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Abstract

In recent years the field of Reinforcement Learning has come across a series of break-
throughs. By combining with developments from working with complex neural networks,
popularly called Deep Learning, practitioners have started proposing various Deep Rein-
forcement Learning (DRL) solutions, which are capable of learning complex tasks while
keeping a limited representation of the information learned. Nowadays, researchers have
started applying such methods to different kinds of applications, seeking to exploit the
ability of this learning approach to improve with experience. However, the DRL methods
proposed in this recent period are still under development, as a result researchers in the
field face several practical challenges in determining which methods are applicable to
their use cases, and which specific design and runtime characteristics of the methods
demand consideration for optimal applications.

In this Thesis we study the requirements expected from DRL in engineering applications,
and we evaluate to which extent these can be addressed through specific configurations
of the DRL methods. To this end we implement different agents using three Deep
Reinforcement Learning methods (Deep Q-Learning, Deep Deterministic Policy Gra-
dient and Distributed Proximal Policy Optimization); to solve tasks on three different
environments (CartPole, PlaneBall, and CirTurtleBot), intended to represent mechanical
and strategical tasks. Through our evaluation we are able to report characteristics of
the methods studied. Our results can support decision making for ranking the three
methods according to their suitability to given specific application requirements. We
expect that our evaluation approach can also contribute to showing how comparison
across models could be carried out, providing researchers with the information they
need about methods.
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1. Introduction

In this chapter, we present the context for our work (Section 1.1). We follow a problem
statement that establishes the motivation behind the Thesis (Section 1.2), we also scope
the goals of our work (Section 1.3). The chapter concludes with a description on the
methodology we follow (Section 1.4), and the structure for the subsequent chapters
(Section 1.5).

1.1 Context for our work

1.1.1 Artificial intelligence and its relevance to industry

Since the concept of “Industry 4.0” has been proposed, “How to build a ’smart factory’?”
became one of the foremost questions to consider. Without a doubt, a large number of
researchers are currently interested in the field of artificial intelligence (AI), seeking to
employ it in different aspects of industry and business, to improve everyday tasks. In
order to quantify objectively the relevance to society from these technologies, in 2017 a
team from several universities and companies, developed an AI Index, a report on the
state of AI [Sho17]1. Among the collected findings authors report that each year from
the last 12 years there has been a continued 9x increase in the number of AI-related
academic publications. Authors also report that the number of startup ventures for
AI-related business, the amount of investment in the technologies, and the job market
shares for skills in this area have grown in the last decade. Such observations highlight
a trend of increasing relevance in this field.

Artificial intelligence can be defined in many ways. For example, authors have suggested
diverse definitions based on qualities of machines and applications of being able to
act or think, either humanly or rationally [RN16]. According to Russell and Norvig,
it can also be defined as a field of study that considers methods and technologies to

1This index has been made publicly available here: http://cdn.aiindex.org/2017-report.pdf

http://cdn.aiindex.org/2017-report.pdf


2 1. Introduction

build intelligent agents, where such agents are systems that perceive their environment
and take actions that maximize their chances of reaching a given goal or state [RN16].
Thus, one commonly used definition of AI consists of building agents capable of rational
behavior.

One of the main subfields of AI is machine learning, which encompasses a set of techniques
based on statistics, through which programs or agents can progressively improve their
performance at a given task, without being explicitly programmed. Machine learning
is usually subdivided into three categories(Figure 2.12), according to the existence or
not of a feedback given to the learning process. These categories are supervised and
unsupervised learning, wherewith in the first there is a feedback and in the latter, there
is generally none. Each of these approaches is applicable to different scenarios [RN16].
Supervised learning is pertinent for cases where the agent can learn a given task based
on sufficient labeled examples provided as training data. This includes reinforcement
learning, an approach where the agent interacts with the environment receiving rewards,
and it seeks to learn, by evaluating the impact of actions through trial and error, which
set actions to perform to maximize a given reward [KBP13a]. Finally, unsupervised
learning does not presuppose labeled data, and instead, the goal of the agent is only to
learn the structure of the data (e.g. clusters or the occurrence of frequent patterns).

Figure 1.1: Machine learning types2

2Source:http://ginkgobilobahelp.info/?q=Machine+Learning+With+Big+Data++Coursera

http://ginkgobilobahelp.info/?q=Machine+Learning+With+Big+Data++Coursera
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1.1.2 Reinforcement learning and deep reinforcement learning

From the approaches of machine learning, reinforcement learning (RL) methods provide a
means for solving optimal control problems when accurate models are unavailable [Li17].
Using RL can save programming time when building a control system. This can be
achieved by considering the controller as an RL agent : the agent learns how to act
from what it receives (reward) from the environment as a consequence of its actions
(which usually change the state of the environment). The agent can select actions
either by being based strongly on its past experience (exploiting actions) or by choosing
entirely unvisited actions (exploring actions). The best trade-off between exploitation
and exploration helps the agent to understand how to achieve correctly the behavior
required by the task to be learned [SB+98]. A good exploration strategy is essential for
the agent to be able to learn a good policy of actions to perform. Other aspects such
as the optimization function, parameters, and how well the learning model is able to
capture the assignation of credit (for rewards received) to past actions, can also play a
large role in deciding the goodness of the trained RL agents.

Although RL had some successes in the past, previous approaches lacked scalability and
were inherently limited to fairly low-dimensional problems, hence reducing the number
of use cases that could be addressed with RL. These limitations exist because RL
algorithms can be understood as an optimal control problem, and they share the same
complexity issues as optimization algorithms [ADBB17a]. When Bellman (1957) [Bel57]
explored optimal control in discrete high-dimensional spaces, he noted an exponential
explosion of states and actions for which he coined the term “Curse of Dimensionality”.
In order to alleviate the impact of this issue RL researchers traditionally employ a series
of strategies from adaptive discretization to function approximation [SB+98]. Extending
such approaches, recent developments in deep learning technologies have brought forward
the possibility of new function approximation solutions through the use of deep neural
networks to store the learned model. This fusion of deep learning with reinforcement
learning represents a new area for reinforcement learning research: deep reinforcement
learning (DRL). The approach championed in this field holds practical importance since
it could extend the applicability of RL to more complex real-world scenarios, and it
benefits from technological developments that facilitate the use of deep learning.

In recent years many successful DRL algorithms have been proposed. Deep Q network
(DQN) is one of the first DRL algorithms able to succeed in several high-dimensional
challenging tasks [MKS+13]. For example, it has been shown to be able to successfully
learn a behavior by observing only the raw images (pixels) of a video game it plays and
receiving a reward signal based on the scores achieved at each time step [MKS+13]. DQN
uses Q-learning as the policy updating strategy, wherewith the agent is designed to learn
the long-term value of performing an action given a state, represented by the image of
the game at a given time. Convolutional neural networks (which are used for extracting
structured information from images) have been used to provide function approximation
for the Q-values that are learned for pairs of states and actions. Furthermore, these
networks fulfill the role of helping the model to reach an internal representation of states
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that enables to provide values for unvisited states based on the proximity to already
visited states. In order to achieve this some specialized techniques such as experience
replay have been developed to improve the process of training the neural network by
breaking the data correlations between different steps in episodes during training.

Various novel DRL methods [LHP+15, SWD+17, HSL+17, MBM+16] have been proposed
in recent years. These methods are, in general, similar to DQN but they variate the RL
policy-estimating methods and can involve the use of more than one neural network.
Deep deterministic policy gradient (DDPG) is one of these methods, which combines
a deterministic actor-critic approach with DNNs3. Other two popular methods are
asynchronous advanced actor-critic (A3C) and proximal policy optimization (PPO).

Apart from these methods there are several optimizations available to basic DQN, like
Prioritized Experience Replay and Double DQN. However, since studies so far suggest
that these optimizations contribute to one another [HMVH+17], and there seem to be
no trade-offs in choosing between them, we do not consider them in our work.

RL has a wide range of applications. Li lists several of them [Li17], such as games,
robotics, natural language processing, computer vision, neural architecture design,
business management, finance, healthcare, industry 4.0, smart grids, intelligent trans-
portation systems, among others. From designing state-of-the-art machine translation
models for constructing new optimization functions, DRL has already been used to
approach several kinds of machine learning tasks. As deep learning has been adopted
across many branches of machine learning, it seems likely that in the future, DRL will
be an important component in constructing general AI systems [ADBB17b].

1.1.3 RL for engineering applications and its challenges

When focusing on engineering applications, RL can help in the monitoring, optimization
and control of systems, to improve their performance according to pre-determined
targets4. Whereas common ML applications are tasked with learning how to make
predictions, for example for speech recognition or customer segmentation, RL for
engineering applications is expected to help in automation and optimization, for example
in tasks pertaining to autonomous vehicles and robotics.

Since engineering is a large field including various categories, like mechanical, chemical,
electrical, etc., the number of diverse RL applications included in the field could be quite
large. Practitioners propose5 that, for ease of understanding, the areas of applications
could be grouped into three general functional aspects: optimization, control, and
monitoring and maintenance. These are discussed in Chapter 3.

RL in engineering applications is still facing several challenges6, such as the need for
simulated environments (used for agent training) to accurately model reality, the intrinsic

3This and the other approaches mentioned are presented in detail in Chapter 2
4See: https://conferences.oreilly.com/artificial-intelligence/ai-ca-2017/public/schedule/detail/60500
5ibid.
6ibid.

https://conferences.oreilly.com/artificial-intelligence/ai-ca-2017/public/schedule/detail/60500
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uncertainty in the physical world (which makes it challenging to train agents that perform
predictably even for unexpected events), the question of selecting the most suitable RL
method and configuration for a given problem, the complexity in training and evaluating
these models for large state spaces, among others. We will discuss more these issues in
Chapter 3.

1.1.4 The need for benchmarks for RL in engineering applica-
tions

DRL algorithms have already been applied to a wide range of problems. Various
DRL methods have been proposed and open source implementations are becoming
publicly available every day. Researchers in the engineering field face the practical
challenge of determining which methods are applicable to their use cases, and what
specific design and runtime characteristics of the methods demand consideration. Some
existing research selects DRL methods according to solely to the characteristics of the
action space (whether it is discrete or continuous) and the state space (low or high
dimensional) [WWZ17, KBKK12, SR08]. No doubt, these are essential factors, however,
relying exclusively on these factors misses other valuable information, and might not
provide sufficient guidance, especially considering that environment representation can
also be adapted during building RL models.

For real-world engineering applications, the physical environments are often complex and
interactions with the real environment might be too costly to use during development,
consequently, there is usually a need to simulate the environments such that the agents
can be trained in simulations. There are many ways to design simulated environments.
For example, the “Cart-Pole” environment in OpenAI Gym is designed as providing
agents with two discrete actions and a four-dimensional state space. If an engineering
application finds that this environment is sufficiently close, it can be adapted to match
the application, for example for balancing cable car vehicles the action space can be
designed as a one-dimensional continuous action (e.g giving a push force in the range of
-2 to 2 Kilograms-force). After defining such environment, however, a large number of
methods are still applicable, and other criteria apart from just evaluating the reward
obtained given the spaces defined but instead considering the complexity of training, or
the hyper-parameter tuning required, could be useful to guide end users in selecting the
method to apply.

Standard benchmarks for DRL methods need to be generated and provided to end users,
helping them to determine how well a method and its configuration could match their
use case.

Along with this recent progress, the Arcade Learning Environment(ALE) [BNVB13]
has become a popular benchmark for evaluating RL algorithms designed for tasks
with high-dimensional state inputs and discrete actions. Other benchmarks [DCH+16,
GDK+15, TW09] have also been proposed regarding different aspects and requirements
for RL.
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The state of the art in evaluations shows some limitations, especially in how they can
serve engineering RL applications. As we said before, current state-of-the-art benchmarks
have been proposed regarding specific fields and aspects. ALE [BNVB13] is a popular
benchmark for different RL methods in Atari game environments. However, these
algorithms do not always generalize straightforwardly to tasks with continuous actions.
Other work [DEK+05] contains tasks with relatively low-dimensional actions. There
are also benchmarks containing a wider range of tasks with high-dimensional continuous
state and action spaces [DCH+16]. However current DRL methods are not evaluated
and compared in the former work. We will discuss more on the existing benchmarks in
Chapter 6.

As the new successful DRL methods being proposed, like asynchronous advanced actor-
critic (A3C) and proximal policy optimization (PPO), are not contained in the previous
benchmarks, the performance of these new algorithms needs to be evaluated. As previ-
ously described, for engineering applications, the prototypical simulated environments
could be designed in many ways. It is necessary thus to benchmark according to specific
changing engineering application requirements, rather than just evaluating standard
environment features.

The lack of a standardized and challenging testbed for DRL methods makes it difficult to
quantify scientific progress and does not help end users from engineering applications to
compare DRL approaches for a given task. A systematic evaluation and comparison can
be expected to not only further our understanding of the strengths of existing algorithms
but also to reveal their limitations and suggest directions for future research.

Taken together the aspects that we have presented thus far provide the context for
the problem we will research in this Thesis: the relevance of AI, the potential new
applications for RL based on the use of DRL, the challenges in applying these techniques
for engineering applications, and the research gap in benchmarks for the aforementioned
use case. Building on this we can formulate our problem statement.

1.2 Problem statement

Ideally practitioners from engineering applications who intend to use RL for a given
problem/application should be provided with: a) representative environment configura-
tions, and b) evaluations of RL agents following different methods; for practical purposes
this would represent a benchmark for RL methods for engineering applications.

The use of standard environment configurations could help them determine how close is
their application to the environment used in evaluations, and the reporting of reproducible
evaluations, describing drawbacks and strengths from the agents, could guide the
practitioners into understanding which methods could be worthwhile for their application.

Unfortunately, these standard environments and configurations do not exist for engi-
neering applications, and furthermore, published evaluations in comparable use cases
fail to consider relevant and novel RL solutions, DRL methods.
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Since DRL methods extend the practical applicability of RL to high dimensional spaces,
and they benefit from technological developments in working with deep neural networks,
it can be expected that they will constitute alternatives for applications where RL
was previously non-practical, and, as a result that there will be an increasing need for
comparative benchmarks to facilitate their adoption.

The building and establishment of a benchmark is a long process that requires collabo-
ration between researchers, such that there is an agreement on its design and such that
it remains unbiased and generally informative. In preparation for such collaborative
endeavor it is possible to start with foundational work by establishing potential criteria
that should be included in the evaluation, assessing the usefulness of the criteria to
compare the characteristics of novel DRL methods in a practical evaluation using envi-
ronments representative of control and optimization tasks. This work could constitute a
reasonable starting point towards a proposal for a more standard benchmark.

1.3 Research aim

In this work we propose to lay out some initial groundwork towards the building of a
benchmarking suite for DRL methods in engineering applications. To this end we seek
to determine the following two aspects:

• Criteria and experimental comparison
Research question 1: What is the important comparison criteria regarding state-
of-the-art research?
Based on our observations we propose to carry out an experimental comparison
with three different DRL methods (DQN, DDPG, DPPO) using three repre-
sentative environments, reporting on how the methods fare with respect to the
criteria we established. Namely we evaluate changing hyper-parameters, assessing
the importance that they have and whether they require to be disclosed with
benchmarking results.

• Outline of limitations and generalization
Research question 2: What are the factors to benchmark different methods over a
specific engineering problem?
Using our tested environments to capture features from the best DRL models
from our training experience. With this question we seek to compare the best
configured models on the different tasks we evaluate. Generalizing from our study
to propose how this comparison should be done in a benchmarking tool, providing
researchers with the information they need about methods.

1.4 Research methodology

In this Thesis, we use the CRISP-DM [WH00] process model as our research methodology.
This is a chosen method for building models based on data mining, since agents and
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their configurations are somehow also models on how a learning process should occur,
such that another learning model (i.e, the neural network, or brain of the agent) is
properly built.

The steps of the CRISP-DM methodology are shown in Figure 2.11.

• Business understanding
In this phase we need to understand and answer to the following questions:
What are representative engineering applications and what is the role of reinforce-
ment learning in engineering problems?
How to build a DRL model according to specific problems?
Chapter 3 records our efforts in answering these research questions.

• Data understanding
In this phase we seek to understand the ideas behind the DQN, DDPG, PPO
methods we compare in this paper and understand the environment data selected
for our study.
Chapter 2 and Chapter 4 collect our results from this phase.

• Data preparation
In this phase we define the reward, observation and action space of the environments
and the learning steps of the training phase.
The results for this phase are summarized in Chapter 4.

• Modeling
Here we prepare and program the DRL agents and define the neural network
structures.
The results for this phase are summarized in Chapter 4.

• Evaluation
We compare the performance of the three methods according to the research
questions and evaluate them regarding the evaluation factors.
The results for this phase are summarized in Chapter 5.

7Source:https://en.wikipedia.org/wiki/Cross-industry standard process for data mining

https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining
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Figure 1.2: CRISP-DM process model 7

1.5 Thesis structure

This remaining of this Thesis is structured as follows:

• Chapter 2 and Chapter 3: Contains the background for our work, thematically
divided in two sections. First we present the state of the art of RL and DRL, and
second we survey the use of DRL for engineering applications.

• Chapter 4: In this chapter we establish our research questions, we report on the
chosen environments and the implementation for our study.

• Chapter 5: This chapter presents the experimental results and our discussion of
them.

• Chapter 6: In this chapter we collect related work about comparisons and
benchmarks.

• Chapter 7: We conclude this Thesis in this chapter by summarizing our findings
and proposing future work.



2. Background: Reinforcement
learning and deep reinforcement
learning

In this chapter, we present a theoretical background on reinforcement learning and deep
reinforcement learning. We structure the chapter as follows:

• We start by discussing the general theory of RL with a focus on Q-learning and
policy gradients (Section 2.1).

• Next we discuss deep learning and the hyper-parameters involved in training neural
networks. To provide more insights we discuss two kinds of networks: convolutional
and recurrent (CNN, RNN). These are networks used for image processing and for
learning on sequential data, like speech or time series (Section 2.2).

• We conclude the chapter with the presentation of DRL. More than that we present
a brief selection of state-of-the-art DRL methods (Section 2.3).

2.1 Reinforcement learning

Reinforcement learning is proposed to solve problems by presupposing an agent that
must learn the proper behavior to fulfill a task, through trial-and-error interactions with
a dynamic and unknown environment. When actions change the environment we are in
a Reinforcement Learning scenario, in which the agent is required to imagine the future
gains of current actions (i.e., there is a credit assignment problem). When actions do
not change the environment, we are facing a simpler problem that is address through
Multi-arm Bandits, since agents are only required to learn the immediate expected
reward for actions.
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Authors have proposed to organize approaches to RL problems into two main groups,
which are defined by strategies [KLM96]: one group searches the space of behaviors in
order to find one that performs well in the environment; the other one uses statistical
techniques and dynamic programming methods to estimate the utility of taking actions
in given states of the world. These two approaches correspond to policy and value-based
methods of RL.

Since the rise and requirement of artificial intelligence, people take advantages from the
second strategy, more and more research is focused on it. In this work we also focus on
the second option.

Although reinforcement learning is an area of machine learning fields, it has several
differences from normal machine learning: it does not depend on preprocessed data,
instead it derives knowledge from its own experience. It focuses on performance, which
involves finding a balance between exploration and exploitation. Also, it is generally
based on real-world environment interaction scenarios.

Reinforcement learning methods follow a basic RL model, as shown in Figure 2.1. The
agent takes a certain action according to the internal action chosen strategy, based on
the previous state, then interacts with the environment to observe current state and
relevant rewards. This process is called a transition.

Figure 2.1: The basic reinforcement learning model 1

Reinforcement learning problems are modeled as Markov Decision Processes(MDPs).
MDPs comprise:

1Source:https://adeshpande3.github.io/Deep-Learning-Research-Review-Week-2-Reinforcement-Learning

https://adeshpande3.github.io/Deep-Learning-Research-Review-Week-2-Reinforcement-Learning
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• a set of agent states S and a set of actions A.

• a transition probability function T : S × A ∈ [0, 1], which maps the transition to
probability. T (s, a, s′) represents the probability of making a transition taking
action a from state s to state s’.

• an immediate reward function R: S×A ∈ R, the amount of reward (or punishment)
the environment will give for a state transition. R(s, s′) represents the immediate
rewards after transition from s to s’ with action a.

The premise of MDPs is the Markov assumption, which is explained as the probability
of the next state depending only on the current state, and the action taken, but not on
preceding states and actions. From the start of the transition to the end it is called an
episode. One episode of MDP forms as a sequence: < s0, a0, r1, s1 >,< s1, a1, r2, s2 >
, · · · , < sn−1, an−1, rn, sn >. In MDPs, if both the transition probabilities and reward
function are known, the reinforcement learning problem can be seen as an optimal
control problem [Pow12]. Actually, both RL and optimal control solve the problem of
finding an optimal policy.

Before starting to get optimal policies, we need to define what our model optimality
is. More precisely, in RL, it is not enough to only consider the immediate reward of
the current state, the far-reaching rewards should also be considered. But how can we
define a reward model? [KLM96] defined three models of optimal behavior.

• Finite-horizon model: E(
h∑
t=0

rt)

• Infinite-horizon discounted model: E(
∞∑
t=0

γtrt) , 0 < γ < 1

• Average-reward model: lim
h→∞

E( 1
h

h∑
t=0

rt)

The choice between these models depends on the characteristics and requirements of the
application. In this paper, our formulas are based on the infinite-horizon discounted
model.

After determining one appropriate optimal behaviour model now we can start thinking
about algorithms for learning to get optimal policies. According to the summarization
of [KCC13], reinforcement learning algorithms can be sorted into two classes:

Value function based RL algorithms
The value function [KLM96] can be represented as a reward function(Vπ(s)), which can
be defined as:

Vπ(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)Vπ(s′)
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The optimal value function(V ∗π (s)) selects the maximum value among all Vπ(s) at state
s and can be defined as:

V ∗π (s) = max
a

(
R(s, π(s)) + γ

∑
s′∈S

T (s, π(s), s′)V ∗π (s′)

)

The optimal policy(π∗(s)) would be:

π∗(s) = arg max
a

(
R(s, π(s)) + γ

∑
s′∈S

T (s, π(s), s′)V ∗π (s′)

)

Many of the reinforcement learning literature has focused on solving the optimization
problem using the value function. It can be split mainly into Dynamic programming
based methods, Monte Carlo methods, Temporal Difference methods.

Policy search RL algorithms
We may broadly break down policy-search methods into “black box” and “white box”
methods. Black box methods are general stochastic optimization algorithms using only
the expected return of policies, estimated by sampling and do not leverage any of the
internal structure of the RL problem. White box methods take advantage of some
of the additional structure within the reinforcement learning domain, including, for
instance, the (approximate) Markov structure of problems, developing approximate
models, value-function estimates when available, or even simply the causal ordering
of actions and rewards. There are still discussions about the benefits of both the
black-box and white-box methods. As [ET16] described, white-box methods have the
advantage of leveraging more information, and the disadvantage which could be the
advantage of black-box methods is that the performance gains are a trade-off with
additional assumptions that may be violated and less mature optimization algorithms
with exception of models.

The core of policy search methods is iteratively updating the policy parameters θ, so
that the expected return J will be increased. The optimization process can be formalized
as follows:

θi+1 = θi + ∆θi

, where θi is a set of policy parameters which is parametrized on existing policies π, and
∆θi is the changes in the policy parameters.

Model-free and Model-based RL methods
Some papers sort RL methods into model-free and model-based methods. A problem
can be called an RL problem is dependent on the agent knowledge about the elements of
the MDP. Reinforcement learning is primarily concerned with how to obtain the optimal
policy when MDPs model is not known in advance [KLM96]. The agent must interact
with its environment directly to obtain information which, can be processed to produce
an optimal policy. At this point, there are two ways to proceed [NB18].
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• Model-based: The agent attempts to sample and learn the probabilistic model
and use it to determine the best actions it can take. In this flavor, the set of
parameters that was vaguely referred to is the MDP model.

• Model-free: The agent doesn’t bother with the MDP model and instead attempts
to develop a control function that looks at the state and decides the best action
to take. In that case, the parameters to be learned are the ones that define the
control function.

One way to distinguish between model-based and model-free methods is: whether the
agent can make predictions about what the next state and reward will be before it
takes each action after learning. If it can, then it’s a model-based RL algorithm, if it
cannot, it’s a model-free algorithm. Both methods have their pros and cons. Model-free
methods almost can be guaranteed to find optimal policies eventually and use very little
computation time per experience. However, they make extremely inefficient use of the
data during the trials and therefore often require a great deal of experience to achieve
good performance. These model-based algorithms can overcome this problem, but agent
only learns for the specific model, sometimes it is not suitable for some other model,
and it also costs time to learn another model.

Figure 2.2 shows the category of reinforcement learning methods according to [KCC13].
In the following, we focus on Q-learning, which is a classical value function based method,
belonging to Temporal Difference methods; and policy gradient, which belongs to Policy
search algorithms.

Exploration-Exploitation
AI tries out actions it has never seen before at the start of the training (exploration).
However, as weights are learned, the AI should converge to a solution (e.g., a way of
playing) and settle down with that solution (exploitation). If we choose an action that
“ALWAYS” maximizes the “Discounted Future Reward”, we are acting greedily. This
means that we are not exploring and we could miss some better actions. This is called
the exploration-exploitation dilemma, and it is essential for . Here we discuss two action
choosing approaches(exploration approaches) for discrete actions: ε− greedy policy and
Boltzmann policy.

• ε− greedy policy
In this approach, the agent chooses what it believes to be the optimal action most
of the time but occasionally acts randomly. This way the agent takes actions which
it may not estimate to be ideal but may provide new information to the agent.
The ε in ε− greedy is an adjustable parameter which determines the probability
of taking a random, rather than principled, action. Due to its simplicity and
surprising power, this approach has become a commonly used technique. During
the training, we usually do some adjustments. At the start of the training process,
the e value is often initialized to a large probability, to encourage exploration in
the face of knowing little about the environment. The value is then annealed down
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to a small constant (often 0.1), as the agent is assumed to learn most of what
it needs about the environment. This is called an annealed greedy approach, or
epoch greedy.

• Boltzmann policy
In exploration we would ideally like to exploit all the information present in the
estimated Q-values produced by our network. Boltzmann exploration does just
this. Instead of always taking the optimal action, or taking a random action, this
approach involves choosing an action with weighted probabilities. To accomplish
this we use a softmax over the networks estimates of value for each action. In this
case, the action which the agent estimates to be optimal is most likely (but is not
guaranteed) to be chosen. The biggest advantage over e-greedy is that information
about the likely value of the other actions can also be taken into consideration.
If there are 4 actions available to an agent, in e-greedy the 3 actions estimated
to be non-optimal are all considered equally, but in Boltzmann exploration, they
are weighed by their relative value. This way the agent can ignore the actions
which it estimates to be largely sub-optimal and give more attention to potentially
promising, but not necessarily ideal actions. In practice, we utilize an additional
temperature parameter (τ) which is annealed over time. This parameter controls
the spread of the softmax distribution, such that all actions are considered equally
at the start of training, and actions are sparsely distributed by the end of training.
The following equation shows the Boltzmann softmax equation.

Pt(a) =
exp(qt(a)/τ)∑n
i=1 exp(qt(i)/τ)

For policy gradient methods, there exists another exploration strategy. Because it is not
easy to select a random action for continuous actions. They constructed the policy by
adding noise sampled from a noise process N .
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Figure 2.2: Category of Reinforcement learning methods
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2.1.1 Q learning

Q learning is a value function based RL algorithm which learns an optimal policy, we
also call it a Temporal Difference method. In 1989, Watkins proposed the Q-learning
algorithm which is typically easier to implement [DW92]. Nowadays, many RL algorithms
are based on it, for example, Deep Q Network uses Q-learning as the optimal policy
learning, combining with Neural Network as the function approximation. First of all,
we need to understand the term “Temporal Difference”. One way to estimate the value
function is using the difference between the old estimate and a new estimate of the
value function, and the reward received in the current sample. One classical algorithm
is called TD(0) algorithm proposed by Sutton in 1988. The update rule is:

V (s) = V (s) + α(r + γV (s′)− V (s))

After using TD(0) method to calculate the estimate of the value function, π(s) =
arg maxa V (s) is used to decide the optimal policy.

The Q-learning method combines the ’estimate value function’ part and ’define the
optimal policy’ part together. To understand Q-learning, we need a new notation Q(s, a).
Q(s, a) represents the state-action value, the expected discounted value of taking action
a in state s. As we described before, V (s) is the optimal policy, the value of taking the
best action in state s. Therefore, V (s) = maxaQ(s, a).

As Q(s, a) is defined as the reinforcement signal at state s, taking a specific action a.
We can estimate the Q value using the TD(0) method. Since we define the optimal
policy by choosing the action with maximum Q value in state s, we can modify the
TD(0) method to be the Q-leaning method which combines estimate Q value and define
the policy together. The Q-learning rule is:

Q(s, a) = Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a))

This is also called the bellman equation. s represents the current state. a represents the
action the agent takes from the current state. s′ represents the state resulting from the
action. a′ represents the action the agent takes from the next state. r is the reward you
get for taking the action, γ is the discount factor, α is the learning rate. So, the Q value
for the state s taking the action a is the sum of the instant reward and the discounted
future reward (value of the resulting state). The discount factor γ determines how much
importance you want to give to future rewards. Say, you go to a state which is further
away from the goal state, but from that state, the chances of encountering a state with
a loss factor (e.g., for a game, snakes) are less, so, here the future reward is more even
though the instantaneous reward is less. α determines how much the agent learns on
each experience.

2.1.2 Policy gradient

In addition to Value-function based methods which are represented by Q-learning, there is
another category called Policy search methods. Inside policy search RL algorithms, Policy
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Gradient algorithms are the most popular among them. Policy Gradient algorithms
belong to the gradient-based approach which is a kind of white-box method. Computing
changes in policy parameters ∆θi is the most important part, several approaches are
available now. The gradient-based approaches use the gradient of the expected return
J multiplies by learning rate α to compute the changes which represent as α∇θJ .
Therefore, the optimization process form can be written as:

θi+1 = θi + α∇θJ

There exist several methods to estimate the gradient ∇θJ [PS06], Figure 2.3 shows
different approaches to estimate the policy gradient. Generally, there are Regular Policy
Gradient and Natural Policy Gradient Estimation. Regular Policy Gradient methods
include Finite-different methods known as PEGASUS in reinforcement learning [NJ00],
Likelihood Ratio method [Gly87] (or REINFORCE algorithms [Wil92]). Policy gradient
theorem/GPOMDP [SMSM00, BB01] and Optimal Baselines strategy are the improved
approaches based on Likelihood Ratio method. Natural Policy Gradient estimation
was proposed by [Kak02], based on this, [PVS05] proposed the Episodic Natural
Actor-Critic.

Here we discuss policy gradient theorem/GPOMDP. Since it is based on the likelihood
ratio methods, we give a general idea about likelihood ratio methods. Likelihood ratio
is known as:

∇θP
θ(τ) = P θ(τ)∇θ logP θ(τ)

where P θ(τ) is the episode(τ) distribution of a set of policy parameters(θ).

The expected return for a set of policy parameter(θ) Jθ can be written as:

Jθ =
∑
τ

P θ(τ)R(τ)

where R(τ) is the total rewards in episode τ . R(τ) =
H∑
h=1

ahrh, where ah denote weighting

factors according to step h, often set to ah = γh for discounted reinforcement learning
(where γ is in [0, 1]) or ah = 1

H
for the average reward case.

Combining the two equations above, the policy gradient can be estimated as follows:

∇θJ
θ =

∑
τ

∇θP
θ(τ)R(τ) =

∑
τ

P θ(τ)∇θ logP θ(τ)R(τ) = E{∇θ logP θ(τ)R(τ)}

If the episode τ is generated by a stochastic policy πθ(s, a), we can directly express this
equation:

P θ(τ) =
H∑
h=1

πθ(sh, ah)
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Therefore,

∇θ logP θ(τ) =
H∑
h=1

∇θ log πθ(sh, ah)

∇θJ
θ = E{(

H∑
h=1

∇θ log πθ(sh, ah))R(τ)}

In practice, in the likelihood ratio method it is often advisable to subtract a reference,
also called baseline b, from the rewards of the episode R(τ):

∇θJ
θ = E{(

H∑
h=1

∇θ log πθ(sh, ah))(R(τ)− bh)}

Despite the fast asymptotic convergence speed of the gradient estimate, the variance
of the likelihood-ratio gradient estimator can be problematic in practice [PS08]. The
policy gradient theorem improved likelihood ratio methods with R(τ). Before, we

defined R(τ) =
H∑
h=1

ahrh, which represents that the reward of episodeτ considers all

steps(h ∈ [1, H]). However, if we consider the characteristics of RL, MDPs have the
precondition that future actions do not depend on past rewards (unless the policy has
been changed). Depending on this, we can improve the likelihood ratio method and it
can result in a significant reduction of the variance of the policy gradient estimate.

We redefine R(τ) =
H∑
h=k

akrk, which means that we only consider the future rewards.

Therefore, the equation of likelihood ratio policy gradient can be written as:

∇θJ
θ = E{(

H∑
h=1

∇θ log πθ(sh, ah))(
H∑
k=h

akrk − bh)}

We note that the term R(τ) =
H∑
h=k

akrk in the policy gradient theorem is equivalent to a

Monte-Carlo estimate of the value function Qπ(sh, ah), so we can rewrite the equation
as:

∇θJ
θ = E{(

H∑
h=1

∇θ log πθ(sh, ah))(Q
π(sh, ah)− bh)}

Actually, in this equation, it uses Q-value function to participate in updating the policy,
as such we could also call it a Q actor-critic method.
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Figure 2.3: Policy Gradient methods
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2.1.3 Limitations of RL in practice

Value function approaches(e,g. Q-learning) theoretically require total coverage of state
space and the corresponding reinforced values of all the possible actions at each state.
Thus, the computational complexity could be very high when dealing with high dimen-
sional applications. And even though a small change of the local reinforce values may
cause a large change in policy. At the same time, finding an appropriate way to store
the huge data becomes a significant problem.

In contrast to value function methods, policy search methods(e,g. Policy Gradient)
consider the current policy and the next policy to the current one, then computing
the changes in policy parameters. The computational complexity is far less than value
function methods. More than that, these methods are also available to continuous
features. However, due to the above theory, the policy search approaches may cause
local optimal and even cannot reach global optimal.

A combination of the value function and policy search approaches called actor-critic
structure [BSA83] was proposed for fusing both advantages. The “Actor” is known as
control policy, the “Critic” is known as value function. As Figure 2.4 shows, the action
selection is controlled by Actor, the Critic is used to transmit the values to Actor, so
that deciding when the policy to be updated and preferring the chosen action.

Although there are several methods in RL fitting different kind of problems, these
methods all share the same intractable complexity issues, for example, memory com-
plexity. Searching for a suitable and powerful function approximation becomes the
imminent issue. The Function Approximation is a family of mathematical and sta-
tistical techniques used to represent a function of interest when it is computationally
or information-theoretically intractable to represent the function exactly or explicitly.
Typically, in reinforcement learning the function approximation is based on sample data
collected during interaction with the environment [KBP13b]. Function approximation
to date is investigated extensively, and since the fast development of deep learning, the
powerful function approximation: deep neural network can solve these complex issues.
We will discuss in the next section with a focus on deep learning and artificial neural
networks.

As [Lin93] described, there are two issues we must overcome in traditional RL. First
is to reduce the learning time. Second is how to use RL methods when real-world
applications don’t follow a Markov decision process. We will discuss techniques around
these issues in the Deep reinforcement learning section.

1Source: http://mi.eng.cam.ac.uk/˜mg436/LectureSlides/MLSALT7/L5.pdf

http://mi.eng.cam.ac.uk/~mg436/LectureSlides/MLSALT7/L5.pdf
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Figure 2.4: Actor-Critic Architecture 2
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2.2 Deep learning

Machine-learning systems are used to identify objects in images, transcribe speech into
text, match news items, posts or products with users’ interests, and select relevant results
of the search. Increasingly, these applications make use of a class of techniques called deep
learning [LBH15]. Deep learning algorithms rely on the deep neural network. Deep neural
networks can automatically find compact low-dimensional representations (features) of
high-dimensional data (e.g., images, text and audio) [ADBB17c]. Deep learning has
accelerated the progress in many other machine learning fields, like supervised learning,
reinforcement learning, among others.

A deep neural network(DNN) consists of multiple layers of nonlinear processing units
(hidden layers). It performs feature extraction and transformation. Figure 2.5 shows, a
deep neural network (DNNs) consisting of three layers, the input layer, hidden layers,
the output layer. In the input layer, the neurons are generalized from features getting
through sensors perceiving the environment. The hidden layers may include one or more
layers, neurons on them are called feature representations. The output layer contains
the outputs which we want, for example, the distribution of all possible actions. Each
successive layer of DNN uses the output from the previous layer as input. All the
neurons of the layers are fully activated through weighted connections. As the input
layer neurons are known from the environment, how could we calculate the hidden layers’
neurons(feature representation)? Actually, the whole DNNs are mathematical functions.
We use the input and the first hidden layers as an example. Noting the neurons in the
input layer and the first hidden layer as a(0) and a(1), the weights of all connections
between the two layers as W . Also, we define a pre-determined number called bias b.
The function of the first hidden layer would be:

a(1) = Wa(0) + b

However, in real-world applications, there couldn’t be linear function above all the time,
most of the time, it is a nonlinear transformation. We need an active function to make
the function nonlinear so that different applications can be satisfied. Thus,

a(1) = AF{Wa(0) + b}

Different active functions could be used to solve different problems, you can also create
your own activation function to fit your own issue. There are also several pre-defined
AFs, such as ’relu’, ’tanh’, etc.

After computations flow forward from input to output, in the output layer and each
hidden layer, we can compute error derivatives backwards, and backpropagate gradi-
ents towards the input layer, so that weights can be updated to optimize some loss
function [Li17]. This is the core of the learning part, to find the right weights and biases.

Still, DNNs have a knotty issue to solve: Statistical Invariance or Translation Invariance.
Imagine we have two images with the exactly same kitty on them, the only difference is
the kitty is located in a different position. If we want the DNNs to train to recognize



24 2. Background: Reinforcement learning and deep reinforcement learning

it is a cat on both images, the DNNs should give different weights. The same issue
comes from text or sequences recognition. One way to solve it is Weight Sharing. For
the image, people built the Convolution Neural Network(CNN) structure, for text and
sequences, people built Recurrent Neural Network(RNN). Simply stated, CNN’s use
shared parameters across space to extract patterns over the image, RNNs do the same
thing across time instead of space.

Figure 2.5: Simple NNs and Deep NNs 3

3Source: https://www.quora.com/What-is-the-difference-between-Neural-Networks-and-Deep-Learning

https://www.quora.com/What-is-the-difference-between-Neural-Networks-and-Deep-Learning
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2.2.1 Convolution Neural Network(CNN)

As we talked before, CNNs are used to solve Translation Invariance issues, sharing their
parameters across space. CNN architectures make the explicit assumption that the inputs
are images, which allows us to encode certain properties into the architecture [cla18]. In
a CNN, neurons are arranged into layers, and in different layers the neurons specialize
to be more sensitive to certain features. For example, in the base layer the neurons
react to abstract features like lines and edges, and then in higher layers, neurons react
to more specific features like eye, nose, handle or bottle.

CNN architectures mainly consist of three types of layers: Convolutional Layer, Pooling
Layer, and Fully-Connected Layer. We will stack these layers to form different CNN
architectures.

• Convolutional layer: We use a small size(m ∗m) patch(filter) to scan over the
whole image(w ∗ h ∗ d) with stride s, each step of the patch goes through a neural
network to get output, also we call the procedure mathematically as convolution.
Then combining these procedures, we get a new represented image with new width,
height, depth(w′ ∗ h′ ∗ d′). The whole “scan over” process is also called padding.
There are two padding types: Same padding and Valid padding. The difference is
whether going pass the edge of the input image or not.

• Pooling Layer: Pooling layers perform a downsampling operation (subsampling)
and reduce the input dimensions. Its function is to progressively reduce the spatial
size of the representation to reduce the number of parameters and computation in
the network, and hence to also control overfitting [cla18]. There are many types
of pooling layers: max pooling, average pooling.

• Fully-Connected Layer: Same like regular deep neural network layer: Neurons
full connect to all activations in the previous layer.

There are some famous CNN structures with given games: “LeNet-5” in Figure 2.6,
“AlexNet” in Figure 2.7. Other architectures are summarized in Figure 2.8.
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Figure 2.6: Architecture of LeNet-5 [LBBH98]

Figure 2.7: Architecture of AlexNet [KSH12]
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Figure 2.8: Summary table of popular CNN architectures 4

4Source: https://medium.com/@siddharthdas 32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
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2.2.2 Recurrent Neural Network(RNN)

As discussed before, RNN shares parameters(weights) to process text over time. In
another word, RNN deals with sequential data. In a traditional neural network, we
assume that all inputs and outputs are independent of each other. However, for many
tasks, if we want to predict the output, it’s better to know the previous inputs. For
example, we want to translate the sentence, we better know the whole input sentence
and the order of the sequence.

A typical RNN structure is shown in Figure 2.9. By unfolding, we can consider that each
element of the sequence can be unrolled into one layer of neural networks. xt is the input
at time step t; st is the hidden state at time step t, calculated by st = AF (Uxt +Wst−1).
The first hidden states0 is typically initialized to all zeros; ot is the output at time stept.

During the learning process, we do backpropagation to update the weights W , RNN
is a “memory” neural network, we need to backpropagate the derivative through time,
all the way to the beginning or to some point. All the derivatives will multiply the
same weight W . If W is bigger than 1, mathematically we know, to the beginning,
the updated weight will be infinity (Gradient exploding). Otherwise, if W is smaller
than 1, the beginning weight will be 0(Gradient vanishing). To fix Gradient exploding,
we can use Gradient clipping [PMB13] to limit a maximum bound to prevent. To
deal with Gradient vanishing, we combine a control system with RNN, which called
Long Short-Term Memory(LSTM) [HS97]. LSTMs don’t have a fundamentally different
architecture from RNNs, but they use a different function to compute the hidden state.
In practice also the choice of activation functions can help in dealing with gradient
problems.

Figure 2.9: Typical RNN structure 5

5Source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
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2.2.3 Hyperparameters

Deep neural network structure could be plentiful, building a suitable structure is
necessary for solving problems. In order to build a deep neural network the first thing to
consider is hyperparameters. Here we list our collected understanding on the considerable
hyperparameters in this domain.

Ordinary Neural Networks

• Number of layers

• Number of hidden-layers’ neurons

• Sparsity or not in connections

• Initial weights

• Choice of activation functions

• Choice of loss functions

• Optimization types (e.g., Adam, Rmsprop, etc.)

• Clipping or not

• Regularization of functions

• Batch sizes

• Learning rate

• Splits and the optional use of k-folds cross validation

• Kinds of numeric inputs and their domains

CNNs specialization

• Number of convolutional layers

• Number of FC layers

• Patch/filter size

• Padding types

• Pooling types

• Layers’ connection types

• Stride length
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RNNs specialization

• Suitable structure related to specific problem

• Hidden state initialization

• Design of LSTM



2.3. Deep Reinforcement Learning 31

2.3 Deep Reinforcement Learning

2.3.1 Overview

As we discussed, value function methods and policy search methods have their own pros
and cons, they have different application domains. However, RL methods share the same
complexity issues. When dealing with high-dimensional or continuous action domain
problems, RL suffers from the problem of inefficient feature representation. Therefore,
the learning time of RL is slow and techniques for speeding up the learning process must
be devised. As the development of the Deep neural network which belongs to Deep
learning domain, a new arising field Deep Reinforcement Learning showed up to help solve
RL in high dimensional domains. The most important property of deep learning is that
deep neural networks can automatically find compact low-dimensional representations
of high-dimensional data so that DRL breaks the “Curse of dimensionality” intrinsic to
large spaces of actions to explore.

Let’s take Q-learning as the example. Q-learning algorithm stores state-action pairs in
a table, a dictionary or a similar kind of data structure. The fact is that there are many
scenarios where tables don’t scale nicely. Let’s take “Pacman”. If we implement it as a
graphics-based game, the state would be the raw pixel data. In a tabular method, if the
pixel data changes by just a single pixel, we have to store that as a completely separate
entry in the table. Obviously, that’s wasteful. What we need is some way to generalize
and match by patterns between states and actions. We need our algorithm to say “the
value of this kind of states is X” rather than “the value of this exact, specific state is
X.” Due to this, people replaced tabular with deep neural networks, combining with
Q-learning policy update method, a new Deep Reinforcement learning method appeared.
It is called Deep Q Network. Since Q-learning is a value function based method, it
inherits the pros and cons from value function methods.

We could also combine deep neural networks with policy search methods and with the
Actor-Critic method which approximating value function and direct policy. In the follow-
ing we discuss four state-of-the-art algorithms, two deep policy search methods: Deep
Deterministic Policy Gradient and Proximal Policy Optimization, also an asynchronous
deep actor-critic method called Asynchronous Advanced Actor-Critic. These methods
are currently the most popular and effective algorithms, proposed by DeepMind and
OpenAI. In this work, these methods are used for experiments. We will present the
theoretical background in detail as well as their advantages and disadvantages.

2.3.2 Deep Q Network

Deep Q Network was first proposed by [MKS+13], it presents the first deep learning
model to successfully learn control policies directly from high-dimensional sensory input
using reinforcement learning. More precisely, DQN in paper [MKS+13] used the images
shown on the Atari emulator as input, using convolution neural network to process image
data. Q-learning algorithm was used to make the decision, with stochastic gradient
descent to update the weights. Since deep learning handles only with independent data
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samples, the experience replay mechanism was used to break correlations. Generally,
DQN algorithm replaces the tabular representation for Q-value function with the deep
neural network(Figure 2.10).

Function approximation
Basically we get the Q function by experience, using an iterative process called bellman
equation which is introduced previously. Because in reality the action-value function(Q-
value) is estimated separately for each sequence without any generalization, the basic
approach to converge to the optimal Q-value is not practical. We use a deep neural
network with weight θ as the function approximation to estimate the Q-value function,
Q(s, a; θ) ≈ Q∗(s, a). So the network is trained by minimizing the loss function L(θt) at
time step t. The loss function in this DQN case is the difference between Q-target and
Q-predict.

L(θt) = Es,a[(Qtarget −Qpredict)
2]

Qtarget = r + γmax
a′

Q(s′, a′; θt);Qpredict = Q(s, a; θt) (2.1)

Then we use stochastic gradient descent to optimize the loss function.

Experience Replay
Reinforcement learning with value function based methods must overcome two issues
when combining with deep learning. Fist, deep learning assumes data samples to be
independent, however, the training data of reinforcement learning are collected by the
sequence correlated states which led out by actions chosen. Second, the collected data
distributions of RL are non-stationary because RL keeps learning new behaviors. But
for deep learning, we need a stationary data distribution.

Experience replay mechanism was used to DQN, it was first proposed by LJ Lin(1993) [Lin93].
It aims to break correlations between data samples, also it can smooth the training data
distribution. During RL playing, the transitions T (s, a, r, s′) are stored in the experience
buffer, after enough number of these transitions, we randomly sample a mini-batch
sized data from the experience buffer, and handle them to the network for training.
Necessarily, The buffer size must much larger than the mini-batch size. This is how this
mechanism works. Therefore, two hyper-parameters could be controlled during DRL
method designing and evaluation, the buffer size and mini-batch size. Large buffers
mean that the agent will be trained several times on relatively old experience, possibly
slowing down the learning process. Large mini-batches, on the other hand, could increase
the network training time.

Fixed Q-target
Another essential breaking correlation mechanism called Fixed Q-target. We produce
two neural network structure for DQN, with the same structure but different parame-
ters(weights). In equation Equation 2.2, we compute Q-target using current weights,
and Q-predict is get from Q-network with newest weights. In this mechanism, we fixed
the NN with k time-step-old weights θt−k, which is used for calculating Q-target. Then
periodically update fixed weights in the NN.

Qtarget = r + γmax
a′

Q(s′, a′; θt−k);Qpredict = Q(s, a; θt) (2.2)
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Since the computing of Q-target uses the old parameters and Q-predict use the current
parameters, this can also break the data correlation efficiently. Moreover, since policy
changes rapidly with slight changes to Q-values, the policy may oscillate. This mechanism
can also avoid oscillations. Figure 2.11 shows the complete pseudocode of Deep Q Network
with experience reply which is produced by [MKS+13].

Deep Q Network algorithm represents value function by deep Q-network with weights θ.
It is a model-free, off-policy strategy. It inherits the characteristics of value function
based RL methods. Besides, DQN is a flexible method, the structure of Q network
could be the ordinary neural network, or be the convolutional neural network if directly
using an image as input, or be the recurrent neural network if the input is ordered
text sequences. Moreover, the hyperparameters of NNs, e.g, the layers, neurons, could
also be adjusted flexibly. Recently, an advanced DQN algorithm called Double DQN
was proposed by [VHGS16]. In Double DQN, the online network predicts the actions
while the target network is used to estimate the Q value, which effectively reduced the
overestimation problem. The Qtarget in Double DQN is:

Qtarget = r + γmax
a′

Q(s′, a′θ′t ; θt) = r + γQ(s′, argmaxa′Q(s′, a′; θ′t); θt)

Generally, Double DQN reduces the overestimation by decomposing the max operation
in the target into action selection and action evaluation.

Figure 2.10: Deep Q-learning structure 6

6Source: https://morvanzhou.github.io/

https://morvanzhou.github.io/
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Figure 2.11: Deep Q-learning with Experience Replay [MKS+13]
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2.3.3 Deep Deterministic Policy Gradient

Since the rise of deep neural network function approximations for learning value or
action-value function, deep deterministic policy gradient method have been proposed
by [LHP+15]. It used an actor-critic approach based on the DPG algorithm [SLH+14],
combined with experience replay and fixed Q-target techniques which inspired by DQN
to use such function approximation in a stable and robust way. In this algorithm, a
recent advantage in deep learning called batch normalization [IS15] is also adopted. The
problem of exploration in off-policy algorithms like DDPG can be addressed in a very
easy way and independently from the learning algorithm. Exploration policy is then
constructed by adding noise sampled from a noise process N to the actor policy.

Deterministic Policy Gradient with neural networks
Deterministic Policy Gradient [SLH+14] based on Actor-Critic methods which we have
discussed previously. For the Actor part, it replaced the stochastic policy πθ(s) with a
deterministic target policy µθ(s)by mapping states to a specific action. For the Critic
part, Q-value function is estimated by Q-learning. Neural networks are used for function
approximation, there are two NN structures for Actor and Critic, we call them Actor
Network and Critic Network. We denote θµ for the weights of the Actor neural network,
θQ for the weights of the Critic neural network. The Critic is updated by minimizing
the loss function:

L(θQ) = E[(Qtarget−Qpredict)
2];where,Qtarget = r+γQ(s′, µ(s′; θµ); θQ), Qpredict = Q(s, a; θQ)

The Actor is updated by maximizing the expected return Jθ
µ
, using sampled policy

gradient:

∇θµJ
θµ ≈ E[∇θµQ(s, µ(s; θµ); θµ)] = E[∇µ(s)Q(s, µ(s); θQ)∇θµµ(s; θµ)]

Innovations from DQN
As we mentioned in Deep Q Network, the experience replay technique is used for
breaking correlations of training data. It works by sampling a random mini-batch of the
transitions stored in the buffer. As the policy changes rapidly with slight changes to
Q-values, another technique called “fixed Q-target” is used for solving this issue. It not
only can break correlations but also can avoid oscillations. Differently, from DQN, where
the target network was updated every k steps, the parameters of the target networks
are updated in the DDPG case at every time step, following the “soft” update:

θQ
′ ← τθQ + (1− τ)θQ

′

θµ
′ ← τθµ + (1− τ)θµ

′

Therefore, the Q-target can be rewritten as:

Qtarget = r + γQ(s′, µtarget(s
′; θµ

′
); θQ

′
)
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For the DDPG structure, there are totally four neural networks, both Actor Net and
Critic Net have two neural networks with same structures, different weights. The whole
pseudocode is shown in Figure 2.12.

Batch Normalization
Additionally, a robust strategy called batch normalization [IS15] is adopted to scale
the range of input vector observations in order to make the network capable of finding
hyper-parameters which generalize across environments with different scales of state
values. This method normalizes each dimension across the samples in a mini-batch to
have a unit mean and variance (i.e, normalization). In a deep neural network, each layer
thus receives this input. Batch normalization reduces the dependence of gradients on the
scale of the parameters or of their initial value and makes it possible to use saturating
nonlinearities by preventing the network from getting stuck in the saturated modes.

Figure 2.12: DDPG Pseudocode [LHP+15]
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2.3.4 Proximal Policy Optimization

Defining the step size(learning rate) α becomes the thorny issue in policy gradient
methods. Because if the step size is too large, the policy will not converge, opposite to
finish learning the policy will take a very long time. The new robust policy gradient
methods, which we call proximal policy optimization [SWD+17, HSL+17] was proposed
to solve the problem, and it has some of the benefits of trust region policy optimiza-
tion [SLA+15], but they are much simpler to implement, more general, and have better
sample complexity (empirically). It bounds parameter updates to a trust region to ensure
stability. Several approaches have been proposed to make policy gradient algorithms
more robust. One effective measure is to employ a trust region constraint that restricts
the amount by which any update is allowed to change the policy. A popular algorithm
that makes use of this idea is trust region policy optimization [SLA+15], This algorithm
is similar to natural policy gradient methods which we mentioned previously. PPO is a
variant of TRPO, it directly uses the first order optimization methods to optimize the
objective.

Surrogate objective function
Previously we mentioned the policy gradient estimator ∇θJ

θ. Here we construct an
objective function L(θ) whose gradient is the policy gradient estimator, the estimator is
obtained by differentiating the objective function, where Â is an advantage function:

L(θ) = E[log πθ(s, a)Âπ(s, a)]

We can also understand L(θ) as expected cumulative return of the policy Jθ. As
we want to limit the objective function being in a maximum-minimum bound, we
use a “surrogate” objective function to replace the original objective. We first find a
approximated lower bound of the original objective as the surrogate objective and then
maximize the surrogate objective so as to optimize the original objective. The surrogate
objection in TRPO is:

Lθold(θ) = E[
πθ(s, a)

πθold(s,a)
Âπ(s, a)]

Trust Region
Trust-Region methods define a region around the current iterative within which they trust
the model to be an adequate representation of the objective function, and then choose
the step to be the approximate minimizer of the model in this region [NW06]. Simply
stated, during our optimization procedure, after we decided the gradient direction, we
want to constrain our step size to be within a “trust region” so that the local estimation
of the gradient remains to be “trusted”. In TRPO, they used average KL divergence
between the old policy and updated policy as a measurement for trust region. The
surrogate objective function is maximized subject to a constraint on the size of the
policy update.

maximize Lθold(θ)
subject to D

ρθold
KL (θold, θ) < δ
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θold is the policy parameters before the update, δ is the constraint parameter, ρθold are
the is the discounted visitation frequencies in θold.

According to the theories above, PPO [SWD+17] presented two alternative ways to
maximize the surrogate objective function with constraints: Clipped Surrogate Objective
and Adaptive KL Penalty Coefficient.

Clipped Surrogate Objective
We denote the probability ratio as r(θ) to represent πθ(s,a)

πθold(s,a)
.

Lθold(θ) = E[
πθ(s, a)

πθold(s,a)
Âπ(s, a)] = E[r(θ)Âπ(s, a)]

We define a hyperparameter ε ∈ [0, 1] to limit the r(θ) in the interval [1− ε, 1 + ε]. So
this strategy can be written as:

LCLIP = E[min(r(θ)Âπ(s, a), clip(r(θ), 1− ε, 1 + ε)Âπ(s, a))]

Adaptive KL Penalty Coefficient
Another approach is to use a penalty on KL divergence and to adopt the penalty
coefficient β so that we achieve some target value of the KL divergence dtarget each
policy update. Simply stated, β is updated according to a certain comparison between
real KL divergence dreal and the target divergence dtarget. There are two steps:

1. Optimize the objective function:

LKLPEN(θ) = E[
πθ(s, a)

πθold(s,a)
Âπ(s, a)− βKL[πθold , πθ]]

2. Compare dreal with dtarget, adjust β:
β ← β ÷ 2 if dreal<dtarget÷1.5

β ← β × 2 if dreal>dtarget×1.5

β otherwise

(2.3)

Distributed PPO
Figure 2.13, Figure 2.14 show the pseudocodes from OpenAI and DeepMind. Besides,
DeepMind also proposed an asynchronous method for PPO called Distributed PPO,
which used the similar structure as A3C. Data collection and gradient calculation
are distributed over workers, it aims to achieve good performance in rich, simulated
environments. In this paper, we implement and evaluate this method. We will discuss
the asynchronous method in detail in the next section.
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Figure 2.13: PPO Pseudocode by OpenAI [SWD+17]

Figure 2.14: PPO Pseudocode by DeepMind [HSL+17]
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2.3.5 Asynchronous Advanced Actor Critic

Asynchronous Advanced Actor Critic [MBM+16] is an asynchronous method using
Advanced Actor-Critic(Q Actor-Critic in section 2.1.2). Asynchronous means Asyn-
chronously execute multiple agents in parallel, on multiple instances of the environment
and all using a replica of the NN (asynchronous data parallelism). It often works in
a multi-core CPU or GPU. As in Figure 2.15 shows, there is a global network and
multiple actor-learners which have their own set of network parameters. A thread is
dedicated for each agent, and each thread interacts with its own copy of the environment.
Giving each thread a different exploration policy also improves robustness, since the
overall experience available for training becomes more diverse. Moreover, in A3C just
one deep neural network is used both for estimation of policy π(s) and value function
Vπ(s); because we optimize both of these goals together, we learn much faster and
effectively(Figure 2.16). We also don’t need to consider the data correlation and oscilla-
tions issues because different agent gets different transitions when playing in the same
environments. Figure 2.14 shows the pseudocodes from DeepMind.

Figure 2.15: A3C procedure 7

7Source: https://morvanzhou.github.io/
8ibid

https://morvanzhou.github.io/
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Figure 2.16: A3C Neural network structure 8

2.4 Summary

In this chapter, we discussed the background of Reinforcement learning and Deep
reinforcement learning which combines RL with Deep learning. Q-learning and policy
gradient methods are presented, as well as the limitations of RL. We also present
Convolution neural network and Recurrent neural network which are the popular
DNNs for image and text processing. After this we are able to list hyperparmeters,
which are pertinent to our discussion on what hyperparameters algorithms must disclose.
Alongside, the hyper-parameters of DL have been discussed, they may affect our following
experimental results and evaluation. Last but not least, we present four up-to-date
advanced DRL methods: Deep Q Network, A3C, DDPG, PPO.

In the next chapter, we will discuss the engineering applications of reinforcement learning
and the challenges of its implementation, as disclosed in the literature. Also, we will
outline the current challenges of DRL for engineering applications, based on our literature
review.
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Figure 2.17: A3C Pseudocode [MBM+16]



3. Background: Deep reinforcement
learning for engineering
applications

In this chapter, we present an overview of Deep reinforcement learning for engineering
applications. First of all we discuss the necessities and requirements to use RL in
engineering applications. Then we list currently implemented applications using RL. We
also discuss the knotty issues to implement RL in engineering applications. Since deep
reinforcement learning is still under developing, we propose the challenges in DRL for
engineering applications.

3.1 Reinforcement Learning for Engineering Appli-

cations

3.1.1 Engineering Applications

The word ’Engineering’ has existed since the start of human civilization. The American
Engineers’ Council for Professional Development (ECPD, the predecessor of ABET) has
defined “Engineering” as: The creative application of scientific principles to design or
develop structures, machines, apparatus, or manufacturing processes, or works utilizing
them singly or in combination; or to construct or operate the same with full cognizance
of their design; or to forecast their behavior under specific operating conditions; all as
respects an intended function, economics of operation and safety to life and property1.
For engineering applications, engineers apply mathematics and sciences such as physics
to find novel solutions to problems or to improve existing solutions. More than that,
engineers are now required to be proficient in the knowledge of relevant sciences for

1https://en.wikipedia.org/wiki/Engineering

https://en.wikipedia.org/wiki/Engineering
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their design projects. As a result, engineers continue to learn new material throughout
their careers. In the past, humans devised inventions such as the wedge, lever, the
wheel and pulley, which represented the start of engineering applications. As humans
discovered more and more about mathematics and sciences, we are about to arrive to
new approaches, such as the one called industry 4.0, which aims to build the smart
industry.

3.1.1.1 Categories for Engineering Applications

Engineering is a broad discipline which is often broken down into several sub-disciplines.
No doubt that, we are surrounded by miscellaneous engineering applications. Nowadays,
we can’t live without engineering. Engineering is often characterized as having four main
branches: chemical engineering, civil engineering, electrical engineering, and mechanical
engineering2. There are various applications in each branch, and humans discovered and
applied more and more applications by combining engineering fields.

According to the classification in Wikipedia, there are several applications in those
branches.

• Chemical engineering

Oil refinery, microfabrication, fermentation, and biomolecule production

• Civil engineering

Structural engineering, environmental engineering, and surveying

• Electrical engineering

Optoelectronic devices, computer systems, telecommunications, instrumentation,
controls, and electronics

• Mechanical engineering

Kinematic chains, vacuum technology, vibration isolation equipment, manufactur-
ing, and mechatronics

3.1.1.2 Applications of Artificial Intelligence in Engineering

As time goes, the industry continues to be revolutionized, we would like to make the
applications more autonomous and human-aware, Artificial intelligence was proposed
alongside Industry 4.0. Artificial intelligence is a branch of computer science that aims
to create intelligent machines. It has become an essential part of the technology industry.
AI techniques are now being used by the practicing engineer to solve a whole range of
hitherto intractable problems. More and more AI methods are applied to all branches
of engineering. AI technologies already pervade our lives. As they become a central
force in society, the field is shifting from simply building systems that are intelligent to

2https://en.wikipedia.org/wiki/Engineering

https://en.wikipedia.org/wiki/Engineering
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building intelligent systems that are human-aware and trustworthy[Hor14]. Knowledge
engineering and Machine learning are the cores of AI. They perfectly complement each
other, also each performs its own functions. The role of AI in engineering applications
is to improve existing engineering solutions by switching from manual to autonomous.
In industrial, engineers usually apply AI in the monitor, maintain, optimize, automate
these four areas[Ham17].

In [RA12], several AI engineering applications were proposed and related papers were
published in the following categories:

• Engineering Design

• Engineering Analysis and Simulation

• Planning and Scheduling

• Monitoring and Control

• Diagnosis, Safety and Reliability

• Robotics

• Knowledge Elicitation and Representation

• Theory and Methods for System Development

3.1.2 What is the Role of RL in Engineering Applications?

Reinforcement learning is a framework that shifts the focus of machine learning from
pattern recognition to experience-driven sequential decision-making. It promises to carry
AI applications forward toward taking actions in the real world. This field is now seeing
some practical, real-world successes[Hor14].

In engineering, pattern recognition refers to the automatic discovery of regularities in
data for decision-making, prediction or data mining. The goal of machine learning is to
develop efficient pattern recognition methods that are able to scale well with the size
of the problem domain and of the data sets[LYZ05]. As Reinforcement Learning is a
subfield of Machine Learning, it shares the same goal, particularly it refers to the problem
of inferring optimal actions based on rewards or punishments received as a result of
previous actions. This is called a reinforcement learning model. Applications which meet
the reinforcement learning model can be generated and solved by RL. Reinforcement
learning plays a distinctive role in engineering applications.

The goal of RL in engineering applications is about to build intelligent systems with
human-like performance, which can be applied to real-world engineering situations, in
order to be more convenient and intelligent. More precisely is to discover an optimal
policy that maps states (or observations) to actions so as to maximize the expected
return J, which corresponds to the cumulatively expected reward[KBP13b].
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As [Ham17] summarized, Reinforcement Learning can be applied in three aspects
of engineering: optimization, control, monitor and maintenance. There are several
applications of them, which we list in Figure 3.1.

One reason for the popularity of reinforcement learning is that it serves as a theoretical
tool for studying the principles of agents learning to act. But it is unsurprising that
it has also been used by a number of researchers as a practical computational tool
for constructing autonomous systems that improve themselves with experience. These
applications have ranged from robotics to industrial manufacturing, to combinatorial
search problems such as computer game playing[KLM96]. RL algorithms can provide
solutions to very large-scale optimal control problems. It has achieved many successful
applications in engineering[Mat97, CB96, Zha96, MMDG97? , KSK99].

In the following table, there are up-to-now engineering applications using RL. We would
like to discuss three application examples which were done by [MMDG97? , KSK99],
respectively in Optimize, Control, Monitor and Maintenance domains.

3.1.2.1 Building an optimize the product inventory system

A Production Inventory Task was done by using a new model-free average-reward
algorithm(SMART), which is an improved Reinforcement learning method, to optimize
the preventive maintenance in a discrete part production inventory system.

3.1.2.2 Building HVAC control system

This paper presents a deep reinforcement learning based data-driven approach to control
building HVAC(heating, ventilation, and air conditioning) systems. A co-simulation
framework based on EnergyPlus is developed for offline training and validation of the
DRL-based approach. Experiments with detailed EnergyPlus models and real weather
and pricing data demonstrate that the DRL-based algorithms (including the regular
DRL algorithm and a heuristic adaptation for efficient multi-zone control) are able to
significantly reduce energy cost while maintaining the room temperature within desired
range.

3.1.2.3 Building an intelligent plant monitoring and predictive maintenance
system

People had the idea of learning the fault patterns and fault sequences by trial and
error to reformulate the fault prediction problem so that to make an intelligent plant
monitoring and predictive maintenance system. Reinforcement learning methods appear
to be a viable way to solve this kind of problem.

3Source:https://conferences.oreilly.com/artificial-intelligence/ai-ca-2017/public/schedule/detail/
60500

https://conferences.oreilly.com/artificial-intelligence/ai-ca-2017/public/schedule/detail/60500
https://conferences.oreilly.com/artificial-intelligence/ai-ca-2017/public/schedule/detail/60500
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Figure 3.1: RL in engineering applications 3

3.1.3 Characteristics of RL in Engineering Applications

In order to use Reinforcement Learning methods to Engineering Applications, a specific
application must be generalized as an RL model. Necessarily, the design of an RL
model must meet the Markov assumption, which means that the probability of next
state depends only on the current state and action, but not on the preceding states and
actions. Basic reinforcement is modeled as a Markov decision process. Basically, a RL
model includes: Description, Observation, Actions, Rewards, Starting State, Episode
Termination, Solved Requirements.

• Description: Simply describe the model, focus on the aim.

• Observation: Also called as State, generalizing and defining required information
as input.

• Actions: Generalizing the possible actions and related limits as output.

• Rewards: The value of a state transition, reinforcement signal.
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• Starting State: Given a start state, so the agent can start an episode.

• Episode Termination: Defining some conditions to end the iterations.

• Solved Requirements: Define conditions as the problem to be solved.

3.1.4 RL Life Cycle in Engineering Applications

As applying reinforcement learning in engineering, first of all, we need to define a systems
development life cycle(SDLC). A systems development life cycle is composed of a number
of clearly defined and distinct work phases which are used by systems engineers and
systems developers to plan for, design, build, test, and deliver information systems.

1. Gather Knowledge

Gather data and knowledge from the problem to help make appropriate modeling
assumptions.

2. Visualize and define RL models

Visualize the gathered data and knowledge to items RL needed (states, actions,
rewards, transactions, terminations).

3. Build training environment according to real life systems according to
the real world system, build the simulated environment for training.

4. Choose RL method

Choose appropriate RL methods to implement.

5. Perform training

Perform the training process

6. Applying

Apply the trained structure to the real problem

7. Evaluate results

8. Diagnose issues

9. Refine the system
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3.1.5 Challenges in RL for Engineering Applications

Comparing to other optimal strategies like optimal control solving problems, RL has its
own advantages. It is convenient to modify model parameters and robust to external
disturbances. For example, it is possible to start from a “good enough” demonstration
and gradually refine it. Another example would be the ability to dynamically adapt to
changes in the agent itself, such as a robot adapting to hardware changes—heating up,
mechanical wear, growing body parts, etc[KCC13]. However, we are still facing several
challenges when applying RL to engineering applications. In [KBP13b], it listed several
challenges apparent in the robotics settings. These challenges can be also be considered
in general engineering applications.

Reinforcement Learning (RL) constitutes a significant aspect of the Artificial Intelligence
field with numerous applications ranging from finance to robotics and a plethora of
proposed approaches. Since there have several RL methods be developed and evaluated
through video games, people raised critical challenges when applying RL to Engineering
applications. It’s not so much related to algorithm implementation, but building RL
model and experimental and error costs.

3.1.5.1 RL algorithms limits and high requirements of policies improve-
ment

Classical reinforcement learning like Q-learning, Sarsa could deal with problems with
low-dimensional, discrete observations and actions. However, in engineering applications,
the states and actions are inherently continuous, the dimensionality of both states and
actions can be high. Facing such problems, only uses of classical RL algorithms are
not enough to solve them. The reinforcement learning community has a long history
of dealing with dimensionality using computational abstractions. It offers a larger set
of applicable tools ranging from adaptive discretizations and function approximation
approaches to macro-actions or options[KBP13b].

As the new development of Deep reinforcement learning, which combines deep learning
methods with reinforcement learning algorithms, RL in engineering applications make a
breakthrough over previously intractable problems. Deep learning enables RL to scale to
decision-making problems, for example, settings with high-dimensional state and action
spaces.

3.1.5.2 Physical world uncertainty

As we are moving towards Artificial General Intelligence (AGI), designing a system
which can solve multiple tasks (i.e Classifying an image, playing a game ..) is really
challenging. The current scope of machine learning techniques, be it supervised or
unsupervised learning is good at dealing with one task at any instant. This limits the
scope of AI to achieve generality. To achieve AGI, the goal of RL to make the agent
perform many different types of tasks, rather than specializing in just one. This can be
achieved through multi-task learning and remembering the learning.
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We’ve seen recent work from Google Deep Mind on multi-task learning, where the agent
learns to recognize a digit and play Atari. However, this is really a very challenging
task when you scale the process. It requires a lot of training time and a huge number of
iterations to learn tasks.

Also, in many real-world tasks agents do not have the scope to observe the complete
environment. These partial observations make the agent to take the best action not just
from current observation, but also from the past observations. So remembering the past
states and taking the best action w.r.t current observation is key for RL to succeed in
solving real-world problems.

Furthermore, the system dynamics or parameters may be unknown and subject to
noise, so the controller must be robust and able to deal with uncertainty[ET16]. For
such reasons, real-world samples are expensive in terms of time, labor and, potentially,
finance.

3.1.5.3 Simulation environment

In the context of applications, reinforcement learning offers a framework for the design
of sophisticated and hard-to-engineer behaviors. The challenge is to build a simple
environment where this machine learning techniques can be validated and later applied in
a real scenario[ZLVC16]. Think about if we training the RL agent in real-world systems,
first of all, the stakes are high. Harel Kodesh (former VP and CTO of GE Software) in
Forbes said[Ham17]:“If an analytical system on a plane determines an engine is faulty,
specialist technicians and engineers must be dispatched to remove and repair the faulty
part. Simultaneously, a loaner engine must be provided to the airline can keep up flight
operations. The entire deal can easily surpass 200,000 dollars.” Second, RL is the process
of learning from trial-and-error by exploring the environment and the robot’s own body.
Testing on operating production lines, industrial equipment, warehouses, etcetera is
both expensive and disruptive, more than that, they are not plentiful opportunities fo
this, we can’t expect the real world to provide in a short span a diverse array of part or
product failures. Third, the cost of failure and change is much expensive.

Another reason to use simulation environments for RL training is that they provide Safe
Exploration Strategies[ET16]. RL agents always learn from exploration and exploitation.
RL is a continuous trial-and-error based learning, where agent tries to apply a different
combination of actions on a state to find the highest cumulative reward. The exploration
becomes nearly impossible in the real world. Let us consider an example where you
want to make the robot learn to navigate in a complex environment avoiding collisions.
As the robot moves around the environment to learn, it’ll explore new states and takes
different actions to navigate. However, it is not feasible to take the best actions in the
real world where the dynamics of the environment changes very frequently and becomes
very expensive for the robot to learn[KBP13b].

The current trend is to study (simulated) 3D environments. For example, Microsoft’s
Project Malmo has made the world of Minecraft available to researchers, and DeepMind
has open-sourced their own in-house developed 3D environment. These 3D environments
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focus RL research on challenges such as multi-task learning, learning to remember and
safe and effective exploration. There are also many extend packages and software based
on Open AI gym which can simulate various applications, such as ’gym-gazebo’. We
also use this package to simulate robot in Gazebo and train RL algorithms on Open AI
gym.

Once we use simulated environment, one critical problem we must consider, under-
modeling and model uncertainty[KBP13b]. Ideally, the simulation would render environ-
ments and RL methods possible to learn the behavior and subsequently transfer it to
the real-world applications. Unfortunately, creating a sufficiently accurate environment
with actual hyper-parameters and get sufficient training data is challenging.

3.1.5.4 Reward function design

Reward function is the core of reinforcement learning, as it specifies and guides the desired
behaviour. The goal of reinforcement learning algorithms is to maximize the accumulated
long-term reward. An appropriate reward function can accelerate the learning process. It
is not easy to define the suitable reward function for the corresponding application. The
first question is, how to give a quantitative number of a reward or a punishment. Then
is how to define the reward function. The learner must observe variance in the reward
signal in order to be able to improve a policy: if the same return is always received,
there is no way to determine which policy is better or closer to the optimum[KBP13b].
[MLLFP06]proposed a methodology for designing reward functions that take advantage
of implicit domain knowledge.

A design of reward function could also affect the speed of convergence. If the reward
is too fast to meet task achievement, the controller may fall into a local optimal. The
opposite way: the controller may slow down the learning process, the worst will never
reach the task achievement.

3.1.5.5 Professional knowledge requirements

In [Ham17], they proposed that one challenge to breaking the gap between game playing
and engineering applications is the reliance on subject matter expertise. Engineers
sometimes lack professional knowledge about RL algorithms and programming skills,
programmers lack knowledge at specific engineering fields. As the development of AI,
various interdisciplinary research programs are raising up.
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3.2 Challenges in Deep RL for Engineering Appli-

cations

The development of Deep Reinforcement learning solves a part of challenges, such as
traditional RL limits. RL now could deal with continuous state and action space without
discretization. Also, Curse of Dimensionality[KBP13b] is no longer a big problem. But
there are still some newly appeared challenges we need to consider. We would’ve liked
to do a survey but it was too much work and we did not have time. Instead, based on
some literature review (which is also not exhaustive) we can propose some challenges
which give the reader a sense of the motivation for our Thesis and other challenges in
the field.

3.2.1 Lack of use cases

In these three years, various Deep RL methods have been proposed and open source
implementations are becoming publicly available every day. Google DeepMind and
Open AI team published successive four popular DRL algorithms, Deep Q network,
A3C, PPO, and DDPG, researchers apply those mostly on the game environments or
classical environments which provided by open AI Gym, like CartPole, Pendulum. As
this research is up to date and is to continually under research. The cases about applying
DRL in engineering or related works of literature are not plentiful.

3.2.2 The need for comparisons

Researchers in the field face the practical challenge of determining which methods are
applicable to their use cases, and what specific design and runtime characteristics of the
methods demand consideration. In this case, we will discuss the criteria in this paper.

3.2.3 Lack of standard benchmarks

To date, there is no standard benchmark for Deep RL methods. OpenAI Gym has
emerged recently as a standardization effort, but it is still evolving. We hope our research
could help build the benchmarks.

3.3 Summary

In this chapter, we discussed several aspects of DRL in engineering applications. We
started with the theory of engineering applications, then presenting the role, charac-
teristics and life cycle of RL applying to engineering cases. After that, we discussed
considered issues when applying RL in engineering applications. As some technical
issues can be solved by DRL, and DRL is still under developing, we proposed three
challenged points in engineering applications.

In the next chapter, we propose our research questions in first, then discuss the imple-
mentation requirements. The implementation requirements include environments and
experimental setting.
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4. Prototypical implementation and
research questions

In this chapter we establish our research questions and disclose all relevant aspects about
our prototype implementation. The chapter is organized as follows:

• We start by proposing our research questions ( Section 4.1).

• We discuss the basic tools we used, namely the OpenGym AI framework and the
Gym-Gazebo libraries (Section 4.2).

• We follow by describing the specific environments (Section 4.3) and the experi-
mental configuration (Section 4.4) that we used for our evaluation.

4.1 Research Questions

In this section we distill the questions that conformed our research aim (Section 1.3),
into more specific and measurable research questions that will guide our evaluation.

The following are the research questions that we have selected for our Thesis:

1. Which hyper-parameters will impact the performance of a specific method over a
specific environment, and what are their specific influences for the tested methods?
This research question is important to determine which factors require to be
reported when disclosing information about agents in benchmarking results.

2. With adjusted hyper-parameters for a guaranteed high performance, what are
the factors that need to be benchmarked for different methods over a specific
environment? How do the tested methods differ with regards to these factors?



4.2. Tools 55

For the first question we organize the possible hyper-parameters as follows:

• Network architecture

• Model configuration

• Reward function model

• Exploration strategy

• Training configuration for methods

For the second question we propose to consider the following factors:

• Execution time

• Sample efficiency

• Highest score achieved

• Average score

• Robustness (i.e, how the learned model oscillates around the optimal scores through
tests)

4.2 Tools

OpenAI Gym
OpenAI was founded in 2015 as a non-profit with a mission to “build safe artificial
general intelligence (AGI) and ensure AGI’s benefits are as widely and evenly distributed
as possible.” In addition to exploring many issues regarding AGI, one major contribution
that OpenAI made to the machine learning world was developing both the Gym and
Universe software platforms.

There exist several toolkits for RL environments design, among them we can name a
few like: the Arcade Learning Environment, Roboschool, DeepMind Lab, the DeepMind
Control Suite, and ELF.

OpenAI Gym is both an RL environment toolkit and a repository of standard environ-
ments which can be used in publications. In Gym there is a collection of environments
designed for testing and developing reinforcement learning algorithms. Gym includes a
growing collection of benchmark problems (i.e., environment configurations) that expose
a common interface, and a website where people can share their results, through a public
scoreboard and mechanisms to share the code of agents, and compare the performance
of algorithms[BCP+16]. These scoreboards are available in the OpenAI Gym website1.

1https://gym.openai.com

https://gym.openai.com
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Gym saves the user from having to create complicated environments and it contributes
to standardization such that researchers can work on a common set of assumptions. Gym
is written in Python. Among its multiple environments it includes robot simulations
and Atari games.

There are also many environments that are not prepackaged in Gym, for example,
3D model environments, robotics using ROS and Gazebo, etc. Therefore, some gym
extension packages and libraries are generated like Parallel Game Engine, Gym-Gazebo,
Gym-Maze to combine Gym with other simulation and rendering tools.

OpenAI Gym does not include an agent class or specify what interface the agent should
use, it just includes an agent for demonstration purposes[BCP+16]. For example, in
Figure 4.1 it is shown how a user-side agent can be programmed to interact with a Gym
environment by explicitly calling reset and step functions.

Figure 4.1: Gym code snippet [BCP+16]

Gym-Gazebo2

For sophisticated engineering applications like robotics, reinforcement learning methods
are hard to train by using real physical systems, due to the high cost of errors. Therefore
emulating the sophisticated behaviors virtual and later applied in a real scenario becomes
the alternative solution. Gazebo simulator3 is a 3D modeling and rendering tool, with
ROS4[QCG+09], a set of libraries and tools that help software developers create robot
applications. Gazebo is an advanced robotics simulators being developed which help
saving costs, reduce time and speed up training of RL features for robotics.

A whitepaper[ZLVC16] presented an extension of the OpenAI Gym for robotics using
the Robot Operating System (ROS) and the Gazebo simulator. Abstract informa-
tion of robotics can be obtained from the real world in order to create an accurate

2https://github.com/erlerobot/gym-gazebo
3http://gazebosim.org/
4Robot Operating System: http://www.ros.org/

https://github.com/erlerobot/gym-gazebo
http://gazebosim.org/
http://www.ros.org/
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simulated environment. Once the training is done, just the resulting policy is trans-
ferred to the real robot. Environments developed in OpenAI Gym interact with the
Robot Operating System, which is the connection between the Gym itself and Gazebo
simulator(Figure 4.2).

Erle Robotics provides a toolkit called Gym-Gazebo, currently they created a collection
of six environments for three robots: Turtlebot, Erle-Rover and Erle-Copter. The
environments are created in OpenAI Gym style and displayed in Gazebo. It is also
flexible enough that people can create their own robots and environment simulation by
using this extension package.

Figure 4.2: Toolkit for RL in robotics [ZLVC16]
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TensorFlow and Keras5

TensorFlow is an open source software library for high performance numerical computa-
tion. Its flexible architecture allows easy deployment of computation across a variety
of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile
and edge devices. Originally developed by researchers and engineers from the Google
Brain team within Google’s AI organization, it comes with strong support for machine
learning and deep learning and the flexible numerical computation core is used across
many other scientific domains.

Keras is a high-level neural networks API, written in Python and capable of running
on top of TensorFlow, CNTK, or Teano. Keras is a Python Deep Learning library, it
offers a simplified way to build your models in a declarative manner. Keras contains
numerous implementations of commonly used neural network building blocks such as
layers, objectives, activation functions, optimizers, and a host of tools to make working
with image and text data easier. In this work we use Keras to build our agents’ models,
with TensorFlow serving as a backend for Keras.

• Keras-RL6

Keras-RL implements some state-of-the art deep reinforcement learning algorithms
in Python and seamlessly integrates with the deep learning library Keras. In this
paper, we use their DQN and DDPG agents as references.

• Morvan-python7

Morvan-python is a personal and non-profit python, reinforcement learning open
source library. It implements some state-of-the art deep reinforcement learning
algorithms in Python with Tensorflow. In this work we use the provided DPPO
agents as references.

5TensorFlow: https://www.tensorflow.org/; Keras: https://keras.io/
6https://keras-rl.readthedocs.io/en/latest/
7https://morvanzhou.github.io/

https://www.tensorflow.org/
https://keras.io/
https://www.tensorflow.org/
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano
https://keras-rl.readthedocs.io/en/latest/
https://morvanzhou.github.io/
https://www.tensorflow.org/
https://keras.io/
https://keras-rl.readthedocs.io/en/latest/
https://morvanzhou.github.io/
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4.3 Environments

As we discussed in Chapter 3, due to the high cost of data collection and error, envi-
ronments simulation is essential for RL in engineering applications. The environments
consist of certain factors that determine the impact on the Reinforcement Learning
agent. It will be more efficient to select an appropriate method for the agent to interact
with an specific environment. These environments can be 2D worlds or grids or even a
3D world.

Here are some important features of environments which can effect the choose of
appropriate RL methods, as described in [NB18]:

• Determinism

• Observability

• Discrete or continuous

• Single or multiagent

The tasks considered by authors for benchmarking continuous control [DCH+16] can be
divided into four categories: basic tasks, locomotion tasks, partially observable tasks,
and hierarchical tasks.

In this paper, we used the following three environments which can be sorted into
basic tasks and hierarchical tasks for experimentation and benchmarking suggestions:
CartPole, PlaneBall, CirTurtleBot.

We considered these environments to be representative, since they contain low and
high-dimensional observations, in addition to 2D and 3D models.

“CartPole” and “PlaneBall” which belong to basic tasks, model are traits which can
be extracted from different engineering applications, they are abstracted from the
mechanical dynamical systems.

“CirTurtleBot” which belongs to hierarchical tasks, described as a TurtleBot finds a
path through a maze world. DQN works with an environment with discrete actions,
DDPG and PPO are better with continuous actions. For engineering applications, it
doesn’t make sense to take the discrete or continuous actions as the comparable factor.
Therefore, we made both discrete and continuous versions for each environment.
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4.3.1 CartPole

The“cart–pole”system[Kim99] is a classic benchmark for nonlinear control. It is a kind of
mechanical dynamical system. Mechanical dynamical systems are easily understandable
and thus can serve as illustrative examples. Although the “Cart-Pole swing-up” system
is a simple system, it has several real-world applications.

The following are some engineering applications of the cart-pole system [Pat14]:

• The altitude control of a booster rocket during takeoff

• Wheel chairs and similar vehicles

• Ice-skating

• Helicopters and aeronautic balancing

“CartPole” is a simulated environment consisting of a pole attached by an un-actuated
joint to a cart, which moves along a frictionless track. The pendulum starts upright, and
the goal of the learned model is to prevent it from falling over. It is provided by Gym
within the set of cases of the classical control domain called “CartPole-v0 ”(Figure 4.3).

In the discrete version, it has two discrete actions(push cart to left and right), a four-
dimension observation space which contains the cart position, cart velocity, pole angle
and pole angle velocity.Figure 4.4. The reward is defined as one for every time step
taken, including the termination step. All observations are assigned a uniform random
value between ±0.05 as the starting state. The task is considered solved when the
average reward is greater than or equal to 200 for in 10 consecutive trials. Episodes will
terminated when:

1. The pole angle is more than ±12◦

2. The cart position is more than +/-2.4 (i.e., the center of the cart reaches the edge
of the display).

3. The episode length is greater than 200.

In the continuous version, it has a one dimensional action space with a limit[-1,1], which
means the force with a given direction that is applied to the cart. The remaining
parameters are the same as those of the discrete version.

8Source: gym.openai.com
9Source: gym.openai.com

gym.openai.com
gym.openai.com
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Figure 4.3: CartPole-v0 8

4.3.2 PlaneBall

“PlaneBall” consists of a ball that rolls on a plane which can rotate in both the X and
Y axis. The goal is to keep the ball always in the center of the plane. This system is
another mechanical dynamical system. It shares some similarities with CartPole, but
also has its own features and more dimensions. We followed the same baseline structure
displayed by researchers in the OpenAI Gym and Gym-Gazebo package, and built a
gazebo environment of “PlaneBall” on top of that (Figure 4.5).

In the continuous version the setting was configured to have a two dimensional action
space (torque on the plane of X-axis and on Y-axis) with limit[-2, 2], 7-dimension
observations including: rotation degree on X-axis α, rotation degree on Y-axis β,
rotation speed on X-axis velα, rotation speed on Y-axis velβ, ball position according to
plane-frame (x, y), ball velocity velball.

The reward is defined as: −1 for every time step the ball doesn’t move to the middle
area, 100 for every time step the ball stays in the middle area, −100 for the ball rolling
out of the plane. Random angle α, β in ±90circ and random ball position in the limits
of the plane-frame for the starting state.

The task is considered solved when the episode reward is greater or equal to 800 holding
in 10 consecutive trials. The episode will terminated when:

1. Ball rolls out of the plane

2. Episode length is greater than 999

In the discrete version, the setting has 81 discrete actions. For this we discretized each
dimension with the limit [-2, 2] to [-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2], then used [0, 1, ...,
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Figure 4.4: Observations and Actions in CartPole-v0 9

81] to replace the combination of two [-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2]. The remaining
parameters are the same as those of the continuous version.
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Figure 4.5: PlaneBall

4.3.3 CirTurtleBot

“CirTurtleBot” is a classic robot called Tutlebot(https://www.turtlebot.com/), which
moves around a circuit, a complex maze with high contrast colors between the floor and
the walls. Lidar is used as an input to train the robot for its navigation in the environment.
The goal is to navigate the robot without collision with the walls(Figure 4.6). This envi-
ronment is simulated and controlled by Gazebo, ROS and Gym. It is available in the Gym-
Gazebo package called“GazeboCircuitTurtlebotLIDAR-v0 ”(https://github.com/erlerobot/gym-
gazebo).

In the discrete version it has three discrete actions (forward, left, right). And a five
dimensional observation space, which all represent the range of the scan r in the range
domain. The reward is defined as one for every time step the robot moves left or right,
five for forward moving.

In the continuous version, it has one dimensional action space with limit[-0.33, 0.33],
which represents the rotate angle acceleration to control the angle velocity (velz). As
the observations’ information are all collected by the Laserscanner on TurtleBot, the
observation space is 20 dimensions, which all represent the range of the scan r in the
range domain. The reward is defined as a reward function according to the action value.
We can understand it as a normal distribution, when it approaches the middle of the
action value, the reward will be the highest (5).

We randomly initialize the robot position at four corners of the maze, as a starting state.
The task is considered solved when the episode reward is greater than or equal to 600
holding in 10 consecutive trials.

The episode will terminated when:

1. Each laser range is smaller than 0.2
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2. Episode length is greater than 300

Figure 4.6: CirTurtleBot
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4.4 Experimental Setting

In this section we elaborate on the experimental setup used to generate the results.

Hardware settings and specific versions
Our experimental device is a laptop with 8GB RAM, 8 core CPU (i7-8750H), Ubuntu
16.04 system. The versions of experimental softwares are: Python3.5, Tensorflow 1.2-
CPU support, Keras, ROS-Kinetic, Gazebo7. We also installed “Keras-RL”, “rllab”,
“RAY” packages for agent utilization.

Training configuration
We run each algorithm five times with different random seeds. Then we average these
five to get the result. We train ’CartPole’ in 300k steps, ’PlaneBall’ in 500k steps,
’CirTurtleBot’ in 200k steps.

Reward function model

We use an infinite-horizon discounted model E(
∞∑
t=0

γtrt) , 0 < γ < 1 for the performance

analysis. In DQN, discounted Q-value(action-value) function is used for Qtarget and
advantage function calculation.

Exploration strategy
For DQN, we utilized 2 main exploration approaches: Epsilon Greedy with annealing
policy and Boltzmann Policy. The principle behind these two we discussed in Chapter 2.
We compared the two policies as a response to the first research question in our evalua-
tion. For DDPG, we utilized a random process function called: Ornstein–Uhlenbeck
process[Fin04]. For DPPO, we explored by taking a random sample from a defined
normal distribution.

Policy Representation
For the function approximation of our evaluated algorithms we utilized normal Deep
Neural Network architectures. Figure 5.1 shows the NN architecture we used in DQN
method. There are three fully connected hidden layers with 24 neurons and a rectified
linear unit activation for each. This architecture we also use for both actor-critic
networks of DDPG and DPPO with different input and output.

4.5 Summary

In this chapter, we proposed two research questions to guide our evaluation in next
chapter. We also presented three environments we used during our work. CartPole is
the classical environment provided by Gym, PlaneBall is a “medium hard” environment
which created by ourself. CirTurtleBot is an environment with a TurtleBot moving in a
maze environment, provided by Gazebo, implemented by Gym-Gazebo package. Also,
our experimental settings are disclosed.

In next chapter we discuss our evaluation and experimental results regarding the research
questions in the previous chapter.
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In this chapter, we discuss the evaluation and results. We organize the chapter as
follows:

• We start the chapter by presenting our series of tests designed to tackle the first
research question (Section 5.1), testing the impact of parameters per method, for
the learning process in the different environments.

• The next section in the chapter presents the results of our tests for the second
research question (Section 5.2), comparing the different methods.

5.1 “One-by-One” performance Comparison

In this evaluation section, we focus on the first research question. We tune and evaluate
the factors which might have a performance influence for a specific method, as applied
to a specific environment. We evaluate the results in terms of sample complexity, value
accuracy, policy quality.

We listed all the potentially influential factors of the three methods, in Figure 5.2,
Figure 5.14, and Figure 5.21. In order to reduce a large number of comparisons of
hyper-parameters tuning, we fixed some parameters which have the better performance
according to some related works and tuned some specific parameters.

We report the performance of the implemented algorithms in terms of average return
over all training iterations for five different random seeds (the same across all algorithms
in all environments). We tested and used the smallest fully trained results of each
“one-by-one” experiment.

We disclose the hyper-parameters in each method with a graph format (i.e, a diagram)
and the fixed and tuned parameters of each“one-by-one”pair in table formats. The tuned
parameters with red fonts represent the highest performance found, after comparing.
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5.1.1 DQN method in the environments

In our evaluation we utilized a simple yet advanced DQN method, which is Double
DQN[VHGS16] with a fixed Q target and experience replay mechanisms. There are sev-
eral influential hyper-parameters in the DQN algorithm, which are shown in Figure 5.2.
We used the Neural network structure as Figure 5.1 shows. The input and output layers
are different regarding different environments.

Figure 5.1: Neural Network architecture of DQN



68 5. Evaluation and results

F
igu

re
5.2:

H
y
p

er-p
aram

eters
in

D
Q

N



5.1. “One-by-One” performance Comparison 69

• DQN in “CartPole”
In this experiment, we used the suggested Neural Network structure(Figure 5.1),
there are three hidden layers with 24 neurons and rectified linear unit activation
for each. We found this structure is good enough for “CartPole” training with
regards to training time, performance. For the training compiling, we found the
Adam optimizer with learning rate 0.01 can give a reasonable performance. The
loss function we used Huber Loss with formula: 0.5 ∗ squre(q target− q predict).
We evaluated the performance with aspects to “steps per episode” and “reward per
episode” according to total training steps as well as the training time. Due to the
characteristic of “CartPole” environment, these two performance aspects are equal,
so we can evaluate only the “reward per episode”.

Table 5.1 listed the fixed parameters of DQN in “CartPole”, which we guaranteed
that will give a better performance. Table 5.2 listed the parameters that we tuned
in this experiment. Here we choose two exploration strategies Epsilon discounted
greedy and Boltzmann with fixed parameter values for the comparison. The batch
sizes we choose 32, 64, 96, and the discounted rate we choose 0.1, 0.5, 0.99. In
this experiment, we run 2500 training episodes and 500 testing episodes.

Fixed parameters Value
Neural Network structure Figure 5.1
Optimizer Adam optimizer, learning rate=0.001
Loss function Huber loss function, 0.5*squre(q target-q predict)
Q-learning function Qtarget = r + γQ(s′, argmaxa′Q(s′, a′; θ′t); θt)
Maximum memory size 10000
Steps before training 2000
Batch size 64
Training interval train interval=1
Target model update interval update factor=0.01

Table 5.1: Fixed parameters of DQN in “CartPole”

Tuned parameters Comparing Value

Exploration strategy
Epsilon discounted greedy policy
(eps min=0.0001, eps decay=0.999)

Boltzmann policy
(tau=1, clip=[-500,500])

Reward function model
(infinite-horizon discounted model)

discounted rate=0.5 discounted rate=0.99

Table 5.2: Tuned parameters of DQN in “CartPole”
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As Table 5.2 shows, we evaluated the ’exploration strategy’ and ’discounted
rate’ factors. Figure 5.4 shows the performance of two different exploration
strategy, DisEpsGreedy, Boltzmann and two discounted rate, 0.5, 0.99. The
red line represents the Boltzmann policy with tau=1.0, clip=(-500, 500), dis-
counted rate=0.99. The green line represents Discounted Epsilon Greedy policy
with minimum epsilon=0.0001, decay=0.999, discounted rate=0.99. The blue line
represents Boltzmann policy with tau=1.0, clip=(-500, 500), discounted rate=0.5.

As we can see the green line converges and reach the termination faster than the
red line. However, the green line can’t always reach the highest reward in the test
steps. The blue line holds in a much low reward which means that it didn’t con-
verge. In conclusion, the agent with fixed parameters(Table 5.7) and exploration
strategy=Boltzmann, discounted rate=0.99 has the highest performance.

Figure 5.3: DQN-CartPole: Training time
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• DQN in “PlaneBall”

In this experiment we used the suggested Neural Network structure Figure 5.1,
there are three hidden layers with 24 neurons and rectified linear unit activation for
each. We found this structure is good enough for“PlaneBall” training responding to
training time, performance. We perform 2000 episodes for training, after training
episodes, we use 500 episodes for testing. We evaluated the performance with
aspects such as “reward per episode”, according to total training steps as well
as the training time. As we discussed in Chapter 4, the task to be mastered in
the “PlaneBall” environment is to hold in the middle area of the plane as long as
possible.

Table 5.3 lists the fixed parameters of DQN in“PlaneBall”, which we experimentally
observed to give a reasonable performance. Table 5.4 lists the parameters that we
tuned in this experiment. Here we use Adam optimizer with the learning rate of
0.001 and 0.01. We also compared the target network update frequency, we utilized
a soft update with an update rate of 0.001 and 0.01, hard update with 50000 steps.
In this experiment, we run 2000 training episodes and 500 testing episodes. Due
to the hardware limitations, we didn’t guarantee the full training steps. We use
the fixed training steps to evaluate algorithms with different hyper-parameters.

Fixed parameters Value
Neural Network structure Figure 5.1
Loss function Huber loss function, 0.5*square(q target-q predict)
Q-learning function Qtarget = r + γQ(s′, argmaxa′Q(s′, a′; θ′t); θt)
Memory size 100000
Steps before training 20000
Batch size 640
Training interval train interval=1

Reward function model
infinite-horizon discounted model,
discount rate=0.99

Exploration strategy Boltzmann policy, tau=1

Table 5.3: Fixed parameters of DQN in “PlaneBall”

Tuned parameters Comparing Value
Optimizer

(Adam optimizer)
learning rate=0.001 learning rate=0.01

Target model update interval soft update, rate=0.001 soft update, rate=0.01 hard update, 50000 steps

Table 5.4: Tuned parameters of DQN in “PlaneBall”

With a fixed learning rate=0.01, we compared the algorithms with three different
target network update rate: 0.001, 0.01, 50000. For the target network update we
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have two mechanisms, soft update with certain update rate and hard update with
certain steps. In this experiment, we evaluated soft update with rate 0.001 and 0.01
and hard update with 50000 steps. As Figure 5.7 shows, we compared the target net
update interval with 0.001(red line), 0.01(green line), 50000(blue line). In the
training steps, we can see that the algorithm with target net update interval=0.1
reached the high score faster than the other two. After 2000 episodes training
episodes, we use 500 episodes for testing. The algorithm with target net update
interval=50000 presented the worst average reward, algorithm with target net
update interval=0.001, 0.01 both presented quite good average reward. After
training steps, the algorithm with target net update interval=0.01 could hold the
maximum steps.

With a fixed target net update interval=0.01, we compared the algorithms with
two different learning rates: 0.001 and 0.01. As Figure 5.8 shows, we compared the
learning rate with 0.001(red line), 0.01(green line) according to“reward per episode”
factor. In the training steps, we can see that algorithm by learning rate=0.01
reached the high score fast than another. After 2000 episodes training episodes,
we use 500 episodes for testing. The algorithm with learning rate=0.01 presented
the higher average reward than the algorithm with learning rate=0.001. After
training steps, the algorithm with learning rate=0.01 could hold the maximum
steps.

Figure 5.5, Figure 5.6 show the training time according to different comparison.
Overall, in our experiment of “PlaneBall” environment, the algorithm with fixed
hyper-parameter in Table 5.1 and tuned hyper-parameter of learning rate=0.01,
target net update interval=0.01 performed the best.
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Figure 5.5: DQN-PlaneBall: Training time of learning rate comparison

Figure 5.6: DQN-PlaneBall: Training time of target net update comparison
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• DQN in “CirTurtleBot”

In this experiment, we used the suggested Neural Network structure Figure 5.1,
there are three hidden layers with 24 neurons and rectified linear unit activation
for each. We found this structure is good enough for “CirTurtleBot” training
responding to training time, performance. We used the Q-learning function as
Figure 5.7 shows. The loss function we used was the Huber Loss with formula:
0.5 ∗ squre(q target − q predict). We evaluated the performance with aspects
such as “steps per episode” and “reward per episode” according to total training
steps as well as the training time. Table 5.3 lists the fixed parameters of DQN in
“CirTurtleBot”, which we guaranteed that will give a better performance. Table 5.4
lists the parameters that we tuned in this experiment. Here we use Adam optimizer
with the learning rate of 0.1, 0.01 and 0.001. The batch size we choose 32, 64, 96.
We also compared the warm-up steps before training, we utilized 1000 and 2000
steps. In this experiment, we run 2500 training episodes and 500 testing episodes.
Due to the hardware limitations, we didn’t guarantee the full training steps. we
use the fixed training steps to evaluate algorithms with different hyper-parameters.

Fixed parameters Value
Neural Network structure Figure 5.1
Loss function Huber loss function, 0.5*square(q target-q predict)
Q-learning function Qtarget = r + γQ(s′, argmaxa′Q(s′, a′; θ′t); θt)
Steps before training 1000
Batch size 96
Memory size 50000
Training interval training interval=1

Reward function model
infinite-horizon discounted model,
discount rate=0.99

Exploration strategy Boltzmann policy, tau=0.8

Table 5.5: Fixed parameters in DQN of “CirTurtleBot”

Tuned parameters Comparing Value
Optimizer

(Adam optimizer)
learning rate=0.001 learning rate=0.01

Target Net update interval 0.001 0.01

Table 5.6: Tuned parameters in DQN of “CirTurtleBot”
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As Table 5.6 shows, we evaluated the ’learning rate’ and ’target net update
interval’ factors. Figure 5.10 shows the performance of two different learn-
ing rate: 0.001, 0.01 with fixed target net update=0.01. Figure 5.11 shows
the performance of two different target net update interval: 0.001, 0.01 with
fixed learning rate=0.01. Because the vibration amplitude of the three curves
is really large, we separate the comparison to two figures. The red line rep-
resents learning rate=0.01, target net update=0.01; the blue line represents
learning rate=0.001, target net update=0.01; the green line represents learn-
ing rate=0.01, target net update=0.001.

In Figure 5.10, two lines coverage both at around 15000 steps. The red line
oscillates between 400 and 850 rewards, the blue line oscillates between 0 and 1200
rewards. Although the blue line performs a higher score than the red one, it is
not stabler than the red one. In real engineering applications, we rather like the
performance of the red one. In Figure 5.11, the red line coverages faster and it
is stabler than the green on. Since we can’t get higher performance using this
method, we would admit that the red one which represents learning rate=0.01,
target net update=0.01 has the highest performance. This is similar to the case
for PlaneBall.

Figure 5.9: DQN-CirturtleBot: Training time
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5.1.2 DDPG method in the environments

In our evaluation, we evaluate the DDPG method for three environments, we tuned
the hyperparameters to compare the performance. The hyper-parameters in the DDPG
algorithm are presented in Figure 5.14. We used the actor-critic neural network archi-
tectures as Figure 5.12, Figure 5.13 show. The input and output layers are, naturally,
different for different environments with different observation spaces.

Figure 5.12: Actor Neural Network architecture of DDPG
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Figure 5.13: Critic Neural Network architecture of DDPG
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• DDPG in “CartPole”

We trained the DDPG agent in “CartPole” in 300000 training steps. When the
agent triggers the termination condition it will stop training and be performing
the test during the remaining steps. In “CartPole”, the termination condition is
defined as holding 200 rewards in 10 episodes. Table 5.7 and Table 5.8 describe
the fixed parameters and tuned parameters respectively. We used the actor-critic
neural network architectures in Figure 5.12 and Figure 5.13, with four-dimensional
observation space and one dimensional action space.

Fixed parameters Value
Neural Network structure Figure 5.12, Figure 5.13
Critic learning rate 0.001
Steps before training 1000
Batch size 96
Target Net update interval 0.001
Training interval training interval=1

Reward function model
infinite-horizon discounted model,
discount rate=0.99

Exploration strategy
(Random process)

OrnsteinUhlenbeckProcess

Table 5.7: Fixed parameters in DDPG of “CartPole”

Tuned parameters Comparing Value
Actor learning rate learning rate=0.001 learning rate=0.00001

memory size memory=50000 memory=10000

Table 5.8: Tuned parameters in DDPG of “CartPole”
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As Table 5.8 shows, we evaluated the ’Actor learning rate’ and ’memory size’
factors. Figure 5.16 shows the performance of two different memory sizes, 10000,
50000 and two actor learning rate, 0.00001, 0.001. As we can see, the green line
converges and reaches the termination faster than the red line. The blue line holds
in a much low reward which means that it didn’t learn. In conclusion, the agent
with fixed parameters(Table 5.7) and memory size=10000, actor lr=0.00001 has
the highest performance.

Figure 5.15: DDPG-CartPole: Training time comparison
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• DDPG in “PlaneBall”

We trained the DDPG agent in “PlaneBall” in 500000 training steps. When the
agent triggers the termination condition, it will stop training and be performing
the test during the remaining steps. In “PlaneBall”, the termination condition is
defined as holding 800 rewards in 10 episodes. Table 5.9 and Table 5.10 describe
the fixed parameters and tuned parameters respectively. We used the actor-critic
neural network architectures in Figure 5.12 and Figure 5.13 with seven dimensional
observation space and two dimensional action space.

Fixed parameters Value
Neural Network structure Figure 5.12 Figure 5.13
Critic learning rate 0.001
Memory size 50000
Steps before training 1000
Batch size 96
Training interval training interval=1

Reward function model
infinite-horizon discounted model,
discount rate=0.99

Exploration strategy
(Random process)

OrnsteinUhlenbeckProcess

Table 5.9: Fixed parameters in DDPG of “PlaneBall”

Tuned parameters Comparing Value
Actor learning rate actor lr=0.00001 actor lr=0.001

Target net update interval target update=0.001 target update=0.01

Table 5.10: Tuned parameters in DDPG of “PlaneBall”
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As Table 5.10 shows, we evaluated the ’Actor learning rate’ and ’target net update
interval’ factors. Figure 5.18 shows the performance of two different actor learning
rate, 0.00001, 0.001 and two target net update interval, 0.001, 0.01. As we can
see, green line converges and reach the termination faster, but the reward in the
test phase is smaller than the red line. This means that the green line was not fully
trained. The blue line holds in a much low reward which means that it didn’t learn.
In conclusion, the agent with fixed parameters(Table 5.9) and actor lr=0.00001,
target net update=0.001 has the best performance.

Figure 5.17: DDPG-PlaneBall: Training time comparison
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• DDPG in “CirTurtleBot”

We trained the DDPG agent in “CirTurtleBot” in 200000 training steps. When the
agent triggers the termination condition it will stop training and be performing
the test during the rest steps. In “PlaneBall”, the termination condition is defined
as holding 600 rewards in 10 episodes. Table 5.11 and Table 5.12 describe the
fixed parameters and tuned parameters respectively. We used the actor-critic
neural network architectures in Figure 5.12 and Figure 5.13 with 20 dimensional
observation space and one dimensional action space.

Fixed parameters Value
Neural Network structure Figure 5.12 Figure 5.13
Target net update interval 0.001
Memory size 50000
Steps before training 1000
Batch size 96
Training interval training interval=1

Reward function model
infinite-horizon discounted model,
discount rate=0.99

Exploration strategy
(Random process)

OrnsteinUhlenbeckProcess

Table 5.11: Fixed parameters in DDPG of “CirTurtleBot”

Tuned parameters Comparing Value
Actor learning rate actor lr=0.0001 actor lr=0.00001
Critic learning rate critic lr=0.001 critic lr=0.01

Table 5.12: Tuned parameters in DDPG of “CirTurtleBot”
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As Table 5.12 shows, we evaluated the ’Actor learning rate’ and ’Critic learning
rate’ factors. Figure 5.18 shows the performance of two different actor learning
rate, 0.00001, 0.0001 and two critic learning rate, 0.001, 0.01. The red line repre-
sents actor lr=0.0001, critic lr=0.001; the blue line represents actor lr=0.00001,
critic lr=0.001; the green line represents actor lr=0.00001, critic lr=0.01.

As we can see, the red line coverages faster than the other two, it reaches stable
at around 26000 steps. After reaching the termination, the red line holds around
1000 scores, the blue line and the green hold around 900 and 800 scores separately.
Therefore, the red line shows the better performance. In conclusion, the agent with
fixed parameters(Table 5.11) and actor lr=0.0001, critic lr=0.001 has a higher
performance.

Figure 5.19: DDPG-CirTurtleBot: Training time comparison
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5.1.3 PPO method in the environments

In this evaluation we evaluate the Distributed PPO method for three environments, we
tuned the hyperparameters to compare the performance. The hyper-parameters in the
DPPO algorithm are presented in Figure 5.21. For this method, we combined both
PPO and A3C, where we optimize the “clipped surrogate objective” using a number
of samples collected by several parallel workers. There is a global PPO brain used for
updating, each worker (agent) run in its own environment at the same time and upload
the collected samples to the global brain. The workers should wait until the global brain
finish updating after every batch size samples. We used the actor-critic neural network
architectures as Figure 5.12, Figure 5.13 show. The input and output layers are different
regarding different environments.



94 5. Evaluation and results

F
igu

re
5.21:

H
y
p

er-p
aram

eters
in

D
P

P
O



5.1. “One-by-One” performance Comparison 95

• PPO in “CartPole”

We trained the DDPG agent in “CartPole” in 300000 training steps.Table 5.13 and
Table 5.14 describe the fixed parameters and tuned parameters respectively. We
used the actor-critic neural network architectures in Figure 5.12 and Figure 5.13,
with four dimensional observation space and a one dimensional action space.

Fixed parameters Value
Neural Network structure Figure 5.12, Figure 5.13
Constrain methods Clipped surrogate objective
Actor learning rate 0.0001
Critic learning rate 0.00002
Loop update steps (10,10)
number of workers 4

Reward function model
infinite-horizon discounted model,
discount rate=0.99

Exploration random samples from a normal distribution

Table 5.13: Fixed parameters in DPPO of “CartPole”

Tuned parameters Comparing Value
Clipped surrogate epsilon epsilon=0.2 epsilon=0.8

Batch size batch size = 32 batch size=320

Table 5.14: Tuned parameters in DPPO of “CartPole”

As Table 5.14 shows, we evaluated the ’Clipped surrogate epsilon’ and ’batch
size’ factors. Figure 5.23 shows the performance of two different batch sizes, 32,
320 and two clipped surrogate epsilon, 0.2, 0.8. Here, the batch size factor has
another meaning comparing to other methods. It means that after every batch size
examples which are collected by all the parallel workers, the PPO brain will update
once. The ’Clipped surrogate epsilon’ factor is a hyper-parameter in PPO, which
we described in Chapter 2.

As we can see, the blue line and the green line appeared in fault curves. After
around 30000 steps, the two lines increase rapidly and staying in 150 rewards
for a short time, then increase and hold to 200 rewards. Relatively, the green
line raised faster and held the highest score earlier than the blue one. The
red line also coverages fast, but the score is not stable all the time. The red
line represents algorithm with batch size = 320, epsilon = 0.2, the green line
represents algorithm with batch size = 32, epsilon = 0.2, the blue line represents
algorithm with batch size = 32, epsilon = 0.8. In conclusion, the agent with fixed
parameters(Table 5.13) and batch size=32, epsilon=0.8 has a high performance.
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Figure 5.22: DPPO-CartPole: Training time comparison
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• PPO in “PlaneBall”

We trained the PPO agent in “PlaneBall” in 500000 training steps. Table 5.15 and
Table 5.16 describe the fixed parameters and tuned parameters respectively. We
used the actor-critic neural network architectures in Figure 5.12 and Figure 5.13,
with seven dimensional observation space and two dimensional action space.

Fixed parameters Value
Neural Network structure Figure 5.12, Figure 5.13
Constrain methods Clipped surrogate objective, epsilon=0.2
Actor learning rate 0.00001
Critic learning rate 0.0001
number of workers 4

Reward function model
infinite-horizon discounted model,
discount rate=0.99

Exploration random samples from a normal distribution

Table 5.15: Fixed parameters in DPPO of “PlaneBall”

Tuned parameters Comparing Value

Loop update steps
actor update steps=10
critic update steps=100

actor update steps=100
critic update steps=100

Batch size batch size = 200 batch size=100

Table 5.16: Tuned parameters in DPPO of “PlaneBall”

As Table 5.16 shows, we evaluated the ’Loop update steps’ and ’batch size’ factors.
Figure 5.25 shows the performance of two different batch size, 100, 200 and two
loop update steps, (10,100), (100,100). The ’Loop update steps’ factor is a hyper-
parameter in PPO, which means that, the looping steps when global PPO doing
the update. We defined actor update steps and critic update steps separately. We
compare the combination of actor update steps=10, critic update steps=100, and
actor update steps=100, critic update steps=100. Here, the batch size factor has
another meaning comparing to other methods. It means that after every batch size
examples which collected by all the parallel workers, the PPO brain will update
once.

As we can see, both the blue line and the red line appeared to learn after around
150000 steps. The blue line holds the stable average score after 200000 steps with
around 650 average score. The red line holds the stable average score after 400000
steps with around 500 average score. Comparing the two, the blue line shows the
better performance than the red one regarding the convergence speed and the
average score. The green line didn’t learn because it oscillates between -250 to
250 during the training steps.

The red line represents the algorithm with batch size = 100, update steps=(10,100),
the green line represents algorithm with batch size = 200, update steps=(100,100),
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the blue line represents the algorithm with batch size = 200, and update steps=(10,100).
In conclusion, the agent with fixed parameters(Table 5.15) and batch size = 200,
update steps=(10,100) has a the highest performance.

Figure 5.24: DPPO-PlaneBall: Training time comparison
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• PPO in “CirTurtleBot”

We trained the DDPG agent in “CirTurtleBot” in 200000 training steps. Table 5.17
and Table 5.18 describe the fixed parameters and tuned parameters respectively.
We used the actor-critic neural network architectures in Figure 5.12 and Figure 5.13,
with 20 dimensional observation space and one dimensional action space.

Fixed parameters Value
Neural Network structure Figure 5.12, Figure 5.13
Constrain methods Clipped surrogate objective
Actor learning rate 0.0001
Critic learning rate 0.00002
Batch size 32
number of workers 2
Clipped surrogate epsilon 0.2

Reward function model
infinite-horizon discounted model,
discount rate=0.99

Exploration random samples from a normal distribution

Table 5.17: Fixed parameters in DPPO of “CirTurtleBot”

Tuned parameters Comparing Value

Loop update steps
actor update steps=10
critic update steps=10

actor update steps=1
critic update steps=10

actor update steps=1
critic update steps=10

Table 5.18: Tuned parameters in DPPO of “CirTurtleBot”

As Table 5.18 shows, we evaluated the ’Loop update steps’ factor with three combi-
nations: (actor update steps=10, critic update steps=10), (actor update steps=1,
critic update steps=10), (actor update steps=10, critic update steps=1). Fig-
ure 5.27 shows the performance of these three different loop update steps combi-
nations’ comparison.

As we can see, the blue line oscillates around 100, it didn’t learn during the 200k
steps. The red line converges to its high score in around 150000 steps with 1300
rewards. The green line coverages to its high score in around 75000 steps with
1300 rewards. Although the red line and the green line have the same high score
in general, the green line converges faster than the red one. In contrast, after
coverage, the red line is more stable than the green one.

The red line represents algorithm with (actor update steps=10, critic update steps=10),
the green line represents the algorithm with (actor update steps=10, critic update steps=1),
the blue line represents the algorithm with (actor update steps=1, critic update steps=10).
In conclusion, the agent with fixed parameters(Table 5.17) and (actor update steps=10,
critic update steps=1) has the best performance.
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Figure 5.26: DPPO-CirTurtleBot: Training time comparison
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5.2 Methods comparison through environments

In this evaluation section, we focus on the second research question. We compare the
three methods with a high performance guarantee (based on the studies in the previous
section). We list all the meta-parameters which we tuned for high performance in
Table 5.19.

We evaluated the three methods regarding:

• Time complexity
With fixed training steps, we compare the running time among the three methods.

• Sample efficiency
Sample efficiency is an important criterion in training performance comparison.
During the training phases, the method which coverages faster has the higher
sample efficiency.

• Highest and average score
The highest and average score of the training are intuitive ways for performance
evaluation.

• robustness
Robustness here means the offset amplitude around the highest score, for the fully
trained agent.
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5.2.1 Comparison in “CartPole”

We evaluate the performance of DQN, DDPG and DPPO in the CartPole environment.
The hyper-parameters of these three methods are chosen from the first evaluation section
with relatively high performance guarantees. We trained in 300k steps, and generate
the curves of ’episode reward’ responding to ’total steps’, as Figure 5.29 shows. In
this figure, the red line represents DQN, the blue line represents DDPG, the green line
represents DPPO. Among these three methods, DQN converges faster than the other
two, it reached the highest score(200) at around 25000 steps. DPPO and DDPG reached
the highest score in around 40000 and 170000 steps. This means DQN has better sample
efficiency than the other two. After reaching the highest score, DQN didn’t hold 200 for
the whole steps, it appeared to get 197 scores in few steps. Instead, DPPO and DDPG
both hold the highest score after the first time reaching it, therefore the methods score
higher in robustness. Figure 5.28 shows the training time among these three methods.
DPPO had the least training time, DDPG had the most training time with more than
4000 seconds. Both DQN and DPPO had a quite less training time with 800 and 500
seconds. In conclusion, DDPG showed the worst performance than DQN and DDPG
responding to time complexity, sample complexity. DQN had better sample complexity
than DPPO but had worse robustness.

Figure 5.28: CartPole: Training time comparison
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5.2.2 Comparison in “PlaneBall”

We evaluate the performance of DQN, DDPG and DPPO in the PlaneBall environment.
The hyper-parameters of these three methods are chosen from the first evaluation section
with relatively high performance guarantees. We trained in 500k steps, and generate the
curves of ’episode reward’ responding to ’total steps’, as Figure 5.31 shows. In this figure,
the red line represents DQN, the blue line represents DDPG, the green line represents
DPPO. Among these three methods, DDPG converges faster than the other two, it
reached the highest score(900) at around 180000 steps. DPPO and DQN reached the
highest score in around 200000 and 300000 steps. This means DDPG has better sample
efficiency than the other two. Obviously, DDPG holds the higher score with around 700,
than the other two during the training steps. DPPO vibrates around 500 scores after
convergence. DQN didn’t really learn in 50k steps. According to the hyper-parameter
tunning of DQN in PlaneBall in the first evaluation section, the DQN agent learned
after 1000k steps.

Figure 5.30 shows the training time among these three methods. DPPO had the least
training time, DQN had the most training time of more than 40000 seconds. Both
DDPG and DPPO had a quite less training time with 8000 and 1000 seconds. In
conclusion, DDPG showed the best performance than DQN and DPPO responding to
time complexity, sample complexity and high score.

Figure 5.30: PlaneBall: Training time comparison
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5.2.3 Comparison in “CirTurtleBot”

We evaluate the performance of DQN, DDPG and DPPO in CirTurtleBot environment.
The hyper-parameters of these three methods are chosen from the first evaluation section
with relatively high performance guarantees. We trained in 200k steps, and generate
the curves of ’episode reward’ responding to ’total steps’, as Figure 5.33 shows. In
this figure, the red line represents DQN, the blue line represents DDPG, the green
line represents DPPO. Among these three methods, DDPG converges faster than the
other two, it reached its highest score(1100) at around 30000 steps. DPPO reached its
highest score(1300) in around 75000 steps. DQN oscillate between 250 and 1000 after
20000 steps. This means that DQN didn’t learn well in 200k steps. Besides, DDPG has
better sample efficiency than DPPO but the high score and average score are lower than
DPPO.

Figure 5.32 shows the training time among these three methods. DPPO had the least
training time, DQN had the most training time with more than 8000 seconds. Both
DDPG and DPPO had a quite less training time with 5000 and 3000 seconds. In
conclusion, DPPO showed the best performance than DQN and DDPG responding to
time complexity, higher score an average score. DDPG had better sample efficiency and
robustness than DPPO.

Figure 5.32: CirTurtleBot: Training time comparison
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5.3 Summary

In this chapter, evaluation and results are discussed regarding the research questions.

For the first research question we found that hyper-parameters have a high impact, and
thus need to be reported in oder to understand the results of a benchmark. We were
specifically able to ascertain experimentally the important effect of exploration policies
and their parameters, update rate to target networks, memory sizes, actor critic learning
rate and batch size in PPO.

With high performance guaranteed algorithms, for ’CartPole’, DQN and DPPO both
have higher performance; for ’PlaneBall’, DDPG has the highest performance, DQN
couldn’t learn in 500k steps, and its training is much higher than the other two; for
’CirTurtleBot’, DDPG and DPPO both have higher performance, DPPO has a higher
score and lower training time. DDPG is robust and has better sample efficiency. However,
there are many threats in our experiments which have influences on the results validity,
we will discuss these in Chapter 7 in detail.

In the next chapter, related work will be discussed and compared.



6. Related work

In this chapter, we review papers and work that is similar to our task, and existing
research in benchmarks for deep reinforcement learning. We first discuss literature of
RL in applications, then come to challenges, last but not least, the released benchmarks.

6.0.1 Engineering Applications

Some papers have researched Deep Reinforcement Learning in applications. [LWR+17]
first presents the general DRL framework, then introduces three specific engineering
applications: the cloud computing resource allocation problem, the residential smart
grid task scheduling problem, and building HVAC system optimal control problem.
The effectiveness of the DRL technique in these three cyber-physical applications
have been validated. Finally, the paper studies on the stochastic computing-based
hardware implementations of the DRL framework, which constitutes an improvement
in area efficiency and power consumption compared with binary-based implementation
counterparts. Comparing this research with our work, we also list three applications
that intend to represent engineering tasks of varying complexity, however, we focus on
specific DRL methods, and we provide a comparative evaluation.

In recent work [PR96], a new algorithm called C-Trace, a variant of the P-Trace RL
algorithm is introduced, and some possible advantages of using algorithms of this type are
discussed. Authors also present experimental results from three domains: A simulated
noisy pole-and-cart system, an artificial non-Markovian decision problem, and a real
six-legged walking robot. The results from each of these domains suggest that that
actual return (Monte Carlo) approaches to the credit-assignment problem may be more
suited than temporal difference (TD) methods for many real-world control applications.
Comparing to our work, we also use a cart-pole system as the experimental environment,
engineering control applications are also our main focus. However, the algorithms we
implement are recent Deep RL algorithms, and we focus solely on the comparison of
these methods with regards to their sensitivity to hyper-parameter configuration issues.
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Similar to our work, in [Cap18], recent Deep RL methods like Deep Q Network, Deep
Deterministic Policy Gradient and Asynchronous Advanced Actor Critic are presented in
detail. Starting with traditional reinforcement learning concepts, methods, authors come
to deep reinforcement learning and function approximation. Two industrial applications,
robotics and autonomous driving, are utilized for experiments. The testbeds are a
Double Inverted Pendulum , Hopper and a TORCS simulator. The DDPG and A3C
methods are implemented and evaluated in these three environments. Comparing with
our work, we too present state-of-the-art Deep RL methods DDPG and A3C, and one
experimental environment. We also present DQN and PPO, and evaluate these methods
on three environments: “CartPole”, “PlaneBall”, “CirTurtleBot”. Our environments are
chosen such that they can encompass different aspects of engineering application. The
goal of our task is to provide results on the practical criteria that needs to be considered
(hyper-parameter disclosure, and essential metrics per method) for further Deep RL in
engineering application benchmark design.

6.0.2 Challenges of RL in Engineering Applications

There is preceding work to ours which is concerned only in the field of robotics [PN17,
KCC13, PVS03, Mat97, KBP13b], which is one of the important Deep RL application
domains within engineering applications. In robotics, the ultimate goal of reinforcement
learning is to endow robots with the ability to learn, improve, adapt and reproduce
tasks with dynamically changing constraints based on exploration and autonomous
learning. Since robotic applications are more complex and hard to apply DRL into them,
the existing research focuses on implementing DRL in the robotic field and in making
comprehensive analysis. In [KCC13], authors give a summary of the state-of-the-art
of reinforcement learning in the context of robotics. Numerous challenges faced by
the policy representation in robotics are identified. Three recent examples for the
application of reinforcement learning to real-world robots are described: a pancake
flipping task, a bipedal walking energy minimization task and an archery-based aiming
task. In all examples, a state-of-the-art expectation-maximization-based reinforcement
learning is used, and different policy representations are proposed and evaluated for each
task. The proposed policy representations offer viable solutions to six rarely-addressed
challenges in policy representations: correlations, adaptability, multi-resolution, globality,
multi-dimensionality and convergence. Both the successes and the practical difficulties
encountered in these examples are discussed. Finally, conclusions are drawn about the
state-of-the-art and the future directions for reinforcement learning in robotics.

In [KBP13b], challenges of RL in robotics are discussed with four aspects: Curse of
Dimensionality, Curse of Real-World Samples, Curse of Under-Modeling and Model
Uncertainty, and finally, the Curse of Goal Specification. In our paper, we discussed
the challenges of RL in applications that, when considering the real world counterparts,
are also facing the aforementioned aspects. Differently, we also present other challenges
regarding to general engineering applications but in more simple, simulated environment.
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6.0.3 Benchmarks for RL

To build on recent progress in reinforcement learning, the research community needs
good benchmarks on which to compare algorithms. A variety of benchmarks have been
released, such as the Arcade Learning Environment(ALE)[BNVB13] which is currently
popular benchmark, offering a collection of Atari 2600 games as reinforcement learning
problems, and recently the RLLab benchmark for continuous control[DCH+16]. There
are also RL benchmarks regarding different comparison aspects, like[GDK+15, TW09,
AV15, AV15, DEK+05, dBS16].

The Arcade Learning Environment(ALE)[BNVB13] is nowadays a well-known benchmark.
The Arcade Learning Environment (ALE) is generated as a new challenge problem,
platform, and experimental methodology for empirically assessing agents designed for
general competency. ALE is a software framework for interfacing with emulated Atari
2600 game environments. It also provides a strict testbed for evaluating and comparing
approaches. ALE is released as free, open-source software, the latest version of the
source code is publicly available at: http://arcadelearningenvironment.org. Authors
provide the benchmark results using SARSA(λ), which is a traditional RL method.
Based on this method, they generated five different feature representation approaches:
Basic, BASS, DISCO, LSH, RAM. The cumulative rewards are compared among these
approaches. They first constructed two sets of games, one for training and the other for
testing. They used the training games for parameter tuning as well as design refinements,
and the testing games for the final evaluation of our methods.Comparing to our work,
in terms of environments, we are concerned more in simulated environments which can
be applied to engineering applications. In terms of RL methods, we used recent Deep
RL methods. With regards to the comparison criteria, cumulative reward was not the
only criteria that we considered, but we report other factors like algorithm robustness,
running time, etc.

In 2016, another RL benchmark for continuous control[DCH+16] was released. Since most
work in ARCADE [BNVB13] was targeting aim algorithms designed for tasks with high-
dimensional state inputs and discrete actions, there was a gap regarding the comparison
of algorithms for environments with continuous action spaces. This novel benchmark
consists of 31 continuous control tasks with Basic Tasks, locomotion tasks, Partially
Observable Tasks and Hierarchical Tasks. Nine RL algorithms were implemented in
the benchmark, they are: Random, REINFORCE, TNPG, RWR, REPS, TRPO, CEM,
CMEA-ES, DDPG. They also provide more criteria for the comparison when compared
to ARCADE, such like the iteration numbers of each algorithm, average reward, etc.
All the source code and the agents are made publicly available rllab1. Comparing
to our work, our aim is to provide practical criteria to make comparisons regarding
engineering application features. Alongside, the algorithms we used for experiments
are DQN, DDPG, and DPPO, which are recently released Deep RL algorithm. In the
aspect of environments, we also choose them from simple classical control problems, like
the CartPole system to a Hierarchical robotic Task.

1http://ray.readthedocs.io/en/latest/index.html

http://arcadelearningenvironment.org
http://ray.readthedocs.io/en/latest/index.html
http://ray.readthedocs.io/en/latest/index.html
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There is also related wok [dBS16] dedicated to comparing the sample complexity of RL
algorithms. Authors have proposed that in robotics, improving some cost function in
order to reach the controller efficiency generally requires to perform many evaluations of
controllers on the real robot with different parameter values. This process is often time
consuming, it may lead to abrasion of the mechanical structure or even to damage if the
tested controllers generate dangerous behaviors. As a result, sample efficiency is a crucial
property of any robot learning method. This paper implemented Deep Deterministic
Policy Gradient(DDPG) and Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) algorithms, and are evaluated on a continuous version of the mountain car problem.
Based on their evaluations, the general finding is that DDPG requires far less interactions
with the environment than CMA-ES and with less variance between different runs. The
reason of choosing DDPG and CMA-ES is that, DDPG is a Deep RL method based on
actor-critic policy estimation approach, CMA-ES is a direct policy search method. Their
evaluation could be understood as the comparison between two very different kinds of
RL methods. Comparing with our work, we also did the evaluation with respect to
sample complexity. Rather than that, we also compared other factors like robustness,
time complexity, and the implemented algorithms are DQN, DDPG, and DPPO which
are currently competitive methods.

6.1 Summary

In this chapter, we present a comparative review on work that is similar to our research.

In next chapter, we give conclusions about our work and the drawbacks which need to
be improved.



7. Conclusions and future work

In this chapter, we summarize all our work and give some general ideas for further work.

7.1 Work summary

In this work, the most popular deep reinforcement learning methods are compared
in three representative engineering tasks (CartPole, PlaneBall, CirTurtleBot). The
algorithms include DQN, DDPG and DPPO with deep neural networks as policy
representation. In order to break the gap of comparison between discrete task method
and continuous task method, we implemented both discrete and continuous version for
each environment.

In the evaluation, we perform two kinds of comparisons regarding two research questions.
First of all we did a hyper-parameter comparison, where methods were compared one by
one. We evaluate one method in one environment, comparing the method with different
hyper-parameters’ values, choosing by the end the values that result in the highest
performance. After that, we compared different methods with high performance hyper-
parameters in one specific environment. During the second comparison, we evaluate
these methods with regards to training time, sample efficiency and robustness.

According to our evaluation, the DQN method had the higher performance only in the
“CartPole” environment. This environment is famous as a classical problem with low
dimension space. We can assume that, in engineering problems, if we can generate
those problems as a low dimension training model, DQN is a good choice for training.
DDPG had the higher performance in “CirTurtleBot” environment, and especially in
“PlaneBall” environment which has the highest dimension and did the worst in “CartPole”
environment. We may consider using DDPG for a higher dimension engineering model
training. DPPO showed the relative higher performance among these three environments.
It seems like it is suitable for both low and high dimension models. However, if we use
DPPO in engineering problems, we should also take the hardware and training cost into
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consideration, Because the performance of DPPO relies on the workers’ number and
thus requires more computational power. This means that it needs better hardware
support than the other two methods. The training time and robustness of DPPO are
dependent on how many workers are training at the same time. In reality, if we don’t
have such high hardware support for training, we could use DDPG instead.

7.2 Threats to validity

• Limitations in Hardware
We have to admit that the computer’s performance really can affect the running
time, the training time is different for the same algorithm running on different
computers. And GPUs are considered to be much faster than CPUs. This may
affect the performance of the DPPO method because we can’t train the agent with
more than 8 workers in parallel. Definitely, the training speed and accuracy will
be improved if more workers train at the same time.

• Algorithm implementation
Although the pseudo code of the methods are proposed and we could find compa-
rable implementations from different researchers, the way of code implementation
has the influence on training time. More than that, the mechanisms for optimizing
the methods are being proposed and updated with high speed, the performance
could be affected by using the newest optimization mechanism. For example,
the DQN method has many variations, such as Double-DQN, Distributed DQN,
Prioritized Experience Replay, and others. Recently, the DDPG method has been
updated by a mechanism call batch normalization. PPO has two methods to
constrain the surrogate objective function. Due to the time and ability limitations,
we can’t implement all the methods with the newest mechanisms. In our work, we
implemented Double-DQN, DDPG without batch normalization, DPPO with the
clipped surrogate objective. This may affect the comparison performance.

• Environment designs
As we said before, we implemented both discrete and continuous versions for
each environment. The discretized size is an important issue we need to consider
because this can affect the performance.

• Experiment setups
First of all, we perform 5 times for each algorithm and average them to get the
results. The result will be more accurate if taking more trials for the experiment,
smoothing out variances due to the randomness in exploration and highlighting
trends with more clarity. Second, we perform 30k, 50k, 20k steps for CartPole,
PlaneBall, CirTurtleBot training. It will affect the robust performance comparison.
Last but not least, choosing a high performance hyper-parameters combination is
complicated because we usually can’t compare all the possibilities of the hyper-
parameters combinations due to time and computational limits.
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7.3 Future work

• Training with a higher-performance computer, especially with GPUs.

• Taking more engineering tasks for the comparison, especially locomotion tasks,
partially observable tasks, and hierarchical tasks.

• Implementing and evaluating A3C and DPPO with KL-Penalty, also newly pro-
posed algorithms from now on.

• Proposing more other criteria for methods comparison.

• Benchmarking general engineering tasks.
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