                        | 0.4088                 | 0.4088                        | 0.0101                   | 0.0000         | 0.0000                        | 1.000                        | 0.000                         | 0.0450                                                       | 1410.0                | 0000                | 0.0000                     | 0.0000                      | 0.5290             | 0.0254         | 0.0274                   | 0.0000                      | 0.0000              | 0.0886                   | 0.2445                      | 1.0000                      | 0.000                       | 1.0000                                                          | 0.0072                     | 0.0000         | 1.0000                       | 0.0043                 | 1.0000                       | 0.0023                     | 0.5475                   | 0.1778         | 0.0063                   | 1.0000                       | 0.0000              | 0.0016                   | 0.0218                   | 0.0000                     | 25             |
| . Drailing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                            |                     |                               | 0                      | 0                             | 0                        | 0              |                               |                              |                               |                                                              |                       |                     |                            |                             | 0                  |                | 0                        | 0                           | 0                   | 0                        | 0                           |                             |                             |                                                                 |                            |                | -                            |                        | -                            |                            | 0                        | 0              | 0                        | -                            | 0                   | -                        |                          | -                          | 2              |
| Confringer State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0013                       | 0.0000              | 0.0466                        | 0.6851                 | 0.1255                        | 1.0000                   | 0.0000         | 0.0030                        | 0.0052                       | 0.000                         | 0.000<br>1.0000                                              | 0000                  | 2000-0              | 0.0027                     | 0.0125                      | 0.1602             | 0.0406         | 1.0000                   | 0.0000                      | 0.0000              | 1.0000                   | 0.0589                      | 0.6049                      | 0.0147                      | 0,000                                                           | 0.4668                     | 0.0045         | 0.5475                       | 0.0000                 | 0.3409                       | 0.0000                     | 1.0000                   | 0.0000         | 1.0000                   | 0.0000                       | 0.0000              | 1.0000                   | 1.0000                   | 0.0691                     |                |
| STRATE STRATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ō                            | ö                   | ō                             | 0.                     | 0                             | 2                        | ō              |                               | <u>;</u>                     | <b>;</b>                      | 5-6                                                          | -                     | <u>;</u>            | <u>.</u>                   | •                           | 0                  | ·              | 1                        | o                           | o                   | 1                        | 0                           | <u>-</u>                    | <u>;</u>                    | j c                                                             | 5 d                        | ð              | 0                            | •                      | 0.                           | ō                          | 7                        | 0              | 1.                       | o                            | o                   |                          | -                        | 0                          | 21             |
| STRATER STRATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 024                          | 69C                 | 86                            | 151                    | 040                           | 000                      | 244            | 015                           | 105                          | 353                           | 00                                                           | 000                   | 122                 | 587                        | 8                           | 02                 | 000            | 000                      | 00                          | 141                 | 0.000.0                  | 00                          | 0.0003                      | 00                          | 00f                                                             |                            | 00000          | 194                          | 502                    | 000                          | 55                         | 000                      | 120            | 000                      | 100                          | 32                  | 80                       | 00000                    | 0.0003                     |                |
| New States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0024                       | 3900.0              | 0.0998                        | 0.5951                 | 0.0040                        | 0.0000                   | 0.0244         | 0.0015                        | 1680.0                       | 0.0353                        | 0.00 <i>66</i>                                               |                       |                     | 0.0284                     | 1.0000                      | 0.3702             | 00000          | 00000                    | 1.0000                      | 0.0141              | 0°0                      | 1.0000                      | 00                          | 1.000                       | 0.000                                                           | 00000                      | 00             | 0.0194                       | 0.1602                 | 0.000                        | 0.6955                     | 00000                    | 0.0120         | 00000                    | 000.0                        | 0.4332              | 00000                    | 0.0                      | 0.0                        | 38             |
| STALLAR STALLAR STALLAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200                          | 000                 | 0.0392                        | 82                     | 294                           | 034                      | 011            | 050                           | 50                           | TOO                           | 000<br>046                                                   | 040                   | 202                 | 00                         | 00000                       | 8                  | 30             | 000                      | 0.0010                      | 0.0019              | 0.0012                   | 145                         | 86                          | 505<br>202                  | 100                                                             | 8.0                        | 149            | 342                          | 00                     | 245                          | 00                         | 00000                    | 267            | 340                      | 000                          | 000                 | 000                      | 0.0003                   | 00                         |                |
| Share                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2000-0                       | 00000               | 0.0                           | 0.5382                 | 0.0294                        | 0.0034                   | 0.001          | 0.0050                        | 0.053                        |                               | 0.6385                                                       | 0.0                   | 0.0505              | 00001                      | 00                          | 0.0533             | 0.8230         | 00000                    | 00                          | 0.0                 | 0.0                      | 0.6445                      | 0.1186                      | 0.2205                      |                                                                 | 1.000                      | 0.8449         | 0.4842                       | 1.0000                 | 0.6245                       | 1.0000                     | 0.0                      | 0.7267         | 0.0340                   | 0.000                        | 00000               | 0.0000                   | 00                       | 1.0000                     | 20             |
| Staffare, Staffa | 0.0714                       | 0.0000              | 0.0691                        | 1.0000                 | 0.0227                        | 0.0001                   | 0.0038         | 0.0210                        | 0.0998                       | 0.000                         | 0.1645                                                       | 0.499.0               | 4332                | 0.3777                     | 0.0022                      | 0.5199             | 0.0106         | 0.0000                   | 0.0000                      | 0.004               | 0.0000                   | 0.6147                      | 0.1561                      | 0.3931                      |                                                                 | 0.000                      | 0.2388         | 0.0760                       | 1.0000                 | 0.008                        | 0.8668                     | 0.0007                   | 0.8122         | 0.0153                   | 0.0012                       | 0.0093              | 0.0016                   | 0.001                    | 0.2621                     | 1              |
| - O'Tay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                            | 0                   | 0                             | 1                      | 0                             | 0                        | 0              |                               |                              |                               |                                                              |                       |                     |                            | 0                           | 0                  | 0              | 0                        | 0                           | 0                   | 0                        | 0                           |                             |                             |                                                                 |                            |                | 0                            |                        | 0                            | 0                          | 0                        | 0              | 0                        | 0                            | 0                   | -                        |                          | -                          | 21             |
| נותר המתו ונתר מותר                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000                       | 1.0000              | 0.0015                        | 0.0784                 | 0.3131                        | 0.0000                   | 0.1220         | 0.0533                        | 0.0589                       | 0.0006                        | 0.2745                                                       |                       | 1.000               | 1100.0                     | 0.1520                      | 0.1327             | 0.0000         | 0.0011                   | 0.0141                      | 1.0000              | 0.000                    | 0.0187                      | 0.0001                      | 0.2118                      |                                                                 | 00000                      | 0.0036         | 0.0003                       | 0.2388                 | 0.0000                       | 0.0048                     | 000000                   | 0.0784         | 0.0000                   | 0.000                        | 1.0000              | 0.000.0                  | 0.0000                   | 0.0000                     | 24             |
| ILER STATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 0                   | 4                             |                        | 5                             | 5                        | 5              | °.                            |                              |                               |                                                              |                       |                     | -                          |                             | _                  | 2              | 5                        | 5                           |                     |                          | 6                           | 5                           |                             | 4                                                               |                            | 6              |                              |                        |                              | 5                          | 0                        |                | 0                        |                              | 5                   |                          | _                        | 9                          |                |
| West C. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000                        | 00000               | 0.0014                        | 1.0000                 | 0.0075                        | 0.0002                   | 0.0482         | 0.0353                        | 0.5759                       |                               | 0.14.0                                                       | 10000                 | 0.0049              | 0.0421                     | 0.6445                      | 1.0000             | 0.0002         | 0.005                    | 0.0002                      | 0.0210              | 0.000                    | 6900.0                      | 0.005                       | 0. /691                     | 0.0294                                                          | 0.0450                     | 0.0069         | 0.1290                       | 0.0153                 | 00000                        | 0.0072                     | 0.0050                   | 0.6546         | 0.0000                   | 00000                        | 0.0235              | 00000                    | 00000                    | 0.0366                     | 59             |
| ILE CARE CARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0000                       | 0.0000              | 0.0045                        | 0.2743                 | 0.0180                        | 0.5951                   | 1.0000         | 0.0072                        | 0.4414                       | 0.000                         | 0.1201                                                       | 0.0014                | 1600                | 0.0031                     | 0.1918                      | 0.2805             | 1.0000         | 0.2224                   | 0.0000                      | 0.0000              | 0.0147                   | 0.1479                      | 0.1255                      | 0.4583                      | 0.2552                                                          | 0.000                      | 1.000          | 0.7058                       | 0.008                  | 0.0066                       | 0.0007                     | 0.0760                   | 1.0000         | 0.5290                   | 0.0000                       | 0.0000              | 0.0011                   | 0.0736                   | 0.0180                     | ~              |
| ψ <sub>bm</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6<br>0                       | 8 0.                | 6 0.                          | 1 0.                   | 5 0.                          |                          |                |                               |                              | 1                             | - 0                                                          |                       |                     |                            |                             |                    |                |                          |                             |                     |                          |                             |                             |                             | 0 0                                                             |                            |                |                              | 1                      | 6<br>0                       | 6 0.                       | 6 0.                     | 2 1.           | 7 0.                     | 8                            | 6<br>0              | 8                        |                          | _                          | $\psi_{sp}$ 18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                     | 5                             |                        |                               |                          | -              |                               | 1                            | +                             |                                                              |                       |                     |                            |                             |                    |                |                          |                             |                     |                          |                             | 5                           | 1                           | _                                                               |                            |                |                              |                        |                              |                            |                          |                | 1                        | _                            |                     |                          |                          | _                          |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | leakyRe                      | ΡŪ                  | JU-leaky                      | lus                    | U-leaky                       | kyReLU                   |                | U-leaky                       | leakyrte.                    | u-leaky                       | SOUT-TUE                                                     | ukyneuu               |                     | tt.Plus                    | SoftPlus                    |                    |                | kyReLU                   | SoftPlus                    | ۶ĽU                 | <b>kyReL</b> U           | SoftPlus                    | leakyRe                     | SoftPlus                    | -leakyne<br>J II                                                | ft.Plus                    |                | leakyRe                      | lus                    | leakyRe                      | ftPlus                     | kyReLU                   |                | kyReLU                   | leakyRe                      | ۶ĽU                 | ukyReLU                  | kyReLU                   | ftPlus                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SoftPlus-                    | teLU-Re             | eakyReI                       | JU-SoftF               | eakyReL                       | teLU-les                 | -ReLU          | eakyRel                       | SoftPlus-                    | eakyrtel                      | NHELU                                                        | лец U-162<br>У-Т ТТ Р | ter u-ru            | Plus-So                    | yReLU-                      | us-ReL(            | ReLU           | <u> seLU-les</u>         | yReLU-                      | ReLU-Re             | teLU-les                 | yReLU-                      | SoftPlus-                   | yheru-                      | Soluting                                                        | Plus-So                    | ReLU           | SoftPlus-                    | JU-SoftF               | SoftPlus-                    | Plus-So.                   | teLU-les                 | ReLU           | teLU-les                 | SoftPlus-                    | ReLU-Re             | ReL U-les                | <u>seLU-les</u>          | Plus-So.                   |                |
| Best model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | leakyReLU-SoftPlus-leakyReLU | ReLU-leakyReLU-ReLU | leakyReLU-leakyReLU-leakyReL) | SoftPlus-ReLU-SoftPlus | leakyReLU-leakyReLU-leakyReLU | leakyReLU-ReLU-leakyReLU | ReLU-ReLU-ReLU | leakyReLU-leakyReLU-leakyReLU | leakyKeLU-SoftPlus-leakyKeLU | leakyKeLU-leakyKeLU-leakyKeLU | SOUPTUS-leakyretru-SOUPTUS<br>holo-Del 11 Del 11 holo-Del 11 | Kyneuu-I              | кери-теакукери-кери | SoftPlus-SoftPlus-SoftPlus | SoftPlus-leakyReLU-SoftPlus | KeLU-SoftPlus-KeLU | ReLU-ReLU-ReLU | leakyReLU-ReLU-leakyReLU | SoftPlus-leakyReLU-SoftPlus | ReLU-leakyReLU-ReLU | leakyReLU-ReLU-leakyReLU | SoftPlus-leakyReLU-SoftPlus | leakyReLU-SoftPlus-leakyReL | SoftPlus-leakyReLU-SoftPlus | leakyrteli U-SottFitts-leakyrtelu<br>Rof 11 hochyrRof 11 Rof 11 | SoftPlus-SoftPlus-SoftPlus | ReLU-ReLU-ReLU | leakyReLU-SoftPlus-leakyReLU | SoftPlus-ReLU-SoftPlus | leakyReLU-SoftPlus-leakyReLU | SoftPlus-SoftPlus-SoftPlus | leakyReLU-ReLU-leakyReLU | ReLU-ReLU-ReLU | leakyReLU-ReLU-leakyReLU | leakyReLU-SoftPlus-leakyReLU | ReLU-leakyReLU-ReLU | leakyReLU-ReLU-leakyReLU | leakyReLU-ReLU-leakyReLU | SoftPlus-SoftPlus-SoftPlus |                |
| Part Bes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | leal                         | Rel                 |                               | Sof                    |                               |                          | Rel            |                               |                              | +                             | +                                                            | +                     | +                   | +                          |                             | 16 Rel             |                |                          |                             |                     |                          |                             | +                           | +                           |                                                                 | 1                          |                | $\vdash$                     | $\vdash$               |                              |                            |                          |                |                          |                              |                     |                          |                          |                            |                |
| Ľ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | 2                   | က                             | 4                      | ŝ                             | 9                        | 1-             | × o                           | ÷ م                          | 3 ;                           | ≓ ≘                                                          |                       | 3   2               | 4                          | 2                           | -                  | 17             | 18                       | 19                          | 8                   | 21                       | 8                           | នា                          | 5 8                         | 9 8                                                             | 3 2                        | 8              | କ୍ଷ                          | 8                      | 5                            | 32                         | R                        | 34             | 35                       | 8                            | 37                  | 8                        | ଞ                        | 9                          |                |

Table A.5.: Significance evaluation of Activation functions for DL-STPM-VPD.

| D'TOULOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                     |                    |                        |                             |                        |                          |                             |                             |                               |                            |                              |                             |                        |                               |                               |                |                             |                     |                |                             |                             |                     |                               |                               |                        |                            |                        |                              |                              |                    |                            |                               |                |                            |                             |                             |                     | Τ                          |                             |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|--------------------|------------------------|-----------------------------|------------------------|--------------------------|-----------------------------|-----------------------------|-------------------------------|----------------------------|------------------------------|-----------------------------|------------------------|-------------------------------|-------------------------------|----------------|-----------------------------|---------------------|----------------|-----------------------------|-----------------------------|---------------------|-------------------------------|-------------------------------|------------------------|----------------------------|------------------------|------------------------------|------------------------------|--------------------|----------------------------|-------------------------------|----------------|----------------------------|-----------------------------|-----------------------------|---------------------|----------------------------|-----------------------------|----------------|
| Marke LER C. FRANCE C. MARCH LERCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                          |                     |                    |                        |                             |                        |                          |                             |                             |                               |                            |                              |                             | ~                      |                               |                               | _              |                             |                     |                |                             |                             |                     |                               |                               |                        |                            |                        |                              |                              |                    |                            |                               |                | _                          |                             |                             |                     |                            |                             |                |
| Real Providence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0002                     | 0.2332              | 0.3931             | 0.2118                 | 0.0551                      | 0.6445                 | 0.5019                   | 0.5759                      | 0.2278                      | 1.0000                        | 0.7058                     | 1.0000                       | 0.1327                      | 0.0097                 | 1.0000                        | 1.0000                        | 0.0000         | 0.0784                      | 0.3702              | 0.2332         | 0.0180                      | 0.4169                      | 0.6345              | 1.0000                        | 1.0000                        | 0.2805                 | 0.000                      | 0.5951                 | 0.1871                       | 0.6445                       | 0.7478             | 0.3064                     | 1.0000                        | 0.0969         | 0.0031                     | 0.0466                      | 0.9332                      | 0.7267              | 0.6546                     | 0.1121                      | 2              |
| - Thill Stranger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                     |                    |                        |                             |                        |                          |                             |                             |                               |                            |                              |                             |                        |                               |                               |                |                             |                     |                |                             |                             |                     |                               |                               |                        |                            |                        |                              |                              |                    |                            |                               |                |                            |                             |                             |                     |                            |                             |                |
| Contraction of the state list of the state o | 0.2503                     | 0.9443              | 0.0859             | 0.0210                 | 0.0736                      | 0.9666                 | 0.0628                   | 0.0218                      | 0.7798                      | 10000                         | 0.2681                     | 0.0003                       | 0.4088                      | 0.6147                 | 0.0000                        | 0.0013                        | 0.0000         | 0.0000                      | 0.0000              | 0.1327         | 0.0000                      | 0.4062                      | 0.4583              | 0.0014                        | 0.3553                        | 0.0187                 | 0.4755                     | 0.0284                 | 1.0000                       | 1.0000                       | 0.1058             | 0.7372                     | 0.0089                        | 0.0000         | 0.0019                     | 0.0115                      | 0.5019                      | 0.3338              | 0.7162                     | 0.0244                      | 18             |
| - Depler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                     |                    |                        |                             |                        |                          |                             |                             |                               |                            |                              |                             |                        |                               |                               |                |                             |                     |                |                             |                             |                     |                               |                               |                        |                            |                        |                              |                              |                    |                            |                               |                |                            |                             |                             |                     |                            |                             | -              |
| Carle Real Real Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0147                     | 0.0153              | 0.0969             | 0.1401                 | 0.0392                      | 0.9332                 | 1.0000                   | 0.0006                      | 0.5759                      | 0.000                         | 0.8230                     | 0.001                        | 0.4930                      | 0.0628                 | 0.0000                        | 0.0022                        | 0.0038         | 0.0000                      | 0.0000              | 0.0317         | 0.000                       | 0.2445                      | 0.4842              | 0.0006                        | 0.4755                        | 0.4009                 | 0.0000                     | 0.2332                 | 0.0366                       | 0.5663                       | 0.0009             | 0.8014                     | 0.3064                        | 0.1327         | 0.0466                     | 0.0055                      | 0.1967                      | 0.2503              | 0.5108                     | 0.0940                      | 19             |
| STR. Marco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                     |                    |                        |                             |                        |                          |                             |                             |                               |                            |                              |                             |                        |                               |                               |                |                             |                     |                |                             |                             |                     |                               |                               |                        |                            |                        |                              |                              |                    |                            |                               |                |                            |                             |                             |                     |                            |                             | _              |
| AND NO. AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0002                     | 0.0589              | 0.0159             | 0.2621                 | 1.0000                      | 0.0760                 | 0.0551                   | 1.0000                      | 1.0000                      | 0.05/0                        | 0.7162                     | 0.2998                       | 1.0000                      | 0.1220                 | 0.8230                        | 0.1561                        | 0.0000         | 1.0000                      | 0.0066              | 0.0435         | 1.0000                      | 1.0000                      | 0.3409              | 0.0000                        | 0.0235                        | 0.3064                 | 0.4088                     | 0.2503                 | 0.0379                       | 0.1645                       | 0.6147             | 0.9110                     | 0.0003                        | 0.0001         | 0.1290                     | 1.0000                      | 1.0000                      | 0.2621              | 0.3338                     | 1.0000                      | 10             |
| Maring a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                     |                    |                        |                             |                        |                          |                             |                             |                               |                            |                              |                             |                        |                               |                               |                |                             |                     |                |                             |                             |                     |                               |                               |                        |                            |                        |                              |                              |                    |                            |                               |                |                            |                             |                             |                     |                            |                             | -              |
| WASAN STRATESTAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                     | 0.0024              | 0.6749             | 0.6851                 | 0.8449                      | 0.7478                 | 0.0001                   | 0.0010                      | 0.5854                      | 0.000                         | 1.0000                     | 0.0003                       | 0.5290                      | 0.3268                 | 0.0000                        | 0.0141                        | 0.0000         | 0.0000                      | 0.0040              | 0.0913         | 0.0000                      | 0.7999                      | 0.0305              | 0.0940                        | 0.0003                        | 0.1089                 | 1.0000                     | 0.1327                 | 0.0691                       | 0.0110                       | 0.0024             | 1.0000                     | 0.0001                        | 0.0000         | 1.0000                     | 0.0106                      | 0.2681                      | 0.0055              | 1.0000                     | 0.3338                      | 19             |
| STRATE TRANSPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                     |                    |                        |                             |                        |                          |                             |                             |                               |                            |                              |                             |                        |                               |                               |                |                             |                     |                |                             |                             |                     |                               |                               |                        |                            |                        |                              |                              |                    |                            |                               |                |                            |                             |                             |                     |                            |                             |                |
| Sull Sull Sull Sull Sull Sull Sull Sull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6647                     | 0.0072              | 0.7584             | 1.0000                 | 0.2933                      | 1.0000                 | 0.0089                   | 0.0187                      | 0.7267                      | 00000                         | 0.0940                     | 0.0000                       | 0.1602                      | 1.0000                 | 0.0000                        | 0.0366                        | 0.0000         | 0.0027                      | 0.1364              | 0.0264         | 0.0000                      | 0.5403                      | 0.7691              | 0.0000                        | 0.0066                        | 1.0000                 | 0.4088                     | 1.0000                 | 0.0859                       | 0.0041                       | 0.0034             | 0.6851                     | 0.0004                        | 0.0010         | 0.7162                     | 0.0002                      | 0.4498                      | 0.0808              | 0.3131                     | 0.0784                      | 18             |
| and lister                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                     |                    |                        |                             |                        |                          |                             |                             |                               |                            |                              |                             |                        |                               |                               |                |                             |                     |                |                             |                             |                     |                               |                               |                        |                            |                        |                              |                              |                    |                            |                               |                |                            |                             |                             |                     |                            |                             |                |
| ILE CARDER CARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000000                     | 1.0000              | 0.0353             | 0.2743                 | 0.0305                      | 0.7478                 | 0.9888                   | 0.7478                      | 0.2503                      | 0.0194                        | 0.9110                     | 0.9777                       | 0.1602                      | 0.2445                 | 0.5759                        | 0.0784                        | 0.5199         | 0.3338                      | 1.0000              | 0.2170         | 0.7798                      | 0.3553                      | 1.0000              | 0.0589                        | 0.2118                        | 0.8449                 | 0.0019                     | 0.7478                 | 0.6445                       | 0.0608                       | 0.2118             | 0.5663                     | 0.4930                        | 0.7798         | 0.0082                     | 0.0000                      | 0.7058                      | 1.0000              | 0.4668                     | 0.3409                      | 7              |
| Inter water the start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                     |                    |                        | 4                           |                        | 5                        |                             |                             |                               |                            | <u>م</u>                     |                             | 4                      |                               | 4                             |                |                             | 5                   | 2              | 0                           |                             |                     | 4                             |                               |                        |                            |                        |                              |                              |                    |                            | 6                             |                | 9                          | 0                           |                             |                     |                            | 9                           |                |
| Carlo Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1561                     | 0.2224              | 1.0000             | 0.4332                 | 0.0244                      | 0.7478                 | 0.0015                   | 0.001                       | 0.6345                      | 1000.0                        | 0.4583                     | 0.0045                       | 0.3481                      | 0.0317                 | 0.0000                        | 0.004                         | 0.0736         | 0.8558                      | 0.0002              | 0.0002         | 0.0000                      | 0.3943                      | 0.8230              | 0.0034                        | 0.1153                        | 0.7798                 | 0.0833                     | 0.7906                 | 0.0649                       | 0.0608                       | 1.0000             | 0.8668                     | 0.0136                        | 0.3553         | 0.0136                     | 0.0010                      | 0.1778                      | 0.8778              | 0.2388                     | 0.0366                      | 16             |
| ILE CRACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0328                     | 0.0379              | 0.0353             | 503                    | 0.0187                      | 178                    | 122                      | 0.0000                      | 66                          | 0.000                         | 130                        | 0.0001                       | 561                         | 0.0166                 | 0.000                         | 0.0173                        | 000            | 0.000                       | 0.000               | 000            | 0.0000                      | 33                          | 221                 | 0.0000                        | 0.0353                        | 83                     | 162                        | 0.0406                 | 67                           | 8                            | 0.0166             | 569                        | 388                           | 1.0000         | 0.0366                     | 0.0034                      | 164                         | 888                 | 338                        | 121                         |                |
| (All and a second secon |                            |                     |                    | 0.2503                 |                             | 0.7478                 |                          |                             |                             |                               |                            |                              |                             |                        |                               |                               |                |                             |                     |                |                             |                             |                     |                               |                               |                        |                            |                        |                              |                              |                    |                            | 0.9888                        |                |                            |                             | 0.3064                      |                     |                            |                             | $\psi_{sp}$ 19 |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                          | 4                   | ŝ                  |                        | 4                           | 0                      | e<br>S                   | 9                           | +                           | +                             | 0                          | 51                           | 0                           |                        | -                             |                               | 9              | 2                           | 9                   | 4              | 7                           | 0                           | -                   | .                             | -                             | -                      | n                          |                        |                              |                              | 4                  |                            | LU 5                          | 4              | 9                          | 8                           | 0                           |                     | 0                          | 2                           | h              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $^{\rm lus}$               | n                   |                    | ×                      | ftPlus                      | s                      | ReLU                     | ftPlus                      | ft.Plus                     | leakyHe                       | 'lus                       | -leakyHe                     | ftPlus                      | s                      | -leakyRe                      | -leakyRe                      |                | ftPlus                      | Б                   |                | ftPlus                      | ftPlus                      | 5                   | -leakyRe                      | -leakyRe                      | x                      | lus                        | s                      | \kyReL1                      | kyReL(                       |                    | lus                        | $-$ leakyR $\epsilon$         |                | lus                        | ftPlus                      | ftPlus                      | اط                  | lus                        | ftPlus                      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lus-SoftI                  | U-ReL               | -ReLU              | -SoftPlu               | ReLU-Sc                     | -SoftPlu               | <u>LU-leaky</u>          | ReLU-Sc                     | <u>seru-Sc</u>              | kyKeLU                        | lus-Soft1                  | kyKeLU                       | ReLU-Sc                     | -SoftPlu               | kyReL U                       | kyReL U                       | eLU            | ReLU-Sc                     | U-ReL               | eLU            | ReLU-Sc                     | ReLU-Sc                     | LU-ReL              | kyReL U                       | kyReLU                        | -SoftPlu               | lus-Soft]                  | -SoftPlu               | tPlus-le                     | tPlus-le                     | -ReLU              | lus-Soft1                  | kyReL U                       | eLU            | lus-Soft1                  | ReLU-Sc                     | ReLU-Sc                     | U-ReL               | lus-Soft]                  | ReLU-Sc                     |                |
| odel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SoftPlus-SoftPlus-SoftPlus | ReLU-leakyReLU-ReLU | ReLU-SoftPlus-ReLU | SoftPlus-ReLU-SoftPlus | SoftPlus-leakyReLU-SoftPlus | SoftPlus-ReLU-SoftPlus | leakyReLU-ReLU-leakyReLU | SoftPlus-leakyReLU-SoftPlus | SoftPlus-leakyReLU-SoftPlus | leakyKeLU-leakyKeLU-leakyKeLU | SoftPlus-SoftPlus-SoftPlus | leakyReLU-leakyReLU-leakyReL | SoftPlus-leakyReLU-SoftPlus | SoftPlus-ReLU-SoftPlus | leakyReLU-leakyReLU-leakyReLU | leakyReLU-leakyReLU-leakyReLU | ReLU-ReLU-ReLU | SoftPlus-leakyReLU-SoftPlus | ReLU-leakyReLU-ReLU | ReLU-ReLU-ReLU | SoftPlus-leakyReLU-SoftPlus | SoftPlus-leakyReLU-SoftPlus | ReLU-leakyReLU-ReLU | leakyReLU-leakyReLU-leakyReLU | leakyReLU-leakyReLU-leakyReLU | SoftPlus-ReLU-SoftPlus | SoftPlus-SoftPlus-SoftPlus | SoftPlus-ReLU-SoftPlus | leakyReLU-SoftPlus-leakyReLU | leakyReLU-SoftPlus-leakyReLU | ReLU-SoftPlus-ReLU | SoftPlus-SoftPlus-SoftPlus | leakyReLU-leakyReLU-leakyReLU | ReLU-ReLU-ReLU | SoftPlus-SoftPlus-SoftPlus | SoftPlus-leakyReLU-SoftPlus | SoftPlus-leakyReLU-SoftPlus | ReLU-leakyReLU-ReLU | SoftPlus-SoftPlus-SoftPlus | SoftPlus-leakyReLU-SoftPlus |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SoftPh                     | ReLU-               | ReLU-              | SoftPlı                | SoftPli                     | SoftPh                 | leakyR                   | SoftPli                     | SoftPh                      | leakyh                        | SoftPh                     | leakyH                       | SoftPh                      | SoftPh                 | leakyR                        | leakyR                        | ReLU-          | SoftPh                      | ReLU-               | ReLU-          | SoftPh                      | SoftPh                      | ReLU-               | leakyR                        | leakyR                        | SoftPh                 | SoftPlu                    | SoftPl                 | leakyR                       | leakyR                       | ReLU-              | SoftPh                     | leakyR                        | ReLU-          | SoftPlı                    | SoftPlı                     | SoftPh                      | ReLU-               | SoftPli                    | SoftPh                      |                |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                          | 2                   | ŝ                  | 4                      | 5                           | 9                      | 2                        | ×                           | 6                           | 3                             | =                          | 12                           | 13                          | 14                     | 15                            | 16                            | 17             | 18                          | 19                  | 20             | 21                          | 22                          | ន                   | 24                            | 25                            | 8                      | 27                         | 8                      | କ୍ଷ                          | 8                            | 31                 | 32                         | 33                            | 34             | 35                         | 36                          | 37                          | 8                   | ĝ                          | 40                          |                |

Table A.6.: Significance evaluation of Activation functions for DL-STPM.

| Part | Best model | $\psi_{bm}$ | w=2    | w=3    | w=4    | w=5    | w=6    | w=7    | w=8    | w=9    |
|------|------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1    | w=3        | 6           | 0.0000 | 1.0000 | 0.1327 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 2    | w=2        | 4           | 1.0000 | 0.2332 | 0.5854 | 0.0101 | 0.7478 | 0.0000 | 0.0000 | 0.0000 |
| 3    | w=9        | 4           | 0.0000 | 0.0000 | 0.0000 | 0.0366 | 0.2017 | 0.9443 | 0.5951 | 1.0000 |
| 4    | w=2        | 3           | 1.0000 | 0.0516 | 0.8230 | 0.0317 | 0.0608 | 0.0194 | 0.0589 | 0.0028 |
| 5    | w=3        | 7           | 0.0421 | 1.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
| 6    | w=8        | 1           | 0.0691 | 0.2170 | 0.0499 | 0.7691 | 0.8122 | 0.4332 | 1.0000 | 0.4414 |
| 7    | w=7        | 1           | 0.1058 | 0.1401 | 0.5854 | 0.2805 | 0.3409 | 1.0000 | 0.0050 | 0.4498 |
| 8    | w=4        | 0           | 1.0000 | 0.5569 | 1.0000 | 0.8449 | 0.8014 | 0.1520 | 0.2621 | 0.1778 |
| 9    | w=5        | 2           | 0.0038 | 0.9554 | 0.3931 | 1.0000 | 0.0317 | 0.1401 | 0.3777 | 0.1401 |
| 10   | w=2        | 7           | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 |
| 11   | w=2        | 4           | 1.0000 | 0.1186 | 1.0000 | 0.0608 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 12   | w=4        | 1           | 0.0147 | 0.6749 | 1.0000 | 0.4498 | 0.4583 | 0.8339 | 0.1255 | 0.1290 |
| 13   | w=7        | 1           | 0.1058 | 0.0570 | 0.7478 | 0.5108 | 0.2681 | 1.0000 | 0.2868 | 0.0421 |
| 14   | w=3        | 5           | 0.8339 | 1.0000 | 0.7162 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 15   | w=4        | 4           | 0.6445 | 0.0589 | 1.0000 | 0.4169 | 0.0001 | 0.0180 | 0.0008 | 0.0000 |
| 16   | w=2        | 2           | 1.0000 | 0.2388 | 0.1520 | 0.1520 | 0.0760 | 0.1027 | 0.0194 | 0.0466 |
| 17   | w=4        | 2           | 0.0406 | 0.9666 | 1.0000 | 0.0173 | 0.2170 | 0.7267 | 0.6749 | 0.1440 |
| 18   | w=2        | 1           | 1.0000 | 0.9443 | 0.4009 | 0.5108 | 0.2332 | 0.0406 | 0.1440 | 0.3553 |
| 19   | w=2        | 3           | 1.0000 | 0.9443 | 0.0913 | 0.6147 | 0.0691 | 0.0106 | 0.0000 | 0.0000 |
| 20   | w=7        | 2           | 0.0005 | 0.0274 | 0.1824 | 0.3777 | 0.3409 | 1.0000 | 0.5759 | 0.5108 |
| 21   | w=3        | 0           | 0.3268 | 1.0000 | 0.8558 | 0.3338 | 0.6445 | 0.1255 | 0.2621 | 0.1688 |
| 22   | w=3        | 1           | 0.5569 | 1.0000 | 0.4498 | 0.8558 | 0.7162 | 0.8014 | 0.0482 | 0.6851 |
| 23   | w=8        | 5           | 0.1645 | 0.0004 | 0.0000 | 0.0340 | 0.0482 | 0.0159 | 1.0000 | 0.9110 |
| 24   | w=5        | 6           | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0305 | 0.0001 | 0.0516 | 0.0274 |
| 25   | w=4        | 0           | 0.1602 | 0.3627 | 1.0000 | 0.6445 | 0.3481 | 0.7267 | 0.5569 | 0.4414 |
| 26   | w=8        | 6           | 0.0000 | 0.0075 | 0.0015 | 0.0004 | 0.0040 | 0.0998 | 1.0000 | 0.0078 |
| 27   | w=6        | 0           | 0.3854 | 0.5759 | 0.2388 | 0.4498 | 1.0000 | 0.7906 | 0.4332 | 0.5475 |
| 28   | w=7        | 1           | 0.6546 | 0.0379 | 0.1520 | 0.8014 | 0.9666 | 1.0000 | 0.5199 | 0.8339 |
| 29   | w=9        | 0           | 0.1520 | 0.9110 | 0.4169 | 0.7372 | 0.5569 | 0.4668 | 0.3931 | 1.0000 |
| 30   | w=4        | 0           | 0.9666 | 0.8339 | 1.0000 | 0.6445 | 0.7584 | 0.5569 | 0.3338 | 0.4498 |
| 31   | w=5        | 2           | 0.0048 | 0.0784 | 0.0340 | 1.0000 | 0.1778 | 0.1733 | 0.6546 | 0.1688 |
| 32   | w=7        | 3           | 0.2681 | 0.4414 | 0.4009 | 0.3064 | 0.0284 | 1.0000 | 0.0001 | 0.0001 |
| 33   | w=4        | 4           | 0.8339 | 0.6955 | 1.0000 | 0.0589 | 0.0055 | 0.0406 | 0.0063 | 0.0141 |
| 34   | w=9        | 7           | 0.0001 | 0.0016 | 0.0000 | 0.0002 | 0.0000 | 0.0002 | 0.0060 | 1.0000 |
| 35   | w=6        | 0           | 0.5569 | 0.0833 | 0.2561 | 0.4930 | 1.0000 | 0.8449 | 0.6851 | 0.2681 |
| 36   | w=2        | 0           | 1.0000 | 0.8888 | 0.7478 | 0.6955 | 0.0940 | 0.1290 | 0.5019 | 0.5569 |
| 37   | w=6        | 0           | 0.3931 | 0.7798 | 0.1121 | 0.1733 | 1.0000 | 0.7584 | 0.0714 | 1.0000 |
| 38   | w=5        | 0           | 0.8230 | 0.5199 | 0.6851 | 1.0000 | 0.9554 | 0.5019 | 0.4755 | 0.4414 |
| 39   | w=4        | 7           | 0.0005 | 0.0264 | 1.0000 | 0.0284 | 0.0294 | 0.0499 | 0.0115 | 0.0089 |
| 40   | w=3        | 5           | 0.4755 | 1.0000 | 0.0218 | 0.0194 | 0.0014 | 0.0011 | 0.0392 | 0.3268 |
|      |            | $\psi_{sp}$ | 12     | 9      | 10     | 13     | 15     | 16     | 16     | 16     |

Table A.7.: Significance evaluation of sliding window size for DL-STPM-VPD.

| Part | Best model | $\psi_{bm}$      | w=2    | w=3    | w=4    | w=5    | w=6    | w=7    | w=8    | w=9    |
|------|------------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1    | w=9        | <i>\ \ \ 0 m</i> | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0499 | 1.0000 |
| 2    | w=7        | 6                | 0.0005 | 0.0002 | 0.0033 | 0.0110 | 0.2017 | 1.0000 | 0.0000 | 0.0000 |
| 3    | w=5        | 2                | 0.1918 | 0.1688 | 0.2445 | 1.0000 | 0.5382 | 0.1967 | 0.0034 | 0.0482 |
| 4    | w=6        | 4                | 0.0000 | 0.0001 | 0.0005 | 0.0028 | 1.0000 | 0.7798 | 0.8778 | 0.2388 |
| 5    | w=9        | 5                | 0.0000 | 0.0000 | 0.0000 | 0.0041 | 0.0649 | 0.0033 | 0.5199 | 1.0000 |
| 6    | w=2        | 6                | 1.0000 | 0.0101 | 0.0714 | 0.0466 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 7    | w=2        | 5                | 1.0000 | 0.6147 | 0.9221 | 0.0235 | 0.0130 | 0.0026 | 0.0021 | 0.0000 |
| 8    | w=6        | 0                | 0.0551 | 0.2224 | 0.0589 | 0.3702 | 1.0000 | 0.3553 | 0.9221 | 0.6851 |
| 9    | w=3        | 1                | 0.3199 | 1.0000 | 0.7906 | 0.4842 | 0.7162 | 0.1220 | 0.0628 | 0.0294 |
| 10   | w=6        | 2                | 0.4414 | 0.8888 | 0.7584 | 0.8122 | 1.0000 | 0.8449 | 0.0015 | 0.0000 |
| 11   | w=4        | 1                | 0.4009 | 0.4169 | 1.0000 | 0.4088 | 0.2278 | 0.1186 | 0.0649 | 0.0010 |
| 12   | w=8        | 0                | 0.1871 | 0.1967 | 0.2998 | 0.9110 | 0.6345 | 0.2805 | 1.0000 | 0.6345 |
| 13   | w=2        | 0                | 1.0000 | 0.9221 | 0.6049 | 0.7798 | 0.5475 | 0.3702 | 0.1778 | 0.2805 |
| 14   | w=3        | 5                | 0.1520 | 1.0000 | 0.4414 | 0.0106 | 0.0328 | 0.0120 | 0.0038 | 0.0101 |
| 15   | w=2        | 1                | 1.0000 | 0.5199 | 0.6647 | 0.3409 | 0.7267 | 0.6647 | 0.1561 | 0.0006 |
| 16   | w=3        | 4                | 0.2561 | 1.0000 | 0.7691 | 0.6851 | 0.0366 | 0.0101 | 0.0012 | 0.0027 |
| 17   | w=2        | 4                | 1.0000 | 0.5475 | 0.6749 | 0.0570 | 0.0141 | 0.0021 | 0.0000 | 0.0000 |
| 18   | w=2        | 3                | 1.0000 | 0.4668 | 0.1290 | 0.2067 | 0.7058 | 0.0366 | 0.0000 | 0.0078 |
| 19   | w=8        | 5                | 0.0000 | 0.0353 | 0.0153 | 0.0366 | 0.0110 | 0.5019 | 1.0000 | 0.4250 |
| 20   | w=5        | 4                | 0.0005 | 0.0859 | 0.2681 | 1.0000 | 0.4088 | 0.0001 | 0.0000 | 0.0000 |
| 21   | w=9        | 2                | 0.0001 | 0.0045 | 0.0833 | 0.9443 | 0.3481 | 0.7162 | 0.0969 | 1.0000 |
| 22   | w=2        | 1                | 1.0000 | 0.0628 | 0.1255 | 0.2332 | 0.5290 | 0.1364 | 0.0093 | 0.1401 |
| 23   | w=2        | 7                | 1.0000 | 0.0166 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 24   | w=9        | 7                | 0.0180 | 0.0115 | 0.0340 | 0.0005 | 0.0018 | 0.0013 | 0.0392 | 1.0000 |
| 25   | w=2        | 4                | 1.0000 | 0.3931 | 0.3931 | 0.9554 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 26   | w=2        | 4                | 1.0000 | 0.7798 | 0.5108 | 0.5108 | 0.0043 | 0.0003 | 0.0000 | 0.0000 |
| 27   | w=2        | 6                | 1.0000 | 0.0913 | 0.0210 | 0.0028 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 28   | w=4        | 3                | 0.5569 | 0.2681 | 1.0000 | 1.0000 | 0.2681 | 0.0499 | 0.0075 | 0.0026 |
| 29   | w=6        | 5                | 0.0340 | 0.0022 | 0.5569 | 0.1918 | 1.0000 | 0.0078 | 0.0000 | 0.0353 |
| 30   | w=6        | 4                | 0.0002 | 0.0085 | 0.0082 | 0.0036 | 1.0000 | 0.7372 | 0.9666 | 0.3702 |
| 31   | w=2        | 4                | 1.0000 | 0.1479 | 0.4842 | 0.7267 | 0.0130 | 0.0001 | 0.0000 | 0.0000 |
| 32   | w=3        | 4                | 0.0166 | 1.0000 | 0.1089 | 0.2561 | 0.0913 | 0.0000 | 0.0000 | 0.0000 |
| 33   | w=2        | 3                | 1.0000 | 0.0379 | 0.0886 | 0.2621 | 0.0736 | 0.0649 | 0.0000 | 0.0000 |
| 34   | w=2        | 7                | 1.0000 | 0.0187 | 0.0136 | 0.0210 | 0.0000 | 0.0000 | 0.0000 | 0.0001 |
| 35   | w=2        | 6                | 1.0000 | 0.0244 | 0.0833 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 36   | w=4        | 3                | 0.0533 | 0.1364 | 1.0000 | 0.4009 | 0.1733 | 0.0001 | 0.0000 | 0.0000 |
| 37   | w=3        | 5                | 0.0153 | 1.0000 | 0.1290 | 0.0030 | 0.2332 | 0.0020 | 0.0001 | 0.0000 |
| 38   | w=4        | 3                | 0.9443 | 0.0141 | 1.0000 | 0.5475 | 0.4009 | 0.1733 | 0.0052 | 0.0014 |
| 39   | w=2        | 4                | 1.0000 | 0.8778 | 0.3131 | 0.0808 | 0.0055 | 0.0027 | 0.0004 | 0.0000 |
| 40   | w=8        | 1                | 0.0001 | 0.0628 | 0.4498 | 0.5569 | 0.5854 | 0.8668 | 1.0000 | 0.5019 |
|      |            | $\psi_{sp}$      | 13     | 15     | 10     | 15     | 16     | 23     | 28     | 28     |

Table A.8.: Significance evaluation of sliding window size for DL-STPM.

| Part | Best model | $\psi_{bm}$ | d=0    | d=1    | d=2    |
|------|------------|-------------|--------|--------|--------|
| 1    | d=1        | 0           | 0.6049 | 1.0000 | 0.3064 |
| 2    | d=0        | 2           | 1.0000 | 0.0000 | 0.0000 |
| 3    | d=1        | 1           | 0.0010 | 1.0000 | 0.0670 |
| 4    | d=0        | 1           | 1.0000 | 0.1186 | 0.0007 |
| 5    | d=0        | 0           | 1.0000 | 0.6073 | 0.0846 |
| 6    | d=0        | 1           | 1.0000 | 0.6851 | 0.0045 |
| 7    | d=2        | 0           | 0.1479 | 0.6345 | 1.0000 |
| 8    | d=1        | 0           | 0.4088 | 1.0000 | 0.0808 |
| 9    | d=0        | 1           | 1.0000 | 0.2118 | 0.0000 |
| 10   | d=1        | 1           | 0.0969 | 1.0000 | 0.0000 |
| 11   | d=1        | 1           | 0.7691 | 1.0000 | 0.0027 |
| 12   | d=0        | 2           | 1.0000 | 0.0023 | 0.0001 |
| 13   | d=2        | 2           | 0.0101 | 0.0254 | 1.0000 |
| 14   | d=0        | 0           | 1.0000 | 0.5382 | 0.3268 |
| 15   | d=0        | 0           | 1.0000 | 0.0859 | 0.7478 |
| 16   | d=0        | 1           | 1.0000 | 0.9332 | 0.0011 |
| 17   | d=1        | 0           | 0.2278 | 1.0000 | 0.0998 |
| 18   | d=1        | 1           | 0.0227 | 1.0000 | 0.2743 |
| 19   | d=0        | 2           | 1.0000 | 0.0227 | 0.0000 |
| 20   | d=0        | 2           | 1.0000 | 0.0421 | 0.0045 |
| 21   | d=1        | 1           | 0.5854 | 1.0000 | 0.0041 |
| 22   | d=2        | 2           | 0.0000 | 0.0033 | 1.0000 |
| 23   | d=0        | 2           | 1.0000 | 0.0030 | 0.0235 |
| 24   | d=1        | 0           | 0.1153 | 1.0000 | 0.0833 |
| 25   | d=0        | 2           | 1.0000 | 0.0022 | 0.0004 |
| 26   | d=2        | 0           | 0.6147 | 0.8122 | 1.0000 |
| 27   | d=1        | 0           | 1.0000 | 1.0000 | 0.2278 |
| 28   | d=0        | 1           | 1.0000 | 0.0305 | 0.0969 |
| 29   | d=2        | 0           | 0.1089 | 0.4842 | 1.0000 |
| 30   | d=2        | 0           | 0.0691 | 0.1602 | 1.0000 |
| 31   | d=0        | 1           | 1.0000 | 0.2118 | 0.0000 |
| 32   | d=0        | 2           | 1.0000 | 0.0450 | 0.0244 |
| 33   | d=1        | 0           | 0.5475 | 1.0000 | 0.9443 |
| 34   | d=2        | 1           | 0.0202 | 0.5569 | 1.0000 |
| 35   | d=0        | 0           | 1.0000 | 0.7478 | 0.6647 |
| 36   | d=2        | 1           | 0.0406 | 0.9888 | 1.0000 |
| 37   | d=0        | 0           | 1.0000 | 0.7906 | 0.2445 |
| 38   | d=0        | 2           | 1.0000 | 0.0499 | 0.0000 |
| 39   | d=0        | 2           | 1.0000 | 0.0004 | 0.0000 |
| 40   | d=1        | 0           | 0.8558 | 1.0000 | 0.0608 |
|      |            | $\psi_{sp}$ | 6      | 12     | 17     |

| Part | Best model | $\psi_{bm}$ | d=0    | d=1    | d=2    |
|------|------------|-------------|--------|--------|--------|
| 1    | d=2        | 2           | 0.0004 | 0.0040 | 1.0000 |
| 2    | d=1        | 0           | 0.1688 | 1.0000 | 0.2868 |
| 3    | d=2        | 1           | 0.0002 | 0.0533 | 1.0000 |
| 4    | d=2        | 1           | 0.0173 | 0.1255 | 1.0000 |
| 5    | d=0        | 0           | 1.0000 | 0.8668 | 0.4088 |
| 6    | d=0        | 2           | 1.0000 | 0.0000 | 0.0000 |
| 7    | d=1        | 0           | 0.1089 | 1.0000 | 0.1327 |
| 8    | d=2        | 2           | 0.0000 | 0.0000 | 1.0000 |
| 9    | d=0        | 0           | 1.0000 | 0.1824 | 0.1290 |
| 10   | d=0        | 1           | 1.0000 | 0.0066 | 0.5108 |
| 11   | d=0        | 2           | 1.0000 | 0.0000 | 0.0000 |
| 12   | d=0        | 2           | 1.0000 | 0.0063 | 0.0002 |
| 13   | d=0        | 2           | 1.0000 | 0.0254 | 0.0435 |
| 14   | d=0        | 0           | 1.0000 | 0.6955 | 0.7478 |
| 15   | d=1        | 1           | 0.0421 | 1.0000 | 0.9110 |
| 16   | d=2        | 1           | 0.0000 | 0.3199 | 1.0000 |
| 17   | d=0        | 0           | 1.0000 | 0.1440 | 0.5663 |
| 18   | d=2        | 1           | 0.0173 | 0.1778 | 1.0000 |
| 19   | d=0        | 2           | 1.0000 | 0.0000 | 0.0000 |
| 20   | d=2        | 0           | 0.8888 | 0.9332 | 1.0000 |
| 21   | d=1        | 0           | 0.9666 | 1.0000 | 0.1255 |
| 22   | d=2        | 0           | 0.3931 | 0.8668 | 1.0000 |
| 23   | d=0        | 0           | 1.0000 | 0.1401 | 0.0784 |
| 24   | d=0        | 0           | 1.0000 | 0.7478 | 0.0628 |
| 25   | d=0        | 0           | 1.0000 | 0.4755 | 0.3064 |
| 26   | d=0        | 0           | 1.0000 | 0.0940 | 0.5854 |
| 27   | d=0        | 0           | 1.0000 | 0.3338 | 0.2332 |
| 28   | d=2        | 0           | 0.2805 | 0.2278 | 1.0000 |
| 29   | d=2        | 0           | 0.5951 | 0.8014 | 1.0000 |
| 30   | d=1        | 0           | 0.2621 | 1.0000 | 0.5569 |
| 31   | d=0        | 0           | 1.0000 | 0.2017 | 0.5951 |
| 32   | d=1        | 0           | 0.6749 | 1.0000 | 0.8122 |
| 33   | d=1        | 0           | 0.1733 | 1.0000 | 0.7162 |
| 34   | d=0        | 0           | 1.0000 | 0.4842 | 0.2998 |
| 35   | d=2        | 0           | 0.0628 | 0.1479 | 1.0000 |
| 36   | d=2        | 1           | 0.0004 | 0.8888 | 1.0000 |
| 37   | d=0        | 1           | 1.0000 | 0.0714 | 0.0254 |
| 38   | d=2        | 0           | 0.6245 | 0.7691 | 1.0000 |
| 39   | d=0        | 1           | 1.0000 | 0.0328 | 0.0516 |
| 40   | d=0        | 2           | 1.0000 | 0.0002 | 0.0000 |
|      |            | $\psi_{sp}$ | 8      | 10     | 7      |

Table A.10.: Significance evaluation of data augmentation for DL-STPM.

| Part | Best model | $\psi_{bm}$ | e=70   | e=100  | e=200  | e=400  | e=800  |
|------|------------|-------------|--------|--------|--------|--------|--------|
| 1    | e=70       | 4           | 1.0000 | 0.0305 | 0.0000 | 0.0000 | 0.0028 |
| 2    | e=70       | 1           | 1.0000 | 0.9888 | 0.0001 | 0.2681 | 0.1089 |
| 3    | e=100      | 3           | 0.0886 | 1.0000 | 0.0435 | 0.0007 | 0.0063 |
| 4    | e=200      | 0           | 0.8230 | 0.9110 | 1.0000 | 0.8558 | 0.6049 |
| 5    | e=200      | 0           | 0.1121 | 0.5199 | 1.0000 | 0.0691 | 0.9666 |
| 6    | e=200      | 1           | 0.7267 | 0.3131 | 1.0000 | 0.1186 | 0.0000 |
| 7    | e=800      | 0           | 0.5759 | 0.8668 | 0.7058 | 0.9332 | 1.0000 |
| 8    | e=70       | 2           | 1.0000 | 0.2224 | 0.4755 | 0.0000 | 0.0000 |
| 9    | e=70       | 4           | 1.0000 | 0.0482 | 0.0002 | 0.0031 | 0.0000 |
| 10   | e=100      | 0           | 0.8888 | 1.0000 | 0.3131 | 0.4583 | 0.0969 |
| 11   | e=70       | 1           | 1.0000 | 0.6749 | 0.3338 | 0.0608 | 0.0024 |
| 12   | e=400      | 0           | 0.3481 | 0.7372 | 0.9110 | 1.0000 | 0.0859 |
| 13   | e=70       | 3           | 1.0000 | 0.0516 | 0.0008 | 0.0000 | 0.0000 |
| 14   | e=70       | 0           | 1.0000 | 0.7162 | 0.7798 | 0.8449 | 0.6647 |
| 15   | e=70       | 0           | 1.0000 | 0.9666 | 0.7906 | 0.8230 | 0.1918 |
| 16   | e=100      | 3           | 0.3199 | 1.0000 | 0.0353 | 0.0000 | 0.0000 |
| 17   | e=200      | 0           | 0.0466 | 0.4009 | 1.0000 | 0.3409 | 0.7058 |
| 18   | e=200      | 0           | 0.0002 | 0.1290 | 1.0000 | 0.6245 | 0.9110 |
| 19   | e=200      | 0           | 0.4169 | 0.2998 | 1.0000 | 0.8558 | 0.2868 |
| 20   | e=800      | 0           | 0.0608 | 0.3931 | 0.3627 | 0.1733 | 1.0000 |
| 21   | e=70       | 4           | 1.0000 | 0.0328 | 0.0353 | 0.0000 | 0.0000 |
| 22   | e=400      | 1           | 0.3702 | 0.0244 | 0.7906 | 1.0000 | 0.0533 |
| 23   | e=200      | 2           | 0.0670 | 0.2332 | 1.0000 | 0.0435 | 0.0030 |
| 24   | e=70       | 1           | 1.0000 | 0.8449 | 0.4169 | 0.6445 | 0.0317 |
| 25   | e=800      | 2           | 0.0089 | 0.0093 | 0.0120 | 0.1645 | 1.0000 |
| 26   | e=70       | 4           | 1.0000 | 0.0120 | 0.0000 | 0.0024 | 0.0005 |
| 27   | e=100      | 0           | 0.5019 | 1.0000 | 0.2017 | 0.3931 | 0.3199 |
| 28   | e=200      | 2           | 0.1186 | 0.0969 | 1.0000 | 0.0066 | 0.0052 |
| 29   | e=200      | 2           | 0.0023 | 0.0244 | 1.0000 | 0.1871 | 0.0009 |
| 30   | e=800      | 0           | 0.0020 | 0.6147 | 0.1688 | 0.2998 | 1.0000 |
| 31   | e=800      | 0           | 0.4009 | 0.4332 | 0.7058 | 0.7058 | 1.0000 |
| 32   | e=70       | 2           | 1.0000 | 0.7058 | 0.4842 | 0.0001 | 0.0000 |
| 33   | e=400      | 0           | 0.0353 | 0.5759 | 0.9332 | 1.0000 | 0.6546 |
| 34   | e=400      | 0           | 0.8888 | 0.2445 | 0.1440 | 1.0000 | 0.0998 |
| 35   | e=400      | 0           | 0.8014 | 0.9443 | 0.5854 | 1.0000 | 0.3409 |
| 36   | e=200      | 0           | 0.9888 | 0.9777 | 1.0000 | 0.5663 | 0.8122 |
| 37   | e=200      | 0           | 0.0379 | 0.4842 | 1.0000 | 0.2388 | 0.1918 |
| 38   | e=400      | 1           | 0.0002 | 0.2388 | 0.0017 | 1.0000 | 0.5382 |
| 39   | e=100      | 0           | 0.8122 | 1.0000 | 0.3777 | 0.8778 | 0.3338 |
| 40   | e=70       | 4           | 1.0000 | 0.0089 | 0.0000 | 0.0000 | 0.0000 |
|      | 1          | $\psi_{sp}$ | 8      | 8      | 11     | 12     | 16     |

 Table A.11.: Significance evaluation number of training epochs for DL-STPM 

 VPD.

| Part | Best model | $\psi_{bm}$ | e=70   | e=100  | e=200  | e=400  | e=800  |
|------|------------|-------------|--------|--------|--------|--------|--------|
| 1    | e = 800    | 4           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
| 2    | e = 800    | 0           | 0.3131 | 0.4088 | 0.5019 | 0.5951 | 1.0000 |
| 3    | e=70       | 1           | 1.0000 | 0.4498 | 0.9110 | 0.0808 | 0.0030 |
| 4    | e=400      | 4           | 0.0001 | 0.0001 | 0.0041 | 1.0000 | 0.0000 |
| 5    | e=70       | 1           | 1.0000 | 0.2388 | 0.4668 | 0.0516 | 0.0000 |
| 6    | e=200      | 4           | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
| 7    | e=800      | 3           | 0.2067 | 0.0110 | 0.0005 | 0.0097 | 1.0000 |
| 8    | e=70       | 3           | 1.0000 | 0.8014 | 0.0004 | 0.0194 | 0.0003 |
| 9    | e=70       | 2           | 1.0000 | 0.7584 | 0.0000 | 0.7372 | 0.0000 |
| 10   | e=70       | 3           | 1.0000 | 0.3854 | 0.0000 | 0.0014 | 0.0000 |
| 11   | e=400      | 3           | 0.4583 | 0.0366 | 0.0003 | 1.0000 | 0.0000 |
| 12   | e=800      | 4           | 0.0482 | 0.0085 | 0.0000 | 0.0000 | 1.0000 |
| 13   | e=70       | 2           | 1.0000 | 0.9666 | 0.0000 | 0.8888 | 0.0000 |
| 14   | e=200      | 4           | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
| 15   | e=200      | 4           | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
| 16   | e=800      | 3           | 0.0120 | 0.0969 | 0.0000 | 0.0036 | 1.0000 |
| 17   | e=100      | 2           | 0.5854 | 1.0000 | 0.7058 | 0.0000 | 0.0000 |
| 18   | e=70       | 3           | 1.0000 | 0.3199 | 0.0000 | 0.0435 | 0.0000 |
| 19   | e=400      | 3           | 0.1290 | 0.0078 | 0.0000 | 1.0000 | 0.0000 |
| 20   | e=200      | 4           | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
| 21   | e=400      | 2           | 0.2561 | 0.4842 | 0.0000 | 1.0000 | 0.0000 |
| 22   | e=70       | 2           | 1.0000 | 0.6345 | 0.0000 | 0.1027 | 0.0000 |
| 23   | e=70       | 2           | 1.0000 | 0.3931 | 0.0000 | 0.5019 | 0.0000 |
| 24   | e=100      | 3           | 0.5382 | 1.0000 | 0.0000 | 0.0015 | 0.0000 |
| 25   | e=100      | 3           | 0.6147 | 1.0000 | 0.0000 | 0.0000 | 0.0000 |
| 26   | e=800      | 4           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
| 27   | e=800      | 4           | 0.0055 | 0.0023 | 0.0000 | 0.0006 | 1.0000 |
| 28   | e=800      | 3           | 0.4009 | 0.0340 | 0.0000 | 0.0218 | 1.0000 |
| 29   | e=100      | 2           | 0.4250 | 1.0000 | 0.0000 | 0.1733 | 0.0000 |
| 30   | e=100      | 3           | 0.9332 | 1.0000 | 0.0000 | 0.0166 | 0.0008 |
| 31   | e=100      | 2           | 0.8778 | 1.0000 | 0.0202 | 0.1401 | 0.0001 |
| 32   | e=200      | 4           | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
| 33   | e=70       | 3           | 1.0000 | 0.0482 | 0.5951 | 0.0001 | 0.0000 |
| 34   | e=100      | 3           | 0.4414 | 1.0000 | 0.0000 | 0.0353 | 0.0000 |
| 35   | e=800      | 4           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
| 36   | e=200      | 4           | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
| 37   | e=200      | 4           | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
| 38   | e=200      | 4           | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
| 39   | e=200      | 4           | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
| 40   | e=200      | 4           | 0.0000 | 0.0000 | 1.0000 | 0.0004 | 0.0000 |
|      |            |             |        |        |        |        |        |

Table A.12.: Significance evaluation number of training epochs for DL-STPM.

| Part     | Best model                   | $\psi_{bm}$ | STPM-VPD      | STPM-VPD-enh     | DL-ST PM-VPD |
|----------|------------------------------|-------------|---------------|------------------|--------------|
| 1        | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 2        | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 3        | DL-STPM-VPD<br>DL-STPM-VPD   | 2           | 0.0000        | 0.0000           | 1.0000       |
| 5        | DL-STPM-VPD                  | 2           | 0.0001        | 0.0000           | 1.0000       |
| 6        | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 7        | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 8        | DL-STPM-VPD                  | 1           | 0.0001        | 0.8339           | 1.0000       |
| 9        | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 10       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0001       |
| 11       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0000       |
| 12       | DL-STPM-VPD                  | 2           | 0.0009        | 0.0041           | 1.0000       |
| 13       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0041       |
| 14       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0000       |
| 15       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 16<br>17 | STPM-VPD-enh<br>DL-STPM-VPD  | 2           | 0.0000        | 1.0000           | 0.0000       |
| 17       | STPM-VPD                     | 2           | 0.0000 1.0000 | 0.0000           | 0.0000       |
| 19       | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 20       | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 20       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 22       | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 23       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 24       | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 25       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 26       | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 27       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 28       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0000       |
| 29       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 30       | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 31       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 32       | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 33       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0009       |
| 34       | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 35       | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 36<br>37 | STPM-VPD-enh<br>STPM-VPD-enh | 1 2         | 0.0000        | 1.0000           | 0.5199       |
| 38       | DL-STPM-VPD                  | 2           | 0.0000        | 1.0000<br>0.0000 | 0.0000       |
| 39       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0000       |
| 40       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 41       | DL-STPM-VPD                  | 2           | 0.0159        | 0.0000           | 1.0000       |
| 42       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0000       |
| 43       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0499       |
| 44       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0499       |
| 45       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0159       |
| 46       | STPM-VPD-enh                 | 1           | 0.0000        | 1.0000           | 0.2805       |
| 47       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 48       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 49       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0000       |
| 50       | DL-STPM-VPD                  | 0           | 0.5199        | 0.2805           | 1.0000       |
| 51       | DL-STPM-VPD                  | 2           | 0.0499        | 0.0000           | 1.0000       |
| 52       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0000       |
| 53       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 54       | DL-STPM-VPD                  | 1           | 0.5199        | 0.0000           | 1.0000       |
| 55<br>56 | DL-STPM-VPD<br>STPM-VPD-enh  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 56<br>57 | STPM-VPD-enh<br>DL-STPM-VPD  | 1           | 0.0000        | 1.0000           | 0.8339       |
| 57<br>58 | STPM-VPD                     | 1 2         | 0.2805        | 0.0000           | 0.0000       |
| 59       | DL-STPM-VPD                  | 2           | 0.0001        | 0.0000           | 1.0000       |
| 60       | DL-STPM-VPD                  | 2           | 0.0001        | 0.0000           | 1.0000       |
| 61       | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 62       | DL-STPM-VPD                  | 2           | 0.0159        | 0.0009           | 1.0000       |
| 63       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0159       |
| 64       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0499       |
| 65       | DL-STPM-VPD                  | 2           | 0.0000        | 0.0000           | 1.0000       |
| 66       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0000       |
| 67       | STPM-VPD-enh                 | 1           | 0.0000        | 1.0000           | 0.5199       |
| 68       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 69       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0000       |
| 70       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0000       |
| 71       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |
| 72       | STPM-VPD-enh                 | 2           | 0.0000        | 1.0000           | 0.0000       |
| 73       | STPM-VPD                     | 2           | 1.0000        | 0.0000           | 0.0000       |

Table A.13.: Significance evaluation current model for DL-STPM-VPD.

| Part       | Best model                  | $\psi_{bm}$          | STPM-VPD         | STPM-VPD-enh | DL-STPM-VPD |
|------------|-----------------------------|----------------------|------------------|--------------|-------------|
| 74         | STPM-VPD                    | φ <sub>bm</sub><br>2 | 1.0000           | 0.0000       | 0.0000      |
| 75         | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 76         | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0159       | 1.0000      |
| 77         | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0000      |
| 78         | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 79         | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 80         | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 81         | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 82         | DL-STPM-VPD                 | 2                    | 0.0000           | 0.2805       | 1.0000      |
| 83         | STPM-VPD                    | 2                    | 1.0000           | 0.2805       | 0.0000      |
| 84         | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 85         | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
|            | DL-STPM-VPD                 |                      |                  |              |             |
| 86         |                             | 2                    | 0.0159           | 0.0000       | 1.0000      |
| 87         | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 88         | STPM-VPD-enh                | 1                    | 0.0000           | 1.0000       | 0.2805      |
| 89         | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 90         | DL-STPM-VPD                 | 2                    | 0.0159           | 0.0000       | 1.0000      |
| 91         | DL-STPM-VPD                 | 0                    | 0.8339           | 0.5199       | 1.0000      |
| 92         | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0000      |
| 93         | DL-STPM-VPD                 | 2                    | 0.0159           | 0.0009       | 1.0000      |
| 94         | DL-STPM-VPD                 | 1                    | 0.0499           | 0.1290       | 1.0000      |
| 95         | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 96         | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 97         | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0041      |
| 98         | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 99         | DL-STPM-VPD                 | 2                    | 0.0009           | 0.0000       | 1.0000      |
| 100        | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0499      |
| 101        | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0000      |
| 102        | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0000      |
| 103        | STPM-VPD-enh                | 1                    | 0.0000           | 1.0000       | 0.5199      |
| 104        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 105        | STPM-VPD                    | 1                    | 1.0000           | 0.0000       | 0.2805      |
| 106        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 107        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 108        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 109        | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0159      |
| 110        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 111        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 112        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 113        | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0000      |
| 114        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0001      |
| 115        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 116        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 117        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 118        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 119        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 120        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0499       | 1.0000      |
| 121        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0009      |
| 122        | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0009      |
| 123        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 124        | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0000      |
| 125        | DL-STPM-VPD                 | 2                    | 0.0499           | 0.0499       | 1.0000      |
| 126        | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0000      |
| 127        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 128        | DL-STPM-VPD                 | 1                    | 0.2805           | 0.0159       | 1.0000      |
| 129        | STPM-VPD-enh                | 2                    | 0.2000           | 1.0000       | 0.0000      |
| 130        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 131        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 131        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0041       | 1.0000      |
| 132        | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0000      |
| 133        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 134<br>135 | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 135<br>136 | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0041      |
| 136<br>137 | STPM-VPD-enh<br>STPM-VPD    | 2                    | 1.0000           | 0.0000       | 0.0041      |
| 137<br>138 | STPM-VPD<br>STPM-VPD-enh    |                      | 1.0000<br>0.0000 |              |             |
|            | STPM-VPD-enh<br>DL-STPM-VPD | 2                    |                  | 1.0000       | 0.0000      |
| 139        |                             | 1                    | 0.5199           | 0.0000       | 1.0000      |
| 140        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 141        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 142        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 143        | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0001      |
| 144        | STPM-VPD                    | 2                    | 1.0000           | 0.0000       | 0.0000      |
| 145        | DL-STPM-VPD                 | 2                    | 0.0000           | 0.0000       | 1.0000      |
| 146        | STPM-VPD-enh                | 2                    | 0.0000           | 1.0000       | 0.0000      |
| _          | STPM-VPD-enh                |                      |                  |              |             |

Table A.13.: Significance evaluation current model for DL-STPM-VPD cont.

| Part              | Best model                  | $\psi_{bm}$ | STPM-VPD         | STPM-VPD-enh | DL-ST PM-V PD    |
|-------------------|-----------------------------|-------------|------------------|--------------|------------------|
| 148               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 149               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 150               | DL-STPM-VPD                 | 0           | 0.1290           | 0.1290       | 1.0000           |
| 151               | DL-STPM-VPD                 | 2           | 0.0009           | 0.0041       | 1.0000           |
| 152               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 153               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0000           |
| 154<br>155        | STPM-VPD-enh<br>DL-STPM-VPD | 2           | 0.0000           | 0.0041       | 1.0000           |
| 155               | STPM-VPD                    | 2           | 0.5199 1.0000    | 0.0000       | 0.0000           |
| 150               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 157               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0041           |
| 159               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0000           |
| 160               | DL-STPM-VPD                 | 2           | 0.0001           | 0.0000       | 1.0000           |
| 161               | DL-STPM-VPD                 | 2           | 0.0159           | 0.0499       | 1.0000           |
| 162               | DL-STPM-VPD                 | 1           | 0.0041           | 0.1290       | 1.0000           |
| 163               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0000           |
| 164               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 165               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0001           |
| 166               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 167               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0000           |
| 168               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0000           |
| 169               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 170               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 171               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 172               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 173               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 174               | DL-STPM-VPD<br>DL-STPM-VPD  | 0           | 0.1290           | 0.5199       | 1.0000           |
| 175               |                             | 1           | 0.0000           | 0.5199       | 1.0000           |
| 176<br>177        | STPM-VPD<br>STPM-VPD-enh    | 2           | 1.0000<br>0.0000 | 1.0000       | 0.0001 0.0499    |
| 177               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 179               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 180               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0000           |
| 181               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 182               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 183               | STPM-VPD                    | 1           | 1.0000           | 0.0000       | 0.5199           |
| 184               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 185               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0000           |
| 186               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0001           |
| 187               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0159           |
| 188               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 189               | DL-STPM-VPD                 | 1           | 0.0000           | 0.2805       | 1.0000           |
| 190               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 191               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 192               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 193               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 194               | STPM-VPD-enh                | 1           | 0.0000           | 1.0000       | 0.1290           |
| 195               | DL-STPM-VPD                 | 1           | 0.0001           | 0.2805       | 1.0000           |
| 196               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0000           |
| 197<br>198        | STPM-VPD<br>DL-STPM-VPD     | 2           | 1.0000<br>0.0000 | 0.0000       | 0.0041<br>1.0000 |
| 198               | DL-STPM-VPD<br>DL-STPM-VPD  | 2           | 0.0000           | 0.0000       | 1.0000           |
| 200               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 200               | DL-STPM-VPD                 | 2           | 0.5199           | 0.0041       | 1.0000           |
| 201               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 202               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0000           |
| 204               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 205               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0000           |
| 206               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 207               | DL-STPM-VPD                 | 2           | 0.0499           | 0.0000       | 1.0000           |
| 208               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 209               | DL-STPM-VPD                 | 1           | 0.0000           | 0.5199       | 1.0000           |
| 210               | STPM-VPD                    | 2           | 1.0000           | 0.0000       | 0.0000           |
| 211               | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 212               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 213               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 214               | DL-STPM-VPD                 | 2           | 0.0000           | 0.0000       | 1.0000           |
| 215               | DL-STPM-VPD                 | 1           | 0.1290           | 0.0000       | 1.0000           |
|                   | LUEDM VDD                   | 2           | 1.0000           | 0.0000       | 0.0001           |
| 216               | STPM-VPD                    |             |                  |              |                  |
| 216<br>217        | STPM-VPD-enh                | 2           | 0.0000           | 1.0000       | 0.0000           |
| 216<br>217<br>218 | STPM-VPD-enh<br>DL-STPM-VPD | 2           | 0.0000           | 0.0000       | 1.0000           |
| 216<br>217        | STPM-VPD-enh                |             |                  |              |                  |

Table A.13.: Significance evaluation current model for DL-STPM-VPD cont.

|                                                                                                                                                                                                         | Best model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\psi_{bm}$                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STPM-VPD-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DL-ST PM-V PD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part<br>221                                                                                                                                                                                             | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\psi_{bm}$<br>2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 221                                                                                                                                                                                                     | STPM-VPD-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 223                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 224                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 225                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 226                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                               | 0.0159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 227                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 228                                                                                                                                                                                                     | STPM-VPD-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 220                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 230                                                                                                                                                                                                     | STPM-VPD-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                               | 1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 231<br>232                                                                                                                                                                                              | STPM-VPD-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                         | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 233                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 234                                                                                                                                                                                                     | STPM-VPD-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 235                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 236                                                                                                                                                                                                     | STPM-VPD-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 237                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 238                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 239                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 241                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 242                                                                                                                                                                                                     | STPM-VPD-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 243                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 244                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                               | 0.5199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 245                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 246                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 247                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 248                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 249                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 250                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 251                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 252                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 253                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 254                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 255                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 256                                                                                                                                                                                                     | STPM-VPD-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 257                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 258                                                                                                                                                                                                     | STPM-VPD-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 259                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                               | 0.0159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 260                                                                                                                                                                                                     | STPM-VPD-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 260                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 262                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 262                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 263                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                         | STDM VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 265                                                                                                                                                                                                     | STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 266                                                                                                                                                                                                     | DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>2                                                                                                          | 1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8339<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 266<br>267                                                                                                                                                                                              | DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>2<br>1                                                                                                     | 1.0000<br>0.0000<br>0.1290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8339<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 266<br>267<br>268                                                                                                                                                                                       | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br>1<br>2                                                                                                | 1.0000<br>0.0000<br>0.1290<br>0.0499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8339<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 266<br>267<br>268<br>269                                                                                                                                                                                | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>2<br>1<br>2<br>2                                                                                           | 1.0000<br>0.0000<br>0.1290<br>0.0499<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 266<br>267<br>268<br>269<br>270                                                                                                                                                                         | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>2<br>1<br>2<br>2<br>2                                                                                      | 1.0000<br>0.0000<br>0.1290<br>0.0499<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 266<br>267<br>268<br>269<br>270<br>271                                                                                                                                                                  | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>2<br>1<br>2<br>2<br>2<br>2<br>2                                                                            | 1.0000<br>0.0000<br>0.1290<br>0.0499<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 266<br>267<br>268<br>269<br>270<br>271<br>272                                                                                                                                                           | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2                                                                       | 1.0000         0.0000         0.1290         0.0499         0.0000         0.0000         0.0000         1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br><b>0.0000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 266<br>267<br>268<br>269<br>270<br>271                                                                                                                                                                  | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>2<br>1<br>2<br>2<br>2<br>2<br>2                                                                            | 1.0000<br>0.0000<br>0.1290<br>0.0499<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>273<br>274                                                                                                                                      | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                     | 1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                              | 1.0000         0.0000         0.1290         0.0499         0.0000         0.0000         0.0000         1.0000         1.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 266<br>267<br>268<br>270<br>271<br>272<br>273<br>273<br>274<br>275                                                                                                                                      | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                                     | 1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0                                                   | 1.0000         0.0000         0.1290         0.0499         0.0000         0.0000         1.0000         1.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.2805                                                                                                                                                                                                                                                                                                               | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.1290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>273<br>274<br>275<br>276                                                                                                                        | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                                                                      | 1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>1                                                   | 1.0000<br>0.1290<br>0.0499<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.2805<br>0.2805                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.1290<br>0.2805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 266<br>267<br>268<br>270<br>271<br>271<br>272<br>273<br>274<br>275<br>276<br>277                                                                                                                        | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD                                                                                                                                                                                                                                                                                                                                             | 1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>1<br>2<br>2<br>0<br>1<br>2                          | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           1.0000           0.0000           0.2805           0.0000           0.0000                                                                                                                                                                                                                                                                                                                                                     | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.1290<br>0.2805<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 266<br>267<br>268<br>270<br>271<br>272<br>273<br>273<br>274<br>275<br>276<br>276<br>277<br>278                                                                                                          | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPDenh<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                                        | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>1<br>2<br>1                                         | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.0000           0.2805           0.0000           0.1290                                                                                                                                                                                                                                                                | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.1290<br>0.2805<br>1.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 266<br>267<br>268<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>278<br>279                                                                                                          | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                         | 1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>1<br>2<br>2<br>0<br>1<br>2                          | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           1.0000           0.0000           0.2805           0.0000           0.0000                                                                                                                                                                                                                                                                                                                                                     | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.1290<br>0.2805<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 266<br>267<br>268<br>270<br>271<br>272<br>273<br>273<br>274<br>275<br>276<br>276<br>277<br>278                                                                                                          | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPDenh<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                                        | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>1<br>2<br>1                                         | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.0000           0.2805           0.0000           0.1290                                                                                                                                                                                                                                                                | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.1290<br>0.2805<br>1.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 266<br>267<br>268<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>278<br>279                                                                                                          | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                                                                                                                                                                                                         | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>1<br>2<br>1<br>2<br>2<br>1<br>2<br>2      | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.1290           0.1290                                                                                                                                                                                                                                                                                                  | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.2805<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 266<br>267<br>268<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>278<br>279<br>280                                                                                                   | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh                                                                                                                                                                                                                                                                                                                   | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2      | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           1.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.1290           0.0000           0.0000                                                                                                                                                                                                                                                                                 | 0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2805           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 266<br>267<br>268<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>279<br>280<br>281                                                                                            | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                                                                                                                                                                       | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>1<br>2<br>2<br>0<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2 | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.1290           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                                                                                                                            | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.1290<br>0.2805<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>277<br>278<br>279<br>280<br>281<br>282                                                                       | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD                                                                                                                                                                                                                                                                      | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.1290           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                                                                                                           | 0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.1290           0.2805           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           1.0000           1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283                                                                              | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD-enh<br>STPM-VPD-enh<br>DL-STPM-VPD-enh<br>DL-STPM-VPD-enh                                                                                                                                                                                                                            | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.1290           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                                                                                                           | 0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2000           0.2805           1.0000           0.0000           0.0000           1.0000           1.0000           1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.2805<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285                                                                | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh                                                                                                                                                                                   | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           1.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.1290           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                      | 0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2805           1.0000           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8339 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.2805 1.0000 0.2805 1.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 266<br>267<br>268<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>281<br>282<br>283<br>284<br>285<br>286                                                  | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>DL-STPM-VPD                                                                                                                                                          | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.2900           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                      | 0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2805           1.0000           0.0000           0.0000           1.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8339<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.2805<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.000000<br>0.0000000<br>0.00000000 |
| 266<br>267<br>268<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>281<br>282<br>283<br>284<br>285<br>284<br>285<br>285                                    | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                                                                                                               | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.1290           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                      | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.1290<br>0.2805<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.8339 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.2805 1.0000 0.2805 1.0000 0.2805 1.0000 0.2805 1.0000 1.0000 0.2805 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.                                                                                                                                                                                                                                                                                                                                                                          |
| 266<br>267<br>268<br>270<br>271<br>272<br>273<br>273<br>274<br>275<br>275<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>285<br>285<br>285<br>285<br>285               | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD                                                                                                                   | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.1290           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                    | 0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2805           1.0000           0.0000           1.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8339 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.2805 1.0000 0.2805 1.0000 0.2805 1.0000 0.2805 1.0000 0.2805 1.0000 0.2805 0.0000 0.2805 0.0000 0.2805 0.0000 0.2805 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.                                                                                                                                                                                                                                                                                                                                                                          |
| 266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287<br>288<br>287<br>288                             | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD-enh<br>DL-STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.1290           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000 | 0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2805           1.0000           0.0000           1.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8339 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.2805 1.0000 0.2805 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.                                                                                                                                                                                                                                                                                                                                                                          |
| 266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>280<br>280<br>283<br>284<br>285<br>288<br>288<br>288<br>288<br>288<br>288<br>288<br>288<br>288 | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD                                        | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | 1.0000           0.0000           0.1230           0.0499           0.0000           0.0000           1.0000           1.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.1290           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000 | 0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2805           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8339 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.2805 1.0000 0.2805 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.                                                                                                                                                                                                                                                                                                                                                                          |
| 266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287<br>288<br>287<br>288                             | DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>STPM-VPD<br>STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD-enh<br>DL-STPM-VPD-enh<br>STPM-VPD-enh<br>STPM-VPD-enh<br>DL-STPM-VPD<br>STPM-VPD-enh<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD<br>DL-STPM-VPD | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | 1.0000           0.0000           0.1290           0.0499           0.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2805           0.0000           0.1290           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000 | 0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2805           1.0000           0.0000           1.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8339 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.2805 1.0000 0.2805 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.                                                                                                                                                                                                                                                                                                                                                                          |

Table A.13.: Significance evaluation current model for DL-STPM-VPD cont.

| Part       | Best model                              | $\psi_{bm}$ | STPM-VPD      | STPM-VPD-enh     | DL-ST PM-V PD    |
|------------|-----------------------------------------|-------------|---------------|------------------|------------------|
| 294        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0000           |
| 295        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0041           |
| 296        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0009           |
| 297        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0000           |
| 298<br>299 | DL-STPM-VPD<br>DL-STPM-VPD              | 2           | 0.0000        | 0.0041           | 1.0000           |
|            | DL-STPM-VPD<br>DL-STPM-VPD              | 2           | 0.0000        | 0.0000<br>0.0000 | 1.0000           |
| 300<br>301 | STPM-VPD-enh                            | 2           | 0.0159 0.0000 | 1.0000           | 0.0000           |
| 302        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 303        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 304        | DL-STPM-VPD                             | 1           | 0.0041        | 0.1290           | 1.0000           |
| 305        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0001           |
| 306        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0000           |
| 307        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 308        | DL-STPM-VPD                             | 1           | 0.0000        | 0.1290           | 1.0000           |
| 309        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0000           |
| 310        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 311        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0000           |
| 312        | DL-STPM-VPD                             | 1           | 0.0499        | 0.5199           | 1.0000           |
| 313        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0000           |
| 314        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0000           |
| 315        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0159           | 1.0000           |
| 316        | DL-STPM-VPD                             | 2           | 0.0159        | 0.0499           | 1.0000           |
| 317        | STPM-VPD                                | 1           | 1.0000        | 0.0000           | 0.5199           |
| 318        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 319        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 320        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0000           |
| 321        | STPM-VPD                                | 1           | 1.0000        | 0.0000           | 0.8339           |
| 322        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0159           |
| 323        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 324        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0000           |
| 325        | DL-STPM-VPD<br>DL-STPM-VPD              | 2           | 0.0000        | 0.0041           | 1.0000           |
| 326        | STPM-VPD<br>STPM-VPD-enh                | 2           | 0.0000        | 0.0000           | 1.0000<br>0.0009 |
| 327        | STPM-VPD-enh                            |             | 0.0000        | 1.0000           |                  |
| 328<br>329 | STPM-VPD-enh                            | 1 2         | 0.0000        | 1.0000           | 0.8339           |
| 330        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0000           |
| 331        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 332        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0041           |
| 333        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0009           |
| 334        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0000           |
| 335        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0159           | 1.0000           |
| 336        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 337        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0000           |
| 338        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0000           |
| 339        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0000           |
| 340        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0041           |
| 341        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0000           |
| 342        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 343        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 344        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0000           |
| 345        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0499           |
| 346        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0001           |
| 347        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0000           |
| 348        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0000           |
| 349        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 350        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0041           |
| 351        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
| 352        | STPM-VPD                                | 2           | 1.0000        | 0.0000           | 0.0001           |
| 353        | STPM-VPD-enh                            | 2           | 0.0000        | 1.0000           | 0.0000           |
| 354        | STPM-VPD-enh                            | 1           | 0.0000        | 1.0000           | 0.5199           |
| 355        | STPM-VPD-enh<br>STPM-VPD-enh            | 2           | 0.0000        | 1.0000           | 0.0000           |
| 356<br>357 | DL-STPM-VPD-enh                         | 1           | 0.0000        | 1.0000<br>0.0000 | 0.2805           |
| 357<br>358 | DL-STPM-VPD<br>DL-STPM-VPD              | 2           | 0.0000        | 0.0000           | 1.0000           |
|            | STPM-VPD-enh                            | 2           |               |                  | 0.0000           |
| 359<br>360 | STPM-VPD-enh<br>STPM-VPD                | 2           | 0.0000        | 1.0000<br>0.0000 | 0.0000           |
| 360        | STPM-VPD<br>STPM-VPD                    | 2           | 1.0000        | 0.0000           | 0.0041           |
| 361<br>362 | STPM-VPD<br>STPM-VPD-enh                | 2           | 0.0000        | 1.0000           | 0.0000           |
| 363        | DL-STPM-VPD                             | 2           | 0.0000        | 0.0000           | 1.0000           |
|            | L D L D L L D L L D L D L D L D L D L D |             |               | 0.0000           | 1.0000           |
|            | DI-STPM VPD                             | .,          |               |                  |                  |
| 364<br>365 | DL-STPM-VPD<br>DL-STPM-VPD              | 2           | 0.0000        | 0.0000           | 1.0000           |

Table A.13.: Significance evaluation current model for DL-STPM-VPD cont.

| D         | D . 11                | (                | GEDM   | GTEDM 1  | DIGTON           |
|-----------|-----------------------|------------------|--------|----------|------------------|
| Part<br>1 | Best model<br>DL-STPM | $\psi_{bm}$<br>2 | STPM   | STPM-enh | DL-STPM          |
| 2         | STPM                  | 2                | 0.0000 | 0.0000   | 1.0000<br>0.0000 |
| 3         | DL-STPM               | 2                | 0.0000 | 0.0000   | 1.0000           |
| 3         | STPM                  | 2                |        |          |                  |
|           |                       |                  | 1.0000 | 0.0000   | 0.0000           |
| 5         | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 6         | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0000           |
| 7         | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 8         | STPM                  | 2                | 1.0000 | 0.0000   | 0.0499           |
| 9         | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 10        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 11        | DL-ST PM              | 2                | 0.0000 | 0.0001   | 1.0000           |
| 12        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 13        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 14        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 15        | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0000           |
| 16        | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0000           |
| 17        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 18        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 19        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 20        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0499           |
| 21        | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0000           |
| 22        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 23        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 24        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 25        | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0001           |
| 26        | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0000           |
| 27        | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0000           |
| 28        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 29        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 30        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 31        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 32        | DL-STPM               | 2                | 0.0000 | 0.0000   | 1.0000           |
| 33        | DL-STPM<br>DL-STPM    | 2                | 0.0000 | 0.0499   | 1.0000           |
| 34        | DL-STPM<br>DL-STPM    | 2                | 0.0000 | 0.0499   | 1.0000           |
| 35        | DL-STPM<br>DL-STPM    | 2                |        |          |                  |
| 36        |                       | 2                | 0.0000 | 0.0000   | 1.0000           |
|           | STPM<br>DL-STPM       |                  | 1.0000 | 1.0000   | 0.0000           |
| 37        |                       | 2                | 0.0000 | 0.0000   | 1.0000           |
| 38        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 39        | STPM                  | 1                | 1.0000 | 1.0000   | 0.0000           |
| 40        | DL-ST PM              | 1                | 0.0000 | 0.8339   | 1.0000           |
| 41        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 42        | STPM                  | 1                | 1.0000 | 1.0000   | 0.0000           |
| 43        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 44        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 45        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 46        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 47        | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0159           |
| 48        | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0000           |
| 49        | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0000           |
| 50        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 51        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 52        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 53        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 54        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 55        | STPM-enh              | 1                | 0.0000 | 1.0000   | 0.8339           |
| 56        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 57        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 58        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 59        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 60        | DL-STPM               | 2                | 0.0000 | 0.0000   | 1.0000           |
| 61        | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0000           |
| 62        | STPM-enh              | 2                | 0.0000 | 1.0000   | 0.0499           |
| 63        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 64        | STPM                  |                  | 1.0000 | 1.0000   | 0.0000           |
|           |                       | 1                |        |          |                  |
| 65        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 66        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 67        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 68        | STPM<br>DL STDM       | 1                | 1.0000 | 1.0000   | 0.0000           |
| 69        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 70        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 71        | STPM                  | 2                | 1.0000 | 0.0000   | 0.0000           |
| 72        | DL-ST PM              | 2                | 0.0000 | 0.0000   | 1.0000           |
| 73        | DL-ST PM              |                  | 0.0000 | 0.0041   | 1.0000           |

Table A.14.: Significance evaluation current model for DL-STPM.

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STPM-enh<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                             | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000                                                                                                                                                                                                                                                                                                     | 1.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000           1.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           1.0000           1.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           1.0000           1.0000           1.0000           1.0000           1.0000           1.0000           1.0000           1.0000           0.2805           0.0000           1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccc} 76 & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0041<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           1.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           1.0000           1.0000           1.0000           1.0000           1.0000           1.0000           1.0000           0.2805           0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 777         S           78         S           79         S           80         I           81         S           82         S           83         S           84         S           85         I           86         I           87         I           88         S           90         I           91         S           92         S           93         S           94         S           95         I           96         S           97         I           96         S           97         I           98         I           100         I           1010         I           102         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           110         I           1111           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STPM<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000 1.0000 1.0000 1.0000 0.0001 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 |
| $\begin{array}{cccc} 78 & {\rm S} \\ 79 & {\rm S} \\ 80 & {\rm E} \\ 81 & {\rm S} \\ 82 & {\rm S} \\ 83 & {\rm S} \\ 84 & {\rm S} \\ 85 & {\rm E} \\ 87 & {\rm E} \\ 88 & {\rm S} \\ 89 & {\rm E} \\ 90 & {\rm E} \\ 91 & {\rm S} \\ 92 & {\rm S} \\ 93 & {\rm S} \\ 93 & {\rm S} \\ 94 & {\rm E} \\ 94 & {\rm E} \\ 95 & {\rm E} \\ 96 & {\rm S} \\ 97 & {\rm E} \\ 98 & {\rm S} \\ 98 & {\rm S} \\ 98 & {\rm S} \\ 100 & {\rm E} \\ 100 & {\rm E} \\ 101 & {\rm E} \\ 103 & {\rm E} \\ 103 & {\rm E} \\ 104 & {\rm S} \\ 105 & {\rm S} \\ 106 & {\rm E} \\ 107 & {\rm E} \\ 108 & {\rm E} \\ 109 & {\rm E} \\ 109 & {\rm E} \\ 100 & {\rm E} \\ 110 & {\rm E} \\ 111 & {\rm E} \\ 111 & {\rm E} \\ 112 & {\rm E} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STPM-enh<br>STPM-enh<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                               | 2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 1.0000<br>1.0000<br>0.0041<br>1.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0499<br>1.0000<br>0.0459<br>1.0000<br>1.0000<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 |
| $\begin{array}{cccc} 79 & {\rm S} \\ 80 & {\rm I} \\ 81 & {\rm S} \\ 82 & {\rm S} \\ 83 & {\rm S} \\ 84 & {\rm S} \\ 85 & {\rm I} \\ 86 & {\rm I} \\ 88 & {\rm S} \\ 89 & {\rm I} \\ 90 & {\rm I} \\ 90 & {\rm I} \\ 91 & {\rm S} \\ 93 & {\rm S} \\ 93 & {\rm S} \\ 94 & {\rm I} \\ 95 & {\rm I} \\ 95 & {\rm I} \\ 95 & {\rm I} \\ 96 & {\rm S} \\ 97 & {\rm I} \\ 98 & {\rm S} \\ 97 & {\rm I} \\ 98 & {\rm S} \\ 99 & {\rm I} \\ 100 & {\rm I} \\ 101 & {\rm I} \\ 100 & {\rm I} \\ 103 & {\rm I} \\ 103 & {\rm I} \\ 104 & {\rm S} \\ 105 & {\rm S} \\ 106 & {\rm I} \\ 107 & {\rm I} \\ 108 & {\rm I} \\ 109 & {\rm I} \\ 109 & {\rm I} \\ 110 & {\rm I} \\ 111 & {\rm I} \\ 1112 & {\rm I} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STPM<br>DL-STPM<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                  | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.000000                                                                                                                                                                                                                                                                                                                                      | 1.0000<br>0.0041<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0499<br>1.0000<br>0.0499<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 |
| 80         Г           81         S           82         S           83         S           85         Г           86         Г           87         Г           88         S           90         Г           91         S           92         S           93         S           94         Г           95         Г           96         S           97         Г           98         S           99         Г           100         Г           101         Г           102         Г           103         Г           104         S           105         Г           106         Г           107         Г           108         Г           109         Г           100         Г <td>DL-STPM<br/>STPM-enh<br/>STPM-enh<br/>STPM-enh<br/>DL-STPM<br/>DL-STPM<br/>DL-STPM<br/>DL-STPM<br/>DL-STPM<br/>STPM-enh<br/>DL-STPM<br/>STPM-enh<br/>DL-STPM<br/>DL-STPM<br/>DL-STPM<br/>DL-STPM<br/>DL-STPM<br/>DL-STPM<br/>DL-STPM<br/>DL-STPM<br/>DL-STPM</td> <td>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</td> <td>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.00000<br/>0.00000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.00000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.00000<br/>0.000000</td> <td>0.0041<br/>1.0000<br/>1.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>1.0000<br/>0.0000<br/>1.0000<br/>0.0000<br/>1.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000<br/>0.0000</td> <td>1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           1.0000           1.0000           1.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0499           1.0000           0.0459           1.0000           1.0000           0.2805           0.0000           1.0000</td> | DL-STPM<br>STPM-enh<br>STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0041<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           1.0000           1.0000           1.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0499           1.0000           0.0459           1.0000           1.0000           0.2805           0.0000           1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 81         S           82         S           83         S           84         S           85         I           86         I           87         I           88         S           88         S           90         I           91         S           92         S           93         S           94         I           95         I           96         S           97         I           96         S           97         I           90         I           100         I           1010         I           102         I           103         I           104         S           105         I           106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STPM-enh           STPM-enh           STPM-enh           DL-STPM           DL-STPM | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.0000000<br>0.00000<br>0.00000000                                                          | 0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0009<br>1.0000<br>0.0009<br>1.0000<br>0.0099<br>1.0000<br>0.0159<br>1.0000<br>1.0000<br>0.2805<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0009<br>1.0000<br>0.0009<br>1.0000<br>0.0009<br>1.0000<br>0.0009<br>1.0000<br>0.0000<br>0.0009<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 |
| 82         S           83         S           84         S           85         I           86         I           87         I           88         S           90         I           91         S           92         S           93         S           94         I           95         I           96         S           97         I           98         S           99         I           100         I           101         I           102         I           103         I           104         S           105         I           106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                           | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0499<br>1.0000<br>0.0159<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.2805<br>0.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.0000000<br>0.00000<br>0.00000<br>0.00000<br>0.00000000                                     | 0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0009<br>1.0000<br>0.0499<br>1.0000<br>0.0459<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000 |
| 84         S           85         I           86         I           87         I           88         S           90         I           91         S           92         S           93         S           94         I           95         I           96         S           99         I           100         I           101         I           102         I           103         I           104         S           105         I           106         I           108         I           109         I           110         I           1111         I           1112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM<br>DL-STPM<br>STPM-enh<br>STPM-enh<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>1.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0499<br>1.0000<br>0.0499<br>1.0000<br>0.0459<br>1.0000<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0459<br>1.0000<br>0.0000<br>1.0000<br>1.0000<br>0.2805<br>0.0000<br>1.0000<br>1.0000<br>0.2805<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 |
| 85         I           86         I           87         I           88         S           88         S           90         I           91         S           92         S           93         S           94         I           95         I           96         S           97         I           98         S           99         I           100         I           1012         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0000           1.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0009           1.0000           0.0499           1.0000           0.0159           1.0000           1.0000           1.0000           1.0000           1.0000           1.0000           0.2805           0.0000           1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DL-STPM<br>DL-STPM<br>STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000           1.0000           0.0000           1.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0009           1.0000           0.0159           1.0000           1.0000           1.0000           1.0000           0.2805           0.0000           1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0009<br>1.0000<br>0.0499<br>1.0000<br>0.0159<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.2805<br>0.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 88         S           89         I           90         I           91         S           92         S           93         S           94         I           95         I           96         S           97         I           98         S           99         I           101         I           102         I           103         I           104         S           105         S           106         I           108         I           109         I           109         I           100         I           1010         I           102         I           103         I           104         S           105         S           106         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0009<br>1.0000<br>0.0499<br>1.0000<br>0.0499<br>1.0000<br>0.0459<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000 |
| 89         I           90         I           91         S           92         S           93         S           94         I           95         I           96         S           97         I           98         S           99         I           100         I           101         I           102         I           103         I           104         S           106         I           107         I           108         I           109         I           100         I           1010         I           103         I           104         S           105         I           106         I           107         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000           1.0000           0.0000           0.0000           0.0000           1.0000           1.0000           0.0499           1.0000           0.0459           1.0000           1.0000           1.0000           1.0000           1.0000           1.0000           1.0000           1.0000           1.0000           1.0000           0.2805           0.0000           1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 90         I           91         S           92         S           93         S           94         I           95         I           96         S           97         I           98         S           99         I           100         I           101         I           102         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           109         I           100         I           101         I           102         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DL-STPM<br>STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0000           0.0000           0.0000           0.0000           1.0000           0.0499           1.0000           0.0159           1.0000           1.0000           1.0000           0.0159           1.0000           1.0000           0.2805           0.0000           1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 91         S           92         S           93         S           94         I           95         I           96         S           97         I           98         S           99         I           100         I           101         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>0.0009<br>1.0000<br>1.0000<br>0.0499<br>1.0000<br>0.0159<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 91         S           92         S           93         S           94         I           95         I           96         S           97         I           98         S           99         I           100         I           101         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000<br>0.0000<br>1.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>0.0009<br>1.0000<br>1.0000<br>0.0499<br>1.0000<br>0.0159<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 92         S           93         S           94         I           95         I           95         I           96         S           97         I           98         S           99         I           100         I           101         II           102         I           103         I           104         S           105         S           106         I           108         I           109         I           100         I           1010         I           102         I           103         I           104         S           105         S           106         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>0.0009<br>1.0000<br>1.0000<br>0.0499<br>1.0000<br>0.0159<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.2805<br>0.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 93         S           94         I           95         I           95         I           96         S           97         I           98         S           99         I           100         I           101         I           102         I           103         I           104         S           106         I           107         I           108         I           109         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STPM-enh<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0009 1.0000 1.0000 0.0499 1.0000 0.0159 1.0000 1.0000 1.0000 1.0000 1.0000 0.2805 0.0000 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 94         I           95         I           96         S           97         I           98         S           99         I           100         I           101         I           102         I           103         I           104         S           106         I           107         I           108         I           109         I           109         I           100         I           1010         I           110         I           1112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DL-STPM<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0000<br>1.0000<br>0.0499<br>1.0000<br>0.0159<br>1.0000<br>1.0000<br>1.0000<br>0.2805<br>0.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 95         I           96         S           97         I           98         S           99         I           100         I           101         I           102         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           100         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM-enh<br>STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000           0.0499           1.0000           0.0159           1.0000           1.0000           1.0000           1.0000           0.2805           0.0000           1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 96         S           97         I           98         S           99         I           100         I           101         I           102         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           100         I           100         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STPM-enh<br>DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM-enh<br>STPM-DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0499<br>1.0000<br>0.0159<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.2805<br>0.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 97         I           98         S           99         I           100         I           101         I           102         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           101         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000         0.0159         1.0000         1.0000         1.0000         1.0000         0.0000         0.2805         0.0000         1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 98         S           99         I           100         I           101         I           102         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STPM-enh<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                     | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0159<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.2805<br>0.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 99         I           100         I           101         I           102         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>2<br>2<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.2805<br><b>0.0000</b><br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 100         Г           101         Г           102         Г           103         Г           104         S           105         S           106         Г           107         Г           108         Г           109         Г           110         Г           111         Г           112         Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                    | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000<br>1.0000<br>1.0000<br>0.2805<br><b>0.0000</b><br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 101         I           102         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DL-STPM<br>DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2                                                   | 0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0000<br>1.0000<br>0.2805<br><b>0.0000</b><br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 102         I           103         I           104         S           105         S           106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DL-STPM<br>DL-STPM<br>STPM-enh<br>STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>2<br>1<br>2<br>2<br>2<br>2<br>2                                                             | 0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000<br>1.0000<br>0.2805<br><b>0.0000</b><br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 103         I           104         S           105         S           106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DL-STPM<br>STPM-enh<br>STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>1<br>2<br>2<br>2<br>2                                                                       | 0.0000<br>0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000<br>1.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000<br>0.2805<br>0.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 104         S           105         S           106         D           107         D           108         D           109         D           110         D           111         D           112         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STPM-enh<br>STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>2<br>2<br>2<br>2                                                                            | 0.0000<br>1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2805<br>0.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 105         S           106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>2<br>2<br>2                                                                                 | 1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 106         I           107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DL-STPM<br>DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>2<br>2                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 107         I           108         I           109         I           110         I           111         I           112         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DL-STPM<br>DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>2                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 108 II<br>109 II<br>110 II<br>111 II<br>112 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 109 I<br>110 I<br>111 I<br>112 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 110 I<br>111 I<br>112 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 111 Г<br>112 Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                  | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 112 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 113   L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 125 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 126 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 127 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 128 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL-STPM<br>DL-STPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | оц-51 РМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 146 S<br>147 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STPM-enh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table A.14.: Significance evaluation current model for DL-STPM cont.

| Part                                                        | Best model                                                                      | $\psi_{bm}$                          | STPM                                           | STPM-enh                                       | DL-STPM                                        |
|-------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 148                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 149                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 150                                                         | STPM-enh                                                                        | 2                                    | 0.0000                                         | 1.0000                                         | 0.0000                                         |
| 151                                                         | STPM-enh                                                                        | 2                                    | 0.0000                                         | 1.0000                                         | 0.0000                                         |
| 152                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 153                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 154                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 155                                                         | STPM                                                                            | 1                                    | 1.0000                                         | 1.0000                                         | 0.0000                                         |
| 156                                                         | STPM-enh                                                                        | 2                                    | 0.0000                                         | 1.0000                                         | 0.0000                                         |
| 157                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 158                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 159                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 160                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 161                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 162                                                         | STPM-enh                                                                        | 2                                    | 0.0000                                         | 1.0000                                         | 0.0000                                         |
| 163                                                         | STPM-enh                                                                        | 2                                    | 0.0000                                         | 1.0000                                         | 0.0000                                         |
| 164                                                         | STPM                                                                            | 1                                    | 1.0000                                         | 1.0000                                         | 0.0000                                         |
| 165                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 166                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 167                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 168                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 169                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0041                                         | 1.0000                                         |
| 170                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 171                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 172                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0041                                         |
| 173                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 174                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 175                                                         | STPM                                                                            | 1                                    | 1.0000                                         | 1.0000                                         | 0.0000                                         |
| 176                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0009                                         | 1.0000                                         |
| 177                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 178                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 179                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 180                                                         | STPM-enh                                                                        | 2                                    | 0.0000                                         | 1.0000                                         | 0.0000                                         |
| 181                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 182                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 183                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 184                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 185                                                         | STPM-enh                                                                        | 2                                    | 0.0000                                         | 1.0000                                         | 0.0000                                         |
| 186                                                         | STPM-enh                                                                        | 2                                    | 0.0000                                         | 1.0000                                         | 0.0000                                         |
| 187                                                         | STPM-enh                                                                        | 1                                    | 0.0000                                         | 1.0000                                         | 0.5199                                         |
| 188                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 189                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0009                                         | 1.0000                                         |
| 190                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 191                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 192                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 193                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0001                                         | 1.0000                                         |
| 194                                                         | DL-STPM                                                                         | 1                                    | 0.0000                                         | 0.8339                                         | 1.0000                                         |
| 195                                                         | DL-STPM                                                                         | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 196                                                         | STPM                                                                            | 1                                    | 1.0000                                         | 1.0000                                         | 0.0000                                         |
| 197                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 198                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 199                                                         | DL-STPM                                                                         | 2                                    | 0.0000                                         | 0.0041                                         | 1.0000                                         |
| 200                                                         | STPM                                                                            | 1                                    | 1.0000                                         | 1.0000                                         | 0.0000                                         |
| 200                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 202                                                         | STPM                                                                            | 2                                    | 1.0000                                         | 0.0000                                         | 0.0000                                         |
| 202                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 203                                                         | DL-STPM                                                                         | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 205                                                         | STPM-enh                                                                        | 2                                    | 0.0000                                         | 1.0000                                         | 0.0000                                         |
| 206                                                         | STPM-enh                                                                        | 1                                    | 0.0000                                         | 1.0000                                         | 0.2805                                         |
| 207                                                         | STPM-enh                                                                        | 2                                    | 0.0000                                         | 1.0000                                         | 0.0000                                         |
| 208                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 209                                                         | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
|                                                             | DL-ST PM                                                                        | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 210                                                         |                                                                                 | 2                                    | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 210                                                         | DL-ST PM                                                                        |                                      | 0.0000                                         | 0.1290                                         | 1.0000                                         |
| 210<br>211                                                  |                                                                                 | 1                                    |                                                |                                                |                                                |
| 210<br>211<br>212                                           | DL-ST PM                                                                        | 1 2                                  |                                                | 1.0000                                         | 0.0000                                         |
| 210<br>211<br>212<br>213                                    | DL-ST PM<br>ST PM-enh                                                           | 2                                    | 0.0000                                         | 1.0000<br>0.0000                               | 0.0000                                         |
| 210<br>211<br>212<br>213<br>214                             | DL-ST PM<br>ST PM-enh<br>DL-ST PM                                               | 2<br>2                               | 0.0000                                         | 0.0000                                         | 1.0000                                         |
| 210<br>211<br>212<br>213<br>214<br>215                      | DL-ST PM<br>ST PM-enh<br>DL-ST PM<br>DL-ST PM                                   | 2<br>2<br>2                          | 0.0000<br>0.0000<br>0.0000                     | 0.0000<br>0.0000                               | 1.0000<br>1.0000                               |
| 210<br>211<br>212<br>213<br>214<br>215<br>216               | DL-STPM<br>STPM-enh<br>DL-STPM<br>DL-STPM<br>STPM-enh                           | 2<br>2<br>2<br>2                     | 0.0000<br>0.0000<br>0.0000<br>0.0000           | 0.0000<br>0.0000<br>1.0000                     | 1.0000<br>1.0000<br><b>0.0000</b>              |
| 210<br>211<br>212<br>213<br>214<br>215<br>216<br>217        | DL-STPM<br>STPM-enh<br>DL-STPM<br>STPM-enh<br>STPM                              | 2<br>2<br>2<br>2<br>2                | 0.0000<br>0.0000<br>0.0000<br>1.0000           | 0.0000<br>0.0000<br>1.0000<br>0.0000           | 1.0000<br>1.0000<br>0.0000<br>0.0000           |
| 210<br>211<br>212<br>213<br>214<br>215<br>216<br>217<br>218 | DL-ST PM<br>ST PM-enh<br>DL-ST PM<br>DL-ST PM<br>ST PM-enh<br>ST PM<br>DL-ST PM | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 0.0000<br>0.0000<br>0.0000<br>1.0000<br>0.0000 | 0.0000<br>0.0000<br>1.0000<br>0.0000<br>0.0000 | 1.0000<br>1.0000<br>0.0000<br>0.0000<br>1.0000 |
| 210<br>211<br>212<br>213<br>214<br>215<br>216<br>217        | DL-STPM<br>STPM-enh<br>DL-STPM<br>STPM-enh<br>STPM                              | 2<br>2<br>2<br>2<br>2                | 0.0000<br>0.0000<br>0.0000<br>1.0000           | 0.0000<br>0.0000<br>1.0000<br>0.0000           | 1.0000<br>1.0000<br>0.0000<br>0.0000           |

Table A.14.: Significance evaluation current model for DL-STPM cont.

| Part              | Best model           | $\psi_{bm}$ | STPM             | STPM-enh         | DL-STPM |
|-------------------|----------------------|-------------|------------------|------------------|---------|
| 221               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 222               | STPM-enh             | 1           | 0.0000           | 1.0000           | 0.8339  |
| 223               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 224               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 225               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 226               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 227               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 228               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 229               | DL-ST PM             | 2           | 0.0000           | 0.0041           | 1.0000  |
| 230               | STPM-enh             | 1           | 0.0000           | 1.0000           | 0.8339  |
| 231               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 232               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 233               | STPM-enh<br>DL-STPM  | 2           | 0.0000           | 1.0000           | 0.0000  |
| 234<br>235        | DL-STPM<br>DL-STPM   | 1           | 0.0000           | 0.2805           | 1.0000  |
| 235               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 230               | DL-STPM              | 2           | 0.0000           | 0.0000           | 1.0000  |
| 238               | DL-STPM              | 2           | 0.0000           | 0.0000           | 1.0000  |
| 239               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0159  |
| 240               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 241               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 242               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 243               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 244               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0499  |
| 245               | DL-ST PM             | 2           | 0.0000           | 0.0009           | 1.0000  |
| 246               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 247               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 248               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 249               | STPM-enh             | 1           | 0.0000           | 1.0000           | 0.1290  |
| 250               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0041  |
| 251               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 252               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 253               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 254               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 255               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0159  |
| 256               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0001  |
| 257               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 258               | DL-ST PM             | 2           | 0.0000           | 0.0159           | 1.0000  |
| 259<br>260        | STPM-enh<br>DL-STPM  | 2           | 0.0000           | 1.0000<br>0.0000 | 0.0000  |
| 260               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 261               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0009  |
| 262               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 264               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 265               | DL-STPM              | 2           | 0.0000           | 0.0000           | 1.0000  |
| 266               | STPM-enh             | 1           | 0.0000           | 1.0000           | 0.1290  |
| 267               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 268               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 269               | DL-ST PM             | 2           | 0.0000           | 0.0041           | 1.0000  |
| 270               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 271               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 272               | STPM                 | 2           | 1.0000           | 0.0000           | 0.0000  |
| 273               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 274               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 275               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
| 276               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 277               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 278               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0041  |
| 279               | STPM-enh             | 1           | 0.0000           | 1.0000           | 0.8339  |
| 280               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0001  |
| 281               | STPM-enh             | 2           | 0.0000           | 1.0000           | 0.0000  |
| 282               | STPM-enh<br>STPM-enh | 2           | 0.0000           | 1.0000           | 0.0000  |
| 283<br>284        | STPM-enh<br>STPM-enh | 2           |                  | 1.0000           | 0.0000  |
| 284<br>285        | STPM-enh<br>STPM-enh | 1 2         | 0.0000           | 1.0000           | 0.8339  |
| 285<br>286        | STPM-enh<br>STPM-enh | 2           | 0.0000           | 1.0000           | 0.0000  |
| 280               | DL-ST PM             | 2           | 0.0000           | 0.0000           | 1.0000  |
|                   | STPM                 | 2           | 1.0000           | 0.0000           | 0.0000  |
| 288               |                      | 2           | 0.0000           | 0.0000           | 1.0000  |
| 288<br>289        |                      | . ~         |                  |                  |         |
| 288<br>289<br>290 | DL-STPM<br>STPM-enh  | 1           | 0.0000           | 1.0000           | 0.1290  |
| 289               |                      | 1           | 0.0000<br>1.0000 | 1.0000           | 0.1290  |
| 289<br>290        | STPM-enh             |             |                  |                  |         |

Table A.14.: Significance evaluation current model for DL-STPM cont.

| Part                                   | Best model                                    | $\psi_{bm}$ | STPM             | STPM-enh         | DL-STPM          |
|----------------------------------------|-----------------------------------------------|-------------|------------------|------------------|------------------|
| 294                                    | DL-ST PM                                      | 1           | 0.0000           | 0.2805           | 1.0000           |
| 295                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 296                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 297                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0000           |
| 298                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 299                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0000           |
| 300                                    | DL-ST PM                                      | 1           | 0.0000           | 0.2805           | 1.0000           |
| 301                                    | DL-STPM                                       | 2           | 0.0000           | 0.0000           | 1.0000           |
| 302                                    | STPM-enh                                      | 1           | 0.0000           | 1.0000           | 0.1290           |
| 303                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0000           |
| 304                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 305                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
|                                        | DL-ST PM                                      |             |                  |                  | 1.0000           |
| 306<br>307                             |                                               | 2           | 0.0000           | 0.0000           |                  |
|                                        | DL-ST PM                                      | 1           | 0.0000           | 0.5199           | 1.0000           |
| 308                                    | DL-ST PM                                      | 1           |                  | 0.1290           |                  |
| 309                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 310                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0499           |
| 311                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 312                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 313                                    | STPM                                          | 2           | 1.0000           | 0.0000           | 0.0000           |
| 314                                    | STPM                                          | 2           | 1.0000           | 0.0000           | 0.0000           |
| 315                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 316                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 317                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 318                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 319                                    | DL-ST PM                                      | 1           | 0.0000           | 0.1290           | 1.0000           |
| 320                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 321                                    | STPM                                          | 1           | 1.0000           | 0.0000           | 0.5199           |
| 322                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0499           |
| 323                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0000           |
| 324                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 325                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0041           |
| 326                                    | DL-ST PM                                      | 1           | 0.0000           | 0.5199           | 1.0000           |
| 327                                    | DL-ST PM                                      | 1           | 0.0000           | 0.1290           | 1.0000           |
| 328                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0000           |
| 329                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 330                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 331                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0499           | 1.0000           |
| 332                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 333                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0000           |
| 334                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 335                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0000           |
| 336                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0009           |
| 337                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0001           |
| 338                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0001           |
| 339                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 340                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 341                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0000           |
| 341<br>342                             | DL-STPM                                       | 2           | 0.0000           | 0.0000           | 1.0000           |
| 342<br>343                             | DL-STPM<br>DL-STPM                            | 2           | 0.0000           | 0.0000           | 1.0000           |
| 343<br>344                             | DL-STPM<br>DL-STPM                            | 2           | 0.0000           | 0.0000           | 1.0000           |
| 344<br>345                             | DL-ST PM<br>DL-ST PM                          | 2           | 0.0000           | 0.0159           |                  |
| 34 5<br>34 6                           | STPM                                          | 2           | 1.0000           | 0.0000           | 1.0000<br>0.0000 |
|                                        | STPM<br>STPM                                  |             |                  |                  |                  |
| 347                                    |                                               | 2           | 1.0000           | 0.0000           | 0.0000           |
| 348                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 349                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0499           | 1.0000           |
| 350                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 351                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0499           |
| 352                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 353                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 354                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0000           |
| 355                                    | STPM-enh                                      | 1           | 0.0000           | 1.0000           | 0.5199           |
| 356                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
| 357                                    | STPM-enh                                      | 2           | 0.0000           | 1.0000           | 0.0000           |
|                                        | STPM                                          | 1           | 1.0000           | 1.0000           | 0.0000           |
| 358                                    | DL-ST PM                                      | 2           | 0.0000           | 0.0000           | 1.0000           |
|                                        | DB-011M                                       | 2           | 0.0000           | 0.0000           | 1.0000           |
| 358                                    | DL-ST PM                                      | 4           |                  |                  |                  |
| 358<br>359                             |                                               | 2           | 0.0000           | 1.0000           | 0.0000           |
| 358<br>359<br>360                      | DL-ST PM                                      |             | 0.0000           | 1.0000<br>0.0000 | 0.0000<br>1.0000 |
| 358<br>359<br>360<br>361               | DL-ST PM<br>ST PM-enh                         | 2           |                  |                  |                  |
| 358<br>359<br>360<br>361<br>362        | DL-ST PM<br>ST PM-enh<br>DL-ST PM             | 2<br>2      | 0.0000           | 0.0000           | 1.0000           |
| 358<br>359<br>360<br>361<br>362<br>363 | DL-ST PM<br>ST PM-enh<br>DL-ST PM<br>DL-ST PM | 2<br>2<br>2 | 0.0000<br>0.0000 | 0.0000<br>0.0000 | 1.0000<br>1.0000 |

Table A.14.: Significance evaluation current model for DL-STPM cont.

## Declaration of Authorship

I hereby declare that this thesis was created by me and me alone using only the stated sources and tools.

Robby Henkelmann

Magdeburg, June 14, 2018