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1. Introduction

A modern car is composed of round about 30,000 parts [93]. Components that

bust over time, need to be replaced during the maintenance process. Therefore,

spare parts are needed at the right place, in the right quality and quantity, for

replacement of broken parts to keep the car working. As of Biedermann [7],

this is controlled by spare part management. Due to the steadily increasing

complexity of the products of the automotive industry over the last decades

the spare part management activities also gained intricacy. This enlarged the

economic importance of the spare part sector for the automotive companies.

The after sales services, including all activities following the sale of the car,

are holding a pro�t share nearly ten times larger than the car sales [86]. The

spare part business generates around 50% to 70% of this revenue. According

to a study of McKinsey & Company [70], this market will further grow in the

next decade. This expanding market will also increase the importance of the

spare part management.

The steadily growing revenues and the increasing complexity of the spare part

management raise the need of optimization. This works focus is set on the

optimization of the spare part demands of a worldwide operating automo-

tive company by using computational intelligence techniques to predict future

demands, based on the available historic demand data, minimizing over- or un-

derestimations of the real demand. According to Klug [57], future spare part

demands should be predicted as accurate as possible to optimize the spare part

management related costs, like production, storage and transport expense, to

gain a competitive advantage and raise earnings of the spare part sector.

Since 2014 IBM developed plenty of models for long-term spare part demand

prediction with several worldwide operating car manufacturers. In contrast

to short-term predictions these models forecast the spare part demand for a

much longer time span, than the period of historic demand available for model

training. Each of these models uses the historic demand data of a particular

class of spare parts, to apply the approache's characteristic strengths, aligned
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1. Introduction

Figure 1.1.: Spare part demand time series.

for the category of parts. The requirements of long-term predictions and of

the di�erent spare part classes arise the need of specialized models. Within

this work young and fast-moving spare parts are covered. This class of parts

is characterized by only a short historic demand period and by regular and

frequent demands [34]. IBM already developed a model for this category of

spare parts, the Short-Term Prediction Model (STPM). This existing model is

at an expansion stage, that allows further re�nement, to increase the prediction

quality.

Figure 1.1 shows the demand history of a spare part, whose demand will be

predicted within this work. The abscissa represents the time and the ordinate

shows the spare part demand. The curve on the left side of the vertical line

represents the data that is available for training of the model. The area on the

right side shall be predicted. It may be noted that this part is a reference part

with a much longer demand history than available for the actual parts of the

above-mentioned category. Nevertheless, this part once fell into the young and

fast-moving spare part class and can now be used for model evaluation. The

plot illustrates some of the challenges of this prediction task. Only a few data

are available for model training. Based on this information the pattern of the

future demand needs to be predicted. The training data not always represents

the future pattern. The demand curve underlies plenty of unknown in�uence

2



1.1. Motivation and Targets

factors. These points could be further extended but they already substantiate

that forecasting under these conditions is a tough task, that should be dealt

with in this thesis.

1.1. Motivation and Targets

Several works have underlined the economic importance of the spare part busi-

ness for automotive companies. Klug [57] states that an optimal spare part

management is crucial to business success in the automotive industry. Schuh

and Stich [82], as well as McKinsey & Company [70], predict a growth of the

after sales market, including the spare part business for the next years. Fur-

thermore, Dombrowski and Schulze [29] attest the spare part management a

large share of the after sales revenue. All these points underline an economic

need of spare part management and its optimization.

Demand predictions are used for many purposes, one example is contract ne-

gotiations with suppliers. The more accurate the forecast, the better the start-

ing position for negotiations. Not used spare parts are bounded capital that

produces costs by storage and maintenance instead of producing revenues.

Therefore, an overestimation must be regarded as negative. Underestima-

tion of demands could lead to bottlenecks in spare part supply. This could

in worst case result in unnecessary downtime of the cars, which reduces cus-

tomer satisfaction and damages the brand overall. According to Klug [57], a

good working spare part supply is nowadays an important factor regarding the

customers purchase decision. These points summarize the economic need of

accurate forecasts of spare part demand for an automotive car manufacturer.

Plenty of works proposed models for spare part demand forecasting. Croston

[21] published a model based on Simple Exponential Smoothing for spare part

demand forecasting. Syntetos and Boylan [90] enhanced Crostons estimator

by adding smoothing parameter. Willemain et al. [99] applied bootstrapping

for spare part demand forecasting. Chiou et al. [18] used the grey theory

to forecast spare part demands. Hua and Zhang proposed a Support Vector

Machine based model and Gutierrez et al. [41] applied a neural network for

spare part demand prediction. Most of these works uses statistical models for

prediction of the demand. According to Bontempi et al. [8] machine learning

approaches obtained promising results in the area of time series forecasting

3



1. Introduction

in the last decade. This trend is not recognizable for spare part demand

forecasting, which is a related area.

This motivates the identi�cation of the characteristics of spare part demand

time series to perform a literature review for determination of possible compu-

tational intelligence approaches, applicable to the spare part demand forecast-

ing problem of this thesis. Arti�cial Neural Networks stand out by their ability

to capture patterns within the data. Proof of Concept tests showed promising

results applying neural networks to the spare part demand prediction problem

even if there is only few data available for model training. Based on the litera-

ture review and the results of the Proof of Concept tests the following research

question is phrased for this thesis:

Could an Arti�cial Neural Network based prediction model forecast

the young fast-moving spare part demand with higher accuracy than

the currently applied model?

This research question is split up into several parts:

• What computational intelligence models are suitable to forecast the de-

mand of young fast-moving spare parts?

• Can the currently applied model be improved, so that an Arti�cial Neural

Network approach is not needed at all?

• How needs the Arti�cial Neural Network model be con�gured to achieve

best possible results?

1.2. Structure of Thesis

The next chapter describes the economic fundamentals of spare part man-

agement. It introduces the spare part life cycle model that is important for

understanding of demand patterns. Further spare part classi�cation possibil-

ities and in�uence factors for spare part demand are discussed. Chapter 3

introduces the fundamental concepts of time series. Based on an extensive lit-

erature review, concepts used for time series and especially spare part demand

forecasting are declared and related work is discussed. Furthermore, the fun-

damental concepts of Arti�cial Neural Networks are introduced. In Chapter 4

the spare part demand data provided by a large automotive manufacturer is

4



1.2. Structure of Thesis

discussed. Furthermore, the currently applied model is analyzed and possible

enhancements are proposed and reviewed. Chapter 5 then proposes the arti�-

cial neural network based, especially a deep learning based model for spare part

demand forecasting. The potential parameter con�gurations of the model are

discussed and statistically evaluated by plenty experiments to determine the

best possible con�guration. In Chapter 6 the proposed model is compared to

the currently applied model and its suggested enhancements. Finally, Chapter

7 summarizes the �ndings of the thesis, critically reviews them and provides a

research outlook.
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2. Fundamentals of Automotive

Spare Part Demand

Management

This chapter gives a brief overview of the economic fundamentals of spare part

management. It de�nes some of the terms of relevance for this thesis and ex-

plains their relationship among each other. The spare part life cycle model

as an important background for spare part demand forecasting is introduced.

Further di�erent approaches for spare part classi�cation are presented and the

scope of this work is restricted accordingly. Finally, some in�uencing factors

of spare part demand are discussed to give a brief introduction into the eco-

nomically complexity of spare part demand forecasting.

Spare part management is used across all industries. The focus of this work is

in the automotive sector and all de�nitions and explanations could be regarded

as of the automotive industry.

Spare Part

Products are generally composed of plenty of parts. As of DIN24420-1 [27]

spare parts are "parts, groups of parts (also called components) or complete

products, that are needed to replace damaged, worn or missing parts, groups

of parts or products." According to Schroeter [81] spare parts are secondary

products. They are elements that could be replaced to restore or keep the

operating functionality of the primary products during their whole lifetime.

This concludes that a spare part demand could only exist after the purchase of

the primary products, which are cars in case of this thesis. Strunz [88] declares

spare parts as elements that get worn during the usage of the primary product

and need to be replaced, and states this action as fundamental activity of the

maintenance process.

7



2. Fundamentals of Automotive Spare Part Demand Management

According to DIN31051 [28] spare parts could be further di�erentiated into

backup parts, usage parts and small parts. Strunz [88] describes backup parts

as parts that are kept for a potential part failure of a particular primary prod-

uct, usage parts as parts that are typically worn during the usage, depending

on the intensity of the usage and small parts as universal, often standardized

parts of small value.

Based on the origin spare parts could be classi�ed into the following three

groups [57]:

• Original spare parts are parts that are produced from the Original

Equipment Manufacturer (OEM).

• Foreign spare parts are identical parts produced from other manufac-

tures than the OEM.

• Used spare parts are used, recycled or refurbished parts.

In the context of this work all spare parts are OEM parts. Further possibilities

of spare part classi�cation are covered in Section 2.2 about classi�cation of

spare parts.

Spare Part Management

According to Biedermann [7] spare part management or spare part logistics

deals with all management activities, which assure that a spare part is at the

right time, in the right quality and quantity at the right place at minimal costs.

Klug [57] adds that the spare part management connects all activities around

maintenance and spare parts. As of Schuh and Stich [82] it is the target of the

spare part management to control all involved processes in the right way to

accomplish an economically optimized spare part stock. Schroeter [81] supple-

ments that due to the high complexity and uncertainty of spare part demand

estimation often a security stock is kept bu�ering potential underestimations.

This in�uences the capital commitment costs. An optimal spare part stock

tries to minimize the security stock, and this results in less �xed capital, min-

imized costs for storage and if estimated correctly, still in a minimization of

downtimes. Nevertheless, the determination of an optimal spare part stock is

a nontrivial process and includes plenty in�uence factors. Furthermore, Schuh

and Stich [82] state that the spare part management could be regarded from

two di�erent perspectives. On the one hand side from the viewing point of a

8



customer and on the other hand side it is regarded from the viewing point of

a manufacturer. The latter one is the perspective used for this thesis. Klug

[57] adds that an e�ective spare part management has also in�uence on the

customer satisfaction because in an ideal case there is nearly no downtime of

the product.

After Sales Services

The spare part management is part of a car manufacturer's after sales services.

According to Klug [57] the after sales services are a marketing tool that includes

all activities to increase the customer retention after a purchase. Customers

should be satis�ed, and the customer loyalty of the brand should be strength-

ened. Vahrenkamp and Kotzab [94] add the fact that a high degree of service

can be a criterion for a product decision at all or regarding future decisions.

Therefore, the period of after sales, especially the spare part management,

involves a high potential of customer retention. Satis�ed and convinced cus-

tomers potentially recommend the brand, which also has a positive in�uence

regarding new customers. As of Pfohl [75] there is also feedback from service

entities that could be used for improvement of the after sales services or even

for future designs. Klug [57] therefore concludes that the after sales services

are nowadays an important competitive di�erentiation for car manufacturers.

According to Schuh and Stich [82] the pro�t of the after sales is steadily in-

creasing over the last years. They have become an important area for car

manufacturers. The after sales services market contains high potential pro�t

margins and is often more pro�table than the primary product market. Figure

2.1 shows the proportion of the worldwide pro�t of car manufacturers from

2014 in billions of Euro and underlines the importance of after sales services.

The earnings of the after sales exceeds the return of new car sales by a factor of

over 9. Between 50% and 70% of the total after sales revenue of a car manufac-

turer are generated by the spare part business state Dombrowski and Schulze

[29]. According to a study of McKinsey & Company [70] the global market

value of automotive aftermarket will grow from approximately 760 billion USD

in 2015 to 1200 billion USD by 2030. Therefore, the spare part sector will even

grow in business importance.

Inderfurth and Kleber [50] noted in their paper that the lifetime of a car lasts

usually at least �fteen years, often longer. As stated by Hagen [43] according

9



2. Fundamentals of Automotive Spare Part Demand Management

Figure 2.1.: Worldwide pro�t of car manufacturers 2014 [86].

to legal requirements car manufacturers are forced to provide spare parts for

their products for a period of ten years after the end of production. Klug

[57] found most OEMs to use this requirement to their marketing bene�t and

extend this period of after sales services to an average time span of 15 years

after the end of production. He also added that this long period of spare part

supply results in high bound capital and storage costs, which underlines the

need of optimization of spare part demand estimation.

2.1. Spare Part Life Cycle Model

To understand and predict the spare part demand the life cycle model of spare

parts is of high importance. Figure 2.2 shows the life cycle model of a spare

part, also called the all-time pattern. Based on the work of Fortuin [33], Klug

[57] describes the model in detail, where di�erent phases for the spare part

demand could be derived. Dombrowski and Schulze [29] state that the model

assumes, that the primary product and the spare part demand follow some

rules from the beginning of production until the end of life of the primary

product. The demand pattern of a spare part is always related to the demand

of its primary products, which is related to the cumulated sales of this. As of

Hagen [43] the model assumes also an ideal-typical demand pattern, which is

not always the case in reality. Nonetheless, this does not reduce the signi�cance

of the life cycle model.

10



2.1. Spare Part Life Cycle Model

Figure 2.2.: Spare part demand life cycle model [57].

There are some relative dates in the life cycle of a spare part that are used to

describe the phases of its life [32]:

• Start of Production (SOP): At the SOP the production of the pri-

mary product begins.

• End of Production (EOP): The serial production of the primary

product ends.

• End of Delivery Obligation (EDO): The warranty related, supplier

contract related or self-obligated spare part availability ends.

• End of Service (EOS): The service of the primary product by the

OEM ends. OEM spare parts are no longer distributed.

• End of Life (EOL): The primary product and the spare parts disappear
from the market.

Based on the above de�ned dates basically three major life cycle phases with

di�erent impact on the spare part demand are distinguished by Klug [57].

The absolute dates of these phases di�er in literature from author to author.

Despite the impact of the exact dates is relatively small for this thesis, the

concept of Klug [57] is seen as the most important.
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2. Fundamentals of Automotive Spare Part Demand Management

Initial Phase

The beginning of the initial phase is the SOP, a new car reaches the market.

This phase ends within the �rst third until half of the serial production period.

Klug [57] states the di�culty to estimate the spare part demand besides the

used parts for the primary product due to the lack of historic knowledge about

spare part failure rates and demand patterns as characteristic for this phase.

Nevertheless, to ensure an unimpaired service level high security demands are

stocked, as stated already in the work of Fortuin [33]. Klug [57] describes

that these security stocks are used for immediate reaction to keep the image of

the product on a high level. Often these security stocks are overestimated and

involve an optimization potential. Schroeter [81] notes, that it is also bene�cial

to be able to forecast the demands in terms of manufacturer contracts and

capacity planning.

All parts that are used to forecast demands within the scope of this thesis are

in the initial phase of their lifetime.

Normal Phase

The second phase lasts from the end of the initial phase until the EOP of

the primary product. According to Klug [57] this phase is characterized by

a stabilized demand of the primary product. The OEM has already gained

some knowledge about the parts used in the car. Klug [57] also notes that

the market consistency of the primary product doesn't result in the demand

patterns of the spare parts. Due the today's high complexity of cars, which

results for an OEM in a broad spectrum of parts, the ever shorter innovation

cycles, long spare part warranty periods and the random nature of part failure

it is still di�cult to estimate the spare part demands precisely during this

phase but the forecasts are already more accurate than in the initial phase, as

stated by Klug [57] and also by Schroeter [81].

Final Phase

The �nal phase begins with the car's EOP and lasts until the EOL. According

to Klug [57] the main characteristic of the �nal phase is the steadily decreasing

primary product stock in the market. Fortuin [33] notes that the production

of parts is reduced to the aftermarket demand and is abandoned for plenty of
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parts over time. Due to the decreasing part demand the production of expiring

parts gets more and more expensive according to Schroeter [81]. Foreign parts

get an increasing market share. The production of parts that are not used

in other car models becomes unpro�table, which results in the end of their

manufacturing. Klug [57] underlines that during this phase a strategy to satisfy

all delivery obligations, e.g. because of warranty periods, needs to be chosen.

To handle spare part demands in the time after the end of part production the

OEMs often use the all-time requirement, where the spare part demand until

the end of life is estimated and spare parts are stocked accordingly as stated

by Fortuin [33] and by Klug [57].

2.2. Classi�cation of Spare Parts

Spare parts are di�erentiated in literature in many ways. First possibilities,

e.g. based on the origin of the spare part, were already introduced in the

spare part de�nition and the spare part lifecycle. According to Loukmidis

and Luczak [67] not every prediction technique is applicable to every type of

demand pattern. Because each class of spare parts has its own characteristics,

a specialized demand forecasting approach should be applied to each. This

specialization of the prediction technique results in the need of spare part

classi�cation as stated by Klug [57].

Based on the categorization criteria some of the most common used and for

this work important classi�cations are discussed in the following. An overview

of classi�cation approaches for spare parts is given in Figure 2.3.

One of the most common classi�cation techniques, according to Bacchetti and

Saccani [3], is the ABC analysis. Schuh and Stich [82] describe the classi�cation

as based on the relevance of the spare parts for the company. This method tries

to estimate the revenue value share of the parts and their demand patterns

to classify them either as A, which make about 80% proportion of the overall

spare part revenue value, class B with about 15% share of the revenue value

and C with the remaining 5%. Klug [57] adds that the ABC analysis makes use

of the Pareto principle and the Lorenz curve. An enhancement exists in the

XYZ analysis, which adds a demand regularity based approach as described

by Loukmidis and Luczak [67]. It uses features of the demand predictability

for the classi�cation scheme. Parts of class X are easy to predict, parts of class

Y are characterized by an unstable demand, which makes them more di�cult
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Figure 2.3.: Spare part classi�cation approaches [66].

to predict and class Z parts are very di�cult to forecast already within a

short horizon because of their chaotic demand pattern. The combined analysis

results in nine di�erent classes. Additionally Schuh and Stich [82] noted that

there exist also modi�cations, which make use of the demand frequency instead

of economic relevance in terms of revenue value as ABC classi�cation features.

It is also possible to categorize spare parts based on the demand characteristics.

One popular approach was published by Boylan et al. [11]. Based on the

mean inter-demand interval, that averages the interval between two successive

demand occurrences, the mean demand size and the coe�cient of variation

of the demand sizes, this approach sets up six di�erent classes: intermittent,

slow moving, erratic, lumpy and clumped. Fortuin and Martin [34] explain a

general distinction based on the demand frequency over a period in two main

classes, which are slow-moving and fast-moving parts, which also is a widely

used approach. Slow-moving spare parts are characterized by an irregular and

infrequent demand. Fast-moving parts on the opposite have a regular and

frequent demand.

In the scope of this work this approach is used. Furthermore, only fast-moving

spare parts are covered through the model.
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Further categorization in�uence factors that exceed the scope of this work are

the costs in case of a failure of the primary product, the spare part logistic

costs, the cost for storage of parts, the costs for acquisition of parts and the

replaceability of the parts. The interested reader is referred to the work of

Bacchetti and Saccani [3], as to the book of Loukmidis and Luczak [67] and to

the work of Schuh and Stich [82] for a detailed review of spare part classi�cation

approaches.

2.3. In�uence Factors for Spare Part Demand

As pointed out by Loukmidis and Luczak [67] spare part demand is in�uenced

by many di�erent factors, each with di�erent impact. Literature generally

distinguishes between in�uence factors related to the primary product, related

to the spare part itself, factors related to maintenance and in�uence factors

related to the spare part market as well as other exogenous factors.

According to Loukmidis and Luczak [67] spare part demand is by its nature

a derivative need. The demand is strongly related to the number of primary

products purchased. The more primary products are on the market, the higher

the spare part demand potential. Furthermore, Pfohl [75] states, that the age

structure and the utilization intensity of primary products in use in�uence the

demand. Also, lifetime, exploitation and recycling of the cars after the end of

usage a�ect the spare part demand pattern. If it comes to demand forecasting

planned sales of the primary product are also in�uencing factors of the primary

product to be considered as noted by Klug [57].

The second class of in�uence factors is part related. According to Loukmidis

and Luczak [67] the major factor is the estimated lifetime of the part. It is

generally dependent on the type of the part, the utilization intensity and on the

type of use. Furthermore, Klug [57] adds that the composition of the primary

product of standard parts, modules or specialized parts has an in�uence on

the demand pattern. In the scope of forecasting the known failure rate of the

parts, the security stocks and the demand history additionally in�uence the

future demand as stated by Pfohl [75].

Furthermore, Loukmidis and Luczak [67] mention that the strategy of main-

tenance also in�uences the spare part demand. Either maintenance could be

done on a regular basis, so to say preventive, it also could be done based
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on the usage or condition of the primary product, or maintenance could be

done only in case of failure. Each strategy has di�erent in�uence on the spare

part demand. Klug [57] notes that usually a mixture of these strategies is

applied in reality, which results in a mixture of stochastic and deterministic

demand in�uence factors. According to future demands historic knowledge of

the maintenance in�uence, e.g. service intervals, can a�ect the demand as well.

Finally, Loukmidis and Luczak [67] point out that the spare part portfolio on

the market has in�uence on the spare part demand. Parts o�ered from di�erent

vendors than the OEM or from di�erent sources, like recycled or refurbished

parts a�ect the demand pattern. The purchase of a new primary product

instead of maintenance also has its share, related itself by the age structure of

the primary products. Pfohl [75] adds that new technologies and upgrades or

changing legal requirements have an in�uence too.

These are only the most important in�uence factors and by far not all of them.

Interested readers are referred to the work of Loukmidis and Luczak [67] as

a starting point. Regarding the above discussed factors, Klug [57] notes that

the estimation of spare part demands already becomes a very complex task.

Plenty of the factors are hidden and cannot be made visible exactly. Also, the

in�uence of each of these factors is not clearly derivable for each demand.

In the scope of this work the historic demand pattern, the historic primary

product sales and the planned car sales are used for demand forecasting of

spare parts within the initial phase.
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3. Fundamentals of Time Series

and Spare Part Demand

Forecasting

This chapter provides an introduction to the area of time series forecasting

and in particular, spare part demand forecasting. First some basic terms and

principles are de�ned, and special characteristics of time series are reviewed.

Then the concepts of spare part demand forecasting, from the early beginnings

until today's machine learning approaches are introduced. One of the most

recently emerging approaches, the Arti�cial Neural Network (ANN) model for

time series forecasting is reviewed in more detail. Furthermore, the for this

work relevant concepts of Recurrent Neural Networks and deep learning for

time series forecasting are discussed.

3.1. De�nitions

This section de�nes the basic concepts, common to all approaches of time series

and spare part demand forecasting. It builds the basis for the later work.

Time Series

Palit and Popovic [73] de�ne a time series as a series of values, observations or

measurements x1, x2, ..., xt that is sampled or ordered sequentially by a feature

of time. The data is indexed by time with equal distance ∆t. Chatt�eld [16]

adds, that the measurements can be taken continuously trough time in case

of a continuous time series or at discrete time steps in case of a discrete time

series. The values itself can be either continuous or discrete. Often continuous

time series are converted to discrete time series by sampling in discrete time
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intervals. The frequency is called the sampling rate. Typically, the data of

discrete time series is distributed over equal time intervals. It is also possible

to aggregate the data over a period of time, e.g. daily data can be aggregated

by weeks or months. Laengkvist et al. [64] noted, that the values of the

time series usually are composed of a deterministic signal component and a

stochastic noise component, originating from the measurement, corrupting the

series. Often it is not clear if the available information is enough to fully

understand the generating process and its included dependencies. In the scope

of this work only discrete time series are of relevance and all further descriptions

are related to discrete time series.

Besides the time as main feature, time series are characterized by linearity,

trend, seasonality and stationarity, as described by Palit and Popovic [73].

• Linearity indicates, that the time series could be represented by a linear

model, based on the past and present data. Time series that cannot be

represented by a linear function are called non-linear. In real scenarios

both types are often mixed, e.g. a time series shows local linearity but

global non-linearity, which makes according to Palit and Popovic [73] a

di�erentiation and appropriate model selection di�cult.

• Trend is described by Chat�eld [16] as a long-term decrease or increase

in the mean level of the time series. Long-term covers a period of several

successive time steps and is not clearly de�ned in literature, as well

there exists no fully satisfying mathematical de�nition for trend. Palit

and Popovic [73] add, that the decomposition of variation into seasonal

components and trend components is handled di�erently in literature,

mostly originating from the di�culty to separate the pure time series

signal from the in�uences of seasonality, trend and noise.

• Seasonality, as de�ned by Chat�eld [16], characterizes the periodical

�uctuating behavior of a time series. Similar patterns repeat at certain

periods of time with varying in�uence. Additive seasonality is indepen-

dent of the local mean level, the mean of a short period of time, and

multiplicative seasonal variation is proportional to the local mean level.

This means for example in case of an upward trend, the variation in�u-

ence because of seasonality also increases.

• Stationarity describes the behavior of the mean and the variance of the

time series data, as de�ned by Chat�eld [16]. If both values are nearly
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constant over time the series is called stationary, else it is called non-

stationary. Palit and Popovic [73] mentioned, that stationary time series

are characterized by a �at looking pattern with small in�uence of trend

or seasonality.

As of Chat�eld [16], time series can be further distinguished according to the

number of predictor features. Univariate time series sample only a single time

dependent process. Multivariate time series are composed of more than one

feature. Each point in time is described by simultaneously sampled values

from each of the underlying time dependent processes.

Time Series Forecasting

According to the book of Chat�eld [16], time series forecasting tries to compute

future values of a time series based on the observed present and past data. It

is part of the area of predictive analytics. Given a time series x1, x2, ..., xt
forecasting means to compute future values, such as xt+h. The positive integer

h is called the lead time or forecasting horizon. The forecast at time t for h

steps ahead is denoted by x̂t(h). The case of h = 1 is called one step ahead

forecast and all cases for h > 1 are called multi-step or h-step ahead forecast.

If h de�nes a range it is called a range forecast. Forecasting methods can

be distinguished in objective forecasts, univariate forecasts and multivariate

forecasts.

• Objective forecasts, as described by Chat�eld [16], are based on the

judgement of experts and their knowledge. These forecasts include a

subjective bias. A popular approach is the Delphi-method [22], where

experts are surveyed in several rounds and the estimations are combined

to a forecast.

• Univariate forecasts are based on a time series originating from a

single underlying process, as de�ned by Chat�eld [16]. Palit and Popovic

[73] mention, that a model based on a univariate time series tries to

extrapolate the pattern from the generating process.

• Multivariate forecasts, according to Chat�eld [16], take into account

more than one time de�ned process for forecasting. Palit and Popovic

[73] further describe, that each generating process has its own in�uence

on the time series. A multivariate model tries to combine the generating
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processes, to estimate the time series pattern and to derive the in�uence

of each underlying process.

Chat�led [16] argues, that except of some special cases, usually statistical

approaches are superior to objective forecasts. Often the above mentioned

classes are combined to use the best from each world for forecasting, e.g. expert

knowledge is included into a multivariate forecasting model. Palit and Popovic

[73] mention, that time series forecasting can be further classi�ed based on the

complexity of the approach or on the human interaction need. In the scope

of this work only univariate and multivariate forecasting approaches are used

and further descriptions are only related to these two classes.

3.2. General Spare Part Demand and Time

Series Prediction Models

Time series forecasting can be applied in di�erent areas. If the to be forecasted

series is composed of timely dependent spare part demands it is called spare

part demand forecasting. As of Callegaro [13], �rst methods used were clas-

sical statistical models originating from economics and time series modeling,

with no specialization for spare part characteristics, like Simple Exponential

Smoothing (SES), Autoregressive (AR) models or Moving Average (MA) ap-

proaches, as combinations and modi�cations of these, e.g. like models of the

Autoregressive�Moving-Average (ARMA) family. Bartezzaghi et al. [4] noted,

that all these methods assume a certain degree of stability in the environment,

which is often not given for spare part demand time series. According to Boy-

lan and Syntetos [10], this ignorance of particular properties of demand series

led to substantial overestimation of future demands and to too small forecast

horizons that could be predicted with a su�cient degree of accuracy. Because

of the need of accurate forecasts in plenty of areas researchers began to develop

approaches specialized for spare part demands.

In the following some of these specialized models, but also general time series

prediction approaches applicable for spare part demand are discussed. The

above mentioned classical statistical models would exceed the scope of this

work. The interested reader may be referenced to the work of Callegaro [13]

for an extensive overview of statistical models used for demand forecasting.
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3.2.1. Statistical Models

One of the �rst, and for a long time most widely used, approach developed

was Crostons Method [21]. He proved that SES overestimates lumpy demand

because the latest time step gets the highest weight. This results in a high

forecast after demand occurred, even if in the next time step no demand occurs.

To solve this problem, he constructed a SES based model, composed of the

size of the demands and the average interval between demand occurrences. A

forecast based on Crostons Method is calculated with the following recursive

formula:

ẑt+1 = ẑt + α(xt − ẑt) (3.1)

p̂t+1 = p̂t + α(qt − p̂t) (3.2)

x̂t+1 =
ẑt+1

p̂t+1

(3.3)

α is the smoothing parameter, xt is the demand at time t and qt is the time

distance between the occurrence of the current and the previous demand. ẑt
represents the exponential smoothed demand. p̂t equals the positive demand

interval at time t, forecasting the time step with the next demand occurrence

by SES. Both are only updated in case of a demand occurrence. A di�culty

of Crostons Method is to choose an appropriate α value.

Syntetos and Boylan [89] showed 2001 that Crostons Method is biased, de-

pending on the smoothing parameter. They provided an extension of the orig-

inal method, which is known as Syntetos-Boylan Approximation (SBA) [90].

To deal with the bias an adapted smoothing parameter is added to Crostons

Method and the forecast is calculated as of Equation 3.4. With extended sim-

ulation experiments on 3000 stock keeping units from the automotive industry,

Syntetos and Boylan showed the superiority of their approach, compared to

Crostons Method, MA and SES. The di�culty of choosing an appropriate

smoothing parameter value remains in their enhanced approach.

x̂t+1 = (1− α

2
)
ẑt+1

p̂t+1

(3.4)

Another statistical method used for time series forecasting is bootstrapping.

The basic bootstrapping approach was published by Efron in 1979 [30]. It is

a sampling technique to calculate statistical measurements from an unknown
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underlying distribution by taking plenty samples with replacement and aggre-

gating the statistics over each sample. Bootstrapping was applied to forecast-

ing of intermittent spare part demand by Willemain et al. [99]. They modi�ed

the approach to take spare part characteristics into account and evaluated the

proposed model on nine industrial data sets against SES and Crostons Method

to show the approaches superiority. Gardner and Koehler [36] criticized the

results according to the experimental methodology which is questioning the

model at all. Later Porras and Dekker [76] applied the approach, proposed by

Willemain et al. to spare part demand data of a large oil re�nery with promis-

ing results. Nonetheless, the research interest according to bootstrapping and

spare part demand forecasting is decreasing.

Furthermore, a statistical model used for spare part demand forecasting is the

Grey Prediction Model (GPM). It is motivated on the Grey theory developed

by Deng [25]. The GPM is based on the Grey generating function GM(1, 1),

a time series function that uses the variation in the underlying system to �nd

relations between the sequential data. Interested readers are referred to the

work of Deng [26] for details on the theory of the GPM. The approach is

characterized by the ability of forecasting with limited amount of data and

requires no prior knowledge of the time series. Chiou et al. [18] used the GPM

to forecast spare part demands. They state the Grey forecasting model to be

superior for short term predictions, compared to other (unnamed) time series

models and SES, but for the mid and long term not suitable.

In 2011 Lee and Tong [60] published a modi�ed version of the GPM. They

augmented the model by incorporating genetic programming. By experimental

evaluation on the energy consumption of China Lee and Tong showed the

superiority of their approach, compared to the basic GPM and simple linear

regression. Hamzacebi and Es [44] applied a parameter optimized GPM for

forecasting the annual energy consumption of Turkey. The optimized GPM

was evaluated against the basic model. The proposed approach outperformed

the classical GPM and also increased the forecast accuracy for the midterm.

3.2.2. Machine Learning Approaches

Besides the methods based on statistical models Bontempi et al. [8] noted

that machine learning approaches gained more research attendance in the last

decades. In the following some of these models are discussed.
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Support Vector Machines

Support Vector Machine (SVM) models are one of these computational intel-

ligence techniques frequently used for time series forecasting. This approach

is based on a paper by Vapnik et al. [95]. A SVM creates a hyperplane to

linearly separate the data into classes by placing the hyperplane between the

data-points. The distance of the data-points to the hyperplane is maximized

by constrained based optimization. To deal with non-linear separable problems

a so-called kernel trick is applied. The data is transferred to a higher dimen-

sional space, where the problem becomes linear separable. By adjusting the

constraint based optimization according to a generalization of the data-points

instead of the maximization of the margin between the classes, SVMs could

also be used for regression problems, like time series forecasting. If used for re-

gression problems they are sometimes called Support Vector Regression (SVR).

In 2003 Cao and Tay [14] used a SVM model to forecast �nancial time series.

They compared the forecast performance of a SVM model against a Multi

Layer Perceptron (MLP) neural network and against a Radial Basis Function

(RBF) neural network on �ve real world �nancial data sets. In all but one case

the SVM outperformed the other models. They explained the superiority of the

SVM by the fact that this model �nds the global optimum of the optimization,

whereas the ANN could get stuck in local optima. Furthermore, an extended

version of the SVM model with adaptive hyperparameters, parameters that

are set before the learning of the actual parameters by the machine learning

approach takes place, for handling the non-linearity of �nancial time series is

proposed. This enhanced model outperformed the classical SVM approach on

the evaluated data sets, but adds complexity by setting the hyperparameters

correctly.

Hua and Zhang [48] proposed a hybrid SVM approach for intermittent spare

part demand forecasting in 2006. They used the SVM model to forecast the

occurrences of nonzero demands and integrated this information with explana-

tory variables into a composed model. Experimental results on 30 real world

data sets from the petrochemical industry showed that their proposed approach

outperformed SES, Crostons Method and the basic SVR. They also stated that

their approach is suitable for scenarios with limited historical information.

Another approach using SVM to predict short-term tra�c �ow was published

by Lippi et al. [63] in 2013. To deal with the high seasonality of the tra�c �ow
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time series a seasonal kernel, to capture repeating patterns, was used in their

model. Experimental evaluation was performed on data from the California

Freeway Performance Measurement System. The seasonal kernel SVR was

compared against several other approaches, like AR models, ANN and SVM

models with di�erent kernels. Based on the experiments the seasonal AR with

integrated MA (SARIMA) performed best, but the seasonal kernel SVM was

found competitive to the computational expensive superior models. They also

con�rmed that the seasonal pattern is a key feature for time series forecasting.

In the same year Kazem et al. [54] published a paper about SVM to forecast

stock market prices. They proposed a 3-fold model. To overcome the non-

linearity of these time series a phase space reconstruction, originating from

dynamic systems theory, is applied as a data pre-processing step. In the sec-

ond step the hyperparameters of the SVM are optimized by a chaotic �re�y

algorithm, a nature inspired meta-heuristic optimization algorithm. In the

last step the SVM is trained to forecast the stock market prices. Due to the

iterative behavior of the approach it is computational expensive. An experi-

mental evaluation against ANN and basic SVM showed the superiority of the

proposed model.

An ensemble model of SVM for building energy consumption forecasting was

proposed by Zhang et al. [101]. The hyperparameters of each SVM and

the weights for each ensemble member are optimized with Di�erential Evo-

lution (DE), an evolutionary optimization algorithm. Experimental evalua-

tion was performed with di�erent optimization algorithms for hyperparameter

estimation and each member of the ensemble was compared against the pro-

posed model, which outperformed all separate components. Unfortunately, the

proposed approach is not evaluated against other models.

In 2017 Kanchymalay et al. [52] published a paper about multivariate time

series forecasting by SVM. They choose nine di�erent features to represent the

time series and evaluated the forecasting performance of SVR against MLP and

Holt-Winter exponential smoothing. The experimental evaluation on a crude

palm oil price data set showed that SVM slightly outperformed the MLP and

was clearly superior to Holt-Winter exponential smoothing.

The above-mentioned works are by far only an excerpt of the extensively used

SVM model. Interested readers are referred to the works of Cheng et al. [17]

and Deb et al. [23], both including an extensive literature review as a starting

point.
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Fuzzy Models

Another class of computational intelligence models, used for time series fore-

casting, are Fuzzy time series. The concept was introduced by Song and

Chissom [85] in 1993. The time series of this model are represented by fuzzy

sets in a universe of disclosure, corresponding membership functions and fuzzy

logical relations of di�erent order. Singh [83] used Fuzzy time series in 2007

to forecast wheat production. He evaluated his model on two real world data

sets and showed its competitiveness. Pei [74] used fuzzy time series for energy

consumption predictions. He improved the classical model by extending the

fuzzi�cation by a K-Means algorithm. The proposed approach showed a higher

forecast accuracy on the evaluated data set. Nonetheless, all fuzzy models re-

quire a high degree of expert knowledge for de�ning the universe of disclosure

and for de�nition of the fuzzy rules describing the relations.

Hybrid Models

Hybrid models composed of ideas from the above mentioned approaches and

other machine learning algorithms are used for time series forecasting as well.

According to Deb et al. [23] these models try to combine advantages of the

involved algorithms and are usually more robust. These enhancements are of-

ten bought by computational expensiveness and algorithmic complexity. In the

area of spare part demand forecasting the already described hybrid SVMmodel

suggested by Hua and Zhang [48] shall be mentioned here too. Furthermore,

Lin et al. [62] proposed a hybrid model, composed of elements from ANN,

fuzzy systems, evolutionary and cultural algorithms. They evaluated their

model on three chaotic time series, a special kind of non-linear time series,

against other evolutionary models and showed its superiority. Nonetheless, a

comparison against typical time series forecasting approaches is missing, so no

conclusion about the revenue of the highly complex approach can be drawn.

Ravi et al. [77] suggest a model composed of elements from chaotic systems,

MLP and multi-objective evolutionary algorithms, to predict �nancial time

series. The proposed model was evaluated on four �nancial real world data

sets and showed promising results according to forecast accuracy.

The above discussed hybrid models exemplary should show the manifold possi-

ble combinations of approaches. A more extensive review of hybrid approaches,
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by far would exceed the scope of this thesis. The work of Deb et al. [23] is

recommended for an overview.

The discussed models are frequently used approaches for time series forecast-

ing. All of them have their own strengths, weaknesses and specialties. The

basic statistical models, Crostons Method and Syntetos-Boylan Approxima-

tion are easy to compute and both later ones are designed especially for spare

part demand. Nonetheless, research showed that plenty machine learning ap-

proaches outperform these models according to forecast accuracy. Other sta-

tistical models add complexity and often showed promising results only for par-

ticular time series problems. Support Vector Machines as widely used machine

learning approach protrude by the optimal solution found, what makes them

competitive against all other models. Nevertheless, hyperparameter derivation

is a nontrivial process and computation can get complex. Fuzzy time series

feature a great descriptive power but require a lot of expert knowledge. Hy-

brid models are usually e�ective for a particular problem but often add high

computational complexity. In the next section another widely used machine

learning approach, the Arti�cial Neural Network is discussed in detail.

3.3. Arti�cial Neural Networks for Time Series

Forecasting

In the following the fundamental concepts of Arti�cial Neural Networks are

introduced. The basic principle of an ANN is explained and its components

are discussed. A literature review underlines the importance of ANNs for time

series forecasting. Furthermore, the concepts of Recurrent Neural Networks are

introduced and relevant literature is reviewed. Finally, deep Arti�cial Neural

Networks are discussed.

3.3.1. Fundamentals of Arti�cial Neural Networks

According to Mitchell [71] Arti�cial Neural Networks are partly biological in-

spired mathematical, massively parallel, supervised learning models, contain-

ing layer-wise organized units, so called neurons, that are connected. Each

connection directs from the output of a neuron to the input of a neuron and
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Figure 3.1.: Arti�cial Neural Network Model [73].

has a variable weight assigned. The model could be represented by a directed,

weighted graph. The input is processed from the input-layer to the output-

layer via several optional hidden layers. Each neuron calculates its output

by an activation function and passes the result to the next neuron, until the

output-layer is reached. The parameters of the model, e.g. the particular

weights of the connections, are learned during a training phase. An exem-

plary graphical representation of the model, in particular of a Multi Layer

Perceptron, a special kind network, also called feed forward network, where

each neuron of a layer is connected to each neuron of the next layer, can be

found in Figure 3.1. The number of successive layers is called the depth of the

network, the number of units per layer are called the width of the network.

The overall structure including the depth, width, types of layers or units and

how they are connected is de�ned by the topology, or architecture of the ANN.

According to Palit and Popovic [73], ANNs have been successfully applied to

problems of signal analysis, classi�cation, pattern recognition, feature extrac-

tion and many more. Among other things, they are characterized by the ability

of capturing functional relationships among the data, universal function ap-

proximation capabilities and the ability of recognizing non-linear patterns in

the data.

Figure 3.2 shows the model of a single neuron, in particular a Perceptron.

The Perceptron, originating from a paper by Widrow and Ho� [98], is one of

the most widely used basic units of an ANN. The outcome of the Perceptron

is calculated according to Equation 3.5. The weighted inputs and a bias,

representing a threshold value, are used to calculate the output of the summing

element, v = wTx + w0. It may be noted that bold lower case characters

are representing vectors. The result of the nonlinear element is generated by
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Figure 3.2.: Model of a Neuron: Perceptron [73]

the unit step function de�ned in Equation 3.6, which is applied as activation

function. This means, that the Perceptron is only activated, sometimes also

referred to as �ring, in case of v = wTx + w0 ≥ 0, which is controlled by the

learned weights and the bias.

y0 = f(
n∑
i=1

wixi + w0) (3.5)

f(v) =

{
0 for v < 0

1 for v ≥ 0
(3.6)

Activation Functions

According to Palit and Popovic [73], the sigmoid activation function, as shown

in Equation 3.7 was widely used for a long time since the early days of ANN.

As of Goodfellow et al. [40], the preferred activation functions changed over

time and specialized functions were developed. In the scope of this work fur-

ther the Recti�ed Linear Unit (ReLU), as de�ned in equation 3.8, is used.

Glorot et al. [39] found, that the ReLU activation function is superior for the

training of more complex networks than the Sigmoid function. Furthermore,

a modi�cation of this function, the leaky ReLU, as de�ned by equation 3.9 is

used in the scope of this work. According to Maas et al. [69], leaky ReLU

adds a small gradient, even if the unit is not active. Last but not least the

SoftPlus activation function will be used, as de�ned by Equation 3.10. Glorot
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(a) Sigmoid (b) ReLU

(c) leaky ReLU (d) SoftPlus

Figure 3.3.: Activation Functions f(v).

et al. [39] describe this function as a smoothed version of the ReLU activation

function, which results in a di�erent behavior of the gradient based learning.

f(v) =
1

1 + exp(−v)
(3.7)

f(v) =

{
0 for v < 0

v for v ≥ 0
(3.8)

f(v) =

{
0.01v for v < 0

v for v ≥ 0
(3.9)

f(v) = ln(1 + expv) (3.10)

An graphical overview of the four activation functions is given in Figure 3.3. It

may be noted that the leaky ReLU factor of 0.01 in case of v < 0 was changed

to 0.05 for plotting, as of visualization purposes. Nonetheless, these are only
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a few of common activation functions. Interested readers are referred to the

book of Goodfellow et al. [40] for an overview.

Learning for Arti�cial Neural Networks

During the training phase the learning of the weights as a supervised learning

process is performed. According to Palit and Popovic [73], the Backpropaga-

tion algorithm is the most widely used learning approach. As of Schmidhuber

[80] the concepts originate back to the 1960s and 1970s. The approach gained

popularity after the publication of the paper of Rumelhart et al. [79] in 1986.

As of Palit and Popovic [73], the principle of the algorithm can be described

in the following way: While the training data is processed through the net-

work in a forward direction, the error of the network is computed based on

the output value of the ANN and the output intended by the data. This error

is then propagated in backward direction, from the output- to the input-layer

of the network, to adjust the weights of the connections accordingly. The

Backpropagation algorithm is used to calculate the gradient, which in turn is

used for optimization of the weights. This approach is applied in an iterative

way, several times for the whole training data set. The number of iterations is

called the training epochs of the ANN. The training could be �nished after a

�xed number of epochs or if the error has reached a lower bound, e.g. by an

approach called early stopping.

Optimization Approaches

Di�erent optimization algorithms are used for calculation of the weights. An

introductive overview can be found in the work of Schmidhuber [80] or in the

paper of Ruder [78]. In the scope of this work three di�erent approaches are

of importance: Stochastic Gradient Descent (SGD), RMSprop and Adam. Ac-

cording to Bottou [9], SGD is nowadays one of the most used optimization

algorithms in the area of ANN, therefore it can be understood as the general-

purpose optimization approach in the area of neural networks. Instead of

precisely computing the gradient based on all training samples at once it esti-

mates the gradient for each epoch in an iterative way based on the currently

picked sample zt. The gradient is calculated by Equation 3.11, where Q(z, w)

is an error function, e.g. the mean squared error, given the current sample

and a particular parameter set w. According to SGD, the weight is updated as
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stated in Equation 3.12, after each sample was processed. t indicates the train-

ing epoch and η is the learning rate, controlling the speed of convergence. It

may be noted, that the hyperparameter η needs to be adjusted carefully. Too

large η values lead to oscillation, so the (local) optimum is not reached and too

small values will not reach the optimum within the given epochs at all. SGD

is characterized by a good convergence rate for comparable low computational

cost.

gt = ∇wQ(zt,wt) (3.11)

wt+1 = wt − ηgt (3.12)

To overcome the problem of a �xed learning rate several adaptations of SGD

were published. According to Ruder [78] RMSprop, an adaptive learning rate

optimization approach, is often used in more complex ANNs. The documen-

tation of the Keras framework [55], the for this thesis used ANN framework,

states that RMSprop is suitable also for Recurrent Neural Networks, a special

kind of ANNs that will be discussed in detail in a later section. RMSprop was

proposed in an introduction lecture about neural networks and machine learn-

ing by Hinton [45]. The learning rate is adapted by an exponentially decaying

average of squared gradients, which is described in the recursive Equation 3.13.

g is the gradient as de�ned in Equation 3.11. γ is a factor that weights the

previous average and the current squared gradient, which is like a momentum

that takes the gradient partly further to its previous direction. Equation 3.14

shows the weight update according to RMSprop, after each training example

is presented to the ANN. η is the learning rate, as described for SGD and ε is

a small constant, to avoid division by 0. The by Hinton recommended value

for γ is 0.9 and 0.001 for η.

E[g2]t = γE[g2]t−1 + (1− γ)g2t (3.13)

wt+1 = wt −
η√

E[g2]t + ε
(3.14)

Adam is another optimization approach, heavily used for complex ANN, pro-

posed by Kingma and Ba [56]. It also makes use of an adaptive learning

rate. The adaptive decay rates mt and vt are de�ned in Equations 3.15 and

3.16. Kingma and Ba note that they are biased towards zero during the ini-

tial time steps and when the decay rates become small. Because of this they

correct these biases by Equation 3.17 and 3.18. The weight update for Adam

31



3. Fundamentals of Time Series and Spare Part Demand Forecasting

is computed as de�ned in Equation 3.19. The default values, proposed by the

authors, are 0.9 for β1, 0.999 for β2 and 10−8 for ε. Experimental evaluation of

the approach showed good convergence results, also for non-stationary prob-

lems, which makes this optimization approach a good choice for time series

problems solved by ANNs.

mt = β1mt−1 + (1− β1)gt (3.15)

vt = β2vt−1 + (1− β2)g2t (3.16)

m̂t =
mt

1− βt1
(3.17)

v̂t =
vt

1− βt2
(3.18)

wt+1 = wt −
η√
v̂t + ε

m̂t (3.19)

Weight Initialization

To achieve good optimization results the initialization of the parameters at

the beginning of the training is an important task, according to Schmidhuber

[80]. As of Palit and Popovic [73] a simple random optimization does not

always lead to good results. Often an approach, inspired by convex combina-

tion methods is applied, where each weight of a weight-vector is initialized by

1/
√
n, where n is the dimension of the vector. Glorot and Bengio [38] proposed

an initialization approach that draws samples from a uniform distribution as

described in equation 3.20, where win and wout are the dimension of the input-

and output-weight-vector. They found their approach to lead to faster con-

vergence and better results at all, especially if activation functions similar to

ReLU are used. If not stated other, this initialization approach will be used.

U(−
√

6

win − wout
,

√
6

win − wout
) (3.20)

3.3.2. Arti�cial Neural Network Literature Review

In the following some works that make use of ANN for time series prediction

are discussed to underline the importance of this approach. Karunasinghe

and Liong [53] used an ANN, in particular a MLP, for prediction of non-

linear time series. They evaluated the models on synthetic and real world
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chaotic time series. Because of the non-linearity of these data series this is

a challenging task. The MLP was found to have a very satisfying forecast

accuracy. The models were further evaluated, after adding noise to the test

data. This resulted in decreased forecast accuracy but still good results.

Gutierrez et al. [41] used an ANN for forecasting of lumpy spare part demands

in 2008. According to the authors this was the �rst time this kind of model

was applied to lumpy spare part demand forecasting. They used a 3-layer

MLP model. As input the current demand and the period between the last

two successive demand occurrences were taken. Gutierrez et al. compared the

performance of the ANN with the classical demand forecasting approaches:

Crostons Method, Simple Exponential Smoothing and Syntetos-Boylan Ap-

proximation. Despite the simple topology of the neural network it was found

to outperform the other models.

Han and Wang used a 4-layer Multi Layer Perceptron for forecasting of mul-

tivariate chaotic time series. As preprocessing steps they used phase space

reconstruction based on Takens Theorem [91] to �nd strange attractors, de-

scribing the time series underlying dynamical system in a higher dimensional

space and Principal Component Analysis, a statistical transformation to ex-

clude correlated features to shrink the dimension of the input data. The model

was evaluated on several synthetic and real life data sets, performing with a

satisfying overall forecast accuracy.

Ak et al. [1] applied a hybrid model composed of an ANN and multi-objective

genetic algorithms to the problem of wind speed forecasting. The parameters

of the neural network are optimized by NSGA-II [24], a multi-objective genetic

optimization algorithm following the concepts of Pareto optimality and dom-

inance to �nd a parameter set that is optimal according to several conditions

regarding several objectives. Experimental evaluation on real world wind data

sets according to di�erent optimization approaches showed NSGA-II to be the

best choice. The overall accuracy of the prediction was very high for short

term horizon predictions.

In 2013 Zhang et al. [102] proposed a Radial Basis Function neural network

model for forecasting of sensor data of an E-Nose. A RBF neural network is a

special type of Arti�cial Neural Network, which makes use of radial basis func-

tions as activation functions. As preprocessing step phase space reconstruc-

tion according to Takens embedding theorem [91] was applied. The model was

evaluated on collected sensor data and obtained satisfying prediction results,
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also for the long-term predictions. Unfortunately, a comparison against other

models is missing.

Jaipuria and Mahapatra [51] used a hybrid model composed of a wavelet trans-

formation component and an ANN. The time series is transformed according

to discrete wavelet transformation and passed to the ANN to learn the un-

derlying pattern of the data. The proposed model was evaluated on di�erent

demand time series and compared against traditional statistical demand fore-

casting approaches. The hybrid model outperformed the statistical models. It

was also found that the ANN approach reduces the bullwhip e�ect, which de-

scribes the ampli�cation of demand noise as demand progresses up its supply

chain.

Lolli et al. [65] published a paper about ANN models for the prediction of

intermittent spare part demand. Di�erent neural networks were tested with

several inputs and hyperparameters, and compared with Crostons Method and

SBA. In an expensive statistical evaluation it is showed that the ANN models

outperform Crostons Method and SBA. Despite the fact that the Recurrent

Neural Network (RNN) was not the best performing model, Lolli et al. noted

that the model improves its performance, compared to the other ANN models

if the forecast horizon is increased. Among other things, this fact and the well-

�tting properties of Recurrent Neural Network models for time series data they

are covered in detail in the next section.

3.3.3. Fundamentals of Recurrent Neural Networks

In their book Palit and Popovic [73] describe that the need of networks that

can produce a time dependent, non-linear input-output mapping motivated

the research of Recurrent Neural Network models. These specialized types of

neural networks add the time dimension to its topology and thus introduce

memory features to the neural network. One of the �rst popular recurrent

network topology was published in 1990 by Elman [31]. The exemplary struc-

ture of the Elman RNN is shown in Figure 3.4. Elman extended the network

by a context-layer, which is fed by the hidden layer. The output of the con-

text layer is passed back to the hidden layer in the next time step. Thus, he

introduced a one-step delay unit, also referred to as local feedback path. Ac-

cording to Palit and Popovic [73], recurrent networks introduce a kind of loop

to the input processing through the network and thus add complexity to the
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Figure 3.4.: Model of a Recurrent Neural Network: Elman Network [73].

network, which also results in the capability to detect time dependent patterns

that could not be detected by basic feed forward networks, like a MLP.

Backpropagtion Through Time

The learning of RNNs is done by Backpropagtion Through Time (BPTT).

The idea of this approach was proposed by several authors, among others by

Werbos [97]. BPTT basically works like the basic Backpropagation approach.

In di�erence, to deal with the recurrent layers of the ANN, these layers are

unfolded for each iteration of training. The network is trained as a feed forward

network with an additional (hidden) layer each training iteration, originating

from the recurrent time component. With increasing training iterations, the

ANN gets more complex, or deeper, by an increased number of layers. Gradient

based training in deep networks arises the vanishing or exploding gradient

problem, as stated by Goodfellow et al. [40]. By unfolding the network for

too many time steps the gradients for some weights get too small or large and

take the optimization in a wrong direction. This led to the development of

recurrent units that can solve this problem.

Long Short Term Memory

The Long Short Term Memory (LSTM) is one of these recurrent units that

is solving the vanishing or exploding gradients problem. This approach was

proposed by Hochreiter and Schmidhuber [46] in 1997. The LSTM has the
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ability to model long-term dependencies and short-term dependencies within

one unit. It learns what data is stored for how long, as well when and how this

data is updated. This is realized by so called gated units within the LSTM

unit. A graphical representation of a LSTM unit can be found in Figure 3.5.

The LSTM unit is composed of an input-layer, a memory block and an output-

layer. The memory block contains adaptive multiplicative gate units to control

the information �ow, self-connections for modeling the recurrent behavior, as

well input- and output-gates for activation of the memory block. The primary

unit of the memory block is the Constant Error Carousel (CEC). The CEC

processes the information �ow within the memory block and represents the

state of the LSTM unit. It controls the gated units and therefore manages,

which input is processed, when the state of the memory block is reset by the

forget-gate and which information is forwarded to the output-layer. According

to Hochreiter and Schmidhuber [46], the CEC keeps the network error constant

and therefore solves the vanishing or exploding gradients problem. The data

is processed through the LSTM by the following equations:

g(x) =
4

1 + exp−x − 2 (3.21)

h(x) =
2

1 + exp−x − 1 (3.22)

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (3.23)

ft = σ(Wfxxt +Wfmmt−1 +Wfcct−1 + bf ) (3.24)

ct = ft � ct−1 + it � g(Wcxxt +Wcmmt−1 + bc) (3.25)

ot = σ(Woxxt +Wommt−1 +Wocct + bo) (3.26)

mt = ot � h(ct) (3.27)

yt = Wymmt + by (3.28)

it, ot, ft represent the output of the input-gate, the output-gate and the forget-

gate. ct is the activation vector for each cell and mt the output of the memory

block respectively. W and b are the weight matrices and bias vectors of the

LSTM unit, connecting all components. � represents the scalar product of two

vectors and σ is an activation function. The �nal output of the LSTM unit is

computed according to Equation 3.28. Learning of the LSTM unit is done by

truncated Backpropagtion Through Time, a modi�ed version of BPTT, where

the update is performed only every k time steps and backwards only for a �xed

number of time steps.
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Figure 3.5.: Long Short Term Memory unit [68].

3.3.4. Recurrent Neural Network Literature Review

Because of their specialty to capture time dependent patterns, Recurrent Neu-

ral Network models have been heavily used for time series forecasting. An

introductory overview, also about other recurrent network types, which ex-

ceed the scope of this thesis can be found in the work of Bianchi et al. [6]. In

the following a few selected recent works are discussed. Besides the overview

Bianchi et al. [6] also performed a comparative study and evaluated several

recurrent networks, including Elman RNN, LSTM, Gated Recurrent Units,

Non-linear Autoregressive Exogenous model and Echo State Network on syn-

thetic and real world data sets. They found that there is no general solution

and that each task has speci�c requirements to the model. They also found

Elman RNN to outperform the more complex gated RNNs, like LSTM on

some time series problems, whereas the LSTM outperformed the other tested

networks in case the time series is non-linear.

Smith and Jin [84] applied RNN for chaotic time series prediction. They used

a multi-objective evolutionary optimization algorithm to train an ensemble of

Elman RNN. The proposed model was evaluated on the Mackey-Glass time

series and the Sunspot data set, both containing highly non-linear patterns.

They achieved satisfactory forecast results with their approach for these prob-

lems, that are di�cult to predict.

Chitsaz et al. [19] used a RNN for short term electricity load forecasting. The

proposed model extracts wavelets, transformations of the data, from the time
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series and uses these as inputs for a RNN. Experimental evaluation showed

that the recurrent approach is superior to feed forward ANNs supplemented

by wavelet transformations, which underlines the utility of RNNs for time

dependent prediction tasks.

Chandra [15] proposed a RNN model, supplemented by a competitive coop-

erative co-evolution optimization, a nature inspired optimization approach.

The proposed model was evaluated on several chaotic time series. An exten-

sive comparison against several models from literature showed that recurrent

ANNs are superior to the other evaluated approaches. The non-linearity of

the chaotic time series was captured with higher accuracy, which resulted in

a better forecast accuracy, compared to models like MLP or RBF neural net-

works.

Gers et al. [37] applied a LSTM model for prediction of non-linear time series

data. They tried to evaluate, when to use complex approaches like LSTM com-

pared to simple feed forward networks like MLP. Evaluation on several time

series data showed that the LSTM model should be applied only if a simpler

approach fails to capture the structure of the data with satisfying accuracy.

Furthermore, they propose to combine the LSTM with simpler structures if

needed but did not evaluate this proposal.

Ma et al. [68] published a LSTM model for tra�c speed prediction. The model

was evaluated on travel speed data collected by sensors on an expressway

in Beijing. An extensive evaluation against other recurrent ANNs, Support

Vector Regression and classical statistical models was done and the LSTM

was found to outperform the other models in terms of accuracy and stability.

The authors conclude that this underlines the ability of the LSTM to capture

characteristics of the time series, like seasonality and trend.

In 2017 Hsu [47] proposed a LSTM model augmented by an autoencoder.

An autoencoder is a special ANN that is used for data extraction to get a

compressed representation of this. Hsu argues that the LSTM can capture the

long-term dependencies of the time series, but has di�culties to capture short-

term relations correctly, which he tries to overcome by combining the LSTM

with an autoencoder. Experimental evaluation on four data sets, including

chaotic time series, shows that the proposed model is superior to other state

of the art time series prediction approaches.
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Figure 3.6.: Deep Arti�cial Neural Network [92]

3.3.5. Deep Learning for Time Series Forecasting

In recent years more and more complex ANN gained research interest and

steadily obtained better results. If the (unfolded) graph of the neural network

gets deep, which means that it has many layers, it is called Deep Learning, as

stated by Schmidhuber [80] and Goodfellow et al. [40]. The number of layers is

also referred to as the depth of the ANN. In literature it is not clearly de�ned,

how many layers a neural network at least needs, to call it deep. For this

work networks with at least three hidden layers are regarded as deep. RNN

can be regarded as deep by its nature because unfolding of recurrent units

adds automatically depth to the unfolded network graph with each processed

timestep. An exemplary graph of a deep ANN is shown in Figure 3.6. The

structure of the network, de�ned the depth, width and types of layers, is

called the network architecture or topology. Taweh [92] describes that each

layer of a deep network learns a level of abstraction of the given data until the

desired complexity of the representation is reached. Mathematically the data

is transferred from one space to another by each layer until the solution space

is reached.

Busseti et al. [12] proposed a deep ANN for electricity load prediction. They

compared deep feed forward networks with deep RNN and other state of the

art models on real world data sets of the electricity sector. The deep RNN

was found to be superior according to the forecast accuracy. The authors also
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state, that the performance of the deep ANN highly depends on the network

topology. They showed that deep architectures can deal with the non-linearity

and seasonality of the electricity load time series.

Kuremoto et al. [58] published a deep model composed of several layers of

Restricted Boltzmann machines, a special type of neural network. They used

a combination of Backpropagation and Particle Swarm Optimization to train

the ANN. The proposed model was evaluated on the CATS benchmark data

sets [61] and several chaotic time series. Evaluation showed the superiority of

the deep model compared to simpler ANN.

Yeo [100] applied a deep LSTM model to chaotic time series data. The output

layer was modi�ed to return a con�dence interval instead of precise forecasts.

Experimental evaluation on several synthetic chaotic and real world data sets

showed the proposed model to reach a satisfying forecast accuracy, even if the

data is highly non-linear. Yeo concludes that deep models are a powerful tool

for prediction of dynamical systems.

These are only a few selected examples of deep ANN in the area of time series

forecasting. Interested readers are referred to the work of Laengkvist et al. [64]

and the paper of Gamboa [35] for an introductory overview. Both mentioned

surveys conclude that deep learning is an emerging approach with promising

results (also) in the area of time series prediction.

To the authors best knowledge there is currently no published work, applying

deep learning techniques beyond RNNs for spare part demand forecasting.
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4. Data Basis and Current

Model

This chapter provides a description of the data, its features and brie�y summa-

rizes the data preparation steps. Furthermore, the current modeling approach

is discussed and analyzed. Possible enhancements of the current model that

could improve the forecast accuracy are proposed and reviewed.

4.1. Spare Part Demand Data

The real world data used for this thesis is provided by a large, worldwide

operating, automotive OEM. The data contains plenty features and several

additional derived features. For the scope of the model to be developed only a

selection of the provided data is needed. This works focus is set on young fast-

moving spare parts with or without Vehicle Production Data (VPD). A part is

regarded as fast-moving if the Average Demand Interval (ADI), the average of

all intervals between two successive demands is less than 1.51 months. A part

is considered as young part if the last month with demand is within the current

year and the period between the �rst demand occurrence and the last demand

occurrence, the demand period, is within the interval of 12 to 59 months.

Furthermore, an average monthly demand greater than 7 is taken into account

as selection condition. Table 4.1 summarizes the selection criteria of the parts

that are covered by the model developed within this work.

For evaluation su�cient historic demand data for each part is needed. Thus,

the data also contains parts that ful�lled the selection criteria in the past and

now provide demand data for a longer period. In total data of 7191 di�erent

parts with VPD and 4989 parts without VPD is available. The data ranges

from January 2007 until December 2017. Figure 4.1 shows the distribution of

demand intervals, the range from �rst until last demand occurrence per part,
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STPM-VPD STPM

Average Demand Interval < 1.51 < 1.51

Demand period in months 12 ≤ t ≤ 59 12 ≤ t ≤ 59

Last demand occurrence within current year within current year

Average monthly demand > 7 > 7

Vehicle Production Data available not available

Number of parts 7191 4989

Table 4.1.: Criteria for data selection.

for all 12180 di�erent parts contained in the data. Most parts have a history

larger than 60 months. This is useful for the evaluation process. For evaluation

of the models a hold-out-sample will be used. The model will be trained on a

�xed period, namely the �rst 24 months after the �rst demand occurrence and

evaluation is done on the complete period until the last demand occurrence.

This evaluates on the one hand side how well the model could �t the training

data and on the other hand side how accurate the future is predicted by the

model, which is evaluated by the remaining historic demand data, not used for

model training, the so-called hold-out-sample.

Data pre-processing steps, e.g. outlier detection and removal, are done by

IBM before the data is passed to the model. In the scope of this work only the

cleaned data is used, so a detailed description of the pre-processing and data

cleansing steps is abandoned.

The data available for this thesis contains the following features:

• An explicitly identifying part-number (anonymized due to data privacy

constraints)

• The month, as a continuous number composed of year and month in

the format YYYYMM

• The historic demand of each month as integer

• The historic and future vehicle production of each month as integer

(optional)

The data was aggregated on a monthly basis. As provided by the OEM the

historic demand is on a daily level. Tests, performed by IBM showed that

the current model can handle data best if the demand is aggregated monthly.
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4.1. Spare Part Demand Data

Figure 4.1.: Histogram: Demand period per part.

Aggregated by months the time series becomes smoother and the non-linearity

is decreased, which results in data, easier to forecast. Figure 4.2 shows the

demand for an exemplary part over the same period. The abscissa shows time

and the ordinate shows demand. The data is aggregated on a daily, weekly

and monthly level. The daily data is intermittent, which means that there

are periods with no demand at all, with a broad spectrum, which is indicated

by plenty peaks in the demand curve. The weekly data only has a broad

spectrum, but the demand curve is already smoother than for the daily data.

The weekly data also rarely has periods without demand. The monthly data

has a less wider spectrum and usually no periods without demand at all. It

could be assumed that the order process of the parts, based on the exact dates,

is performed on a monthly basis. This results in a strong seasonality within a

month, which is removed if aggregated to months. The demand curve usually

gets smoother the higher the aggregation level becomes. A higher level than

monthly aggregation is dismissed because the data points available for training

the model get too low. The Vehicle Production Data is provided on a yearly
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4. Data Basis and Current Model

(a) daily (b) weekly (c) monthly

Figure 4.2.: Same period of demand on di�erent aggregation levels.

basis. Because of the monthly aggregation level the VPD is equally distributed

over all months of a year.

4.2. Current Model

The Short-Term Prediction Model, short-term representing the short period

of historic demand data available for model training, is based on a regression

approach. It exists a model for parts with VPD, taking the multivariate time

series as input and a model for parts without VPD, using the univariate data

respectively.

4.2.1. STPM-VPD Model

The STPM-VPDmodel takes the historic demand and the VPD as multivariate

time series input. Based on six di�erent parameters a regression model is build

to forecast the spare part demand. The parameters are

• αf as part failure rate,

• αd as decay / increase rate of the part failure rate,

• αo as o�set, when part failures start to a�ect the demand,

• βf as vehicle depletion rate,

• βd as decay / increase rate of the vehicle depletion rate,

• βo as o�set, when vehicles start to disappear from market.
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4.2. Current Model

Figure 4.3.: Examples for STPM-VPD predictions.
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Based on the training data these parameters are initially guessed. The forecast

is calculated based on all six parameters, weighting the cumulative amount of

in the market remaining vehicles for each time-step, the guessed part failure

rates and the historic demand. According to a one-dimensional optimization

the vehicle depletion rate βf is systematically tweaked to minimize the error be-

tween the prediction, based on the current parameter set and the true historic

demand. The �nal prediction is then calculated according to the optimized ve-

hicle depletion rate. Figure 4.3 shows the prediction of the STPM-VPD model

exemplary for two di�erent spare parts with VPD. The spare part demand is

represented on the right ordinate and the VPD is shown with di�erent scale on

the left. The �rst diagram shows a rather overestimated demand prediction,

whereas the second one visualizes a forecast that very accurately captures the

structure of the demand.

4.2.2. STPM Model

The STPM model takes the historic spare part demand as univariate time

series input. Based on a linear regression approach two trend parameters αt
and βt are derived for each time step of the historic demand. According to the

two parameters a �rst model is �tted to the training data. The pre-processed

demand data is supplemented by a demand of 0 at the guessed End of Life of

the part to force the model to a prediction, decreasing to zero until the end

of the prediction horizon. In a second step this time series then is used as

input for a cubic spline interpolation model. The cubic spline model is �nally

applied to forecast the values in between the end of the demand history used

for model training and the guessed EOL. Some exemplary predictions of the

STPM model are shown in Figure 4.4. The diagram of the �rst part shows a

prediction overestimating the demand. The second plot shows a satisfactory

prediction.

4.3. Enhancements of Current Model

One of the targets of this work is to evaluate, whether the forecast accuracy

of the current model could be improved. Based on an analysis of the current

model �aws have been identi�ed. The following sections describe some of
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4.3. Enhancements of Current Model

Figure 4.4.: Examples for STPM predictions.
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these weaknesses of the current models and try to overcome them by proposing

improvements that shall increase the forecast accuracy of the approaches. Each

of these improvements is described, the performance of the enhancements is

compared against the currently applied model and the outcome is discussed.

4.3.1. Enhancements of STPM-VPD Model

One of the weaknesses of the STPM-VPD model is that only one of its param-

eters is optimized, the others are guessed. This motivated the idea to apply

a constrained based multi objective optimization approach, which involves all

six parameters. The constraints were de�ned based on previous STPM-VPD

experiences, to shrink the solution space. For optimization a Downhill-Simplex

approach [72] was applied. The models were evaluated on a random sample

of 40 parts, which according to IBM showed good generalization properties in

past experiments. The models are trained on the �rst 24 months of demand

history and evaluated on the complete available data. The forecast accuracy

was rated according to Chi-Squared-Distance as de�ned in Equation 4.1. xt
and yt are the historic and the predicted demand at time t, each normalized

by their overall sum. T is the total number of time-steps.

χ2 =
1

2

T∑
t=1

(xt − yt)2

(xt + yt)
(4.1)

For evaluation the results of a version of the currently applied model with and

without the enhancement are run on the same sample and the forecasts for

each part are compared according to their Chi-Squared-Distance to the his-

toric demand. Optimization of all six parameters led to an increased forecast

accuracy according to Chi-Squared-Distance for 45% of the parts of the tested

sample. If only αd, βf , βd and βo are optimized and the other parameters are

guessed, as before, the forecast accuracy according to Chi-Squared Distance is

increased for 52.5% of the parts. Due to the increased computational complex-

ity the improvement of the forecast accuracy is a rather small bene�t. It may

be noted that di�erent optimization approaches, e.g. Di�erential Evolution

[87] performed worse, than the applied algorithm.

Another enhancement tries to overcome the assumption that the VPD is

equally distributed over a year. To smooth the VPD a polynomial is �t to

the data. A polynomial of degree 15 was found to perform best according
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(a) no enhancement

(b) enhancement

Figure 4.5.: Comparison STPM-VPD versus STPM-VPD-enh predictions.
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to the forecast accuracy of the STPM-VPD model. The model with polyno-

mial smoothed VPD input increased the forecast performance for 60.5% of

the parts, nevertheless the enhancements were rather small compared to the

overall accuracy. It may be noted, that the smoothing by a polynomial does

not keep the original sum of vehicles per year. Prototypical tests with another

linearization technique that keeps the original sum of vehicles per year showed

an improvement of prediction accuracy for only 37% of parts. This concludes,

that it seems to be more important to smooth the input data than keeping the

actual sum.

Figure 4.5 presents tow plots of the predictions of the enhanced, denoted as

STPM-VPD-enh and the basic STPM-VPD model on exemplary spare parts.

The accuracy of the forecast of diagram 4.5a was further decreased by the

proposed enhancements, even stronger overestimating the spare part demand.

Plot 4.5b features a prediction that is boosted in terms of accuracy by the im-

provements to the multivariate time series model, unfortunately still slightly

overestimating the demand. Concluding, these are only a few possible en-

hancements of the STPM-VPD model. To cover all possibilities, e.g. forecast

plausibility checks or additional parameters, would exceed the scope of this

work. Summarizing it can be stated that all improvements have a rather small

in�uence on the forecast performance compared to the real spare part demand.

Furthermore, the changes to the model in�uence each other and the e�ects do

not always sum up positive. Therefore, increasing the model performance is

possible but becomes a tough and extensive task, which bene�ts the idea of a

fundamental di�erent approach.

4.3.2. Enhancements of STPM Model

The STPM model overestimates the demand for plenty of parts. This is caused

by the limited amount of data and the ampli�cation of a demand growth in

the �rst months of demand history. To overcome this overestimation a forecast

plausibility check is added to the model. As benchmarks the slope of a straight

linear curve of the �rst few predicted months and the relation between the

average historic demand and the average predicted demand are applied. Rules

with estimated threshold values check whether the prediction is plausible or

not. In latter case a down-scaling is performed. Therefore, a guessed value, a

multiple of the average historic demand, is assumed at the point in time with
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(a) no enhancement

(b) enhancement

Figure 4.6.: Comparison STPM versus STPM-enh predictions.
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the highest forecast value and the STPM model is calculated again according

to the historic data supplemented with the assumed demand value.

An enhanced version and the currently applied model are compared on a sam-

ple of 40 spare parts, selected by IBM based on previous experimental expe-

riences. Like for the model with VPD, the �rst 24 months of demand history

are used for model training and the complete historic demand data is used

for evaluation. The plausibility check of the prediction led to an improvement

of forecast accuracy according to Chi-Squared-Distance for 78% of the tested

parts compared to the currently applied model. Nevertheless, the scaled pre-

dictions still often overestimate the real demand. The derivation of the rule

threshold values is an expensive task that gets even more complex, if the num-

ber of di�erent rules applied grows.

Figure 4.6 shows a comparison of the enhanced univariate time series model,

denoted as STPM-enh with the basic STPM model on some exemplary parts.

The plot of 4.6a shows a case where neither the enhanced version, nor the

basic version satisfactory predicted the spare part demand. The diagram in

4.6b represents a part, the forecast is improved by the proposed enhancement

compared to the basic model. Nevertheless, due to the limited information,

�tting the STPMmodel is a tough task. Even if the plausibility check improved

the forecast performance for plenty of parts the overall accuracy related to the

real demand is still not satisfying. Because of the overall prediction accuracy

and the limited possibilities to tune the model the current approach should be

questioned at all.
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Approach for Spare Part

Demand Forecasting

Based on the theoretical foundations and literature review from Chapter 2 and

3 this section introduces a deep learning based model for spare part demand

forecasting. The current model has some weaknesses, as described in Chapter

4, that should be dealt with by a fundamentally di�erent approach. First

the new approach is introduced. Then the hyperparameters of the model are

derived and statistically evaluated. Finally, the �ndings of this chapter are

summarized and discussed.

5.1. Deep Learning based Model

Time series are characterized by features like linearity, trend, seasonality and

stationarity. All these features require a model that is capable of representing

these properties. Based on the literature review from Chapter 3 Support Vector

Regression and Arti�cial Neural Network models are the two most promising

approaches, recently often applied in research, that are capable of dealing with

these features. Support Vector Regression stands up by the ability to �nd

always an optimal solution. ANNs feature by outstanding pattern recognition

capabilities. Both techniques are sensible to hyperparameter con�guration. As

also seen from literature review, which model is superior depends on the task.

There exists no model that outperforms all the others. Because both models

are promising alternatives to the current approach a Proof of Concept (POC)

test was performed with SVR and ANN for spare part demand forecasting

based on the provided data. This should assist as a decision basis, which

technique should be evaluated in detail.
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5. Deep Learning based Approach for Spare Part Demand Forecasting

The POC showed, that SVR is not competitive compared to the currently ap-

plied model, whereas a simple Multi Layer Perceptron was already performing

well. One possible explanation of this result is that there is too few train-

ing data available for a SVR approach to �nd an optimal solution. Al-Saba

and El-Amin [2] found ANN to perform well, even if there is a low amount

of training data. Nonetheless, the POC was not of statistical accuracy. The

promising results of the MLP could, for example depend on lucky parameter

initialization.

Literature review furthermore showed Recurrent Neural Network models and

deep ANNs to perform well on time series forecasting tasks. In case of RNNs

this is based on their capability of learning time dependent patterns and in case

of deep networks the ability of representing highly non-linear relations within

the data can be mentioned. So, the POC was extended by these approaches

to get an overview, which models are suitable for the current task and if the

limited amount of training data is enough to even train more complex neural

networks. ANNs with recurrent and densely connected layers, like the layers

of a MLP, showed the most promising results.

To the authors best knowledge, such an approach was not applied to spare

part demand forecasting yet, even if some works like the paper of Busseti et

al. [12] and the work of Yeo [100] proposed similar models for di�erent time

series problems. Lolli et al. [65] applied single hidden layer ANN for spare

part demand forecasting, which can be regarded as a work motivating the idea

of applying more complex networks, as stated in their outlook. The above-

mentioned points led to the decision to detailed evaluate a deep learning based

model for the task of spare part demand forecasting.

Deep Learning is characterized by many hyperparameters that could be tuned.

According to Busseti et al. [12] the topology of a deep ANN is the most

important of these in�uence factors. For this work hidden layers of three

di�erent types of layers are used, as described in Section 3.3.1 and 3.3.3:

• Densely connected layers are layers, where each input is connected to

each neuron and the output of each unit is forwarded to each neuron of

the next layer. The densely connected layer works as an input processing

unit, learning patterns and transforming the data in space. An ANN

composed of densely connected layers is shown in Figure 3.1 on page 27.

• Elman layer, or simple recurrent layer, is a layer, where the output is

delayed one time step and used as additional input in the next time step
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via a context layer. The Elman layer represents a short-term memory.

The structure of an Elman network is shown in Figure 3.4 on page 35.

• Long Short Term Memory is a layer, that independently learns what

information is stored, for what periods. The LSTM function as a long-

and short-term memory layer, storing information that is regarded as im-

portant by the deep ANN. Figure 3.5 on page 37 visualizes the structure

of a LSTM unit.

The special capabilities of the three types of layers shall learn the time series

features from the training data and accurately predict the future by one-step-

ahead forecasts. The densely connected layers are regarded as pattern learning

units that shall prepare the input for the recurrent layers and learn auto-

correlations between the di�erent features of the multivariate time series data.

The recurrent layers shall learn time dependent features. The Elman layer is

regarded as short-term memory, connecting only to the previous time step.

The LSTM is regarded as self-learning memory that independently decides,

which information is important for the current time series. The depth and

width of the ANN are derived experimentally in a later section. To limit the

space of possible topology, building blocks are de�ned. Each recurrent layer

is followed by a densely connected layer to process the output and prepare it

for the next recurrent layer. Furthermore, the di�erent possible depths and

widths are also limited.

As stated in section 3.3.1, di�erent optimization algorithms could be applied

for ANN parameter learning. Stochastic Gradient Descent, as one of the most

used optimizer, is applied as a baseline. Furthermore, RMSprop and Adam

as specialized optimizer for deep and recurrent ANNs are evaluated. The

learning-rate as hyperparameter of the optimizer is derived experimentally in

combination with the optimizer and is described in more detail in a related

section later. Mean Squared Error (MSE) is applied as error function to opti-

mize. MSE is de�ned in Equation 5.1, where x is the historic demand vector,

x̂ the predicted demand vector and T the number of time steps, or dimension

of the vector.

EMSE =
1

T

n∑
t=1

(xt − x̂t)2 (5.1)

As activation functions ReLU, leaky ReLU and SoftPlus, as de�ned in Section

3.3.1 are applied. According to literature, e.g. by Glorot et al. [39], these
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Figure 5.1.: Order of hyperparameter determination.

are the most suitable functions for recurrent and deep ANN. Further hyper-

parameters considered are the number of training epochs and the size of the

sliding window. The sliding window size de�nes how many past values are

used as input for each time step. The window is then moved sequential trough

the data. The number of training epochs de�nes how many training cycles for

the given training data are completed until the optimization of the network

parameters is �nished. Additionally, data augmentation as input related op-

timization process is evaluated. By data augmentation the training data is

extended by arti�cial variations to evaluate the in�uence of a larger number

of training instances available.

All mentioned hyperparameters are derived by statistical experiments to build

a separate deep learning based model for parts with VPD, in the following

referred to as DL-STPM-VPD, and for parts without VPD, referred to as DL-

STPM. As input for the DL-STPM-VPD model the historic demand, the VPD

and the cumulative VPD at time t are used. Based on the historic demand
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and the VPD, the model should learn the relation of both, e.g. part depletion

rate. The cumulative VPD shall help the model to determine the remaining

cars in the market. Further inputs like the future VPD are omitted based on

experiences from the POC. For the DL-STPM model only the historic demand

at time t is available as input. For all models the training horizon is �xed at

24 months, meaning the training data contains 24 di�erent time steps. This

constraint is assumed because of convenience for evaluation, clearly separating

training and validation data.

To derive the hyperparameters the experiments are performed in a sequential

process. The results of the completed experiments are used as con�guration

input for the successive tests. In deep learning literature exists no golden

road for hyperparameter determination. Based on recommendations and best

practices the order of hyperparameter as seen in Figure 5.1 is followed in the

next sections.

5.2. Experimental Setup

The following section describes the framework for the experiments. The used

evaluation functions are introduced, and the selection of appropriate spare

part samples are discussed. Furthermore, the signi�cance evaluation as major

quality measure is introduced.

5.2.1. Evaluation Functions

To evaluate the forecast accuracy of the proposed model di�erent evaluation

functions will be used. In the following x and x̂ represent the historic de-

mand vector and the predicted demand vector, both of same length and T is

the dimension of the vector, representing the number of time steps. As main

evaluation measure the Root Mean Squared Error (RMSE) is chosen. This

scale dependent distance-based error function is widely used in literature. As

MSE is used for weight optimization of the ANN, Root Mean Squared Er-

ror is preferred for evaluation because it is in the same scale as the data. It

is de�ned in Equation 5.2. Additionally the Chi-Squared-Distance [59], as

distance-based error function that has been used by IBM previously in the

project and is therefore known by the customer as quality measure, as well as
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the Correlation Coe�cient (CC) as similarity-based error function are intro-

duced in Equation 5.3 and 5.4 respectively. These shall supplement the results

of the main evaluation function RMSE and avoid misleading conclusions by

relying on only one evaluation function. For the both �rst mentioned evalua-

tion functions a smaller value indicates that the prediction is closer to the real

demand. The values for the CC are in the interval [1,−1]. Values closer to

1 indicate a stronger correlation between the historic and predicted demand,

which means that the prediction is similar to the history. Even though there

exist plenty other evaluation measures, a review of several functions can be

found in the work of Hyndman and Koehler [49], this selection was chosen

based on the literature analysis and previous project experiences.

ERMSE =

√√√√ 1

T

T∑
t=1

(xt − x̂t)2 (5.2)

Eχ2 =
1

2

T∑
t=1

(xt − x̂t)2

(xt + x̂t)
(5.3)

ECC =

T (
T∑
t=1

xtx̂t)− (
T∑
t=1

xt)(
T∑
t=1

x̂t)√
(T

T∑
t=1

x2t − (
T∑
t=1

xt)2)(T
T∑
t=1

x̂2t − (
T∑
t=1

x̂t)2)

(5.4)

To evaluate, which model performed best on a particular part in an experiment

a tournament evaluation is applied. The approach is described in Algorithm 1.

The error vectors for each model or con�guration on each part, containing the

error values of all runs of the model, are calculated according to the de�ned

evaluation functions in Line 5. For tournament evaluation the median error of

each error vector is considered, which is extracted in Line 7. For a spare part of

the evaluated sample a ranking according to each evaluation function is created

in Line 9. A model gets a point for each model it outperformed according to

an evaluation function, as de�ned by Line 10. These points are summed for

each model over all evaluation functions, resulting in a �nal score for that

particular part in Row 12. The model with the highest score is regarded as

best model for this particular part. This process is performed for all parts of

a sample to get the best model for each part. If the score is summed for each

model over all parts of a sample, the best model of the sample can be found.

This optional step is performed in Line 14. If not stated else, all three above

described evaluation measures are taken into account for tournament scoring.
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Algorithm 1 Algorithm of tournament evaluation.
1: for each p in Spare parts do

2: for each e in Evaluation functions do

3: for each m in models do

4: for each r in Runs of model do

5: ErrorV ector[e,m, r]← e(p,m)

6: end for

7: MedianError[e,m]←Median(ErrorV ector[e,m])

8: end for

9: Ranking[e]← CreateRanking(e,MedianError[e])

10: Score[model, p, e]← NumberOfModels−RankOfModel

11: end for

12: Score[model, p]←
∑

e Score[p,model, e]

13: end for

14: Score[model]←
∑

p Score[model, p]

5.2.2. Sample Selection

For evaluation random samples of the parts are drawn because calculation on

all available parts would simply take too much time with available computa-

tional resources. For each evaluation step, deriving the deep learning based

model, a sample of 40 parts is used. A sample of that size showed good gen-

eralization results during other tests performed by IBM with the current data

set. The sample-size can be calculated according to the Cochran formula [20],

shown in Equation 5.5. Z is the z-score, describing the area under the bell

curve of a Gaussian distribution, according to a desired con�dence interval,

which could be derived from a Standard Gaussian z-Table. For this work we

assume a con�dence interval of 95%, which results in a z-score of 1.96. p rep-

resents the proportion of the desired outcome. As this proportion is unknown,

0.5 is assumed, which is usually taken as value for p if the true proportion

of the classes in the sample, in this case parts, where a model is superior to

the other model, is unknown. q is 1− p and e represents the margin of error,

within which the results should range.

n0 =
Z2pq

e2
(5.5)

According to Cochran's formula a sample size of 40 with a con�dence interval

of 95% results in a margin of error of 15% for both models. This margin of error
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is accepted in favor of the computation time of the experiments, even though

it allows wide spread results that could lead to a wrong direction in worst case.

Furthermore, the sample size calculation assumes a Gaussian distribution. As

the distribution of error is not known to be normally distributed, each experi-

ment need to be repeated several times. As of the central limit theorem [42],

a sampled error distribution is normal distributed if a large enough number of

independent random samples with replacement are taken from the error dis-

tribution. A rule of thumb states that at least 30 samples should be taken.

Thus, each experiment will be repeated 31 times. For each experiment a new

sample of 40 parts is drawn from the multivariate and univariate time series

data for the model with and without VPD respectively. On the one hand side

this should avoid over�tting of the model on a particular training sample and

on the other hand side better generalization capabilities of the model should

be achieved.

5.2.3. Signi�cance Test

To ensure statistical signi�cance of the results and to avoid decisions by coin-

cidence, a signi�cance test will be applied to the experimental outcomes. As

signi�cance test the Wilcoxon-Rank-Sum-Test, also known as Mann-Whitney-

U test, will be applied. As stated by Walpole et al. [96] this non-parametric

signi�cance test has weaker requirements to the compared distributions than

for example the paired t-Test. The signi�cance test checks whether a null-

hypothesis is correct or not. In our case the null-hypothesis states that both

compared error vectors are sampled from the same distribution. The test es-

timates a p-value. If the p-value is less than or equal to a signi�cance level

α = 0.05, the null-hypothesis is rejected, which means that both error vec-

tors are drawn from di�erent distributions and the result can be regarded as

signi�cant.

To �nd the best performing model according to the signi�cance test, tow sig-

ni�cance measures are de�ned in the following. The best-model-signi�cance of

a modelM , short ψbm, is de�ned by the total number of models that performed

signi�cantly worse on parts, where M performed best. To determine ψbm, for

each part it is calculated, which model or con�guration performed best ac-

cording to the applied evaluation functions. The error vector, containing the

errors of all runs of the best model on this part according to the in the previous
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section de�ned primary evaluation function RMSE, is compared to the error

vectors of the other models or con�gurations of a particular experiment on this

part. If the p-value of one of these tests is less than or equal to 0.05 the tested

model or con�guration is considered as signi�cantly worse than M . Over all

parts these signi�cant worse models or con�gurations are counted and summed

up for each best performing model, resulting in a best-model-signi�cance value

for each model taking part in the experiment. The model or con�guration that

in the end has the highest ψbm value is regarded as the signi�cant best model

of the particular experiment. The maximal reachable ψbm score is calculated

according to Equation 5.6, where N is the number of models involved in the

evaluation process and P is the number of parts, contained in the sample.

ψbm−max = (N − 1)P (5.6)

The second signi�cance measure introduced is the spare-part-signi�cance, short

ψsp. To determine ψsp for a model M , for each part of the sample the best

performing model as of ERMSE, Eχ2 and ECC is identi�ed. For each spare part

the RMSE error vector of the for this part best model is taken as reference

vector. This reference vector is compared with the error vector of M for the

particular part and a p-value for that part is calculated. In case this p-value is

less than or equal to 0.05 it is stating thatM performed signi�cantly worse than

the best model of this part. This process is done for all spare parts of a sample

and the number, M performed signi�cantly worse is counted over all parts of

a sample, resulting in the ψsp measure. The spare-part-signi�cance indicates,

whether a model M produces competitive results on parts of a sample itself

were found not to perform best. Smaller values are better, representing a model

less often signi�cantly worse than the best model per part. The minimal value

is zero in case the model performed never signi�cantly worse than another and

the maximum value is equal to the number of parts contained in the sample

used for evaluation.

5.3. Hyperparameter Determination

As stated in section 5.1, the proposed model contains plenty of hyperparam-

eters that could be con�gured and tuned to achieve an optimal result. This

section will describe the experiments that have been performed to determine

the hyperparameters of the model. Each hyperparameter considered will be
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5. Deep Learning based Approach for Spare Part Demand Forecasting

Hyperparameter Value

Optimizer RMSprop

Learning-rate 0.003

Activation function ReLU

Training epochs 100

Sliding window size 5

Table 5.1.: Initial hyperparameter con�guration.

statistically evaluated. The experiments build upon one another. The results

of an evaluation will be used in the following experiments. For the order of

hyperparameter derivation exists no golden road. In literature di�erent pos-

sibilities based on the authors favors could be found. The following order

is based upon experiences gained in the POC phase and best practices seen

during literature review.

In the beginning all hyperparameters are guessed based on the empirical knowl-

edge from the POC. Adaptation takes place after each experiment. The initial

hyperparameter con�guration is assumed according to Table 5.1. This con�g-

uration was found producing promising results, so it is used as a starting point

for the evaluation of the approach.

5.3.1. Network Architecture

During the POC several di�erent network architectures were applied to the

spare part data set. Some performed promising and some were not competitive

compared to the current model. Busseti et al. [12] found in their research that

the architecture has big impact on the performance of a deep learning based

model. Therefore, the �rst evaluated hyperparameter is the topology of the

proposed model.

Networks with a densely connected layer as �rst hidden layer showed good

results during the POC, whereas networks with a recurrent layer as �rst one

showed promising outcomes only in some cases. This could be explained by

the capability of this layer type to transform the input data by projecting to

another space and learning what values of the input vector deserve higher or

lower weights. In case of the multivariate time series model one can argue that

this �rst layer learns the auto-correlation between the demand and the VPD.
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5.3. Hyperparameter Determination

This leads to a densely connected layer as �rst hidden layer for all architectures.

The following building blocks are used for the subsequent hidden layers:

• RD: Elman layer followed by a densely connected layer

• LD: Long Short Term Memory layer followed by a densely connected

layer

These three di�erent layer-types are placed between an input-layer containing

a neuron for each element of the input vector and an output-layer with only one

unit, returning the one-step-ahead forecast. To downsize the space of possible

network topology constraints according width and depth are set up. The depth

is limited to either 3, 5 or 7 hidden layers. The width of each layer is limited

to 5 di�erent values. Based on these constraints all permutations of above

described layer types with a �rst hidden layer �xed as densely connected, �ve

di�erent widths and three depths could be calculated according to Equation

5.7, where d = (3, 5, 7) are the di�erent depths and w = 5 is the number of

di�erent widths.

a =
∑
d

wd2
d−1
2 (5.7)

This results in a total of 637,750 possible network architectures. This is by

far too much to statistically test all topology with the available computational

resources. To overcome this infeasibility 1000 random sampled architectures

will be run three times on a sample of 40 parts. The 50 best models then will

be evaluated statistically and run 31 times on another 40 parts sample. This

solution was favored over the strategy to thoroughly test 150 architectures,

because it was preferred to touch a wider range of the space of topology, com-

pared to the in-depth tested smaller range, even though results of three runs

could be achieved by coincidence, which shall be overruled by the subsequent

detailed test. Both approaches approximately use the for this experiment at

maximum possible computational calculation time.

A depth of three hidden layers is regarded as on the border to deep learning,

but as in favor of a less complex model this depth is taken into account.

Deeper networks than �ve and seven hidden layers were neglected, because

it is assumed that not enough data is available for training of such a model.

Furthermore, the space of topology grows exponentially related to the network

depth. The latter one also holds for more possible values related to the network

width. Less potential width values are dismissed because they will restrict the
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5. Deep Learning based Approach for Spare Part Demand Forecasting

Depth Layer DL-STPM-VPD DL-STPM

3

H1 15, 18, 22, 26, 30 5, 7, 10, 13, 15

H2 9, 11, 13, 15, 18 3, 5, 7, 9, 11

H3 3, 5, 7, 9, 11 3, 5, 7, 9, 11

5

H1 15, 18, 22, 26, 30 5, 7, 10, 13, 15

H2 11, 13, 15, 17, 19 5, 7, 9, 11, 13

H3 8, 10, 12, 14, 16 4, 6, 8, 10, 12

H4 5, 7, 9, 11, 13 3, 5, 7, 9, 11

H5 3, 5, 7, 9, 11 2, 4, 6, 8, 10

7

H1 15, 18, 22, 26, 30 5, 7, 10, 13, 15

H2 13, 15, 17, 19, 21 5, 7, 9, 11, 13

H3 11, 13, 15, 17, 19 4, 6, 8, 10, 12

H4 9, 11, 13, 15, 17 3, 5, 7, 9, 11

H5 7, 9, 11, 13, 15 2, 4, 6, 8, 10

H6 5, 7, 9, 11, 13 2, 3, 5, 7, 9

H7 3, 5, 7, 9, 11 2, 3, 4, 5, 6

Table 5.2.: Possible network widths per layer for each depth.

model more than the chosen setup. Table 5.2 shows all possible widths for

each layer per model depths. The width of the �rst hidden layer is derived

according to the dimension of the input vector. In case of the DL-STPM-VPD

model the input contains three di�erent time series, each for �ve time steps

because of the sliding window size, resulting in a minimal width for the �rst

hidden layer of 15. The maximal width 30 is twice the dimension of the input

vector. In case of the DL-STPM the minimum width of the �rst hidden layer

is equal to the dimension of the input vector and the maximum width is three

times the input-dimension. The widths for the �rst hidden layer in-between

the minimum and maximum are equally distributed. The �rst hidden layer

is the same for all depths. All other layers are equally distributed according

to a funnel-like shape, bene�ting architectures with a wider �rst hidden layer

among other things, narrowing with each layer until the last one. This should

support the change of dimension from the multi-dimensional input to a one-

dimensional output, which is the predicted next time-step.

Using the layer type building blocks and the widths, for each depth all per-

mutations for both models are created. From these permutations respectively

40 3-layer, 480 5-layer and 480 7-layer architectures are randomly sampled per
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Architecture Score Architecture Score

1 DRDRD-30-17-16-7-9 82376 26 DRDLD-26-19-10-7-9 75443

2 DRDLD-22-13-16-9-11 81833 27 DLDRDLD-26-19-19-13-15-11-9 75412

3 DRDRD-22-17-12-5-11 80815 28 DRDLDLD-30-19-19-11-15-11-7 75408

4 DRDRD-26-13-16-13-7 80530 29 DRD-18-13-11 75381

5 DRDRD-18-17-12-11-11 80262 30 DRDRD-30-19-14-5-5 75380

6 DRDRD-18-15-8-7-11 79361 31 DLDRDLD-30-17-13-9-13-13-11 75374

7 DRDRD-15-13-12-9-11 78670 32 DRDRD-15-19-12-11-11 75300

8 DRD-26-9-9 78542 33 DLDRD-15-11-8-9-7 74875

9 DRDRD-15-11-16-9-9 78438 34 DRDLDLD-15-21-19-9-15-13-3 74794

10 DRDRD-26-17-8-7-9 78412 35 DRDRD-30-19-14-5-9 74742

11 DRDRD-15-17-10-11-7 78391 36 DRDRD-30-11-10-7-11 74737

12 DRD-26-11-11 77815 37 DRDRD-18-13-10-11-9 74511

13 DRDLDLD-30-21-19-17-13-9-5 77748 38 DRDLD-26-11-12-9-5 74469

14 DRDLD-15-11-8-11-7 77725 39 DRDRD-15-11-14-11-5 74370

15 DRDRD-22-17-14-7-9 77545 40 DRDRD-26-15-12-11-11 74279

16 DRD-18-15-11 77403 41 DRDRD-26-19-12-7-7 74200

17 DRDRD-22-19-8-13-7 76936 42 DRDRD-22-19-14-9-7 74076

18 DRDRD-18-13-8-11-9 76934 43 DRDLDLD-26-21-19-15-11-11-7 74017

19 DRDRD-30-13-8-5-7 76756 44 DRD-26-18-9 73992

20 DRDRD-15-19-12-13-11 76622 45 DRDLDLD-30-21-19-11-9-11-5 73930

21 DRDRD-15-11-10-7-7 76347 46 DRDLD-26-13-12-11-7 73926

22 DRDRD-26-15-16-11-5 76099 47 DRDRD-15-17-14-13-7 73897

23 DRD-15-13-5 75881 48 DRD-30-11-5 73732

24 DRD-15-18-7 75619 49 DRDRD-15-11-12-13-7 73726

25 DRDRD-15-13-12-13-9 75576 50 DRDRD-22-11-8-7-11 73651

Table 5.3.: Ranking of 50 best architectures for DL-STPM-VPD.

model. The sample proportion is based on the size of each topology space and

the favor of less complex solutions, by proportional covering a larger share for

less complex architectures. These 1000 architectures are run three times each.

According to the tournament scoring system described in section 5.2.1 a rank-

ing of the tested topology is created. The ranking of the best 50 architectures

is given in Table 5.3 and 5.4 respectively. Each architecture is described by

the layer-types, D for densely connected, R for Elman layer and L for LSTM,

followed by the widths of each layer, separated by − symbol. The maximal

reachable score in the tournament ranking was 120, 000 (1000 models × 3

evaluation functions × 40 parts).

These 50 architectures for each model are run on another spare part sample

to statistically evaluate, which network topology should be chosen for subse-
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Architecture Score Architecture Score

1 DRDRD-7-7-12-5-4 82449 26 DRDLD-7-5-8-9-6 75418

2 DRDLD-5-7-10-7-10 81528 27 DRDRD-10-5-10-5-10 75384

3 DLDRDLD-15-9-6-3-10-9-2 78976 28 DRDLDLD-15-13-6-11-10-3-6 75378

4 DRDRDRD-15-9-12-11-6-5-6 78117 29 DLDLDLD-15-13-10-9-10-3-6 75282

5 DRDLD-13-9-10-5-10 77637 30 DRDRDRD-15-13-10-3-4-7-6 75249

6 DRDRDLD-13-5-12-3-2-5-5 77358 31 DRDLDRD-7-9-4-5-4-2-3 75186

7 DRDLD-5-7-4-7-8 77236 32 DRD-5-9-11 75139

8 DRDLD-13-9-12-3-8 77135 33 DLDLDRD-13-9-12-11-4-2-4 75131

9 DRDLD-10-7-4-7-10 77109 34 DRDLD-5-5-8-3-6 75049

10 DRDLDRD-10-9-4-11-10-9-5 76971 35 DRDRD-7-11-6-5-10 74939

11 DRDLD-15-9-10-3-10 76736 36 DRDRD-7-13-12-3-10 74913

12 DRDLD-10-13-4-7-10 76725 37 DLDLDLD-15-5-6-11-4-2-6 74788

13 DRDLDLD-15-11-4-11-8-7-5 76513 38 DRDRDRD-13-7-8-3-4-7-6 74720

14 DRDLDRD-10-11-12-7-10-3-3 76415 39 DLDLD-10-7-6-9-2 74653

15 DRDLD-7-5-4-7-8 76409 40 DRDLDLD-5-9-12-7-6-3-6 74639

16 DLDLD-13-11-8-3-2 76372 41 DRDRDLD-7-5-8-7-2-5-3 74571

17 DRDRDLD-10-5-8-3-8-3-4 76171 42 DLD-7-5-9 74528

18 DLDRDLD-5-13-10-11-10-2-5 75945 43 DRDLD-15-13-4-9-10 74521

19 DRDRD-13-11-4-5-2 75869 44 DRDLD-15-7-10-7-6 74428

20 DRDLDLD-10-11-12-5-6-2-2 75662 45 DRDRD-10-9-6-3-2 74372

21 DLDLDLD-15-9-12-7-10-2-3 75650 46 DLDRD-15-11-6-7-4 74301

22 DRDRD-10-13-4-5-4 75537 47 DRDLDRD-13-7-10-5-6-7-3 74298

23 DRDLD-10-11-10-9-4 75528 48 DRDRDRD-7-9-12-11-2-9-3 74280

24 DLDRD-5-9-6-5-4 75495 49 DLDRDRD-13-9-10-5-2-5-2 74263

25 DRDRDRD-13-11-8-5-10-2-4 75450 50 DLDLDLD-5-11-10-11-2-5-5 74233

Table 5.4.: Ranking of 50 best architectures for DL-STPM.

quent experiments. From the results the median performing network run of

the 31 runs, according to RMSE, of each tested architecture is selected for

tournament ranking. By tournament ranking the best performing architecture

for each part, according to RMSE, Chi-Squared-Distance and CC is found.

This best performing architecture on each part is used as reference to calcu-

late the signi�cance of the results, as described in section 5.2.3. Therefore,

the error vector of the best topology of a part is compared by signi�cance test

to the error vectors of the other architectures, resulting in a m× n matrix of

p-values, where m is the number of parts of the sample and n is the number

of architectures tested. The matrix is used to calculate ψbm and ψsp for this

particular experiment. The results of the signi�cance evaluation can be found

in Appendix Table A.1 and A.2 respectively.
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Architecture ψbm ψsp
1 DRD-26-18-9 90 12

2 DRD-30-11-5 88 21

3 DRD-18-15-11 73 8

4 DRD-26-11-11 58 13

5 DRDRD-30-17-16-7-9 49 14

6 DLDRD-15-11-8-9-7 48 15

7 DRDRD-15-19-12-11-11 48 16

8 DLDRDLD-26-19-19-13-15-11-9 42 25

9 DRDRD-18-17-12-11-11 35 16

10 DRDLD-22-13-16-9-11 32 13

11 DRDLDLD-26-21-19-15-11-11-7 30 22

12 DLDRDLD-30-17-13-9-13-13-11 27 21

13 DRDRD-15-11-10-7-7 23 17

14 DRDRD-30-19-14-5-5 22 20

15 DRD-15-18-7 19 16

16 DRDRD-22-11-8-7-11 17 15

17 DRD-18-13-11 15 10

18 DRDRD-30-11-10-7-11 14 16

19 DRDRD-15-19-12-13-11 13 15

20 DRDLD-26-13-12-11-7 12 18

21 DRDRD-22-19-8-13-7 12 16

22 DRDRD-22-17-12-5-11 10 16

23 DRDRD-22-17-14-7-9 9 14

24 DRDRD-15-17-14-13-7 8 16

25 DRD-15-13-5 5 19

26 DRD-26-9-9 5 12

27 DRDRD-30-19-14-5-9 1 11

Table 5.5.: Signi�cance ranking of 27 best architectures for DL-STPM-VPD.
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Based on the signi�cance test a ranking of the best models can be created.

Table 5.5 shows the ranking according to ψbm for the DL-STPM-VPD model.

Due to convenience only architectures that achieved a ψbm score greater zero

are displayed. The maximal reachable ψbm score for this experiment is 1960. A

3-layer ANN, composed of a densely connected, an Elman and a densely con-

nected layer performed best on the given sample of spare parts. It makes use of

a funnel shape width, representing the transformation from multi-dimensional

input to one-dimensional output. Most of the top ten architectures show this

structure, underpinning the bene�t of this hypothesis. Furthermore, the top

four architectures are all 3-layer topology. This indicates that a simpler ANN

is capable of learning the multivariate time series features, whereas more com-

plex structures tend to have problems, for example the 7-layer architectures

are usually signi�cantly worse than the best architecture of a particular part

for half of all spare parts of the evaluated sample. It also seems that Elman

layer is preferred over LSTM layer. One could argue that the low amount

of training data may be a reason for this. Probably the LSTM was not ca-

pable of �nding the time dependent relations within that few training data.

Furthermore, the best model, DRD-26-18-9 has a ψsp value of 12, meaning it

performed signi�cantly worse than the best architecture only on 12 out of 40

parts of the sample. This supports the selection of this topology because this

is the 4th-lowest value.

The ψbm ranking resulting from signi�cance test for the model without VPD is

shown in Table 5.6. Due to convenience only models that achieved a ψbm score

greater zero are listed. For this time series problem also a 3-layer architecture,

with same layer-types as for the DL-STPM-VPD model, but with di�erent

widths performed best. The structure formed by the width of the layers is

inverted compared to the model for the multivariate time series problem. It

goes from 5 over 9 to a width of 11 for the last hidden layer. There is no funnel

like structure recognizable at the best architectures, concluding the hypothesis

of transforming from multi-dimensional input space to a lower-dimensional

space does not hold for the univariate time series problem. One reason for this

may be the lower dimension of the input vector, compared to the multivariate

time series. The model seems to learn a representation of the time series in

a higher-dimensional space than the input space. In general, the mixture of

architectures, which performed promising is more diverse, compared to the

DL-STPM-VPD model. One could argue that this underpins the di�culty

of the task to learn a model based only on few information. In contrast to
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Architecture ψbm ψsp
1 DRD-5-9-11 111 10

2 DRDLD-7-5-4-7-8 80 15

3 DRDLD-10-13-4-7-10 71 12

4 DRDLD-7-5-8-9-6 50 14

5 DLDLDLD-15-5-6-11-4-2-6 45 17

6 DRDRD-7-13-12-3-10 38 11

7 DRDLD-13-9-10-5-10 37 13

8 DLDRD-15-11-6-7-4 34 20

9 DRDRDLD-7-5-8-7-2-5-3 34 16

10 DRDRDRD-13-11-8-5-10-2-4 34 16

11 DRDLD-10-7-4-7-10 32 13

12 DRDLDLD-10-11-12-5-6-2-2 31 17

13 DRDLD-5-7-10-7-10 27 14

14 DRDRD-7-11-6-5-10 27 10

15 DLDLDLD-15-13-10-9-10-3-6 26 20

16 DRDLD-15-9-10-3-10 25 10

17 DLDLD-13-11-8-3-2 23 19

18 DLDLDLD-15-9-12-7-10-2-3 20 16

19 DLDRDLD-15-9-6-3-10-9-2 17 19

20 DRDRD-10-13-4-5-4 16 12

21 DRDLDLD-15-11-4-11-8-7-5 11 19

22 DRDRDLD-10-5-8-3-8-3-4 8 15

23 DRDRD-7-7-12-5-4 6 13

24 DRDLDLD-5-9-12-7-6-3-6 3 14

Table 5.6.: Signi�cance ranking of 24 best architectures for DL-STPM.

69



5. Deep Learning based Approach for Spare Part Demand Forecasting

the multivariate model, where several 3-hidden-layer architectures with the

same layer-types were under the most successful, there is no architecture type

superior to the other for the model without VPD. Nonetheless, the DRD-5-9-

11 architecture has with a ψsp value of 10 one of the lowest number of models

it is signi�cantly worse compared to. This underlines that this rather simple

topology has better generalization capabilities than the other best performing

architectures, which are signi�cant worse for more than 10 models, supporting

the decision to continue evaluating this topology.

5.3.2. Optimizer and Learning-rate

Based on the results from the previous section the optimizer of the network

weights and the related learning-rate are experimentally derived in the follow-

ing. As of Bengio [5], the learning-rate and the optimization algorithm are

two very important hyperparameters of model training. The in Section 3.3.1

introduced optimization algorithms, Stochastic Gradient Descent, Adam and

RMSprop are evaluated with di�erent learning-rates, that are derived from

the default learning-rate of Adam and RMSprop: 0.001. During the POC a

higher learning-rate than the default was applied. Therefore, a lower rate is

regarded as not promising, why 0.0005 as half of the default rate is applied as

lower bound. Furthermore, 10 times the default learning-rate and two values

in-between, 0.0033 and 0.0066 are evaluated. Finally 0.1, the default rate by

factor 100 as upper bound and 0.05 as the mean of both latter multiples of

the default learning-rate is used. The proposed learning-rates logarithmic am-

plify, originating from the default rate. The distance between two successive

learning-rates increases with the basis of the logarithm. This strategy favors

rates in similar range as the default learning-rate, but also includes larger rates,

even though the risk of gradient oscillation increases. Smaller learning-rates,

than the chosen ones are neglected. Based on the experiences from the POC,

lower rates than the default learning-rate do not reach the (local) optimum

within the available training epochs. This behavior is expected to be statisti-

cally proven, therefore only one rate smaller than default will be tested. Due

to limitation of computational resources a more detailed test, e.g. the relation

between learning-rate and training-epochs, could not be conducted.

Each optimizer is evaluated with each of the seven learning-rates. There-

fore, the models of the previous section are run 31 times, each on a third 40
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spare parts sample. Any of the 21 above described optimization algorithm /

learning-rate combinations are tested for DL-STPM-VPD model, as well as for

the DL-STPMmodel. Besides the learning-rate default parameter for other op-

timizer parameters, as described in section 3.3.1, are applied to the optimizer.

As in the network architecture section the best performing con�guration for

each part is determined by tournament ranking evaluation. Furthermore, the

signi�cance ranking is calculated the same way, based on the RMSE error vec-

tors as described in the previous section, to get the ψbm and ψsp values. For

the experiments to determine the optimizer and learning-rate combination a

maximal ψbm score of 800 is possible. The results of the signi�cance test can

be found in Appendix Table A.3 and A.4.

The ranking of optimizer and learning-rate combinations for the DL-STPM-

VPD model can be found in Table 5.7. The Adam algorithm with a learning-

rate of 0.01 performed superior to the other con�gurations. Adam outperform-

ing SGD con�rms literature review because of the adaptive learning-rate as en-

hancement. RMSprop performed competitive. If regarded on a learning-rate

level RMSprop is clearly better performing than SGD for the same learning-

rate, but Adam is less often signi�cantly worse than RMSprop on the same

learning-rate. This indicates that the estimation of the decay rate performed

by Adam is more suitable to the data than that of RMSprop. Furthermore, it

may also be possible that Adam can better handle the low amount of training

data than RMSprop, which should be scienti�cally examined in another study.

The learning-rate of 0.01 may also depend on the amount of training data.

A probable explanation of a rate, ten times the default learning-rate is that

because of a smaller number of data points, larger steps along the gradient are

preferred over smaller ones. For Adam and RMSprop the ψsp value grows if

the learning-rate falls under 0.0066 or if the rate goes beyond 0.01, e.g. Adam

with learning-rate of 0.01 is signi�cant worse than seven other con�gurations.

If the learning rate becomes 0.05 this number raises to 38 and in case of 0.0033

it grows to 19. This indicates that the range between both latter mentioned

learning-rates lies within a (local) minimum that should be further evaluated in

more detail. The previously mentioned e�ect applies for Adam and RMSprop.

Due to the limitations for this study, this needs to be postponed to a later

research. This also holds for the relation of learning rate and training epochs.

It remains an open issue whether a smaller learning-rate would perform better,

if it has more time for training than in the current setup.
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Learning-rate Optimizer ψbm ψsp
1 0.01 Adam 229 7

2 0.01 RMSprop 84 16

3 0.0066 RMSprop 73 15

4 0.0033 RMSprop 53 14

5 0.0066 Adam 43 6

6 0.001 Adam 31 25

7 0.0033 Adam 29 19

8 0.01 SGD 16 35

9 0.05 RMSprop 13 39

10 0.0066 SGD 11 34

11 0.0005 SGD 0 39

12 0.001 SGD 0 39

13 0.0033 SGD 0 36

14 0.05 SGD 0 31

15 0.1 SGD 0 28

16 0.0005 Adam 0 30

17 0.05 Adam 0 38

18 0.1 Adam 0 38

19 0.0005 RMSprop 0 28

20 0.001 RMSprop 0 28

21 0.1 RMSprop 0 37

Table 5.7.: Signi�cance ranking of optimizer / learning-rate for DL-STPM-

VPD.

Table 5.8 summarizes the results of the signi�cance test for the model with-

out VPD. Adam outperformed the other optimization approaches for the

univariate time series too, but with a slightly smaller learning-rate than for

the DL-STPM-VPD model. RMSprop performed worst, indicating that its

learning-rate adaptation needs more data than available. This is underpinned

by SGD outperforming RMSprop without any learning-rate adaptation. If re-

garded the ψsp values Adam slightly outperformed SGD, outperforming RM-

Sprop. The slightly smaller learning-rate of 0.0066 compared to the model

with VPD may be explained by the lower dimension of the input space, re-

sulting in smaller network width and less connections a weight needs to be

learned for. Therefore, a smaller step-size along the gradient is possible in
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Learning-rate Optimizer ψbm ψsp
1 0.0066 Adam 80 20

2 0.05 SGD 70 15

3 0.01 Adam 61 20

4 0.0066 SGD 47 22

5 0.001 SGD 36 23

6 0.01 SGD 35 20

7 0.001 RMSprop 31 15

8 0.0005 RMSprop 27 14

9 0.0005 SGD 17 27

10 0.0005 Adam 17 11

11 0.0033 SGD 14 21

12 0.0033 RMSprop 10 21

13 0.1 SGD 8 23

14 0.001 Adam 5 20

15 0.0033 Adam 0 19

16 0.05 Adam 0 21

17 0.1 Adam 0 25

18 0.0066 RMSprop 0 27

19 0.01 RMSprop 0 36

20 0.05 RMSprop 0 28

21 0.1 RMSprop 0 30

Table 5.8.: Signi�cance ranking of optimizer / learning-rate for DL-STPM.

this case. Furthermore, an adaptation of the learning-rate still is preferable by

outperforming the optimizer with a �xed learning-rate.

Even tough Adam with a learning-rate of 0.0066 has achieved the highest ψbm
value, itself performed signi�cant worse on 50% of the parts, compared to the

particular best models. This indicates that this con�guration had problems

learning time series features for some spare parts, but performed strong on

others. Nonetheless Adam with a learning-rate of 0.0066 is preferred over the

second-best con�guration, which seems to have slightly better performance

regarding the ψsp results, but outperformed less con�gurations, which is re-

garded as more important performance indicator in this case. The chosen

model performed better than the mean, which was outperformed on round
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about 22 out of 40 spare parts. This also indicates that the results are not

that precise as for the model with VPD, originating in the di�culty of the task

of univariate time series prediction. Further on, it may be noted that Adam

and RMSprop with a learning-rate of 0.0005 performed competitive related to

the best con�gurations per part. This presumed generalization capability of

smaller learning rates in relation with the training epochs could be evaluated

in detail in a future study.

5.3.3. Activation Functions

This section evaluates di�erent combinations of activation functions on a fourth

sample of 40 spare parts. As of Palit and Popovic [73] the activation functions

are a connecting component of network architecture and the process of net-

work training, in�uencing the network output and the backpropagated error.

In section 3.3.1 four activation functions were introduced: Sigmoid, ReLU,

leaky ReLU and SoftPlus. The latter three will be evaluated in the follow-

ing. According to literature these are the most promising activation functions

for deep learning and recurrent models. Due to limitation of computational

resources not every combination of activation functions, distributed over the

three hidden layers of both models could be examined. To overcome this lim-

itation the activation functions are only permuted layer-type-wise. The same

layer-type is combined with the same activation function over the whole model.

For a model with three hidden layers, where two layers are of the same type,

in our case densely connected, this results in nine di�erent combinations of

activation functions. For evaluation each combination is run 31 times, making

use of the hyperparameters derived in the previous sections, to get the related

error vectors for signi�cance test. The results of the signi�cance evaluation

can be found in Appendix Table A.5 for the model with VPD input and Table

A.6 for the model without VPD. A maximal ψbm value of 320 is reachable.

The summarized results from the signi�cance test for the DL-STPM-VPD

model can be found in Table 5.9, showing the applied activation function

for each hidden layer and the related ψbm and ψsp values. A combination

of leaky ReLU, as activation function for the densely connected layers and

basic ReLU for the Elman layer outperformed the other combinations in terms

of ψbm. If regarded for how many parts each model performed signi�cantly

worse than the best model for this part all con�gurations did not perform
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H1 H2 H3 ψbm ψsp
1 leakyReLU ReLU leakyReLU 51 21

2 leakyReLU SoftPLus leakyReLU 32 25

3 ReLU leakyReLU ReLU 27 24

4 leakyReLU leakyReLU leakyReLU 26 18

5 SoftPLus SoftPLus SoftPLus 25 20

6 ReLU ReLU ReLU 21 18

7 SoftPLus leakyReLU SoftPLus 17 28

8 SoftPLus ReLU SoftPLus 5 21

9 ReLU SoftPLus ReLU 0 29

Table 5.9.: Signi�cance ranking of activation functions for DL-STPM-VPD.

that well. The lowest ψsp value was achieved by ReLU or leaky ReLU applied

for all three layers, with being signi�cantly worse on 18 parts out of 40. The

above-mentioned combination of leaky ReLU and ReLU was signi�cantly worse

than the best model on 21 spare parts, which is still one of the best values.

This indicates that there is no combination of activation functions that has

good generalization capabilities, clearly outperforming the others. Therefore,

the combination, achieving the best ψbm result was chosen as hyperparameter

con�guration for further experiments. Even though the results do not strongly

emphasize a combination of activation functions, leaky ReLU as activation

function for densely connected layers seems to be a good choice, as most of

the best performing con�gurations apply this activation function for this layer-

type. A reason for that may be the small gradient, added by leaky ReLU even

if the unit is not active. This may bene�t the training in case of only few

training data, resulting in better performance.

Table 5.10 summarizes the results of the signi�cance evaluation for the model

without VPD. A combination of leaky ReLU as activation function for all three

layers signi�cantly outperformed the most combinations of activation functions

on parts it was found to be the best. This con�guration also showed the best

generalization capabilities and was only for 7 spare parts out of 40 found to

perform signi�cantly worse than the best model per part. This is one of the

best ψsp values among all combinations of activation functions, underpinning

the superiority of this model. In case of the univariate time series the advantage

of also having a small gradient if the unit is not active seems to bene�t the

training even more than in case of the multivariate time series problem, as
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H1 H2 H3 ψbm ψsp
1 leakyReLU leakyReLU leakyReLU 40 7

2 SoftPlus leakyReLU SoftPlus 32 10

3 ReLU ReLU ReLU 14 19

4 SoftPlus SoftPlus SoftPlus 14 19

5 ReLU leakyReLU ReLU 12 7

6 ReLU SoftPlus ReLU 7 16

7 SoftPlus ReLU SoftPlus 7 18

8 leakyReLU SoftPlus leakyReLU 4 18

9 leakyReLU ReLU leakyReLU 3 19

Table 5.10.: Signi�cance ranking of activation functions for DL-STPM.

the leaky ReLU activation function is used for all hidden layer. This may be

explained by the even less information available for training, compared to the

time series containing VPD. Furthermore, leaky ReLU is used for the recurrent

layer for all of the models, showing the best generalization capabilities. In

opposite to the model with VPD some combinations of activation functions

are superior to the other con�gurations, achieving better ψbm and ψsp values

than other con�gurations. This states that in case of the univariate time series

some combinations of activation functions, like leaky ReLU for all layers, can

handle the data better than other by showing superiority in terms of ψbm and

satisfactory generalization by a good ψsp value. This may originate in the one-

dimensional nature of the time series, implying less relations within the data,

making it easier to �nd a combination capable of dealing with the underlying

structure of the data producing processes.

5.3.4. Sliding Window Size

The size of the sliding window that is moved through the input data is covered

in the following. This hyperparameter controls the format of the input data.

As of Goodfellow et al. [40], model tuning related to the input data has also

great impact on the performance of a deep ANN. The size of the sliding

window de�nes how many xt are combined in the input vector of a single time

step. It speci�es the dimension of the input vector, e.g. in case of a window

size w = 3 the input for each time step is composed out of xt−2, xt−1 and

xt−0. This window is then moved through the data like a queue, adding the
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window size ψbm ψsp
1 w=3 24 9

2 w=2 24 12

3 w=4 18 10

4 w=8 12 16

5 w=9 11 16

6 w=5 10 13

7 w=7 8 16

8 w=6 0 15

Table 5.11.: Signi�cance ranking of sliding window sizes for DL-STPM-VPD.

youngest value on the one end and removing the oldest value on the other end.

The larger the sliding window, the more information is aggregated in one input

vector, but the less data is available for network training because the number

of available data points for training is always reduced by the size of the sliding

window. The sliding window approach adds time related information to each

input data point by transforming it to a higher space, additional containing

information of past time steps. In time series literature this approach is usually

applied for simpli�cation of learning of time dependent relations by arti�cially

providing more information for each time step.

The impact of the sliding window size on both models will be evaluated in the

following. Therefore each model is run on a �fth sample of 40 spare parts with

di�erent sliding window sizes from the interval [2, 9]. Two is the smallest pos-

sible window size and nine is regarded as maximum, minimizing the amount

of training data drastically. To calculate statistical signi�cance each con�gu-

ration is again run 31 times to get the appropriate error vector. Because of the

number of tested window sizes a maximal ψbm score of 280 could be achieved

in the signi�cance evaluation. The results of the signi�cance test of the sliding

window size experiment can be found in Appendix Table A.7 and A.8 for the

model without VPD respectively.

Table 5.11 summarizes the results of the signi�cance test of the DL-STPM-

VPD model. The sliding window sizes two and three performed equally, re-

garded how many models were found to be signi�cantly worse for spare parts

these models performed best. This indicates that a smaller sliding window

performs better because of more available data points for network training.
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window size ψbm ψsp
1 w=2 65 13

2 w=9 21 28

3 w=3 19 15

4 w=6 15 16

5 w=4 10 10

6 w=5 6 15

7 w=7 6 23

8 w=8 6 28

Table 5.12.: Signi�cance ranking of sliding window sizes for DL-STPM.

This theory is supported by the ψsp results. Originating from a sliding window

size of three, the number of models that performed superior steadily increases

with the window size increasing. Also, a sliding window size of two is out-

performed on 12 parts, which are more parts than in case of a window size

of three. Therefore, the latter con�guration is regarded as best model of this

experiment. Nonetheless, the results of this evaluation questions the sliding

window approach at all. If the highest amount of training data is preferred,

the model should be evaluated without any sliding window applied to the in-

put data in future research. Furthermore, it may be questioned if the input

data should be extended by the time dependent relations or whether the model

should not be constrained beforehand, instead learning the relations by its own

from more available data.

The results of the sliding window experiment for the model without VPD are

shown in Table 5.12. In case of the univariate time series the sliding window

approach is also questioned by the outcome of the evaluation at all. A window

size of two clearly outperformed the other con�gurations in terms of ψbm. Also,

if regarded on the performance of the models over all parts, all, except a sliding

window of size four were signi�cant worse than the respectively best model on

more than 13 spare parts, which is the result for the sliding window of size two.

Furthermore, the performance decreases related to the window size increase is

veri�ed for the univariate time series problem in more clarity. This concludes

that the restriction by arti�cially increased time related input does not bene�t

the model. One can argue that the model should learn this relation by itself,

without any constraints made by the input. These �ndings could be further

evaluated and proven in a future study.
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5.3.5. Data Augmentation

The following section covers the evaluation of the data augmentation step.

According to Goodfellow et al. [40] this step is highly recommended during

optimization of a deep learning model. Data augmentation adds arti�cial data

to the training data. On the one hand side this should evaluate the in�uence

of more data for model training and on the other hand side the generalization

capabilities of a model shall be strengthened. The latter e�ect would require

the addition of noise data to the time series or to extend the multivariate time

series by additional features. Due to the few training information available,

complexity reasons and the di�culty to extend the time series in a bene�cial

way the latter data augmentation approach is abandoned. The �rst mentioned

impact is discussed in the following.

To arti�cially extend the data the mean of two successive time steps xt and

xt+1 is added in-between them, as de�ned in Equation 5.8. This process can

be recursively repeated, extending the time series to length Ta, according to

Equation 5.9. T is the original length of the time series and d is the depth of

recursion, starting at one with the �rst arti�cial extension. It may be noted

that this kind of augmentation can be regarded as data smoothing. The data

is smoothed by stretching along the time dimension. Nevertheless, it adds data

points to the training data and the in�uence could be evaluated. Arti�cially

extension of the time series beyond the proposed method becomes a tough

task that could be reliably solved only if more information about the data

generating processes is available.

xa =
xt + xt+1

2
(5.8)

Ta = (2dT − 2d−1)− 1 (5.9)

For evaluation each model is run 31 times on a sixth sample of 40 spare parts.

The models are con�gured according to the above derived hyperparameters.

No augmentation, represented by a degree of zero, data augmentation of degree

one and two are compared. Greater recursion depths are neglected because of

the smoothing character of the applied augmentation, assuming no further in-

formation gain. The models are trained on the augmented data. For prediction

the original input is used, otherwise the prediction horizon would be reduced

by the degree of augmentation, resulting in a less accurate forecast for the

same period because more time steps need to be predicted, if the horizon is
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Degree ψbp ψsp
1 d=0 24 6

2 d=2 6 17

3 d=1 5 12

Table 5.13.: Signi�cance ranking of data augmentation for DL-STPM-VPD.

extended. The results of the signi�cance evaluation could be found in Table

A.9 and A.10 respectively, resulting in a maximal ψbp value of 80.

Table 5.13 shows the results of the evaluation of the data augmentation process

for the model with VPD. The results clearly suggest that data augmentation

does not bene�t the model. A degree of zero outperformed the other tested

con�gurations in terms of models that were found to perform signi�cantly

worse on parts the model without data augmentation performed best. This

also holds if compared, for how many parts a model performed signi�cantly

worse than the best model for that particular part. The number of models

by whom a particular con�guration is outperformed steadily grows with the

degree of recursion of the data augmentation.

Reasons for this result could be manifold. The current hyperparamter con�g-

uration was derived on not smoothed data. The in�uence of the augmentation

on the data's structure the model is capable of learning could be that strong,

that it results in a performance decrease if this structure changes to a certain

degree. Furthermore, the model could already be over�tting the data struc-

ture and therefore lack in generalization. Last but not least, the augmentation

could add the wrong information to the data. The timely stretched data could

in�uence the time related pattern, like trend or seasonality in a way, that the

model cannot learn to transform these relations to the original input data. The

�rst and last-mentioned explanation, which are related by certain degree, seem

most plausible. Because of the low amount of information that is available for

training the model is sensible to changes of these. Over�tting, as justi�cation

of the results is discarded for the moment, because countermeasures, like the

exchange of the samples for each particular evaluation should protect against

it. Nonetheless, over�tting should not be dismissed totally and the in�uence

of changes to the input data should be evaluated in a future study.

Table 5.14 summarizes the results of the signi�cance test for the data aug-

mentation evaluation for the DL-STPM model. The outcome is similar to
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Degree ψbm ψsp
1 d=0 15 8

2 d=2 9 7

3 d=1 1 10

Table 5.14.: Signi�cance ranking of data augmentation for DL-STPM.

the model with VPD but not that severe. Even though a degree of zero per-

formed best in terms of models that performed signi�cantly worse on spare

parts no data augmentation achieved the best results, augmentation of degree

two is competitive, according to its ψsp score. No augmentation is preferred

because it was found to be the best model according to the tournament ranking

based on the evaluation functions on 50% of the parts contained in the sample,

whereas a degree of two only was found to be the best one on 13 parts. Thus,

the question, if the DL-STPM model could be supported by data augmenta-

tion remains unacknowledged and should be investigated in more detail in a

later study. Based on the results it could not be stated if arti�cial changes to

the training data bene�t the model or not, which underpins the toughness of

the univariate time series problem in general.

5.3.6. Training Epochs

The last hyperparameter evaluated is the number of training epochs. It con-

trols for how many iterations the training data is completely processed through

the ANN, to learn the connection weights. In an ideal case the optimization al-

gorithm �nds the global optimum within the given training epochs. Often this

process gets stuck in local optima and the error of the ANN is not minimized

further, because the training algorithm cannot get out of the local optimum.

Further training iterations after the optimization reached the local optimum

do not change the network output signi�cantly and training could be aborted.

This strategy, called early stopping, could be automated e.g. by a network

error threshold or a number of iterations, the error did not change noticeable.

If such a threshold is reached, training is stopped early. Nonetheless, it is di�-

cult to derive a threshold value. In case of this study, where an ANN for each

spare part is trained, it is more useful to derive the at least needed number

of training epochs and accept possible useless iterations, than trying to �nd a

81



5. Deep Learning based Approach for Spare Part Demand Forecasting

Training epochs ψbm ψsp
1 e=70 30 8

2 e=200 11 11

3 e=100 6 8

4 e=400 4 12

5 e=800 4 16

Table 5.15.: Signi�cance ranking of training epochs for DL-STPM-VPD.

general early stopping criterion, because it is regarded as more important to

ensure quality of the results, than minimization of computational e�ort.

During the POC the prototype networks usually reached a local optimum

within 70 to 90 epochs. Based on these experiences the number of training

epochs e was set to 100 for the previous experiments. For the current evalu-

ation 70, 100, 200, 400 and 800 training epochs are tested. 70 is regarded as

minimum, based on the empirical knowledge from the POC. 100 as hyperpa-

rameter used for the previous evaluation steps is also considered. Furthermore,

the number of epochs is doubled, until a maximum of 800 is reached. The two

biggest values are expected to bring no improvements to the training process

anymore.

As usual, each con�guration will be run 31 times on a fresh sample of 40 spare

parts for the DL-STPM-VPD and DL-STPM model, con�gured based on the

derived hyperparameters. According to the di�erent con�gurations and the

size of the spare part sample a ψbp score of maximal 160 could be reached

in the signi�cance test. The results of could be found in Appendix Table

A.11 for the multivariate time series and A.12 for the univariate demand data

respectively.

Table 5.15 summarizes the results of the signi�cance test for the multivariate

time series model. 70 training epochs clearly outperform the other con�gura-

tions in terms of ψbm. Concerning spare parts, a model performed signi�cantly

worse than the best con�guration on this part, the two smallest numbers of

training epochs performed equally well. For the other tested number of epochs

the performance decreases proportional to increase of iterations. This con�rms

the expectation that a larger amount of training epochs will not bene�t the

model. Due to the few training data the model relatively fast reaches a local

optima. Further training rather increases the training error by ending on the
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Training epochs ψbm ψsp
1 e=200 40 25

2 e=800 29 31

3 e=70 22 17

4 e=100 18 21

5 e=400 12 27

Table 5.16.: Signi�cance ranking of training epochs for DL-STPM.

borders of the local optima, but not at the actual local minimum. In case a

larger number of training epochs performed best on a particular part, often the

other con�gurations did not perform signi�cantly worse. This also underpins

that a larger number of iterations does not bring any advantage, compared

to the found best amount e = 70. Anyhow, an approach making use of early

stopping should be evaluated in a subsequent study, to check, whether a dy-

namical approach could bring a larger bene�t than a �xed number of epochs.

This study could incorporate the �ndings of these experiments, to ensure the

usually at least needed number of training epochs in case the early stopping

criteria is not reached.

The results of signi�cance evaluation for the model without VPD can be found

in Table 5.16. For the univariate time series the outcome of the experiment dif-

fers from the above discussed. 200 training epochs signi�cantly outperformed

the most models on spare parts it were found to perform best. If regarded for

how many spare parts a con�guration performed signi�cantly worse than the

best model for each part, the tendency is the same. The higher the number

of training epochs gets, the higher the ψsp value. It may be noted that the

ψsp values are approximately twice as high as for the multivariate time series

experiment. As well, the di�erences between con�gurations for each part are

more severe than for the DL-STPM-VPD model. In case of the univariate

time series the best con�guration for a spare part more often signi�cantly out-

performed the other models on that particular part, than it was the case for

the time series containing VPD. This indicates that the generalization based

on less information is more di�cult. Concluding, this supports the hypothesis

that it is di�cult to �nd a hyperperameter set with desirable generalization

capabilities for the univariate time series problem, which may be lead back to

the small amount of data available, to derive knowledge from.
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Figure 5.2.: Exemplary network structure.

5.4. Summary

The in the previous sections derived hyperparameters are only a selection that

is regarded as containing the most important ones. There are several more

that could be evaluated and tuned, like further hyperparameter for network

training, e.g. momentum, or regularization strategies and so on. The experi-

ments could be extended by a broader range of values or options. Nevertheless,

the evaluated hyperparameters are regarded as a solid mixture of architecture

and training optimization and the available resources, with respect to compu-

tational time for experiments, were fully used. A di�erent order of the tests or

di�erent con�gurations may have led to other results. The optimal technique

for hyperparameter estimation for deep learning is still an active research topic

and a not yet solved problem.

Figure 5.2 exemplary shows the architecture of the deep ANN, which is re-

garded as the most important hyperparameter. Both models, with and with-

out VPD make use of the same topology, as visualized by Figure 5.2, mere

with di�erent widths for each model. Table 5.17 summarizes the experimental
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Hyperparameter DL-STPM-VPD DL-STPM

Architecture Densely connected,

Elman,

Densely connected

Densely connected,

Elman,

Densely connected

Optimizer Adam Adam

Learning-rate 0.01 0.0066

Activation function leaky ReLU (H1),

ReLU (H2),

leaky ReLU (H3)

leaky ReLU (H1),

leaky ReLU (H2),

leaky ReLU (H3)

Training epochs 70 200

Sliding window size 3 2

Data augmentation no no

Table 5.17.: Experimentally derived hyperparameter con�guration.

derived hyperparameters for both models. These con�gurations will be used

for the evaluation of the proposed model in comparison to the current model

and its enhancements, to answer the research hypothesis of this work in the

following chapter.
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of Proposed Models

This section compares the currently by IBM applied model, it's in section 4.3

proposed enhancements and the in this study derived deep learning model

using in the previous section derived hyperparameter con�gurations, to an-

swer the research question of this thesis. Each model is evaluated on a set

of 365 spare parts, sampled from the multi- and univariate time series data

respectively. Because of the larger samples than the ones used for experimen-

tal hyperparameter estimation a more accurate prediction of the overall model

performance could be done. According to Equation 5.5 for calculation of sam-

ple size the margin of error for a sample of 365 parts is 5%, with a con�dence

interval of 95%. This holds for both samples, even though the margin of error

for the sample without VPD is slightly less than for the multivariate time se-

ries data because of the smaller number of parts, but this di�erence ranges in

per mill region. The experiments will be repeated 31 times. A comparison is

done by the same approach as for the experiments. First the best performing

model according to the evaluation functions for each spare part is determined.

Then the related p-values are calculated and the ψbm and ψsp values for each

model are derived. According to the number of spare parts contained in the

sample and the in the signi�cance evaluation involved models a maximal ψbm
score of 730 could be achieved.

6.1. DL-STPM-VPD

The ranking of the multivariate models can be found in table 6.1, aggregating

the results from the signi�cance test, which could be found in table A.13. The

deep learning based approach performed superior to the enhanced STPM-

VPD model, followed by the currently applied model in terms of ψbm. This
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Model ψbm ψsp
1 DL-STPM-VPD 296 180

2 STPM-VPD-enh 194 241

3 STPM-VPD 185 254

Table 6.1.: Signi�cance ranking versus current model for DL-STPM-VPD.

con�rms the research question, whether an ANN based approach is capable

of predicting the spare part demand with higher accuracy for the model with

Vehicle Production Data. This is also supported by the ψsp values. The

deep ANN achieved with 180 the best result, followed by the enhanced STPM

model. The worst ψsp value was measured for the currently applied STPM

model. Concluding the results of the signi�cance test, the deep learning based

approach achieves a higher forecast accuracy in terms of RMSE as the currently

applied model and its proposed enhanced version if regarded at the whole

sample evaluated. Nevertheless, this could be stated only because the ANN

was found to be the best model according to the evaluation functions on the

majority of the parts. The high ψsp values indicate that the models were

usually signi�cant worse than the best model of a particular part. This suggests

that in many cases, if the model was not found to be the best on a spare part

according to the tournament ranking evaluation, it performed not competitive

compared to the other. This means that the deep learning based approach

could predict a larger number of parts than the currently applied model with

higher accuracy, but performs not satisfying on all parts of the sample. Yet

this is still an improvement to the currently applied model.

Figure 6.1 summarizes the direct tournament ranking comparison of either the

currently applied model or the enhanced version of the STPM-VPD model

against the deep learning based approach. For each part of the sample

the results according to the three evaluation functions, RMSE, Chi-Squared-

Distance and CC are compared. A model is considered as better than the

other approach if it was found to outperform it for at least two out of three

evaluation functions. In the end, it is counted for each model for how many

parts of the sample it performed superior to the compared approach.

Figure 6.1a compares the performance of the currently applied model with the

deep learning based approach. The DL-STPM-VPD model performs better

according to the tournament ranking for 57% of the spare parts contained in

the sample. This underpins the results from the signi�cance test, neither of
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(a) vs. STPM-VDP (b) vs. STPM-VDP-enh

Figure 6.1.: Comparison against DL-STPM-VPD according to tournament

ranking.

both can generalize all spare parts contained in the sample. Nonetheless, the

proportion of the deep learning based approach is larger than the share of the

currently applied model, what concludes that the proposed model improved

the overall accuracy of the demand forecast. Furthermore, this encourages the

analysis of the two resulting classes of spare parts, build by superior model

performance in future work.

The results of the comparison of the enhanced version of the STPM-VPD

model with the proposed deep learning approach is visualized in Figure 6.1b.

The deep learning based model slightly performed better than the enhancement

of the currently applied model by a proportion of 52% of the spare parts of

the sample. On one side this con�rms the achievements of the enhancements

to the currently applied model by decreasing the proportion of parts the deep

ANN performed better, compared to the previous comparison. On the other

side it reduces the bene�t of the proposed model because it only increased

forecast accuracy for a few parts, compared to the enhanced version of the

STPM-VPD model.

Figure 6.2 shows some exemplary diagrams, comparing the forecasts of the

STPM-VPD and deep learning based model. Plot 6.2a and 6.2b present two

parts the deep ANN outperformed the currently applied model. The proposed

model was able to learn the relation between the demand and the VPD, re-

sulting in a very accurate forecast, as long as vehicle data is available. As

no further VPD is accessible the model starts to predict an average demand
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value. This concludes that it is necessary that the VPD is available for the

whole forecast horizon.

The Diagrams 6.2c and 6.2d show parts where the currently applied model

outperformed the proposed approach. In the �rst case the deep ANN was not

able to learn the relation of an increasing demand if the cumulative sum of

vehicles grows, resulting in an underestimation of the real spare part demand.

In the second case the missing VPD after a few time steps forced the deep

model to rely on the demand data only, misconstruing the last months of

training data and ignoring that no further vehicles are added to the market.

This ends in a substantially overestimated spare part demand.

Figure 6.2e represents a case both compared models had di�culties to learn

the demand pattern. The apparently not from market vanishing cars result in

a steadily increasing demand. Both models were not able to capture this by

the training data. Whereas in Plot 6.2f both models were able to learn the

same demand increasing phenomena. A potential explanation could be the

slightly stronger increasing demand within the training data in the latter case.

Figure 6.3 presents some exemplary spare part forecasts, comparing the STPM-

VPD-enh and DL-STPM-VPD model. Diagrams 6.3a and 6.3b show parts the

deep learning based approach performed better than the enhanced version of

the currently applied model in terms of forecast accuracy. Either the STPM-

VPD-enh model over- or underestimated the true demand. This may originate

in a misleading vehicle depletion rate, learned by the regression model in both

cases.

The Plots 6.3c and 6.3d are representatives of spare parts the enhanced cur-

rently applied model outperformed the deep ANN. In both cases the neural

network was not able to learn the correct relation between the VPD, the vehicle

depletion and the demand. This results in substantial over- or underestimation

of the real spare part demand. Both visualized parts contradict the spare parts

where the DL-STPM-VPD model performed better, because there is no obvi-

ous di�erence between all four spare parts. Nevertheless, the reasons should

be investigated in a future study.

Finally, Figure 6.3e shows a part both models having trouble to accurately

predict the spare part demand. Neither the deep ANN, nor the STPM-VPD-

enh model were able to detect the correct relations and patterns describing this

part. Therefore both models underestimated the demand. Plot 6.3f represents
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6.1. DL-STPM-VPD

(a) DL-STPM-VPD better

(b) DL-STPM-VPD better

Figure 6.2.: Example parts showing STPM-VDP and DL-STPM-VDP fore-

cast.
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(c) STPM-VDP better

(d) STPM-VDP better

Figure 6.2.: Example parts showing STPM-VDP and DL-STPM-VDP forecast

cont.
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(e) both not satisfactory

(f) both satisfactory

Figure 6.2.: Example parts showing STPM-VDP and DL-STPM-VDP forecast

cont.
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(a) DL-STPM-VPD better

(b) DL-STPM-VPD better

Figure 6.3.: Example parts showing STPM-VDP-enh and DL-STPM-VDP

forecast.
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6.1. DL-STPM-VPD

(c) STPM-VDP-enh better

(d) STPM-VDP-enh better

Figure 6.3.: Example parts showing STPM-VDP-enh and DL-STPM-VDP

forecast cont.
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(e) both not satisfactory

(f) both satisfactory

Figure 6.3.: Example parts showing STPM-VDP-enh and DL-STPM-VDP

forecast cont.

96



6.2. DL-STPM

Model ψbm ψsp
1 DL-STPM 353 168

2 STPM-enh 203 228

3 STPM 131 291

Table 6.2.: Signi�cance ranking versus current model for DL-STPM.

a part predicted satisfactory by both models by learning the right relation

between vehicles, vanishing vehicles and the occurring demand.

The visualized results support the already drawn conclusions, that there are

categories of parts each model is superior to the other. To further increase

the prediction accuracy these classes need to be analyzed and potential model

optimization steps need to be identi�ed.

6.2. DL-STPM

Table 6.2 summarizes the results of the signi�cance test for the model without

VPD. The deep learning based model clearly outperformed both other models

in terms of ψbm. This result is con�rmed by the ψsp values, DL-STPM achieving

the lowest value, followed by STPM-enh and the currently applied model. The

high ψsp scores indicate that the models usually performed signi�cantly worse

than the best model for a particular spare part. This concludes that each model

has its group of parts it can handle better than the other models. These groups

should be evaluated in a later study, whether the results could lead to new spare

part classes, making use of all evaluated models. Nonetheless, the number of

spare parts the deep learning based approach achieved a higher accuracy than

the current model or its enhancement is greater than for the currently applied

model, stating that the deep learning based approach achieved a higher forecast

accuracy regarded for the whole sample as the STPM and STPM-enh model.

This con�rms the research question of this thesis in case of the univariate time

series problem too.

Figure 6.4 shows the results if the currently applied model and the STPM-enh

model are compared with the deep learning based model for the univariate time

series based on the tournament ranking system. A model is again considered as

better if it outperforms the compared one in at least two out of three evaluation
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(a) vs. STPM (b) vs. STPM-enh

Figure 6.4.: Comparison against DL-STPM according to tournament ranking.

functions. Plot 6.4a visualizes the currently applied model versus the deep

ANN. The DL-STPM model performed better for 74% of the evaluated spare

parts. This is a clear improvement in terms of forecast accuracy, stating that

the neural network approach is more suitable for the univariate time series

problem than the currently applied model. Nevertheless, the resulting two

classes of parts need to be investigated further to verify whether a solution

containing both approaches is even more promising.

Image 6.4b represents the comparison of the enhanced version of the currently

applied model with the deep learning based approach. The deep ANN model

outperformed the proposed enhanced version of the currently applied model

for 59% of the sampled spare parts. This leads to similar conclusions as for

the multivariate time series. The proposed enhancements of the currently

applied model are e�ective and reduce the superiority of the deep learning

based model. Nonetheless, the DL-STPM model is still noticeable increasing

the forecast accuracy compared to the STPM-enh model.

Figure 6.5 shows exemplary plots for selected spare parts, comparing the fore-

cast of the currently applied model with the prediction of the proposed deep

learning based approach. The Diagrams 6.5a and 6.5b visualize spare parts the

deep ANN outperformed the STPM model. Whereas the DL-STPM model was

able to capture the pattern of the time series data to some extent, the STPM

model substantially overestimated the true demand.

The case of STPM outperforming the proposed deep learning based model is

shown in Figure 6.5c and 6.5d. The parameters of the currently applied model

were able to map the demand pattern based on the training data. The deep
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ANN had problems to detect the relations within the data, which lead to a

mean value, predicted few time steps after the end of training data, resulting

in inaccurate estimations of the true demand.

Figure 6.5e represents a spare part both models were not able to satisfactory

predict the future demand. Nevertheless, to predict the increasing demand

pattern based on the available information in the training data is a tough

task. Finally, Plot 6.5f shows a case both models produce similar results, that

could be regarded as satisfactory based on the training input. It may be noted

that in most cases either the one or the other model predicts the demand more

or less correct. The case of both models doing a good job is rather seldom.

Image 6.6 visualizes the predictions of the STPM-enh and univariate deep ANN

for some selected spare parts. The Plots 6.6a and 6.6b represent spare parts

the proposed deep learning based approach achieved a higher accuracy than

the enhanced version of the currently applied model. The DL-STPM model

was able to learn the relations within the historic demand, even though the

prediction accuracy decreases with increasing forecast horizon and becomes

more and more an average demand like prediction. Nevertheless, both spare

parts prove that the proposed approach could learn demand patterns from the

few available data for training.

The Diagrams 6.6c and 6.6d present spare parts the STPM-enh model per-

formed superior to the deep learning based approach. The latter one was able

to �t a model to the training data, but the prediction performance decreases

rapidly with increasing forecast horizon, resulting in not satisfactory demand

predictions. The enhanced version of the currently applied model conversely

predicted the demand with higher accuracy. This underpins the hypothesis of

two classes of spare parts, same as for the multivariate time series problem.

Plot 6.6e shows a part the deep ANN and the STPM-enh model performed

rather bad in terms of prediction accuracy. Both models can deal well with

the training data but cannot follow the upward trend of the demand curve.

As sated earlier, this is a tough task if this trend was not indicated by the

training data. Last but not least, Figure 6.6f visualizes the predictions for a

spare part both models could forecast with satisfactory accuracy.

The above discussed exemplary spare parts underline the toughness of the

univariate time series problem. It is di�cult to accurately predict the future

demand with that few information available for model training. In case the
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(a) DL-STPM better

(b) DL-STPM better

Figure 6.5.: Example parts showing STPM and DL-STPM forecast.
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6.2. DL-STPM

(c) STPM better

(d) STPM better

Figure 6.5.: Example parts showing STPM and DL-STPM forecast cont.
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(e) both not satisfactory

(f) both satisfactory

Figure 6.5.: Example parts showing STPM and DL-STPM forecast cont.
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6.2. DL-STPM

(a) DL-STPM better

(b) DL-STPM better

Figure 6.6.: Example parts showing STPM-enh and DL-STPM forecast.
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(c) STPM-enh better

(d) STPM-enh better

Figure 6.6.: Example parts showing STPM-enh and DL-STPM forecast cont.
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(e) both not satisfactory

(f) both satisfactory

Figure 6.6.: Example parts showing STPM-enh and DL-STPM forecast cont.
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training data is much di�erent from the later demand pattern the model often

has no chance to place an accurate spare part demand prediction. Furthermore,

the forecast horizon is shorter than for the multivariate time series data.

The �nal evaluation of the proposed deep learning model against the currently

applied model and its suggested enhanced version showed that the deep ANN

approach is superior. Therefore, the initial hypothesis of this thesis, if an

Arti�cial Neural Network based prediction model forecasts the young fast-

moving spare part demand with higher accuracy than the currently applied

model, could be answered with yes. Even tough, this answer is stronger in case

of the univariate model than in case of the multivariate, where only a slight

performance increase was achieved. The results already showed promising

research directions, to further increase the performance of the models.
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This work covered the development of a model for automotive spare part de-

mand forecasting of young and fast-moving spare parts. The economic need

of a model that optimizes the demand prediction and therefore supports the

spare part management was discussed. Fundamental principles of the spare

part management were introduced, and the characteristics of spare parts were

analyzed. Furthermore, in�uence factors of the spare part demand were dis-

cussed to pave the way for a requirements driven analysis of possible approaches

for demand prediction. To gain an overview an extensive literature review re-

vealed models, that are applied for spare part demand forecasting, as well as

models, that are suitable to meet the speci�ed requirements. In parallel to the

literature review the basic concepts of these models were introduced. Accord-

ing to state of the art research an Arti�cial Neural Network based approach

was regarded as most promising. To form a basis for the evaluation of the

model, the data available for evaluation were introduced and the currently

for this task applied model, which should be outperformed in terms of fore-

cast accuracy by the proposed approach was discussed. Furthermore, it was

shown that enhancements of the currently applied model are possible but are

elaborately and the gain is rather small.

Based on the requirements analysis and the results from literature review a

deep learning based model, composed of densely connected, Elman and Long

Short Term Memory layers was proposed in Chapter 5. Deep ANN are char-

acterized by plenty of hyperparameters that could be tuned to improve fore-

casting performance. Due to the huge parameter space the optimal hyperpa-

rameters for the proposed model are experimentally derived and statistically

evaluated on real world data, provided by a worldwide operating automotive

company, by means of a sequential development process. The following hyper-

parameters were derived: the network architecture, the applied optimization

algorithm and the related learning-rate, the activation function for each layer,
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the size of the sliding window moved through training data, augmentation of

the training data and the number of training epochs.

According to the developed hyperparameters the proposed model was com-

pared with the currently applied model and its suggested enhanced version.

The deep learning based model for automotive spare part demand forecasting

was found to outperform both other tested approaches. The results were dis-

cussed in detail and weaknesses of the proposed model were identi�ed, as well

as possible solutions and starting points for further research.

7.1. Critical Summary

According to the results from the experimental evaluation of the proposed

model, its superiority compared to the currently applied model and its en-

hancements is veri�ed. This con�rms reaching the primary target of this thesis

of �nding a model that could predict the spare part demand of young fast-

moving spare parts with higher accuracy than the currently applied model. A

limitation is, that this holds only if regarded for the whole sample of spare

parts. There are spare parts for which the prediction accuracy was improved

and there are parts for which the currently applied model is superior to the

proposed approach. The deep ANN is regarded as superior because it out-

performs the currently applied model for more than 50% of the spare parts,

which in total is an improvement. Unfortunately, the applied evaluation mea-

sures only state whether a model outperformed the compared approach or not.

For future research the evaluation measure should be changed in a way, that

statements about the margin of enhancement are possible.

Furthermore, there have been some �aws identi�ed. The applied signi�cance

evaluation measure introduced a bias to the derivation of the deep learning

based approach. It prefers models that were found to be the best according

to the tournament ranking system for the largest number of spare parts of the

evaluated sample over models that performed satisfactorily, but were not the

best on most of the spare parts. The bias holds for ψbm, counting only the

number of signi�cantly worse models for the best model of a spare part, as well

as for ψsp, creating better results if a model was more often the reference vector.

This bias prefers over�tting over generalization. Even though the likelihood

of over�tting is rather low for the current scenario because of the few training
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data that could be over�tted. Nevertheless, this should be kept track of. To

overcome this bias an evaluation, signi�cantly comparing all models for all

parts, could be applied.

Continuously, a di�erent order of hyperparameter derivation could have led

to other results. In literature there exist no best practice in which order a

deep ANN should be tuned. There are only recommendations, based on the

expected e�ects of the hyperparameters, nonetheless these di�er from task to

task. Based on the experiences from this work, the order of hyperparame-

ters derivations could be changed. The format of the input data, in�uenced

by the data augmentation and the sliding window should be incorporated to

the architecture design, because the architecture and the input are heavily

related. Unfortunately, this increases the computational complexity of archi-

tecture derivation, which is expensive anyway.

An extension of the solution space regarding the hyperparameters is also rec-

ommended. Due to computational limitations the hyperparameters needed

to be constrained for this study. This restriction should be reduced, and a

wider parameter space evaluated. This implies a less restricted deep ANN,

which could result in increased prediction accuracy. Nonetheless this produces

a larger computational complexity for evaluation.

Last but not least, the sample selection should be mentioned. The sample size

for hyperparameter evaluation allows a large margin of error, which in turn

to some extent allows misleading conclusions. An increase of the sample size

could reduce the margin of error but also requires a larger computational e�ort.

Nevertheless, this is regarded as important because a larger sample probably

better represents the true distribution, resulting in well-founded outcomes.

7.2. Outlook

Based on the results from the hyperparameter derivation and the comparison

against the current model further research possibilities were identi�ed. There

seem to exist two classes of spare parts, one the deep ANN is superior and one

the currently applied approach, or rather the enhanced version of the current

model outperforms the proposed model. These two classes should be analyzed,

and the characteristics of the particular spare parts should be identi�ed. This

could lead to an approach, where the spare part data is split, and each model
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is applied to the subset it is more suitable for. This would further increase

the forecast performance by using the more appropriate model for each spare

part. Nonetheless, identi�cation of the selection criteria for each subset could

become a tough task.

The proposed model could be supplemented by a plausibility check of the

forecast, similar to the approach suggested for the currently applied model. If

this forecast fails to verify the plausibility of the outcome of the deep learning

based model, the prediction is repeated with the currently applied model or

its enhancement. This could overcome spare parts the neural network was

not able to learn the demand pattern but the currently applied model or its

modi�cation is able to. A combination of both models via a plausibility check

can improve the performance for spare parts, either of both approaches is

capable of satisfactory predictions but not for parts, both models fail to forecast

with su�cient accuracy. Nevertheless, the derivation of the rules to de�ne

prediction plausibility represents a future research point.

Furthermore, literature review identi�ed several promising approaches. These

not yet covered models could be evaluated on their own or combined to an

ensemble. The ensemble approach would bene�t from the advantages of all

models. Veri�cation of possible approaches capable of increasing the forecast

performance compared to the currently applied model and the proposed deep

ANN could be a starting point for further research. The combination of these

to an ensemble extends this idea, but it is questionable if the computational

e�ort needed to obtain the �nal model is feasible and useful.

The proposed approach could be evaluated for other spare part classes. It may

be an interesting research point, how the deep architectures will perform on

spare parts with a larger demand history and therefore more data available

for model training. This could also increase the prediction accuracy for other

classes of spare parts not covered yet.

Last but not least, changes to the input data should be evaluated more de-

tailed. In the scope of this study a training period of 24 months was assumed.

In reality this period ranges within 12 to 59 months, as of the selection crite-

ria. The in�uence of di�erent amounts of training data to the proposed model

should be evaluated, to ensure its performance also under changing conditions.

Continuously, the input data could be supplemented by expert knowledge, like

expected spare part failure rates or usage statistics from the authorized work-

shops, to further support the model by �nding the time series related patterns.
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This additional information will also in�uence the needed amount of training

data, as seen in the di�erences between the multivariate and univariate time

series, used for model evaluation within this work. Pursuing, other theories,

like phase space reconstruction of dynamical systems theory, could be eval-

uated to analyze if they could support the model by detecting the demand

series underlying processes, to �nally increase the spare part demand forecast

accuracy.

Concluding, there are many directions for further research. This study revealed

some new insights to the area of spare part demand forecasting, con�rming that

deep learning based models are capable of predicting future demand based on

the historic spare part demand. This paves the way for future studies, possibly

further increasing the prediction accuracy and therefore optimize the spare part

management.
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Table A.1.: Signi�cance evaluation of 50 best architectures for DL-STPM-

VPD.
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Table A.1.: Signi�cance evaluation of 50 best architectures for DL-STPM-VPD
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Table A.1.: Signi�cance evaluation of 50 best architectures for DL-STPM-VPD
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Table A.2.: Signi�cance evaluation of 50 best architectures for DL-STPM.
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Table A.2.: Signi�cance evaluation of 50 best architectures for DL-STPM cont.
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Table A.2.: Signi�cance evaluation of 50 best architectures for DL-STPM cont.
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A. Signi�cance tables
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Table A.3.: Signi�cance evaluation of optimizer / learning-rate for DL-STPM-

VPD.
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Table A.4.: Signi�cance evaluation of optimizer / learning-rate for DL-STPM.
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Table A.5.: Signi�cance evaluation of Activation functions for DL-STPM-

VPD.
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Table A.6.: Signi�cance evaluation of Activation functions for DL-STPM.
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A. Signi�cance tables

Part Best model ψbm w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9

1 w=3 6 0.0000 1.0000 0.1327 0.0000 0.0000 0.0000 0.0000 0.0000

2 w=2 4 1.0000 0.2332 0.5854 0.0101 0.7478 0.0000 0.0000 0.0000

3 w=9 4 0.0000 0.0000 0.0000 0.0366 0.2017 0.9443 0.5951 1.0000

4 w=2 3 1.0000 0.0516 0.8230 0.0317 0.0608 0.0194 0.0589 0.0028

5 w=3 7 0.0421 1.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

6 w=8 1 0.0691 0.2170 0.0499 0.7691 0.8122 0.4332 1.0000 0.4414

7 w=7 1 0.1058 0.1401 0.5854 0.2805 0.3409 1.0000 0.0050 0.4498

8 w=4 0 1.0000 0.5569 1.0000 0.8449 0.8014 0.1520 0.2621 0.1778

9 w=5 2 0.0038 0.9554 0.3931 1.0000 0.0317 0.1401 0.3777 0.1401

10 w=2 7 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

11 w=2 4 1.0000 0.1186 1.0000 0.0608 0.0000 0.0000 0.0000 0.0000

12 w=4 1 0.0147 0.6749 1.0000 0.4498 0.4583 0.8339 0.1255 0.1290

13 w=7 1 0.1058 0.0570 0.7478 0.5108 0.2681 1.0000 0.2868 0.0421

14 w=3 5 0.8339 1.0000 0.7162 0.0000 0.0000 0.0000 0.0000 0.0000

15 w=4 4 0.6445 0.0589 1.0000 0.4169 0.0001 0.0180 0.0008 0.0000

16 w=2 2 1.0000 0.2388 0.1520 0.1520 0.0760 0.1027 0.0194 0.0466

17 w=4 2 0.0406 0.9666 1.0000 0.0173 0.2170 0.7267 0.6749 0.1440

18 w=2 1 1.0000 0.9443 0.4009 0.5108 0.2332 0.0406 0.1440 0.3553

19 w=2 3 1.0000 0.9443 0.0913 0.6147 0.0691 0.0106 0.0000 0.0000

20 w=7 2 0.0005 0.0274 0.1824 0.3777 0.3409 1.0000 0.5759 0.5108

21 w=3 0 0.3268 1.0000 0.8558 0.3338 0.6445 0.1255 0.2621 0.1688

22 w=3 1 0.5569 1.0000 0.4498 0.8558 0.7162 0.8014 0.0482 0.6851

23 w=8 5 0.1645 0.0004 0.0000 0.0340 0.0482 0.0159 1.0000 0.9110

24 w=5 6 0.0000 0.0000 0.0000 1.0000 0.0305 0.0001 0.0516 0.0274

25 w=4 0 0.1602 0.3627 1.0000 0.6445 0.3481 0.7267 0.5569 0.4414

26 w=8 6 0.0000 0.0075 0.0015 0.0004 0.0040 0.0998 1.0000 0.0078

27 w=6 0 0.3854 0.5759 0.2388 0.4498 1.0000 0.7906 0.4332 0.5475

28 w=7 1 0.6546 0.0379 0.1520 0.8014 0.9666 1.0000 0.5199 0.8339

29 w=9 0 0.1520 0.9110 0.4169 0.7372 0.5569 0.4668 0.3931 1.0000

30 w=4 0 0.9666 0.8339 1.0000 0.6445 0.7584 0.5569 0.3338 0.4498

31 w=5 2 0.0048 0.0784 0.0340 1.0000 0.1778 0.1733 0.6546 0.1688

32 w=7 3 0.2681 0.4414 0.4009 0.3064 0.0284 1.0000 0.0001 0.0001

33 w=4 4 0.8339 0.6955 1.0000 0.0589 0.0055 0.0406 0.0063 0.0141

34 w=9 7 0.0001 0.0016 0.0000 0.0002 0.0000 0.0002 0.0060 1.0000

35 w=6 0 0.5569 0.0833 0.2561 0.4930 1.0000 0.8449 0.6851 0.2681

36 w=2 0 1.0000 0.8888 0.7478 0.6955 0.0940 0.1290 0.5019 0.5569

37 w=6 0 0.3931 0.7798 0.1121 0.1733 1.0000 0.7584 0.0714 1.0000

38 w=5 0 0.8230 0.5199 0.6851 1.0000 0.9554 0.5019 0.4755 0.4414

39 w=4 7 0.0005 0.0264 1.0000 0.0284 0.0294 0.0499 0.0115 0.0089

40 w=3 5 0.4755 1.0000 0.0218 0.0194 0.0014 0.0011 0.0392 0.3268

ψsp 12 9 10 13 15 16 16 16

Table A.7.: Signi�cance evaluation of sliding window size for DL-STPM-VPD.
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Part Best model ψbm w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9

1 w=9 7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0499 1.0000

2 w=7 6 0.0005 0.0002 0.0033 0.0110 0.2017 1.0000 0.0000 0.0000

3 w=5 2 0.1918 0.1688 0.2445 1.0000 0.5382 0.1967 0.0034 0.0482

4 w=6 4 0.0000 0.0001 0.0005 0.0028 1.0000 0.7798 0.8778 0.2388

5 w=9 5 0.0000 0.0000 0.0000 0.0041 0.0649 0.0033 0.5199 1.0000

6 w=2 6 1.0000 0.0101 0.0714 0.0466 0.0000 0.0000 0.0000 0.0000

7 w=2 5 1.0000 0.6147 0.9221 0.0235 0.0130 0.0026 0.0021 0.0000

8 w=6 0 0.0551 0.2224 0.0589 0.3702 1.0000 0.3553 0.9221 0.6851

9 w=3 1 0.3199 1.0000 0.7906 0.4842 0.7162 0.1220 0.0628 0.0294

10 w=6 2 0.4414 0.8888 0.7584 0.8122 1.0000 0.8449 0.0015 0.0000

11 w=4 1 0.4009 0.4169 1.0000 0.4088 0.2278 0.1186 0.0649 0.0010

12 w=8 0 0.1871 0.1967 0.2998 0.9110 0.6345 0.2805 1.0000 0.6345

13 w=2 0 1.0000 0.9221 0.6049 0.7798 0.5475 0.3702 0.1778 0.2805

14 w=3 5 0.1520 1.0000 0.4414 0.0106 0.0328 0.0120 0.0038 0.0101

15 w=2 1 1.0000 0.5199 0.6647 0.3409 0.7267 0.6647 0.1561 0.0006

16 w=3 4 0.2561 1.0000 0.7691 0.6851 0.0366 0.0101 0.0012 0.0027

17 w=2 4 1.0000 0.5475 0.6749 0.0570 0.0141 0.0021 0.0000 0.0000

18 w=2 3 1.0000 0.4668 0.1290 0.2067 0.7058 0.0366 0.0000 0.0078

19 w=8 5 0.0000 0.0353 0.0153 0.0366 0.0110 0.5019 1.0000 0.4250

20 w=5 4 0.0005 0.0859 0.2681 1.0000 0.4088 0.0001 0.0000 0.0000

21 w=9 2 0.0001 0.0045 0.0833 0.9443 0.3481 0.7162 0.0969 1.0000

22 w=2 1 1.0000 0.0628 0.1255 0.2332 0.5290 0.1364 0.0093 0.1401

23 w=2 7 1.0000 0.0166 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

24 w=9 7 0.0180 0.0115 0.0340 0.0005 0.0018 0.0013 0.0392 1.0000

25 w=2 4 1.0000 0.3931 0.3931 0.9554 0.0000 0.0000 0.0000 0.0000

26 w=2 4 1.0000 0.7798 0.5108 0.5108 0.0043 0.0003 0.0000 0.0000

27 w=2 6 1.0000 0.0913 0.0210 0.0028 0.0000 0.0000 0.0000 0.0000

28 w=4 3 0.5569 0.2681 1.0000 1.0000 0.2681 0.0499 0.0075 0.0026

29 w=6 5 0.0340 0.0022 0.5569 0.1918 1.0000 0.0078 0.0000 0.0353

30 w=6 4 0.0002 0.0085 0.0082 0.0036 1.0000 0.7372 0.9666 0.3702

31 w=2 4 1.0000 0.1479 0.4842 0.7267 0.0130 0.0001 0.0000 0.0000

32 w=3 4 0.0166 1.0000 0.1089 0.2561 0.0913 0.0000 0.0000 0.0000

33 w=2 3 1.0000 0.0379 0.0886 0.2621 0.0736 0.0649 0.0000 0.0000

34 w=2 7 1.0000 0.0187 0.0136 0.0210 0.0000 0.0000 0.0000 0.0001

35 w=2 6 1.0000 0.0244 0.0833 0.0000 0.0000 0.0000 0.0000 0.0000

36 w=4 3 0.0533 0.1364 1.0000 0.4009 0.1733 0.0001 0.0000 0.0000

37 w=3 5 0.0153 1.0000 0.1290 0.0030 0.2332 0.0020 0.0001 0.0000

38 w=4 3 0.9443 0.0141 1.0000 0.5475 0.4009 0.1733 0.0052 0.0014

39 w=2 4 1.0000 0.8778 0.3131 0.0808 0.0055 0.0027 0.0004 0.0000

40 w=8 1 0.0001 0.0628 0.4498 0.5569 0.5854 0.8668 1.0000 0.5019

ψsp 13 15 10 15 16 23 28 28

Table A.8.: Signi�cance evaluation of sliding window size for DL-STPM.
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A. Signi�cance tables

Part Best model ψbm d=0 d=1 d=2

1 d=1 0 0.6049 1.0000 0.3064

2 d=0 2 1.0000 0.0000 0.0000

3 d=1 1 0.0010 1.0000 0.0670

4 d=0 1 1.0000 0.1186 0.0007

5 d=0 0 1.0000 0.6073 0.0846

6 d=0 1 1.0000 0.6851 0.0045

7 d=2 0 0.1479 0.6345 1.0000

8 d=1 0 0.4088 1.0000 0.0808

9 d=0 1 1.0000 0.2118 0.0000

10 d=1 1 0.0969 1.0000 0.0000

11 d=1 1 0.7691 1.0000 0.0027

12 d=0 2 1.0000 0.0023 0.0001

13 d=2 2 0.0101 0.0254 1.0000

14 d=0 0 1.0000 0.5382 0.3268

15 d=0 0 1.0000 0.0859 0.7478

16 d=0 1 1.0000 0.9332 0.0011

17 d=1 0 0.2278 1.0000 0.0998

18 d=1 1 0.0227 1.0000 0.2743

19 d=0 2 1.0000 0.0227 0.0000

20 d=0 2 1.0000 0.0421 0.0045

21 d=1 1 0.5854 1.0000 0.0041

22 d=2 2 0.0000 0.0033 1.0000

23 d=0 2 1.0000 0.0030 0.0235

24 d=1 0 0.1153 1.0000 0.0833

25 d=0 2 1.0000 0.0022 0.0004

26 d=2 0 0.6147 0.8122 1.0000

27 d=1 0 1.0000 1.0000 0.2278

28 d=0 1 1.0000 0.0305 0.0969

29 d=2 0 0.1089 0.4842 1.0000

30 d=2 0 0.0691 0.1602 1.0000

31 d=0 1 1.0000 0.2118 0.0000

32 d=0 2 1.0000 0.0450 0.0244

33 d=1 0 0.5475 1.0000 0.9443

34 d=2 1 0.0202 0.5569 1.0000

35 d=0 0 1.0000 0.7478 0.6647

36 d=2 1 0.0406 0.9888 1.0000

37 d=0 0 1.0000 0.7906 0.2445

38 d=0 2 1.0000 0.0499 0.0000

39 d=0 2 1.0000 0.0004 0.0000

40 d=1 0 0.8558 1.0000 0.0608

ψsp 6 12 17

Table A.9.: Signi�cance evaluation of data augmentation for DL-STPM-VPD.
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Part Best model ψbm d=0 d=1 d=2

1 d=2 2 0.0004 0.0040 1.0000

2 d=1 0 0.1688 1.0000 0.2868

3 d=2 1 0.0002 0.0533 1.0000

4 d=2 1 0.0173 0.1255 1.0000

5 d=0 0 1.0000 0.8668 0.4088

6 d=0 2 1.0000 0.0000 0.0000

7 d=1 0 0.1089 1.0000 0.1327

8 d=2 2 0.0000 0.0000 1.0000

9 d=0 0 1.0000 0.1824 0.1290

10 d=0 1 1.0000 0.0066 0.5108

11 d=0 2 1.0000 0.0000 0.0000

12 d=0 2 1.0000 0.0063 0.0002

13 d=0 2 1.0000 0.0254 0.0435

14 d=0 0 1.0000 0.6955 0.7478

15 d=1 1 0.0421 1.0000 0.9110

16 d=2 1 0.0000 0.3199 1.0000

17 d=0 0 1.0000 0.1440 0.5663

18 d=2 1 0.0173 0.1778 1.0000

19 d=0 2 1.0000 0.0000 0.0000

20 d=2 0 0.8888 0.9332 1.0000

21 d=1 0 0.9666 1.0000 0.1255

22 d=2 0 0.3931 0.8668 1.0000

23 d=0 0 1.0000 0.1401 0.0784

24 d=0 0 1.0000 0.7478 0.0628

25 d=0 0 1.0000 0.4755 0.3064

26 d=0 0 1.0000 0.0940 0.5854

27 d=0 0 1.0000 0.3338 0.2332

28 d=2 0 0.2805 0.2278 1.0000

29 d=2 0 0.5951 0.8014 1.0000

30 d=1 0 0.2621 1.0000 0.5569

31 d=0 0 1.0000 0.2017 0.5951

32 d=1 0 0.6749 1.0000 0.8122

33 d=1 0 0.1733 1.0000 0.7162

34 d=0 0 1.0000 0.4842 0.2998

35 d=2 0 0.0628 0.1479 1.0000

36 d=2 1 0.0004 0.8888 1.0000

37 d=0 1 1.0000 0.0714 0.0254

38 d=2 0 0.6245 0.7691 1.0000

39 d=0 1 1.0000 0.0328 0.0516

40 d=0 2 1.0000 0.0002 0.0000

ψsp 8 10 7

Table A.10.: Signi�cance evaluation of data augmentation for DL-STPM.
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A. Signi�cance tables

Part Best model ψbm e=70 e=100 e=200 e=400 e=800

1 e=70 4 1.0000 0.0305 0.0000 0.0000 0.0028

2 e=70 1 1.0000 0.9888 0.0001 0.2681 0.1089

3 e=100 3 0.0886 1.0000 0.0435 0.0007 0.0063

4 e=200 0 0.8230 0.9110 1.0000 0.8558 0.6049

5 e=200 0 0.1121 0.5199 1.0000 0.0691 0.9666

6 e=200 1 0.7267 0.3131 1.0000 0.1186 0.0000

7 e=800 0 0.5759 0.8668 0.7058 0.9332 1.0000

8 e=70 2 1.0000 0.2224 0.4755 0.0000 0.0000

9 e=70 4 1.0000 0.0482 0.0002 0.0031 0.0000

10 e=100 0 0.8888 1.0000 0.3131 0.4583 0.0969

11 e=70 1 1.0000 0.6749 0.3338 0.0608 0.0024

12 e=400 0 0.3481 0.7372 0.9110 1.0000 0.0859

13 e=70 3 1.0000 0.0516 0.0008 0.0000 0.0000

14 e=70 0 1.0000 0.7162 0.7798 0.8449 0.6647

15 e=70 0 1.0000 0.9666 0.7906 0.8230 0.1918

16 e=100 3 0.3199 1.0000 0.0353 0.0000 0.0000

17 e=200 0 0.0466 0.4009 1.0000 0.3409 0.7058

18 e=200 0 0.0002 0.1290 1.0000 0.6245 0.9110

19 e=200 0 0.4169 0.2998 1.0000 0.8558 0.2868

20 e=800 0 0.0608 0.3931 0.3627 0.1733 1.0000

21 e=70 4 1.0000 0.0328 0.0353 0.0000 0.0000

22 e=400 1 0.3702 0.0244 0.7906 1.0000 0.0533

23 e=200 2 0.0670 0.2332 1.0000 0.0435 0.0030

24 e=70 1 1.0000 0.8449 0.4169 0.6445 0.0317

25 e=800 2 0.0089 0.0093 0.0120 0.1645 1.0000

26 e=70 4 1.0000 0.0120 0.0000 0.0024 0.0005

27 e=100 0 0.5019 1.0000 0.2017 0.3931 0.3199

28 e=200 2 0.1186 0.0969 1.0000 0.0066 0.0052

29 e=200 2 0.0023 0.0244 1.0000 0.1871 0.0009

30 e=800 0 0.0020 0.6147 0.1688 0.2998 1.0000

31 e=800 0 0.4009 0.4332 0.7058 0.7058 1.0000

32 e=70 2 1.0000 0.7058 0.4842 0.0001 0.0000

33 e=400 0 0.0353 0.5759 0.9332 1.0000 0.6546

34 e=400 0 0.8888 0.2445 0.1440 1.0000 0.0998

35 e=400 0 0.8014 0.9443 0.5854 1.0000 0.3409

36 e=200 0 0.9888 0.9777 1.0000 0.5663 0.8122

37 e=200 0 0.0379 0.4842 1.0000 0.2388 0.1918

38 e=400 1 0.0002 0.2388 0.0017 1.0000 0.5382

39 e=100 0 0.8122 1.0000 0.3777 0.8778 0.3338

40 e=70 4 1.0000 0.0089 0.0000 0.0000 0.0000

ψsp 8 8 11 12 16

Table A.11.: Signi�cance evaluation number of training epochs for DL-STPM-

VPD.
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Part Best model ψbm e=70 e=100 e=200 e=400 e=800

1 e=800 4 0.0000 0.0000 0.0000 0.0000 1.0000

2 e=800 0 0.3131 0.4088 0.5019 0.5951 1.0000

3 e=70 1 1.0000 0.4498 0.9110 0.0808 0.0030

4 e=400 4 0.0001 0.0001 0.0041 1.0000 0.0000

5 e=70 1 1.0000 0.2388 0.4668 0.0516 0.0000

6 e=200 4 0.0000 0.0000 1.0000 0.0000 0.0000

7 e=800 3 0.2067 0.0110 0.0005 0.0097 1.0000

8 e=70 3 1.0000 0.8014 0.0004 0.0194 0.0003

9 e=70 2 1.0000 0.7584 0.0000 0.7372 0.0000

10 e=70 3 1.0000 0.3854 0.0000 0.0014 0.0000

11 e=400 3 0.4583 0.0366 0.0003 1.0000 0.0000

12 e=800 4 0.0482 0.0085 0.0000 0.0000 1.0000

13 e=70 2 1.0000 0.9666 0.0000 0.8888 0.0000

14 e=200 4 0.0000 0.0000 1.0000 0.0000 0.0000

15 e=200 4 0.0000 0.0000 1.0000 0.0000 0.0000

16 e=800 3 0.0120 0.0969 0.0000 0.0036 1.0000

17 e=100 2 0.5854 1.0000 0.7058 0.0000 0.0000

18 e=70 3 1.0000 0.3199 0.0000 0.0435 0.0000

19 e=400 3 0.1290 0.0078 0.0000 1.0000 0.0000

20 e=200 4 0.0000 0.0000 1.0000 0.0000 0.0000

21 e=400 2 0.2561 0.4842 0.0000 1.0000 0.0000

22 e=70 2 1.0000 0.6345 0.0000 0.1027 0.0000

23 e=70 2 1.0000 0.3931 0.0000 0.5019 0.0000

24 e=100 3 0.5382 1.0000 0.0000 0.0015 0.0000

25 e=100 3 0.6147 1.0000 0.0000 0.0000 0.0000

26 e=800 4 0.0000 0.0000 0.0000 0.0000 1.0000

27 e=800 4 0.0055 0.0023 0.0000 0.0006 1.0000

28 e=800 3 0.4009 0.0340 0.0000 0.0218 1.0000

29 e=100 2 0.4250 1.0000 0.0000 0.1733 0.0000

30 e=100 3 0.9332 1.0000 0.0000 0.0166 0.0008

31 e=100 2 0.8778 1.0000 0.0202 0.1401 0.0001

32 e=200 4 0.0000 0.0000 1.0000 0.0000 0.0000

33 e=70 3 1.0000 0.0482 0.5951 0.0001 0.0000

34 e=100 3 0.4414 1.0000 0.0000 0.0353 0.0000

35 e=800 4 0.0000 0.0000 0.0000 0.0000 1.0000

36 e=200 4 0.0000 0.0000 1.0000 0.0000 0.0000

37 e=200 4 0.0000 0.0000 1.0000 0.0000 0.0000

38 e=200 4 0.0000 0.0000 1.0000 0.0000 0.0000

39 e=200 4 0.0000 0.0000 1.0000 0.0000 0.0000

40 e=200 4 0.0000 0.0000 1.0000 0.0004 0.0000

ψsp 17 21 25 27 31

Table A.12.: Signi�cance evaluation number of training epochs for DL-STPM.
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A. Signi�cance tables

Part Best model ψbm STPM-VPD STPM-VPD-enh DL-STPM-VPD

1 DL-STPM-VPD 2 0.0000 0.0000 1.0000

2 STPM-VPD 2 1.0000 0.0000 0.0000

3 DL-STPM-VPD 2 0.0000 0.0000 1.0000

4 DL-STPM-VPD 2 0.0001 0.0000 1.0000

5 DL-STPM-VPD 2 0.0000 0.0000 1.0000

6 STPM-VPD 2 1.0000 0.0000 0.0000

7 STPM-VPD 2 1.0000 0.0000 0.0000

8 DL-STPM-VPD 1 0.0001 0.8339 1.0000

9 DL-STPM-VPD 2 0.0000 0.0000 1.0000

10 STPM-VPD-enh 2 0.0000 1.0000 0.0001

11 STPM-VPD-enh 2 0.0000 1.0000 0.0000

12 DL-STPM-VPD 2 0.0009 0.0041 1.0000

13 STPM-VPD-enh 2 0.0000 1.0000 0.0041

14 STPM-VPD-enh 2 0.0000 1.0000 0.0000

15 STPM-VPD 2 1.0000 0.0000 0.0000

16 STPM-VPD-enh 2 0.0000 1.0000 0.0000

17 DL-STPM-VPD 2 0.0000 0.0000 1.0000

18 STPM-VPD 2 1.0000 0.0000 0.0000

19 DL-STPM-VPD 2 0.0000 0.0000 1.0000

20 DL-STPM-VPD 2 0.0000 0.0000 1.0000

21 STPM-VPD 2 1.0000 0.0000 0.0000

22 DL-STPM-VPD 2 0.0000 0.0000 1.0000

23 STPM-VPD 2 1.0000 0.0000 0.0000

24 DL-STPM-VPD 2 0.0000 0.0000 1.0000

25 STPM-VPD 2 1.0000 0.0000 0.0000

26 DL-STPM-VPD 2 0.0000 0.0000 1.0000

27 STPM-VPD 2 1.0000 0.0000 0.0000

28 STPM-VPD-enh 2 0.0000 1.0000 0.0000

29 STPM-VPD 2 1.0000 0.0000 0.0000

30 DL-STPM-VPD 2 0.0000 0.0000 1.0000

31 STPM-VPD 2 1.0000 0.0000 0.0000

32 DL-STPM-VPD 2 0.0000 0.0000 1.0000

33 STPM-VPD 2 1.0000 0.0000 0.0009

34 DL-STPM-VPD 2 0.0000 0.0000 1.0000

35 DL-STPM-VPD 2 0.0000 0.0000 1.0000

36 STPM-VPD-enh 1 0.0000 1.0000 0.5199

37 STPM-VPD-enh 2 0.0000 1.0000 0.0000

38 DL-STPM-VPD 2 0.0000 0.0000 1.0000

39 STPM-VPD-enh 2 0.0000 1.0000 0.0000

40 STPM-VPD 2 1.0000 0.0000 0.0000

41 DL-STPM-VPD 2 0.0159 0.0000 1.0000

42 STPM-VPD-enh 2 0.0000 1.0000 0.0000

43 STPM-VPD-enh 2 0.0000 1.0000 0.0499

44 STPM-VPD 2 1.0000 0.0000 0.0499

45 STPM-VPD-enh 2 0.0000 1.0000 0.0159

46 STPM-VPD-enh 1 0.0000 1.0000 0.2805

47 STPM-VPD 2 1.0000 0.0000 0.0000

48 STPM-VPD 2 1.0000 0.0000 0.0000

49 STPM-VPD-enh 2 0.0000 1.0000 0.0000

50 DL-STPM-VPD 0 0.5199 0.2805 1.0000

51 DL-STPM-VPD 2 0.0499 0.0000 1.0000

52 STPM-VPD-enh 2 0.0000 1.0000 0.0000

53 STPM-VPD 2 1.0000 0.0000 0.0000

54 DL-STPM-VPD 1 0.5199 0.0000 1.0000

55 DL-STPM-VPD 2 0.0000 0.0000 1.0000

56 STPM-VPD-enh 1 0.0000 1.0000 0.8339

57 DL-STPM-VPD 1 0.2805 0.0000 1.0000

58 STPM-VPD 2 1.0000 0.0000 0.0000

59 DL-STPM-VPD 2 0.0001 0.0000 1.0000

60 DL-STPM-VPD 2 0.0000 0.0000 1.0000

61 DL-STPM-VPD 2 0.0000 0.0000 1.0000

62 DL-STPM-VPD 2 0.0159 0.0009 1.0000

63 STPM-VPD-enh 2 0.0000 1.0000 0.0159

64 STPM-VPD-enh 2 0.0000 1.0000 0.0499

65 DL-STPM-VPD 2 0.0000 0.0000 1.0000

66 STPM-VPD-enh 2 0.0000 1.0000 0.0000

67 STPM-VPD-enh 1 0.0000 1.0000 0.5199

68 STPM-VPD 2 1.0000 0.0000 0.0000

69 STPM-VPD-enh 2 0.0000 1.0000 0.0000

70 STPM-VPD-enh 2 0.0000 1.0000 0.0000

71 STPM-VPD 2 1.0000 0.0000 0.0000

72 STPM-VPD-enh 2 0.0000 1.0000 0.0000

73 STPM-VPD 2 1.0000 0.0000 0.0000

Table A.13.: Signi�cance evaluation current model for DL-STPM-VPD.
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Part Best model ψbm STPM-VPD STPM-VPD-enh DL-STPM-VPD

74 STPM-VPD 2 1.0000 0.0000 0.0000

75 DL-STPM-VPD 2 0.0000 0.0000 1.0000

76 DL-STPM-VPD 2 0.0000 0.0159 1.0000

77 STPM-VPD-enh 2 0.0000 1.0000 0.0000

78 STPM-VPD 2 1.0000 0.0000 0.0000

79 DL-STPM-VPD 2 0.0000 0.0000 1.0000

80 STPM-VPD 2 1.0000 0.0000 0.0000

81 STPM-VPD 2 1.0000 0.0000 0.0000

82 DL-STPM-VPD 1 0.0000 0.2805 1.0000

83 STPM-VPD 2 1.0000 0.0000 0.0000

84 DL-STPM-VPD 2 0.0000 0.0000 1.0000

85 DL-STPM-VPD 2 0.0000 0.0000 1.0000

86 DL-STPM-VPD 2 0.0159 0.0000 1.0000

87 DL-STPM-VPD 2 0.0000 0.0000 1.0000

88 STPM-VPD-enh 1 0.0000 1.0000 0.2805

89 DL-STPM-VPD 2 0.0000 0.0000 1.0000

90 DL-STPM-VPD 2 0.0159 0.0000 1.0000

91 DL-STPM-VPD 0 0.8339 0.5199 1.0000

92 STPM-VPD-enh 2 0.0000 1.0000 0.0000

93 DL-STPM-VPD 2 0.0159 0.0009 1.0000

94 DL-STPM-VPD 1 0.0499 0.1290 1.0000

95 DL-STPM-VPD 2 0.0000 0.0000 1.0000

96 STPM-VPD 2 1.0000 0.0000 0.0000

97 STPM-VPD-enh 2 0.0000 1.0000 0.0041

98 STPM-VPD 2 1.0000 0.0000 0.0000

99 DL-STPM-VPD 2 0.0009 0.0000 1.0000

100 STPM-VPD-enh 2 0.0000 1.0000 0.0499

101 STPM-VPD-enh 2 0.0000 1.0000 0.0000

102 STPM-VPD-enh 2 0.0000 1.0000 0.0000

103 STPM-VPD-enh 1 0.0000 1.0000 0.5199

104 STPM-VPD 2 1.0000 0.0000 0.0000

105 STPM-VPD 1 1.0000 0.0000 0.2805

106 STPM-VPD 2 1.0000 0.0000 0.0000

107 STPM-VPD 2 1.0000 0.0000 0.0000

108 STPM-VPD 2 1.0000 0.0000 0.0000

109 STPM-VPD-enh 2 0.0000 1.0000 0.0159

110 DL-STPM-VPD 2 0.0000 0.0000 1.0000

111 DL-STPM-VPD 2 0.0000 0.0000 1.0000

112 DL-STPM-VPD 2 0.0000 0.0000 1.0000

113 STPM-VPD-enh 2 0.0000 1.0000 0.0000

114 STPM-VPD 2 1.0000 0.0000 0.0001

115 DL-STPM-VPD 2 0.0000 0.0000 1.0000

116 DL-STPM-VPD 2 0.0000 0.0000 1.0000

117 STPM-VPD 2 1.0000 0.0000 0.0000

118 STPM-VPD 2 1.0000 0.0000 0.0000

119 DL-STPM-VPD 2 0.0000 0.0000 1.0000

120 DL-STPM-VPD 2 0.0000 0.0499 1.0000

121 STPM-VPD 2 1.0000 0.0000 0.0009

122 STPM-VPD-enh 2 0.0000 1.0000 0.0009

123 STPM-VPD 2 1.0000 0.0000 0.0000

124 STPM-VPD-enh 2 0.0000 1.0000 0.0000

125 DL-STPM-VPD 2 0.0499 0.0499 1.0000

126 STPM-VPD-enh 2 0.0000 1.0000 0.0000

127 STPM-VPD 2 1.0000 0.0000 0.0000

128 DL-STPM-VPD 1 0.2805 0.0159 1.0000

129 STPM-VPD-enh 2 0.0000 1.0000 0.0000

130 DL-STPM-VPD 2 0.0000 0.0000 1.0000

131 DL-STPM-VPD 2 0.0000 0.0000 1.0000

132 DL-STPM-VPD 2 0.0000 0.0041 1.0000

133 STPM-VPD-enh 2 0.0000 1.0000 0.0000

134 STPM-VPD 2 1.0000 0.0000 0.0000

135 DL-STPM-VPD 2 0.0000 0.0000 1.0000

136 STPM-VPD-enh 2 0.0000 1.0000 0.0041

137 STPM-VPD 2 1.0000 0.0000 0.0000

138 STPM-VPD-enh 2 0.0000 1.0000 0.0000

139 DL-STPM-VPD 1 0.5199 0.0000 1.0000

140 STPM-VPD 2 1.0000 0.0000 0.0000

141 DL-STPM-VPD 2 0.0000 0.0000 1.0000

142 DL-STPM-VPD 2 0.0000 0.0000 1.0000

143 STPM-VPD-enh 2 0.0000 1.0000 0.0001

144 STPM-VPD 2 1.0000 0.0000 0.0000

145 DL-STPM-VPD 2 0.0000 0.0000 1.0000

146 STPM-VPD-enh 2 0.0000 1.0000 0.0000

147 STPM-VPD-enh 2 0.0000 1.0000 0.0000
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A. Signi�cance tables

Part Best model ψbm STPM-VPD STPM-VPD-enh DL-STPM-VPD

148 DL-STPM-VPD 2 0.0000 0.0000 1.0000

149 STPM-VPD-enh 2 0.0000 1.0000 0.0000

150 DL-STPM-VPD 0 0.1290 0.1290 1.0000

151 DL-STPM-VPD 2 0.0009 0.0041 1.0000

152 STPM-VPD-enh 2 0.0000 1.0000 0.0000

153 STPM-VPD 2 1.0000 0.0000 0.0000

154 STPM-VPD-enh 2 0.0000 1.0000 0.0000

155 DL-STPM-VPD 1 0.5199 0.0041 1.0000

156 STPM-VPD 2 1.0000 0.0000 0.0000

157 STPM-VPD-enh 2 0.0000 1.0000 0.0041

158 STPM-VPD-enh 2 0.0000 1.0000 0.0000

159 STPM-VPD 2 1.0000 0.0000 0.0000

160 DL-STPM-VPD 2 0.0001 0.0000 1.0000

161 DL-STPM-VPD 2 0.0159 0.0499 1.0000

162 DL-STPM-VPD 1 0.0041 0.1290 1.0000

163 STPM-VPD 2 1.0000 0.0000 0.0000

164 STPM-VPD-enh 2 0.0000 1.0000 0.0000

165 STPM-VPD-enh 2 0.0000 1.0000 0.0001

166 DL-STPM-VPD 2 0.0000 0.0000 1.0000

167 STPM-VPD 2 1.0000 0.0000 0.0000

168 STPM-VPD 2 1.0000 0.0000 0.0000

169 STPM-VPD-enh 2 0.0000 1.0000 0.0000

170 DL-STPM-VPD 2 0.0000 0.0000 1.0000

171 DL-STPM-VPD 2 0.0000 0.0000 1.0000

172 DL-STPM-VPD 2 0.0000 0.0000 1.0000

173 STPM-VPD-enh 2 0.0000 1.0000 0.0000

174 DL-STPM-VPD 0 0.1290 0.5199 1.0000

175 DL-STPM-VPD 1 0.0000 0.5199 1.0000

176 STPM-VPD 2 1.0000 0.0000 0.0001

177 STPM-VPD-enh 2 0.0000 1.0000 0.0499

178 DL-STPM-VPD 2 0.0000 0.0000 1.0000

179 STPM-VPD-enh 2 0.0000 1.0000 0.0000

180 STPM-VPD 2 1.0000 0.0000 0.0000

181 DL-STPM-VPD 2 0.0000 0.0000 1.0000

182 DL-STPM-VPD 2 0.0000 0.0000 1.0000

183 STPM-VPD 1 1.0000 0.0000 0.5199

184 STPM-VPD-enh 2 0.0000 1.0000 0.0000

185 STPM-VPD 2 1.0000 0.0000 0.0000

186 STPM-VPD 2 1.0000 0.0000 0.0001

187 STPM-VPD-enh 2 0.0000 1.0000 0.0159

188 DL-STPM-VPD 2 0.0000 0.0000 1.0000

189 DL-STPM-VPD 1 0.0000 0.2805 1.0000

190 DL-STPM-VPD 2 0.0000 0.0000 1.0000

191 DL-STPM-VPD 2 0.0000 0.0000 1.0000

192 DL-STPM-VPD 2 0.0000 0.0000 1.0000

193 DL-STPM-VPD 2 0.0000 0.0000 1.0000

194 STPM-VPD-enh 1 0.0000 1.0000 0.1290

195 DL-STPM-VPD 1 0.0001 0.2805 1.0000

196 STPM-VPD 2 1.0000 0.0000 0.0000

197 STPM-VPD 2 1.0000 0.0000 0.0041

198 DL-STPM-VPD 2 0.0000 0.0000 1.0000

199 DL-STPM-VPD 2 0.0000 0.0000 1.0000

200 STPM-VPD-enh 2 0.0000 1.0000 0.0000

201 DL-STPM-VPD 1 0.5199 0.0041 1.0000

202 DL-STPM-VPD 2 0.0000 0.0000 1.0000

203 STPM-VPD 2 1.0000 0.0000 0.0000

204 STPM-VPD-enh 2 0.0000 1.0000 0.0000

205 STPM-VPD 2 1.0000 0.0000 0.0000

206 STPM-VPD-enh 2 0.0000 1.0000 0.0000

207 DL-STPM-VPD 2 0.0499 0.0000 1.0000

208 STPM-VPD-enh 2 0.0000 1.0000 0.0000

209 DL-STPM-VPD 1 0.0000 0.5199 1.0000

210 STPM-VPD 2 1.0000 0.0000 0.0000

211 STPM-VPD-enh 2 0.0000 1.0000 0.0000

212 DL-STPM-VPD 2 0.0000 0.0000 1.0000

213 DL-STPM-VPD 2 0.0000 0.0000 1.0000

214 DL-STPM-VPD 2 0.0000 0.0000 1.0000

215 DL-STPM-VPD 1 0.1290 0.0000 1.0000

216 STPM-VPD 2 1.0000 0.0000 0.0001

217 STPM-VPD-enh 2 0.0000 1.0000 0.0000

218 DL-STPM-VPD 2 0.0000 0.0000 1.0000

219 DL-STPM-VPD 2 0.0000 0.0000 1.0000

220 DL-STPM-VPD 2 0.0009 0.0041 1.0000
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Part Best model ψbm STPM-VPD STPM-VPD-enh DL-STPM-VPD

221 DL-STPM-VPD 2 0.0000 0.0499 1.0000

222 STPM-VPD-enh 2 0.0000 1.0000 0.0000

223 DL-STPM-VPD 2 0.0000 0.0000 1.0000

224 DL-STPM-VPD 2 0.0000 0.0000 1.0000

225 DL-STPM-VPD 2 0.0000 0.0000 1.0000

226 DL-STPM-VPD 1 0.0159 0.8339 1.0000

227 STPM-VPD 2 1.0000 0.0000 0.0000

228 STPM-VPD-enh 2 0.0000 1.0000 0.0009

229 STPM-VPD 2 1.0000 0.0000 0.0000

230 STPM-VPD-enh 2 0.0000 1.0000 0.0000

231 STPM-VPD-enh 2 0.0000 1.0000 0.0000

232 STPM-VPD 2 1.0000 0.0000 0.0000

233 DL-STPM-VPD 2 0.0000 0.0000 1.0000

234 STPM-VPD-enh 2 0.0000 1.0000 0.0000

235 DL-STPM-VPD 2 0.0000 0.0000 1.0000

236 STPM-VPD-enh 2 0.0000 1.0000 0.0000

237 DL-STPM-VPD 2 0.0000 0.0000 1.0000

238 STPM-VPD 2 1.0000 0.0000 0.0000

239 STPM-VPD 2 1.0000 0.0000 0.0000

240 DL-STPM-VPD 2 0.0000 0.0000 1.0000

241 DL-STPM-VPD 2 0.0009 0.0499 1.0000

242 STPM-VPD-enh 1 0.0000 1.0000 0.8339

243 STPM-VPD 2 1.0000 0.0000 0.0009

244 DL-STPM-VPD 0 0.5199 0.1290 1.0000

245 DL-STPM-VPD 2 0.0000 0.0009 1.0000

246 DL-STPM-VPD 2 0.0041 0.0001 1.0000

247 STPM-VPD 2 1.0000 0.0000 0.0000

248 STPM-VPD 2 1.0000 0.0000 0.0000

249 STPM-VPD 2 1.0000 0.0000 0.0000

250 DL-STPM-VPD 2 0.0000 0.0001 1.0000

251 STPM-VPD 1 1.0000 0.0000 0.8339

252 DL-STPM-VPD 2 0.0000 0.0000 1.0000

253 DL-STPM-VPD 2 0.0000 0.0000 1.0000

254 DL-STPM-VPD 2 0.0000 0.0000 1.0000

255 STPM-VPD 2 1.0000 0.0000 0.0000

256 STPM-VPD-enh 2 0.0000 1.0000 0.0000

257 STPM-VPD 1 1.0000 0.0000 0.5199

258 STPM-VPD-enh 2 0.0000 1.0000 0.0000

259 DL-STPM-VPD 1 0.0159 0.2805 1.0000

260 STPM-VPD-enh 2 0.0000 1.0000 0.0000

261 DL-STPM-VPD 2 0.0000 0.0000 1.0000

262 DL-STPM-VPD 1 0.0000 0.1290 1.0000

263 STPM-VPD 2 1.0000 0.0000 0.0000

264 DL-STPM-VPD 2 0.0000 0.0041 1.0000

265 STPM-VPD 1 1.0000 0.0000 0.8339

266 DL-STPM-VPD 2 0.0000 0.0000 1.0000

267 DL-STPM-VPD 1 0.1290 0.0000 1.0000

268 DL-STPM-VPD 2 0.0499 0.0000 1.0000

269 DL-STPM-VPD 2 0.0000 0.0000 1.0000

270 DL-STPM-VPD 2 0.0000 0.0000 1.0000

271 DL-STPM-VPD 2 0.0000 0.0000 1.0000

272 STPM-VPD 2 1.0000 0.0000 0.0000

273 STPM-VPD 2 1.0000 0.0000 0.0000

274 DL-STPM-VPD 2 0.0000 0.0000 1.0000

275 DL-STPM-VPD 0 0.2805 0.1290 1.0000

276 DL-STPM-VPD 1 0.0000 0.2805 1.0000

277 STPM-VPD-enh 2 0.0000 1.0000 0.0000

278 DL-STPM-VPD 1 0.1290 0.0000 1.0000

279 DL-STPM-VPD 2 0.0000 0.0000 1.0000

280 STPM-VPD-enh 2 0.0000 1.0000 0.0000

281 DL-STPM-VPD 2 0.0000 0.0000 1.0000

282 STPM-VPD-enh 2 0.0000 1.0000 0.0000

283 STPM-VPD-enh 1 0.0000 1.0000 0.2805

284 DL-STPM-VPD 2 0.0000 0.0000 1.0000

285 STPM-VPD 2 1.0000 0.0000 0.0000

286 DL-STPM-VPD 2 0.0000 0.0000 1.0000

287 DL-STPM-VPD 2 0.0000 0.0000 1.0000

288 STPM-VPD-enh 2 0.0000 1.0000 0.0000

289 DL-STPM-VPD 2 0.0000 0.0000 1.0000

290 DL-STPM-VPD 2 0.0000 0.0000 1.0000

291 DL-STPM-VPD 2 0.0000 0.0000 1.0000

292 DL-STPM-VPD 2 0.0000 0.0000 1.0000

293 STPM-VPD 2 1.0000 0.0000 0.0000
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A. Signi�cance tables

Part Best model ψbm STPM-VPD STPM-VPD-enh DL-STPM-VPD

294 STPM-VPD 2 1.0000 0.0000 0.0000

295 STPM-VPD 2 1.0000 0.0000 0.0041

296 STPM-VPD-enh 2 0.0000 1.0000 0.0009

297 STPM-VPD-enh 2 0.0000 1.0000 0.0000

298 DL-STPM-VPD 2 0.0000 0.0041 1.0000

299 DL-STPM-VPD 2 0.0000 0.0000 1.0000

300 DL-STPM-VPD 2 0.0159 0.0000 1.0000

301 STPM-VPD-enh 2 0.0000 1.0000 0.0000

302 DL-STPM-VPD 2 0.0000 0.0000 1.0000

303 DL-STPM-VPD 2 0.0000 0.0000 1.0000

304 DL-STPM-VPD 1 0.0041 0.1290 1.0000

305 STPM-VPD 2 1.0000 0.0000 0.0001

306 STPM-VPD 2 1.0000 0.0000 0.0000

307 DL-STPM-VPD 2 0.0000 0.0000 1.0000

308 DL-STPM-VPD 1 0.0000 0.1290 1.0000

309 STPM-VPD-enh 2 0.0000 1.0000 0.0000

310 DL-STPM-VPD 2 0.0000 0.0000 1.0000

311 STPM-VPD 2 1.0000 0.0000 0.0000

312 DL-STPM-VPD 1 0.0499 0.5199 1.0000

313 STPM-VPD 2 1.0000 0.0000 0.0000

314 STPM-VPD-enh 2 0.0000 1.0000 0.0000

315 DL-STPM-VPD 2 0.0000 0.0159 1.0000

316 DL-STPM-VPD 2 0.0159 0.0499 1.0000

317 STPM-VPD 1 1.0000 0.0000 0.5199

318 DL-STPM-VPD 2 0.0000 0.0000 1.0000

319 DL-STPM-VPD 2 0.0000 0.0000 1.0000

320 STPM-VPD 2 1.0000 0.0000 0.0000

321 STPM-VPD 1 1.0000 0.0000 0.8339

322 STPM-VPD 2 1.0000 0.0000 0.0159

323 DL-STPM-VPD 2 0.0000 0.0000 1.0000

324 STPM-VPD-enh 2 0.0000 1.0000 0.0000

325 DL-STPM-VPD 2 0.0000 0.0041 1.0000

326 DL-STPM-VPD 2 0.0000 0.0000 1.0000

327 STPM-VPD-enh 2 0.0000 1.0000 0.0009

328 STPM-VPD-enh 1 0.0000 1.0000 0.8339

329 STPM-VPD-enh 2 0.0000 1.0000 0.0000

330 STPM-VPD-enh 2 0.0000 1.0000 0.0000

331 DL-STPM-VPD 2 0.0000 0.0000 1.0000

332 STPM-VPD-enh 2 0.0000 1.0000 0.0041

333 STPM-VPD-enh 2 0.0000 1.0000 0.0009

334 STPM-VPD-enh 2 0.0000 1.0000 0.0000

335 DL-STPM-VPD 2 0.0000 0.0159 1.0000

336 DL-STPM-VPD 2 0.0000 0.0000 1.0000

337 STPM-VPD 2 1.0000 0.0000 0.0000

338 STPM-VPD 2 1.0000 0.0000 0.0000

339 STPM-VPD-enh 2 0.0000 1.0000 0.0000

340 STPM-VPD-enh 2 0.0000 1.0000 0.0041

341 STPM-VPD-enh 2 0.0000 1.0000 0.0000

342 DL-STPM-VPD 2 0.0000 0.0000 1.0000

343 DL-STPM-VPD 2 0.0000 0.0000 1.0000

344 STPM-VPD 2 1.0000 0.0000 0.0000

345 STPM-VPD 2 1.0000 0.0000 0.0499

346 STPM-VPD-enh 2 0.0000 1.0000 0.0001

347 STPM-VPD 2 1.0000 0.0000 0.0000

348 STPM-VPD-enh 2 0.0000 1.0000 0.0000

349 DL-STPM-VPD 2 0.0000 0.0000 1.0000

350 STPM-VPD-enh 2 0.0000 1.0000 0.0041

351 DL-STPM-VPD 2 0.0000 0.0000 1.0000

352 STPM-VPD 2 1.0000 0.0000 0.0001

353 STPM-VPD-enh 2 0.0000 1.0000 0.0000

354 STPM-VPD-enh 1 0.0000 1.0000 0.5199

355 STPM-VPD-enh 2 0.0000 1.0000 0.0000

356 STPM-VPD-enh 1 0.0000 1.0000 0.2805

357 DL-STPM-VPD 2 0.0000 0.0000 1.0000

358 DL-STPM-VPD 2 0.0000 0.0000 1.0000

359 STPM-VPD-enh 2 0.0000 1.0000 0.0000

360 STPM-VPD 2 1.0000 0.0000 0.0041

361 STPM-VPD 2 1.0000 0.0000 0.0000

362 STPM-VPD-enh 2 0.0000 1.0000 0.0000

363 DL-STPM-VPD 2 0.0000 0.0000 1.0000

364 DL-STPM-VPD 2 0.0000 0.0000 1.0000

365 DL-STPM-VPD 2 0.0000 0.0000 1.0000

ψsp 254 241 180
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Part Best model ψbm STPM STPM-enh DL-STPM

1 DL-STPM 2 0.0000 0.0000 1.0000

2 STPM 2 1.0000 0.0000 0.0000

3 DL-STPM 2 0.0000 0.0000 1.0000

4 STPM 2 1.0000 0.0000 0.0000

5 STPM 2 1.0000 0.0000 0.0000

6 STPM-enh 2 0.0000 1.0000 0.0000

7 STPM 2 1.0000 0.0000 0.0000

8 STPM 2 1.0000 0.0000 0.0499

9 STPM 2 1.0000 0.0000 0.0000

10 DL-STPM 2 0.0000 0.0000 1.0000

11 DL-STPM 2 0.0000 0.0001 1.0000

12 DL-STPM 2 0.0000 0.0000 1.0000

13 STPM 2 1.0000 0.0000 0.0000

14 STPM 2 1.0000 0.0000 0.0000

15 STPM-enh 2 0.0000 1.0000 0.0000

16 STPM-enh 2 0.0000 1.0000 0.0000

17 STPM 2 1.0000 0.0000 0.0000

18 STPM 2 1.0000 0.0000 0.0000

19 STPM 2 1.0000 0.0000 0.0000

20 STPM 2 1.0000 0.0000 0.0499

21 STPM-enh 2 0.0000 1.0000 0.0000

22 DL-STPM 2 0.0000 0.0000 1.0000

23 STPM 2 1.0000 0.0000 0.0000

24 DL-STPM 2 0.0000 0.0000 1.0000

25 STPM-enh 2 0.0000 1.0000 0.0001

26 STPM-enh 2 0.0000 1.0000 0.0000

27 STPM-enh 2 0.0000 1.0000 0.0000

28 STPM 2 1.0000 0.0000 0.0000

29 STPM 2 1.0000 0.0000 0.0000

30 STPM 2 1.0000 0.0000 0.0000

31 STPM 2 1.0000 0.0000 0.0000

32 DL-STPM 2 0.0000 0.0000 1.0000

33 DL-STPM 2 0.0000 0.0499 1.0000

34 DL-STPM 2 0.0000 0.0000 1.0000

35 DL-STPM 2 0.0000 0.0000 1.0000

36 STPM 1 1.0000 1.0000 0.0000

37 DL-STPM 2 0.0000 0.0000 1.0000

38 DL-STPM 2 0.0000 0.0000 1.0000

39 STPM 1 1.0000 1.0000 0.0000

40 DL-STPM 1 0.0000 0.8339 1.0000

41 STPM 2 1.0000 0.0000 0.0000

42 STPM 1 1.0000 1.0000 0.0000

43 DL-STPM 2 0.0000 0.0000 1.0000

44 DL-STPM 2 0.0000 0.0000 1.0000

45 DL-STPM 2 0.0000 0.0000 1.0000

46 STPM 2 1.0000 0.0000 0.0000

47 STPM-enh 2 0.0000 1.0000 0.0159

48 STPM-enh 2 0.0000 1.0000 0.0000

49 STPM-enh 2 0.0000 1.0000 0.0000

50 STPM 2 1.0000 0.0000 0.0000

51 DL-STPM 2 0.0000 0.0000 1.0000

52 DL-STPM 2 0.0000 0.0000 1.0000

53 STPM 2 1.0000 0.0000 0.0000

54 STPM 2 1.0000 0.0000 0.0000

55 STPM-enh 1 0.0000 1.0000 0.8339

56 DL-STPM 2 0.0000 0.0000 1.0000

57 DL-STPM 2 0.0000 0.0000 1.0000

58 STPM 2 1.0000 0.0000 0.0000

59 DL-STPM 2 0.0000 0.0000 1.0000

60 DL-STPM 2 0.0000 0.0000 1.0000

61 STPM-enh 2 0.0000 1.0000 0.0000

62 STPM-enh 2 0.0000 1.0000 0.0499

63 DL-STPM 2 0.0000 0.0000 1.0000

64 STPM 1 1.0000 1.0000 0.0000

65 DL-STPM 2 0.0000 0.0000 1.0000

66 DL-STPM 2 0.0000 0.0000 1.0000

67 DL-STPM 2 0.0000 0.0000 1.0000

68 STPM 1 1.0000 1.0000 0.0000

69 DL-STPM 2 0.0000 0.0000 1.0000

70 DL-STPM 2 0.0000 0.0000 1.0000

71 STPM 2 1.0000 0.0000 0.0000

72 DL-STPM 2 0.0000 0.0000 1.0000

73 DL-STPM 2 0.0000 0.0041 1.0000

Table A.14.: Signi�cance evaluation current model for DL-STPM.
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A. Signi�cance tables

Part Best model ψbm STPM STPM-enh DL-STPM

74 STPM-enh 2 0.0000 1.0000 0.0000

75 DL-STPM 2 0.0000 0.0000 1.0000

76 DL-STPM 2 0.0000 0.0000 1.0000

77 STPM 2 1.0000 0.0000 0.0000

78 STPM-enh 2 0.0000 1.0000 0.0000

79 STPM 1 1.0000 1.0000 0.0000

80 DL-STPM 2 0.0000 0.0041 1.0000

81 STPM-enh 2 0.0000 1.0000 0.0000

82 STPM-enh 2 0.0000 1.0000 0.0000

83 STPM 2 1.0000 0.0000 0.0000

84 STPM-enh 2 0.0000 1.0000 0.0000

85 DL-STPM 2 0.0000 0.0000 1.0000

86 DL-STPM 2 0.0000 0.0000 1.0000

87 DL-STPM 2 0.0000 0.0000 1.0000

88 STPM 2 1.0000 0.0000 0.0000

89 DL-STPM 2 0.0000 0.0000 1.0000

90 DL-STPM 2 0.0000 0.0000 1.0000

91 STPM-enh 2 0.0000 1.0000 0.0000

92 STPM 2 1.0000 0.0000 0.0000

93 STPM-enh 2 0.0000 1.0000 0.0009

94 DL-STPM 2 0.0000 0.0000 1.0000

95 DL-STPM 2 0.0000 0.0000 1.0000

96 STPM-enh 2 0.0000 1.0000 0.0499

97 DL-STPM 2 0.0000 0.0000 1.0000

98 STPM-enh 2 0.0000 1.0000 0.0159

99 DL-STPM 2 0.0000 0.0000 1.0000

100 DL-STPM 2 0.0000 0.0000 1.0000

101 DL-STPM 2 0.0000 0.0000 1.0000

102 DL-STPM 2 0.0000 0.0000 1.0000

103 DL-STPM 2 0.0000 0.0000 1.0000

104 STPM-enh 1 0.0000 1.0000 0.2805

105 STPM 2 1.0000 0.0000 0.0000

106 DL-STPM 2 0.0000 0.0000 1.0000

107 DL-STPM 2 0.0000 0.0000 1.0000

108 DL-STPM 2 0.0000 0.0000 1.0000

109 DL-STPM 2 0.0000 0.0000 1.0000

110 DL-STPM 2 0.0000 0.0000 1.0000

111 DL-STPM 2 0.0000 0.0000 1.0000

112 DL-STPM 2 0.0000 0.0000 1.0000

113 DL-STPM 2 0.0000 0.0001 1.0000

114 DL-STPM 2 0.0000 0.0000 1.0000

115 DL-STPM 2 0.0000 0.0000 1.0000

116 DL-STPM 2 0.0000 0.0000 1.0000

117 DL-STPM 2 0.0000 0.0159 1.0000

118 STPM 1 1.0000 1.0000 0.0000

119 STPM-enh 2 0.0000 1.0000 0.0000

120 STPM-enh 2 0.0000 1.0000 0.0000

121 STPM-enh 2 0.0000 1.0000 0.0000

122 STPM 2 1.0000 0.0000 0.0000

123 STPM-enh 2 0.0000 1.0000 0.0000

124 DL-STPM 2 0.0000 0.0000 1.0000

125 STPM 2 1.0000 0.0000 0.0000

126 DL-STPM 2 0.0000 0.0000 1.0000

127 STPM 2 1.0000 0.0000 0.0000

128 STPM 1 1.0000 1.0000 0.0000

129 STPM-enh 2 0.0000 1.0000 0.0000

130 STPM-enh 2 0.0000 1.0000 0.0000

131 STPM 2 1.0000 0.0000 0.0000

132 DL-STPM 2 0.0000 0.0000 1.0000

133 STPM 1 1.0000 1.0000 0.0000

134 STPM 2 1.0000 0.0000 0.0000

135 STPM-enh 2 0.0000 1.0000 0.0159

136 DL-STPM 2 0.0000 0.0000 1.0000

137 STPM-enh 2 0.0000 1.0000 0.0000

138 DL-STPM 2 0.0000 0.0159 1.0000

139 DL-STPM 2 0.0000 0.0000 1.0000

140 DL-STPM 2 0.0000 0.0000 1.0000

141 DL-STPM 2 0.0000 0.0000 1.0000

142 STPM 2 1.0000 0.0000 0.0000

143 DL-STPM 2 0.0000 0.0000 1.0000

144 DL-STPM 2 0.0000 0.0000 1.0000

145 DL-STPM 2 0.0000 0.0000 1.0000

146 STPM-enh 2 0.0000 1.0000 0.0000

147 STPM-enh 2 0.0000 1.0000 0.0000
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Part Best model ψbm STPM STPM-enh DL-STPM

148 DL-STPM 2 0.0000 0.0000 1.0000

149 STPM 2 1.0000 0.0000 0.0000

150 STPM-enh 2 0.0000 1.0000 0.0000

151 STPM-enh 2 0.0000 1.0000 0.0000

152 DL-STPM 2 0.0000 0.0000 1.0000

153 DL-STPM 2 0.0000 0.0000 1.0000

154 DL-STPM 2 0.0000 0.0000 1.0000

155 STPM 1 1.0000 1.0000 0.0000

156 STPM-enh 2 0.0000 1.0000 0.0000

157 DL-STPM 2 0.0000 0.0000 1.0000

158 DL-STPM 2 0.0000 0.0000 1.0000

159 DL-STPM 2 0.0000 0.0000 1.0000

160 DL-STPM 2 0.0000 0.0000 1.0000

161 DL-STPM 2 0.0000 0.0000 1.0000

162 STPM-enh 2 0.0000 1.0000 0.0000

163 STPM-enh 2 0.0000 1.0000 0.0000

164 STPM 1 1.0000 1.0000 0.0000

165 DL-STPM 2 0.0000 0.0000 1.0000

166 DL-STPM 2 0.0000 0.0000 1.0000

167 STPM 2 1.0000 0.0000 0.0000

168 STPM 2 1.0000 0.0000 0.0000

169 DL-STPM 2 0.0000 0.0041 1.0000

170 DL-STPM 2 0.0000 0.0000 1.0000

171 DL-STPM 2 0.0000 0.0000 1.0000

172 STPM 2 1.0000 0.0000 0.0041

173 DL-STPM 2 0.0000 0.0000 1.0000

174 DL-STPM 2 0.0000 0.0000 1.0000

175 STPM 1 1.0000 1.0000 0.0000

176 DL-STPM 2 0.0000 0.0009 1.0000

177 STPM 2 1.0000 0.0000 0.0000

178 STPM 2 1.0000 0.0000 0.0000

179 STPM 2 1.0000 0.0000 0.0000

180 STPM-enh 2 0.0000 1.0000 0.0000

181 STPM 2 1.0000 0.0000 0.0000

182 DL-STPM 2 0.0000 0.0000 1.0000

183 STPM 2 1.0000 0.0000 0.0000

184 DL-STPM 2 0.0000 0.0000 1.0000

185 STPM-enh 2 0.0000 1.0000 0.0000

186 STPM-enh 2 0.0000 1.0000 0.0000

187 STPM-enh 1 0.0000 1.0000 0.5199

188 DL-STPM 2 0.0000 0.0000 1.0000

189 DL-STPM 2 0.0000 0.0009 1.0000

190 STPM 2 1.0000 0.0000 0.0000

191 STPM 2 1.0000 0.0000 0.0000

192 DL-STPM 2 0.0000 0.0000 1.0000

193 DL-STPM 2 0.0000 0.0001 1.0000

194 DL-STPM 1 0.0000 0.8339 1.0000

195 DL-STPM 2 0.0000 0.0000 1.0000

196 STPM 1 1.0000 1.0000 0.0000

197 STPM 2 1.0000 0.0000 0.0000

198 STPM 2 1.0000 0.0000 0.0000

199 DL-STPM 2 0.0000 0.0041 1.0000

200 STPM 1 1.0000 1.0000 0.0000

201 STPM 2 1.0000 0.0000 0.0000

202 STPM 2 1.0000 0.0000 0.0000

203 DL-STPM 2 0.0000 0.0000 1.0000

204 DL-STPM 2 0.0000 0.0000 1.0000

205 STPM-enh 2 0.0000 1.0000 0.0000

206 STPM-enh 1 0.0000 1.0000 0.2805

207 STPM-enh 2 0.0000 1.0000 0.0000

208 DL-STPM 2 0.0000 0.0000 1.0000

209 DL-STPM 2 0.0000 0.0000 1.0000

210 DL-STPM 2 0.0000 0.0000 1.0000

211 DL-STPM 2 0.0000 0.0000 1.0000

212 DL-STPM 1 0.0000 0.1290 1.0000

213 STPM-enh 2 0.0000 1.0000 0.0000

214 DL-STPM 2 0.0000 0.0000 1.0000

215 DL-STPM 2 0.0000 0.0000 1.0000

216 STPM-enh 2 0.0000 1.0000 0.0000

217 STPM 2 1.0000 0.0000 0.0000

218 DL-STPM 2 0.0000 0.0000 1.0000

219 DL-STPM 2 0.0000 0.0000 1.0000

220 DL-STPM 2 0.0000 0.0000 1.0000
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A. Signi�cance tables

Part Best model ψbm STPM STPM-enh DL-STPM

221 DL-STPM 2 0.0000 0.0000 1.0000

222 STPM-enh 1 0.0000 1.0000 0.8339

223 STPM-enh 2 0.0000 1.0000 0.0000

224 DL-STPM 2 0.0000 0.0000 1.0000

225 DL-STPM 2 0.0000 0.0000 1.0000

226 STPM-enh 2 0.0000 1.0000 0.0000

227 DL-STPM 2 0.0000 0.0000 1.0000

228 DL-STPM 2 0.0000 0.0000 1.0000

229 DL-STPM 2 0.0000 0.0041 1.0000

230 STPM-enh 1 0.0000 1.0000 0.8339

231 STPM-enh 2 0.0000 1.0000 0.0000

232 DL-STPM 2 0.0000 0.0000 1.0000

233 STPM-enh 2 0.0000 1.0000 0.0000

234 DL-STPM 1 0.0000 0.2805 1.0000

235 DL-STPM 1 0.0000 0.5199 1.0000

236 STPM-enh 2 0.0000 1.0000 0.0000

237 DL-STPM 2 0.0000 0.0000 1.0000

238 DL-STPM 2 0.0000 0.0000 1.0000

239 STPM-enh 2 0.0000 1.0000 0.0159

240 DL-STPM 2 0.0000 0.0000 1.0000

241 STPM-enh 2 0.0000 1.0000 0.0000

242 STPM-enh 2 0.0000 1.0000 0.0000

243 STPM-enh 2 0.0000 1.0000 0.0000

244 STPM-enh 2 0.0000 1.0000 0.0499

245 DL-STPM 2 0.0000 0.0009 1.0000

246 STPM-enh 2 0.0000 1.0000 0.0000

247 DL-STPM 2 0.0000 0.0000 1.0000

248 DL-STPM 2 0.0000 0.0000 1.0000

249 STPM-enh 1 0.0000 1.0000 0.1290

250 STPM-enh 2 0.0000 1.0000 0.0041

251 DL-STPM 2 0.0000 0.0000 1.0000

252 STPM-enh 2 0.0000 1.0000 0.0000

253 DL-STPM 2 0.0000 0.0000 1.0000

254 STPM-enh 2 0.0000 1.0000 0.0000

255 STPM-enh 2 0.0000 1.0000 0.0159

256 STPM-enh 2 0.0000 1.0000 0.0001

257 STPM-enh 2 0.0000 1.0000 0.0000

258 DL-STPM 2 0.0000 0.0159 1.0000

259 STPM-enh 2 0.0000 1.0000 0.0000

260 DL-STPM 2 0.0000 0.0000 1.0000

261 DL-STPM 2 0.0000 0.0000 1.0000

262 STPM-enh 2 0.0000 1.0000 0.0009

263 STPM-enh 2 0.0000 1.0000 0.0000

264 DL-STPM 2 0.0000 0.0000 1.0000

265 DL-STPM 2 0.0000 0.0000 1.0000

266 STPM-enh 1 0.0000 1.0000 0.1290

267 STPM-enh 2 0.0000 1.0000 0.0000

268 STPM-enh 2 0.0000 1.0000 0.0000

269 DL-STPM 2 0.0000 0.0041 1.0000

270 STPM-enh 2 0.0000 1.0000 0.0000

271 STPM-enh 2 0.0000 1.0000 0.0000

272 STPM 2 1.0000 0.0000 0.0000

273 DL-STPM 2 0.0000 0.0000 1.0000

274 STPM-enh 2 0.0000 1.0000 0.0000

275 DL-STPM 2 0.0000 0.0000 1.0000

276 STPM-enh 2 0.0000 1.0000 0.0000

277 STPM-enh 2 0.0000 1.0000 0.0000

278 STPM-enh 2 0.0000 1.0000 0.0041

279 STPM-enh 1 0.0000 1.0000 0.8339

280 STPM-enh 2 0.0000 1.0000 0.0001

281 STPM-enh 2 0.0000 1.0000 0.0000

282 STPM-enh 2 0.0000 1.0000 0.0000

283 STPM-enh 2 0.0000 1.0000 0.0000

284 STPM-enh 1 0.0000 1.0000 0.8339

285 STPM-enh 2 0.0000 1.0000 0.0000

286 STPM-enh 2 0.0000 1.0000 0.0000

287 DL-STPM 2 0.0000 0.0000 1.0000

288 STPM 2 1.0000 0.0000 0.0000

289 DL-STPM 2 0.0000 0.0000 1.0000

290 STPM-enh 1 0.0000 1.0000 0.1290

291 STPM 1 1.0000 1.0000 0.0000

292 DL-STPM 2 0.0000 0.0000 1.0000

293 DL-STPM 1 0.0000 0.1290 1.0000
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Part Best model ψbm STPM STPM-enh DL-STPM

294 DL-STPM 1 0.0000 0.2805 1.0000

295 DL-STPM 2 0.0000 0.0000 1.0000

296 DL-STPM 2 0.0000 0.0000 1.0000

297 STPM-enh 2 0.0000 1.0000 0.0000

298 DL-STPM 2 0.0000 0.0000 1.0000

299 STPM-enh 2 0.0000 1.0000 0.0000

300 DL-STPM 1 0.0000 0.2805 1.0000

301 DL-STPM 2 0.0000 0.0000 1.0000

302 STPM-enh 1 0.0000 1.0000 0.1290

303 STPM-enh 2 0.0000 1.0000 0.0000

304 DL-STPM 2 0.0000 0.0000 1.0000

305 DL-STPM 2 0.0000 0.0000 1.0000

306 DL-STPM 2 0.0000 0.0000 1.0000

307 DL-STPM 1 0.0000 0.5199 1.0000

308 DL-STPM 1 0.0000 0.1290 1.0000

309 DL-STPM 2 0.0000 0.0000 1.0000

310 STPM-enh 2 0.0000 1.0000 0.0499

311 DL-STPM 2 0.0000 0.0000 1.0000

312 DL-STPM 2 0.0000 0.0000 1.0000

313 STPM 2 1.0000 0.0000 0.0000

314 STPM 2 1.0000 0.0000 0.0000

315 DL-STPM 2 0.0000 0.0000 1.0000

316 DL-STPM 2 0.0000 0.0000 1.0000

317 DL-STPM 2 0.0000 0.0000 1.0000

318 DL-STPM 2 0.0000 0.0000 1.0000

319 DL-STPM 1 0.0000 0.1290 1.0000

320 DL-STPM 2 0.0000 0.0000 1.0000

321 STPM 1 1.0000 0.0000 0.5199

322 STPM-enh 2 0.0000 1.0000 0.0499

323 STPM-enh 2 0.0000 1.0000 0.0000

324 DL-STPM 2 0.0000 0.0000 1.0000

325 STPM-enh 2 0.0000 1.0000 0.0041

326 DL-STPM 1 0.0000 0.5199 1.0000

327 DL-STPM 1 0.0000 0.1290 1.0000

328 STPM-enh 2 0.0000 1.0000 0.0000

329 DL-STPM 2 0.0000 0.0000 1.0000

330 DL-STPM 2 0.0000 0.0000 1.0000

331 DL-STPM 2 0.0000 0.0499 1.0000

332 DL-STPM 2 0.0000 0.0000 1.0000

333 STPM-enh 2 0.0000 1.0000 0.0000

334 DL-STPM 2 0.0000 0.0000 1.0000

335 STPM-enh 2 0.0000 1.0000 0.0000

336 STPM-enh 2 0.0000 1.0000 0.0009

337 STPM-enh 2 0.0000 1.0000 0.0001

338 STPM-enh 2 0.0000 1.0000 0.0000

339 DL-STPM 2 0.0000 0.0000 1.0000

340 DL-STPM 2 0.0000 0.0000 1.0000

341 STPM-enh 2 0.0000 1.0000 0.0000

342 DL-STPM 2 0.0000 0.0000 1.0000

343 DL-STPM 2 0.0000 0.0000 1.0000

344 DL-STPM 2 0.0000 0.0159 1.0000

345 DL-STPM 2 0.0000 0.0000 1.0000

346 STPM 2 1.0000 0.0000 0.0000

347 STPM 2 1.0000 0.0000 0.0000

348 DL-STPM 2 0.0000 0.0000 1.0000

349 DL-STPM 2 0.0000 0.0499 1.0000

350 DL-STPM 2 0.0000 0.0000 1.0000

351 STPM-enh 2 0.0000 1.0000 0.0499

352 DL-STPM 2 0.0000 0.0000 1.0000

353 DL-STPM 2 0.0000 0.0000 1.0000

354 STPM-enh 2 0.0000 1.0000 0.0000

355 STPM-enh 1 0.0000 1.0000 0.5199

356 DL-STPM 2 0.0000 0.0000 1.0000

357 STPM-enh 2 0.0000 1.0000 0.0000

358 STPM 1 1.0000 1.0000 0.0000

359 DL-STPM 2 0.0000 0.0000 1.0000

360 DL-STPM 2 0.0000 0.0000 1.0000

361 STPM-enh 2 0.0000 1.0000 0.0000

362 DL-STPM 2 0.0000 0.0000 1.0000

363 DL-STPM 2 0.0000 0.0000 1.0000

364 DL-STPM 2 0.0000 0.0000 1.0000

365 DL-STPM 2 0.0000 0.0000 1.0000

ψsp 291 228 168
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