
University of Magdeburg

School of Computer Science

Master’s Thesis

Learning the Motion Uncertainty of
Spherical Robots in Different

Environments

Author:

Simone Bexten
July 7, 2017

Advisors:

Prof. Sanaz Mostaghim

Department for Intelligent Cooperating Systems

Prof. Norbert Elkmann

Fraunhofer IFF

Bexten, Simone:
Learning the Motion Uncertainty of Spherical Robots in Different Environments
Master’s Thesis, University of Magdeburg, 2017.

Abstract

In this thesis we determine the motion error of Spherical Robots, called Spheros which
were developed by Orbotix. We process nine experiments to analyse the behaviour of
two robots. With this analysis we want to determine if the motion uncertainty differs
between the Spheros. We present three approaches of learning the motion error which
use ideas of Probabilistic Motion Model (PMM) and Reinforcement Learning (RL).
Then, we apply a correction value based on our methods. Our approaches are called
Algorithm with Training Concept (ATC), Algorithm with Incremental Averaging (AIA)
and Incremental Alpha Method (IAM).

The motion error exists due to uncertain movement happened through different wheels
sizes. The Spheros are differential driven wheeled robots and we further simulate their
motion. Here, we analyse our three methods and determine their performances if differ-
ent uncertainty influences the simulated system. At last we develop an application for
the Sphero robots using Robot Operating System (ROS) and Python. We determine the
behaviour using our learning methods and compare them to a default behaviour with-
out any correction value. We compare three robots with different parameter settings
and processed seven Spheros in total to determine if learning is successful.

The capabilities of our approaches differ because they depend on the parameters and
on the used Spheros. Four Spheros were improved by using ATC, AIA or IAM, whereas
two Spheros worked accurate with the default behaviour. One Sphero was not further
analysed due to its defect battery after the third experiment.

iv

Contents

List of Figures ix

List of Tables xii

List of Acronyms xiii

List of Symbols xv

1 Introduction 1
1.1 Motivation . 1
1.2 Goal of this Thesis . 2
1.3 Structure of the Thesis . 4

2 Related Work 7
2.1 Swarm Robotics . 7
2.2 Spherical Mobile Robot . 9
2.3 Uncertainty in Robotic Control . 11
2.4 Motion Model Adaptation . 12

3 Background 17
3.1 Sphero . 17
3.2 ROS Environment . 19
3.3 Measures for Evaluation . 21

4 Learning the Motion Uncertainty 23
4.1 Motion Analysis of Sphero . 23

4.1.1 Experimental Setup . 23
4.1.2 Experimental Results . 24
4.1.3 Evaluation of Experimental Results 28

4.2 Learning Methods . 30
4.2.1 Algorithm with Training Concept (ATC) 30
4.2.2 Algorithm with Incremental Averaging (AIA) 31
4.2.3 Incremental Alpha Method (IAM) 31

5 Simulation of the Motion Model 33

vi Contents

5.1 Program . 33
5.1.1 Input . 33
5.1.2 Success Rate . 34

5.2 Results . 36
5.2.1 Maximum Training Size for ATC 36
5.2.2 Changing Distortion . 37
5.2.3 Applying the Real Data . 41
5.2.4 Changing Environment . 44

5.3 Conclusion . 46

6 Evaluation of Spherical Robots 47
6.1 Implementation . 47

6.1.1 General Concept . 47
6.1.2 Algorithm Details compared to Simulation 48
6.1.3 Calibration . 49
6.1.4 Speed Adaptation . 49

6.2 Experiments . 51
6.3 Results . 53

6.3.1 Parameter Tests without periodic Calibration 54
6.3.2 Parameter Tests with periodic Calibration 56

6.4 Problems . 68
6.5 Conclusion . 68

7 Conclusion 73

A Appendix 75
A.1 Algorithms . 75
A.2 Simulation Results . 77

A.2.1 Maximum Training Size . 77
A.3 Realization Results . 80

A.3.1 Positions . 82
A.3.2 Tables . 102

Bibliography 105

List of Figures

1.1 Transformation of the BB-8 into a Sphero 1

2.1 Banana-shaped distribution . 12

3.1 Inside the Sphero 2.0 . 18

3.2 Sphero’s internal sytem . 18

3.3 Sphero driving coordinates . 19

3.4 Basic Structure of ROS . 20

3.5 Boxplot . 21

4.1 Error distortion - Ideal floor for Sphero PGW 25

4.2 Error Distortion for straight motion on PVC floor 26

4.3 Error distortion for straight motion on mat floor 28

4.4 Closed loop feedback system . 30

5.1 Example density function of N (µ, σ2) 34

5.2 Plots of different methods . 35

5.3 Plots of different methods (IAM) . 35

5.4 Different memory sizes for training . 36

5.5 Distortions for |M| = 30 . 38

5.6 Comparison for |M| = 30 . 39

5.7 Distortions for |M| = 30 . 40

5.8 Comparison for ATC and |M| = 30 . 42

5.9 Comparison for AIA and |M| = 30 . 42

viii List of Figures

5.10 Comparison of error distortion for IAM 43

5.11 Changing Environment . 45

5.12 Boxplot of Dynamic Environment . 45

6.1 Flow chart . 48

6.2 Speed adaptation . 50

6.3 Trajectory . 52

6.4 Calibration test: boxplot (u = 20, r = 20) 54

6.5 Calibration test: boxplot (u = 50, r = 50) 55

6.6 Changes in the RCS of Sphero GPR (u = 20, r = 20) 57

6.7 1. Parameter test: boxplot (part A) . 58

6.8 1. Parameter test: boxplot (part B) . 59

6.9 1. Parameter test: boxplot (Sphero OOP) 59

6.10 2. Parameter test: boxplot (u = 50, r = 20) 61

6.11 2. Parameter test: boxplot (u = 20, r = 50) 63

6.12 3. Parameter test: boxplot (u = 50, r = 50), (part A) 64

6.13 3. Parameter test: boxplot (u = 50, r = 50), (part B) 65

6.14 PVC floor test: boxplot (Sphero GPR, PGW) 66

6.15 PVC floor test: boxplot (Sphero WBR) 67

A.1 Basic Structure of the ROS components 80

A.2 rqt graph . 81

A.3 Positions of Sphero GPR with u = 20, r = 20 82

A.4 Positions of Sphero PGW with u = 20, r = 20 83

A.5 Positions of Sphero WBR with u = 20, r = 20 84

A.6 Positions of Sphero GGY with u = 20, r = 20 85

A.7 Positions of Sphero GWP with u = 20, r = 20 86

A.8 Positions of Sphero OBO with u = 20, r = 20 87

A.9 Positions of Sphero OOP with u = 20, r = 20 88

A.10 Positions of Sphero GPR with u = 50, r = 20 89

List of Figures ix

A.11 Positions of Sphero PGW with u = 50, r = 20 90

A.12 Positions of Sphero WBR with u = 50, r = 20 91

A.13 Positions of Sphero GPR with u = 20, r = 50 92

A.14 Positions of Sphero PGW with u = 20, r = 50 93

A.15 Positions of Sphero WBR with u = 20, r = 50 94

A.16 Positions of Sphero GPR with u = 50, r = 50 95

A.17 Positions of Sphero PGW with u = 50, r = 50 96

A.18 Positions of Sphero WBR with u = 50, r = 50 97

A.19 Positions of Sphero GGY with u = 50, r = 50 98

A.20 Positions of Sphero GPR with u = 50, r = 50 (PVC) 99

A.21 Positions of Sphero PGW with u = 50, r = 50 (PVC) 100

A.22 Positions of Sphero WBR with u = 50, r = 50 (PVC) 101

x List of Figures

List of Tables

4.1 Speed results . 24

4.2 Experiment with two Spheros . 25

4.3 Results of two Spheros . 29

5.1 Distribution N (−5, 1) for x- and y-direction 37

5.2 Distribution results for µ = −5 and |M| = 30 38

5.3 Distribution results for µ = 15 and |M| = 30 38

5.4 Distribution N (−5, σ) . 39

5.5 Distribution N (15, σ) . 39

5.6 Distribution N (−5, σ) with |M| = 30 40

5.7 Distribution N (15, σ) with |M| = 30 41

5.8 Real experiments . 41

5.9 Real data, resulting values for ATC . 42

5.10 Real data, resulting values for AIA . 43

5.11 Real data, resulting values for IAM . 43

5.12 Results of Absolute Error (AE) for each method 44

5.13 Experiments . 44

5.14 AE for Changing Environment . 46

6.1 Parameter settings . 52

6.2 Sample size table . 53

6.3 Calibration test: distances (u = 20, r = 20) 55

6.4 Calibration test: distances (u = 50, r = 50) 56

xii List of Tables

6.5 1. Parameter test: distances . 60

6.6 2. Parameter test: distances (u = 50, r = 20) 62

6.7 2. Parameter test: distances (u = 20, r = 50) 64

6.8 4. Parameter test: distances (u = 50, r = 50) 66

6.9 PVC floor test: distances . 67

6.10 Mean Absolute Error (MAE) results for each method 69

6.11 MAE comparison of u = 20 and u = 50. 70

6.12 MAE comparison of u = r0 and r = 50. 70

6.13 MAE comparison of PVC floor and carpet 71

A.1 Distribution N (−5, 2.5) . 77

A.2 Distribution N (−5, 4) for x-and y-direction 77

A.3 Distribution N (−5, 5.5) for x-and y-direction 77

A.4 Distribution N (−5, 7) for x-and y-direction 78

A.5 Distribution N (15, 1) for x-and y-direction 78

A.6 Distribution N (15, 2.5) for x-and y-direction 78

A.7 Distribution N (15, 4) for x-and y-direction 79

A.8 Distribution N (15, 5.5) for x-and y-direction 79

A.9 Distribution N (15, 7) for x- and y-direction 79

A.10 Calibration test: duration . 102

A.11 Calibration test: duration . 102

A.12 1. Parameter test: duration . 102

A.13 2. Parameter test: duration . 103

A.14 3. Parameter test: duration . 103

A.15 PVC floor test: duration . 103

List of Acronyms

AE Absolute Error
AIA Algorithm with Incremental Averaging
ATC Algorithm with Training Concept

GCS Global Coordinate System

IAM Incremental Alpha Method
IQR Interquartile Range

MAE Mean Absolute Error
MDP Markov Decision Process
MPC Model Predictive Control

PDF Probability Density Function
PMM Probabilistic Motion Model

RCS Robot Coordinate System
RL Reinforcement Learning
ROS Robot Operating System

SDK Software Development Kit
SMR Spherical Mobile Robot
Sphero GGY Sphero GGY (Green, Green, Yellow)
Sphero GPR Sphero GPR (Green, Purple, Red)
Sphero GWP Sphero GWP (Green, White, Purple)
Sphero OBO Sphero OBO (Orange, Blue, Orange)
Sphero OOP Sphero OOP (Orange, Orange, Purple)
Sphero PGW Sphero PGW (Purple, Green, White)
Sphero WBR Sphero WBR (White, Blue, Red)
Sphero YRB Sphero YRB (Yellow, Red, Blue)

xiv List of Acronyms

List of Symbols

e Error value between two positions: e = (ptarget − preal).
M The memory is a list which stores the error values for certain steps.
µc Correction value based on error.
µd Arithmetic mean distance
ε Noise error value of N
N Noise or disturbance function generates an error value ε which is as-

signed to the position p

pcalib Position used for calibration.
porigin Initial position for calibration.
p Position of the robot without disturbance, depending on time t with

p(t) = (x (t), y(t))T .
preal Position disturbed by unknown distribution.
ptarget Desired target position.
s Speed value for the Sphero with s = [0, 255].
θ Heading of the robot.
t Time step.
T The number of maximum training steps (also the maximum duration).

xvi List of Symbols

1. Introduction

Performing a motion which is exact and accurate, such as grasping a glass of water
without spilling, is not only important for humans but also for robotic control. The
difficulties of robot control are discussed in this work with focus on a spherical robot.
If you have seen the StarWars movie of the year 2015, you can probably remember the
BB-8 droid, which is designed to maintain and repair starships. Additionally, the BB-8
is very nimble and has special skills to support the other characters of the story.

1.1 Motivation

Let us take the BB-8 for scratching an ideal robot. An intelligent, autonomous and
mobile robot reacts to its environment and adapts fast to changes in its surroundings.
However, these functionalities are settled in the field of science fiction. But still, we are
using this kind of robot to describe the focus on research questions of this work. In the
movie the droid has to move in various terrains. On sand, the control differs from that
in the forest or from that on the metal floor of a spaceship.

(a) StarWars - BB-8 droid (b) BB-8 and Sphero 2.0

Figure 1.1: Transformation of the BB-8 into a Sphero

As mentioned before, the BB-8 droid is fiction, that is why we use a similar, but
real robot to investigate the motion uncertainty and the adaptation to an unknown
environment. Figure 1.1 shows the similarities of the BB-8 droid and the Sphero1. We
imaging to scale and transform the robot into a more manageable pocket size. Now,

1Images from http://www.mtv.com/news/2727582/bb-8-thumbs-up-star-wars/ and http://www.techrepublic.com/
pictures/cracking-open-the-sphero-bb-8-star-wars-toy/ (Received 07.05.2017)

http://www.mtv.com/news/2727582/bb-8-thumbs-up-star-wars/
http://www.techrepublic.com/pictures/cracking-open-the-sphero-bb-8-star-wars-toy/
http://www.techrepublic.com/pictures/cracking-open-the-sphero-bb-8-star-wars-toy/

2 1. Introduction

we reduce the main skill set of the BB-8 to low level: driving and blinking. We have a
much more simplified robot, the Sphero, developed by Orbotix2. The Sphero is a mobile
robot with a spherical-shaped shell and an internal measurement unit inside of the body.
The robot has limits in positioning which we compensate with a camera as the global
positioning system. We use this system as the reference system and the computation of
the target positions. Nevertheless, the Sphero has difficulties in navigation and control
due to its shape. Therefore, a stable controller is required to perform driving into the
right position.

The dependencies and conditions of the robotic system and the environment have
strong influences on the resulting motion. A high accuracy is necessary for exam-
ple to plan paths and to perform motion with the desired effects and results. The
robot’s movement should be as accurate as possible so that the error due to uncer-
tainty is minimal. The more accurate the movement, the better the robots are to
avoid collisions, this is especially important for several robots that are supposed to
work together. This group of robots, a so-called swarm, can solve various problems
like displaying pictures, building platforms or explore an unknown environment with
cooperation [AMBR+12][WPN14][DFG+13].

1.2 Goal of this Thesis

For this thesis we want to analyse whether it is possible to increase the motion accuracy
by learning the motion uncertainty. This work deals with the experiments, evaluation
and correction of the motion of ball-shaped, rolling robots. The motion uncertainty oc-
curs due to inner and outer influences of the robotic system. Therefore, the computation
of the movement to the next target position needs to be corrected. Inner dependencies
are the mechanics of the robot such as the shape and the differential drive motion.
Inside of the shell, the robot is driven by a motor controlling two wheels which fix the
movement velocity and direction. Due to the production process the wheels can slightly
differ in their dimensions. This affects decisively the direction of the driving and thus
leads to missing the target position. The outer parameters influence the robotic sys-
tems. The environment with different surfaces of the terrain influences the movement
due to unevenness, grime or slip.

Firstly, we want to perform several experiments with up to six Spheros to answer
whether the different robots have the same motion model or not. The motion error in
robotics is often represented as a so-called banana-shaped distribution, more commonly
known as Gaussian distribution. However, does this generalization also apply for the
Sphero and how can we describe the distribution most precisely? The experiments
are the basis for further statements whether the different robots have varying motion
models and how the distributions depends on the environments.

2http://www.sphero.com/ (Received 07.05.2017)

http://www.sphero.com/

1.2. Goal of this Thesis 3

Determine motion model and uncertainty of several Spheros in exper-
iments.

Objective 1

We want to use the result of these experiments to create a concept which determines
a motion model. This representation leads to the necessary correction of the Sphero
robot which should work even under difficult conditions. Thus, the robot needs to
notice changes in the environment in order to have a stable control and therefore, it
should learn the models for different environments. Thus, the second objective is to
find out whether it is possible to determine the systematic error due to uncertainty and
to correct this error.

Develop a concept for learning a motion model.

Objective 2

In order to verify the concept, and as our third objective, we developed a simulation
of the Sphero’s motion. We use several parameters and noise functions to test the
proposed approach. The simulation is used to create a suitable motion model for the
Spheros and analyse the approach for handling the uncertainty.

Simulate the motion of a robot and determine the error due to noise
and disturbance distribution.

Objective 3

We present an evaluation of the motion model and the correction of the systematic
failure of a robotic system in a real-world experiments. We want to confirm or rebut
our approach in the hardware programming for the Sphero robots. Consequently, we
need a stable system running for the Spheros and the real-world experiments.

Develop software framework to realize the learning concept on
Spheros.

Objective 4

We use the software framework to evaluate the concept, furthermore, we introduce the
features of the environment (arena) on which the Spheros are supposed to move and to
operate.

4 1. Introduction

Design an arena for the evalution of the Spheros.

Objective 5

We verify and evaluate our concept in several real-world experiments with various ter-
rains in the arena. Here, we use several Spheros to evaluate the possibilities of the
motion model. Furthermore, we check whether the error correction leads to a stable
driving.

Running hardware realization so that we can adapt the learning con-
cept and the simulation results to program the Spheros.

Objective 6

Additionally, we present our results whether the motion accuracy of the Sphero robot
is increased through error handling. To determine the motion uncertainty, we take
various experiments and evaluate them in terms of handling the error and to create a
motion model. Here, we present the parameters of the proposed approaches and taken
measures. We further compare our method on different surfaces.

Compare the different learning methods and determine a motion
model for different surfaces.

Objective 7

1.3 Structure of the Thesis

This thesis is structured as follows. After the first chapter about the introduction,
motivation and problem statement, the Chapter 2 is dedicated to the fundamentals.
There you can find the basic knowledge for understanding the presented work. Other
research projects with similar focus on motion control are presented so that a broad
knowledge about uncertainty is mediated. Furthermore, applications of swarms are
introduced.

Moreover, the theoretical and practical background for programming with Sphero robots
is explained in Chapter 3.

Chapter 4 describes the experiments with the Spheros and identifies the motion be-
haviour. With this knowledge we scratch the general concept of learning an unknown
environment and introduce the methods for error correction.

Then, in the following Chapter 5, we explain the simulation of the motion model and
evaluate several noise functions.

1.3. Structure of the Thesis 5

Afterwards, we describe the real-world experiments on the Sphero robots in Chapter 6.
Here, we assess our approaches and compare the results which we will connect with the
outcome of the simulation and interpret in the following chapter.

Finally, the last chapter describes further research questions that could not be solved
in this thesis, as well as new questions and project ideas that have emerged.

6 1. Introduction

2. Related Work

Other research projects with similar focus on motion control are presented in this chap-
ter so that a broad knowledge about uncertainty is mediated. We start with a short
introduction to swarm robotics.

2.1 Swarm Robotics

A robot is a machine which can be stationary or mobile, and is controlled by a computer
program. Due to acceptable prices of robots nowadays, it is more and more common to
deploy them in the industry. They can support humans in building cars or other aspects
in production processes. A mobile robot is flexible in its place of action and solves
problems efficiently. Brambilla et al. focused on ideas and concepts which are related
to the engineering field and relevant for real-world applications. A swarm designates
individuals which form a group. A robotic swarm is a group of mobile and autonomous
robots (also called agents) which are inspired from biology. The swarm can develop
specific behaviour based on its skills. If each individual has the same skills, the swarm
is called homogeneous, else heterogeneous. Furthermore, the individuals of the swarm
can cooperate to solve certain tasks. Other characteristics of such robots are that they
have no global knowledge, but they can act autonomously based on local sensing and
communication capabilities [BFBD13].

A behaviour of a swarm is determined by robustness, scalability and flexibility to

1. cope with the loss of individuals,

2. to perform well with various sizes of groups and

3. to cope with different environments or tasks.

A task performed by a robotic swarm could be, amongst other things, pattern formation,
task allocation, source search, transport or mapping (exploration and exploitation). In
addition, Navarro et al. introduced methods which are focused on five basic principles
of swarm intelligence. The population should be divers to identify an optimal solution.
Additionally, the population needs to stay stable even though the environment changes
in time. At last the population needs the ability to change its behaviour depending on
outer and inner parameters [NM12].

8 2. Related Work

Application of Swarm Robots

Swarm robots could be used for several tasks in real-world application. In agricultural
economics a swarm could identify pest infestation in plants to reduces the Herbicide.
Alternatively, a swarm of tiny robots can be used for pollination like real bees1.

Other ideas are in the area of entertainment. A swarm of 300 flying drones was used at
the half time show of the NFL Super Bowl 2017. These unmanned aerial vehicle have a
LED to create a specific colour light at a certain time. But due to the challenging ques-
tions in flying swarms and the external dynamics, such drones have pre-programmed
routes. Therefore, no communication between them is needed and with the help of an
external computer, collisions are not likely to happen2.

Large-Scaled Swarm

Another large-scaled swarm with up to 1000 robots was created by Rubenstein et al.
[RCN14]. They developed tiny robots, the Kilobots, which can form a given shape
by moving one after the other to the desired position. Localization of each Kilobot is
done with a few known positions of so-called seed robots to whom the other robots can
detect their own location. A Kilobot uses local communication to determine its relative
position based on three neighbours.

Swarm Display

Alonso et al. used small robots to form a mobile swarm display with group sizes
between 14 and 50 agents [AMBR+, AMBR+12]. Each robot carried a RGB-light to
represent a pixel of an image. The autonomous robotic swarm was used as a mobile
display which can learn to form a specific shape. Alonso et al. presented an approach to
generate a goal position for each robot based on an input image or GIF. They segmented
the given image to separate the foreground from the background. Then, they used
Central Voronoi Tessellation (CVT) to compute the optimal position for each point and
assigned each point to a robot. The CVT is a method to associate generated points to
a corresponding region by calculating the mean point of such region3. Furthermore, the
agents of the swarm need collision avoidance, motion and pattern formation to solve the
task without accidents. For this, the proposed system knows the global position of each
robot and compares this with the corresponding goal given by the picture template.

1https://wyss.harvard.edu/technology/autonomous-flying-microrobots-robobees/ (Received 07.05.2017)
2https://techcrunch.com/2017/02/05/intel-powered-the-drones-during-lady-gagas-super-bowl-halftime-show/ (Re-

ceived 07.05.2017)
3http://www.personal.psu.edu/qud2/Res/Pic/gallery3.html (Received 07.05.2017)

https://wyss.harvard.edu/technology/autonomous-flying-microrobots-robobees/
https://techcrunch.com/2017/02/05/intel-powered-the-drones-during-lady-gagas-super-bowl-halftime-show/
http://www.personal.psu.edu/qud2/Res/Pic/gallery3.html

2.2. Spherical Mobile Robot 9

2.2 Spherical Mobile Robot

Mobile robots are called Spherical Mobile Robots (SMRs) when its body has a ball-
shaped shell and all mechanical parts are inside this shell. Ylikorpi et al. presented an
overview of other ball-shaped robots [YS07].

Joshi et al. investigated a new SMR which uses two internal rotors for rolling [JBH07].
The robot changes its position with the principle of the angular momentum. When the
rotors are in movement the SMR rolls to its opposite direction with the result that the
conservation of the angular momentum is kept. For this design it is necessary that the
center of mass is exactly at the center of the sphere, else the conservation would not
work.

Bicchi et al. designed a different SMR. They created a ball-shaped robot called Sphericle
which can roll freely on the floor [BBPG97]. In addition, Bhattacharyaet et al. devel-
oped another approach of designing a SMR using a rotor principle for the robotic’s
movement [BA00]. Jaimez et al. presented an omnidirectional SMR which can turn on
the same position (without driving a turning circle) [JCGC12]. This type of SMR could
be used for the inspection of pipelines or exploration task where passages are narrow
and turning needs to be done on the same position.

Advantages of SMR

Jaimez et al. determined various arguments in favour of and against this robotic type
[JCGC12]. A SMR cannot fall over which is advantageous compared to other motion
systems. Moreover, they have no jutting parts which would get stuck and hinder the
robot to continue its movement. All technical parts are inside a robust shell for pro-
tection. The movement could be omnidirectional, but due to physical constraints it is
often not. The shape can make it harder to drive over hurdles. It highly depends on the
size of the SMR if it can roll over obstacles or not. Furthermore, the spherical shell has
the advantage that the robot could swim. If the shell is completely watertight it could
be possible to use the robot in sewage or oil pipeline for inspection and monitoring.
The robot could resist high water pressure due to its spherical shape. Alizadeh et al.
studied the motion of a amphibious robot floating in water. The robot has a special
shell which is extended by blades [AM11].

Due to the unsteady controlling of such a robot, Roozegar et al. developed an optimal
motion control for a SMR [RMJ16]. With the help of dynamic programming they
created a method for an optimal trajectory. With this they controlled a robot in a
dynamic environment. The work included simulation of their approach and experiments
on a real-world spherical mobile robot. The experimental setup has a camera for global
positioning of the robot, an external computer and the robot itself. They obtained two
main problems concerning the black rubber mat which covered the floor. First, the
mat changes the rolling of the robot which means that the environment influences the
robots motion and it is not possible to determine the pure motion of the robot. Second,
the image processing had difficulties with tracking the robot when it is on the mat,
probably due to the transparent shell of the robot.

10 2. Related Work

Sphero used in research projects

The Sphero robot developed by the company Orbotix was presented in 2010. However,
there is a small amount of previous work concerning the Sphero robot. Those works
focused on education either of children or of students and adults. Ioannou et al. used the
Spheros as a gaming experience to arouse interest of the children for Science, Technology,
Engineering and Mathematics [IB16].

Carroll et al. proposed to extend the entertainment factor of the Spheros by using
Augmented Reality [CP13]. The Spheros are controlled by a smartphone app, e.g. using
the Sphero Software Development Kit (SDK)4 developed by Orbotix. The Sphero SDK
provides interfaces e.g. to Android, iOS or Unity which makes it easy to develop new
applications for the Spheros.

Mendez-Zorrilla et al. used smartphone apps for an experimental study involving peo-
ple with intellectual disability. Their key idea was to study the Spheros in terms of
entertainment and to provide a low hurdle for their patients. Therefore, the robots
could increase the attention to practice more with the result that spatial and temporal
orientation was improved. Due to the small group of participant, it is not possible
to make a general statement if such games can help people with physical or mental
disabilities [MZFC15].

Corral et al. used the Sphero for introducing interdisciplinary object-oriented pro-
gramming and robotic to students. With the help of the robots the students were
more motivated and archived better results in the final exam than the control group
[CMEM+16].

Furthermore, Kohana et al. presented a project which use a web browser as an input
for remote control. They developed a control panel using the SDK. The user enters the
desired velocity and the heading’ angle of the motion. Then, the robot moves into the
direction [KO14].

Nistad et al. developed a platform with the official Sphero SDK. They created a plat-
form for navigation of one or more Spheros, called SpheroNav. For doing this, they
implemented a library for controlling and communication. Additionally, they devel-
oped a tracking system based on a camera to determine a global position [Nis14].

4https://developer.gosphero.com/ (Received 07.05.2017)

https://developer.gosphero.com/

2.3. Uncertainty in Robotic Control 11

2.3 Uncertainty in Robotic Control

To determine the robot’s systematic failure in every movement, also known as uncer-
tainty, statistical measures can help to describe such a motion. According to Thrun et
al. uncertainty can rely on five different issues [TBF05]:

1. Uncertain environment: It is unpredictable due to its unstructured nature and
dynamic changes.

2. Sensor limits: sensors are restricted not only in the range but also in the resolu-
tion. In addition, their noise perturbs the measurement and makes the predicting
harder. For example, the localization using the gyroscope has systematic dead-
reckoning errors. It estimates the travelled distance along a given heading based
on its own velocity and elapsed time.

3. Robot’s movement: The motor is unpredictable due to control noise and wear
and tear. Additionally, a systematic error occurs due to uncertainty about the
wheelbase or slightly unequal wheel diameter.

4. Inaccurate robot model: Because of physical limitations the abstraction of the
real-world is hard. Therefore, often a simplified model of the robot’s physics and
its environment is used.

5. Computational limitations and mathematical approximations: The computer hard-
ware and from that the computational power is restricted, this is the reason that
algorithms and methods needs to approximate their results (rounding of floating
point numbers). The approximation lowers the computational effort, but it costs
the accuracy of calculation.

Yu et al. considered the uncertainty of skidding and slipping in kinematic and dynam-
ics. They simulated their method on a butterfly-shaped trajectory. As disturbance
factor they used white noise which results into an erroneous position. Their method
reduced the complexity by using non linear damping to lower the impact of disturbances
[YHK16].

Cizelj et al. suggested a method to control a noisy differential drive mobile robot.
Their approach used probability theory to fulfil a given bounded linear temporal logic
in terms of noise [CB14]. For this, they further studied noisy actuators such as angular
velocity. They used a statistical model of the robot to compute a Markov Decision
Process (MDP). MDP is a model of decision problems and is solved by using dynamic
programming or reinforcement learning5. The reward of a sequence of decision should
be maximized and depends on the behaviour of the robot. Cizelj et al. identified two
types of uncertainty: trajectory and evolution of MDP. Since this method also considers
uncertainty and dynamics in the system it is more accurate, but needs more time for
the computational effort.

5For more, see http://www.cs.ubc.ca/˜murphyk/Software/MDP/mdp.html (Received 07.05.2017).

http://www.cs.ubc.ca/~murphyk/Software/MDP/mdp.html

12 2. Related Work

2.4 Motion Model Adaptation

For adapting the motion model it is possible to use a statistical model, artificial networks
or reinforcement learning. In the following section, we present other works of learning
a controller.

Probabilistic Motion Model (PMM)

The key idea of a PMM is using probabilistic theory to represent uncertainty. With
PMM a robot can handle different types of uncertainty and ambiguity. A robot which
is aware of its own uncertainty is more better than one who is not. For example,
one application of probabilistic theory is to work on noisy data gathered by sensors.
The robot’s task could be to explore interesting areas which are usually unknown and
therefore unpredictable. A probabilistic robot can correct errors, handle ambiguities
and connect sensor data better.

The other application of probabilistic theory is the robotic control. A mobile robot
needs the ability to operate correctly even in uncertain situations. An ideal model of
a robot which is often assumed in simulation has no wear and tear, no uncertainty or
noise errors. On the one side, probabilistic methods are more robust and adapt better
if the environment changes. On the other side, such methods are computationally inef-
ficient and require approximation since they handle probabilistic densities. The PMM
uses the conditional probability for localization, mapping and handling of a changing
environment. The most used method is the Bayes filter which estimates a probability
density recursively to a system state. This filter uses the condition that the probability
distribution is Gaussian. The method approximate very accurate the (co-)variance and
the mode of the system [TBF05].

The Banana Distribution is Gaussian:
A Localization Study with Exponential Coordinates

Andrew W. Long ∗, Kevin C. Wolfe †, Michael J. Mashner †, Gregory S. Chirikjian †
∗ Northwestern University, Evanston, IL 60208
† Johns Hopkins University, Baltimore, MD 21218

Abstract—Distributions in position and orientation are central
to many problems in robot localization. To increase efficiency,
a majority of algorithms for planar mobile robots use Gaus-
sians defined on positional Cartesian coordinates and heading.
However, the distribution of poses for a noisy two-wheeled robot
moving in the plane has been observed by many to be a “banana-
shaped” distribution, which is clearly not Gaussian/normal in
these coordinates. As uncertainty increases, many localization
algorithms therefore become “inconsistent” due to the normality
assumption breaking down. We observe that this is because the
combination of Cartesian coordinates and heading is not the
most appropriate set of coordinates to use, and that the banana
distribution can be described in closed form as a Gaussian in an
alternative set of coordinates via the so-called exponential map.

With this formulation, we can derive closed-form expressions
for propagating the mean and covariance of the Gaussian in
these exponential coordinates for a differential-drive car moving
along a trajectory constructed from sections of straight segments
and arcs of constant curvature. In addition, we detail how to
fuse two or more Gaussians in exponential coordinates together
with given relative pose measurements between robots moving
in formation. These propagation and fusion formulas utilized
here reduce uncertainty in localization better than when using
traditional methods. We demonstrate with numerical examples
dramatic improvements in the estimated pose of three robots
moving in formation when compared to classical Cartesian-
coordinate-based Gaussian fusion methods.

I. INTRODUCTION

A rich area of robotics research known as SLAM or
simultaneous localization and mapping consists of a robot
mapping its environment while estimating where it may be in
this map. To incorporate uncertainty, one strategy represents
all possible poses of the robot with a probability density
function (pdf). The goal then is to maintain and update this
pdf as the robot moves. One solution is to propagate the entire
pdf such as with Fourier transform techniques [26]. However,
these techniques can be too numerically intensive for real-time
SLAM applications.

According to Durrant-Whyte and Bailey, the two most com-
mon tools used to increase efficiency for SLAM algorithms are
the extended Kalman filter (EKF) and the Rao-Blackwellized
(RB) particle filter [8]. EKF-SLAM is based on the classic
work of Smith et al. in which linearized models are used
to propagate uncertainty of the non-linear motion and obser-
vations [21]. Several strategies for improving the efficiency
for large scale SLAM problems using this technique are
documented by Bailey and Durrant-Whyte [2]. By using the
RB particle filter, Murphy observed that the SLAM problem

(a)

x

y

θ

l

(x,y)
2 r

(b)

Fig. 1. (a) Banana-shaped distribution for position of a differential-drive
robot moving along a straight line with noisy wheel speeds. (b) Notation for
differential-drive robot.

could be decomposed in to a robot localization problem and
several independent landmark estimation problems [18]. With
this factorization, many efficient SLAM algorithms known as
FastSLAM have been proposed [16, 17, 11].

An inherent technique utilized in EKF-SLAM and many
FastSLAM algorithms for robots operating in the plane is
to represent all distributions with Gaussians in Cartesian
coordinates (x, y) and orientation heading angle (θ). This
Gaussian/normal representation can be fully parameterized by
a mean and covariance in these variables. Equal probabil-
ity density contours of these distributions are described by
ellipses. However, if we command a differential-drive robot
to drive along a straight path, the resulting distribution from
many sample paths may look similar to Fig. 1(a). Originally
described by Thrun et al. [23], [24], this distribution is gen-
erally referred to as the “banana-shaped” distribution, which
does not have elliptical probability density contours in the
variables (x, y, θ). As the uncertainty grows, this assumption
of normality breaks down and the maps inevitably become
inconsistent [14].

Many have studied the problem of inconsistency for the
EKF-SLAM [14], [3], [5], [13], and [6]. Julier and Ulhmann
proved that this inconsistency is a direct result of linearization
of the non-linear models in EKF-SLAM [14]. The extent of
the inconsistency was studied by Bailey et al. in the context of
heading uncertainty. They showed that if the standard deviation
on the heading was larger than one or two degrees the map
ultimately failed, specically with regards to excessive infor-
mation gain and jagged vehicle trajectories [3]. In addition,
the quality of the normal assumption in these coordinates was

Figure 2.1: Banana-shaped distribution of a differential drive robot. Reprinted from
[LWMC13]

Long et al. studied the probability density resulted by the motion of a differential driven
robot. They proofed that the so-called banana-shaped distribution (Figure 2.1) of

2.4. Motion Model Adaptation 13

Thrun et al. is a Gaussian distribution. For this they are using exponential coordinates
instead of polar coordinate [TBF05, LWMC13]. Additionally, Long et al. compared the
multivariate Gaussian model based on polar coordinates and exponential coordinates.

Eliazar et al. developed a method of learning a PMM. A good motion model could
correct the systematic error and should identify additionally the stochastic nature of
motion. They used the approach of PMM and applied the expectation–maximization
(EM) algorithm to learn the parameters of the model. The EM algorithm of Dempster et
al. is an iterative method of the maximizer of the posterior density. It involves two main
steps: Computation of a conditional exception of the log-likelihood and maximization
of this expectation over specific parameters [DLR77]. Eliazar et al. validated their
approach on several maps to demonstrate the correction method. Moreover, they did
an evaluation on different surfaces: carpet, concrete and tiles. Their approach has
difficulties with large variances of the distribution [EP04].

A Gaussian Mixture Modell (GMM) consists of several Gaussian functions where each
distributions has multiple components, characterized by mean and variance. The most
popular approach for estimating the parameter of a GMM is the EM algorithm. Cher-
nova et al. present a technique using learning by demonstration. They reduce the
required number of demonstration by using GMM. With less training data the robot
can autonomously learn the policy to fulfil a task [CV07]. A Gaussian process model
can handle noisy data [NTP11].

Additionally, Deisenroth et al. use Gaussian processes for efficient learning of a robotic
control. Their presented a method represents the uncertainty as a probability distribu-
tion and considers this for planning and control. With they could reduce the error of
the model. Nevertheless, it is possible to underestimate the uncertainty since it handles
uncertainty as noise [DFR15].

In summary, the development of a stable controller for robotic systems is difficult in such
cases where the system is non linear due to slipping and external influences. A model
is used to describe the kinematics and dynamics of the robot’s shape and controllable
units. It contains system’s information and the agent’s influences in the system [TBF05].
An accurate model of the system and its environment is important for control, planning,
navigation and other applications. Information of the state and actions can provide a
better understanding of the system’s behaviour.

Model Learning

Nguygen et al. introduced the different model learning architectures. They discussed
the problems for each architecture and presented case studies. Model learning is used
when a robot control should adapt to an unstructured and uncertain environment. It
is more robust than other approaches since it can handle missing data stems from
erroneous measurement. There are two classes of learning methods: offline and online
learning. Training data is only needed for offline learning. Whereas online learning
adapts directly from the recognized input of the system [NTP11].

14 2. Related Work

Iterative Learning can also be used for handling uncertainties in the robotic’ system. It
generates a model through learning which makes it robust to system uncertainties. Nev-
ertheless, noise and disturbances can lower the performance of such a system [BTA06].
Gomi et al. proposed a feedback-error-method. It computes a feedback for a controller
of an inverted pendulum manipulator using Neuronal Network (NN) [GK90].

Karydis et al. proposed a data-driven framework to extend the deterministic models
with a stochastic part. This stochastic model can handle uncertainty between the sys-
tem and the environment. They further studied an uncertain system with experiments
on miniature legged robots and flying robots. Robot control is often model-based and
posses limited abilities in dynamic environment. The behaviour of a robot can change
in different environments. Therefore, it can be beneficial to use probabilistic theory and
adapt the system to handle such environments [KPST15].

Model Predictive Control

Rawlings et al. introduced to Model Predictive Control (MPC). It is a framework used
to create a distributed control system with input and state constraints. The MPC design
needs a model of the system, a finite horizon and a feedback mechanism that allows the
control to compensate disturbances and errors. A MPC optimizes the process behaviour
by manipulating the inputs. So it can adjust the future behaviour of the system. Most
important for failures are constraints, non linearities in the process, model uncertainty
(robustness) and performance criteria [Raw00].

Reinforcement Learning (RL)

RL approaches are based on the assumption that the system is a MDP. In RL a method
evaluates the systems’ behaviour in a specific situation and environment. It applies
actions in order to optimize the reward. The robot learns a desired behaviour by doing
the right thing based on rules which will result into a specific reward. RL has four basic
components: policy, reward function, value function and environment model. A method
for multi-agent system is presented by El Hakim et al. who used RL to develop a self-
tuning controller. Here, Q-Learning is used to determine parameters for the controller
of a robot with two wheels. Q-Learning is a procedure that determines the optimal
policy by using incremental dynamic programming [KBP13]. The method, proposed
by El Hakim et al., allows to assign reward on specific states and situations to generate
more knowledge [EHHR13].

Abbeel et al. presented a hybrid approach using ideas of model-based and model-free
RL. The model is difficult to determine for a continuous state problem of the MDP. They
used an approximated model to describe the MDP and only a few samples of the real
world. The method evaluates a given policy and use these results in an approximated
model which suggest local improvements. The small amount of samples is an advantage
of this approach. Abbeel et al. evaluated their approach on a flight simulator and in a
real-world experiment [AQN06].

2.4. Motion Model Adaptation 15

Wei et al. presented the MCEM algorithm using Monte Carlo as estimation step in the
EM algorithm [WT90]. Vlassis et al. developed another method using RL but without
a model of the dynamic system to learn the robot control. Here, they extend the MCEM
algorithm with a probabilistic model and RL. The reward of the system is treated as
the probabilities of different states and the overall value function is proportional to the
likelihood [VTKP09].

16 2. Related Work

3. Background

This chapter deals with the basic principles for understanding the presented work.
Moreover, we explain the specification of the Sphero robots. Enclosed are also the
details of the robotic framework, used for hardware programming, and the statistical
measures for analysis.

3.1 Sphero

The Sphero is a rolling SMR with a robust polycarbonate shell which protects the
internal mechanics from hard collisions and drops. Officially, the Sphero should not be
dropped on hard surfaces or driven off a gap higher than 7 cm1. Nevertheless, it can
withstand drops of more than 7 m onto carpet2. The robot’s diameter is ab 7.62 cm
and it weights about 450 g3. Due to its size, the Sphero cannot overcome obstacles
easily unless these are very small.

Figure 3.1 presents the main modules. The Sphero has a Lithium Polymer battery
which can be charged in about three hours by a wireless power transfer.

An additional weight is situated at the bottom. It holds the core in a horizontal position
to stabilize the Sphero. Two wheels are inside of the Sphero’ shell for driving (A). A
fully charged Sphero can drive 60 minutes at top speed of 200cm/sec 4. To prevent
erroneous behaviour, inside the Sphero are two additional wheels (B) which strengthen
the bond of the motor controlled wheels to the inner surface and to prevent the core
from falling over.

A Bluetooth connection (C) sends measured data of the sensors to a command and
control unit, e.g. a mobile phone or a laptop. This is the only interface to communicate
with the Sphero and to send motion commands. The Bluetooth range is about 30 m.

Furthermore, inside the shell is a LED (D). The bright white shell creates a diffuse
glowing effect which is used to differentiate between several Spheros. Additionally, the
LED indicates the direction of movement since a brighter spot is always at the back of
the motion direction when using the Android application.

1https://sphero.freshdesk.com/support/solutions/articles/9000060867-is-sphero-fragile- (Received 07.05.2017)
2http://electronics.howstuffworks.com/sphero1.htm (Received 07.05.2017)
3https://sphero.freshdesk.com/support/solutions/articles/9000060885-what-are-sphero-s-box-dimensions-and-weight

(Received 07.05.2017)
4https://sphero.freshdesk.com/support/solutions/articles/9000060877-charging-sphero-how-to-and-best-practices

(Received 07.05.2017)

https://sphero.freshdesk.com/support/solutions/articles/9000060867-is-sphero-fragile-
http://electronics.howstuffworks.com/sphero1.htm
https://sphero.freshdesk.com/support/solutions/articles/9000060885-what-are-sphero-s-box-dimensions-and-weight
https://sphero.freshdesk.com/support/solutions/articles/9000060877-charging-sphero-how-to-and-best-practices

18 3. Background

A

B

C
D E

Figure 3.1: Inside the Sphero 2.05

The processor (E) receives the data of the accelerometer and the gyroscope and com-
bines them for accurate calculations. An accelerometer measures the acceleration forces.
The gyroscope determines the orientation of the robot. The yaw indicates the moving
direction, pitch is the speed value and roll is the rate of turn (see also Figure 3.2).

Figure 3.2: Sphero’s internal sytem5

Previous prototypes also had a magnetometer to determine the heading of the Sphero.
The magnetometer was discarded due to the fact that a compass can have interference
with other magnetic objects in its environment. Instead to determine the heading the
calculation is based on the accelerometer and the gyroscope6.

The Sphero is a differential driven robot with two wheels placed on the sides of the
robot (Figure 3.3(a))7. The wheel diameter is 2r and the length of the axle is l . The

5https://www.researchgate.net/publication/309728090 Application of Robot Programming to the Teaching of
Object-Oriented Computer Languages (Received 07.05.2017)

6http://blog.sphero.com/blog/sphero-from-concept-robot-to-polycarbonate-2 (Received 07.05.2017)
7http://rossum.sourceforge.net/papers/DiffSteer/DiffSteer.html (Received 07.05.2017)

 https://www.researchgate.net/publication/309728090_Application_of_Robot_Programming_to_the_Teaching_of_Object-Oriented_Computer_Languages
 https://www.researchgate.net/publication/309728090_Application_of_Robot_Programming_to_the_Teaching_of_Object-Oriented_Computer_Languages
http://blog.sphero.com/blog/sphero-from-concept-robot-to-polycarbonate-2
http://rossum.sourceforge.net/papers/DiffSteer/DiffSteer.html

3.2. ROS Environment 19

angle θ is computed through the position of the robot which is the position p at time
step t indicated as p(t) = (x (t), y(t))T . We simplify this to p = (x , y)T .

(a) Differential driven robot[LWMC13]

0◦

90◦

180◦

270◦

0◦

90◦

180◦
270◦

(b) Heading of the Sphero (blue) compared with
euclidean coordinate system (black)

Figure 3.3: Sphero driving coordinates

The Sphero has its own coordinate system for calculating the angle8, see Figure 3.3(b).
The heading of the Sphero initializes always at 0◦ and indicates the straight forward
drive, in euclidean space this is the y-axis. The angles increase in clockwise order,
unlike the euclidean space[Nis14]. Consequently, it is necessary to transform the Robot
Coordinate System (RCS) into the Global Coordinate System (GCS). For doing so, the
transformation of a right-handed system into a left-handed system uses mirroring and
rotation of 90 degree.

3.2 ROS Environment

The framework ROS9 provides interfaces for sensors and communication channels, thus
it improves the software development for robots. ROS is widely used since it is an open
source software to control robot components and it is accessible with C++, Python or
JAVA. The structure allows us to create single modules which could be used for other
projects. Apart from that ROS is beneficial due to its possibility to connect sensor
data, visualization tools, logging and saving sensor streams for debugging.

The ROS principle is based on a distributed system in which each component is called
a Node. Figure 3.4 gives an overview of a small network using ROS. Such a system has
a Master and a number of other Nodes which handle the communication between the

8Sphero Locator 1.2.pdf via https://github.com/orbotix/DeveloperResources/tree/master/docs
(Received 07.05.2017)

9http://wiki.ros.org/ (Received 07.05.2017)

https://github.com/orbotix/DeveloperResources/tree/master/docs
http://wiki.ros.org/

20 3. Background

Master

Node 1 (Publisher) Node 2 (Subscriber)

register(/topic) query(/topic)

/topic

Figure 3.4: Basic Structure of ROS

different components of the robot in the network structure. These Nodes register to a
central Node, the ROS Master Node which administrates the network. It manages the
topic subscription and makes them reachable and available for other Nodes.

The Nodes can be individually paired to exchange information. Each Node receives
data and provides output data, e.g. by computing a position by combining sensor data.
In this example, Node 1 gets the image of a camera. Based on this, the algorithms
running in the Node perform image processing and determine a position of the robot.
As output, the Nodes are communicating with a certain data structures, the Messages.

The Messages are spread into the system using a publisher and subscriber mechanism.
Other Nodes can listen to those messages. If the Node receives the Messages it can use
the measures for its own computation10. Each Node can publish or subscribe a Message
under a specific name, so-called Topic. In Figure 3.4, the Node 1 publishes the new
calculated location to a certain Topic. Node 2 has subscribed to this Topic and can
react on each Message. For developing, each sensor initializes its own Node to publish
sensor data into the system.

Gazeobo, ROS and Sphero

For the Sphero, Melonee Wise created a ROS interface sphero ros11 for controlling the
motors. In our implementation of the Spheros we use this interface to communicate
with our robots. The Message of type Twist needs to be created and passed to the
sphero driver Node if using sphero ros . In the Twist Massage, only the x and y values
of the linear part are necessary and further details are computed by these values.

Gazeobo is a simulator for testing algorithms and simulating robots in complex envi-
ronments. In the ROS Development Studio the implementation of Mr. Wise is used

10https://www.clearpathrobotics.com/assets/guides/ros/IntrototheRobotOperatingSystem.html
(Received 07.05.2017)

11https://github.com/mmwise/sphero ros (Received 07.05.2017)

https://www.clearpathrobotics.com/assets/guides/ros/Intro to the Robot Operating System.html
https://github.com/mmwise/sphero_ros

3.3. Measures for Evaluation 21

to combine the capabilities of Gazeobo12, ROS and the Sphero model. It provides a
simulation of a Sphero13.

3.3 Measures for Evaluation

For evaluation we analyse characteristic quantities of the motion models for further ex-
planation such as mean and standard deviation to determine the location and scattering
of the random numbers. We also analyse the density of the systematic error.

In a dynamic system, we analyse the systematic error of the motion in order to increase
the accuracy. In general, a random variable E is described by the realization ei and the
probability distribution P(E = ei) [TT07, S.207]. The median error e∗ is a location
parameter. In our data the value is in the middle of a sorted sequence. Therefore, one
half of the record is often smaller than the other.

The arithmetic mean µ is the expected value of the error values e (Equation 3.1). In
the case of a small sample, the median is preferred since it is usually more robust
against outliers than the mean value[Str79, S.93ff]. The sample size N is also written
as #samples .

µ =
1

N

N∑
i=1

ei (3.1)

Equation 3.2 defines the empirical standard deviation σ. It indicates how strongly the
data values spread around the location parameters. If all observed values scatter around
the mean value σ is small [Str79, S.99f].

σ =

√√√√ 1

N − 1

N∑
i=1

|ei − µ| (3.2)

e∗

whisker

Q1 Q3

+
µ

IQR

..
outlier

Figure 3.5: Boxplot

12http://gazebosim.org/tutorials?cat=guided b&tut=guided b1 (Received 07.05.2017)
13http://www.theconstructsim.com/developing-for-sphero/ and

http://www.theconstructsim.com/rds-ros-development-studio/?next=http%3A//rds.theconstructsim.com/
(Received 07.05.2017)

http://gazebosim.org/tutorials?cat=guided_b&tut=guided_b1
http://www.theconstructsim.com/developing-for-sphero/
http://www.theconstructsim.com/rds-ros-development-studio/?next=http%3A//rds.theconstructsim.com/

22 3. Background

Boxplot

The results of our experiments are displayed in boxplots, an example is in Figure 3.5. It
shows the value of median e∗ and mean µ. Additionally, we can estimate the distortion
of the data. The value of the first quartile Q1 represents that 25 % of the sampled data
is smaller or equal, whereas Q3 is the upper border and indicate the 75 % of the data
is smaller or equal. The Interquartile Range (IQR) is the difference between Q3 and
Q1. The whiskers to both sides of the boxplot, represents either the value of IQR×1.5
or the minimal and maximal values [Bor04, p.27f].

Probability Density Function

We use a kernel density estimator to approximate the Probability Density Function
(PDF) of the sampled values. A kernel density estimator reflects the approximation
of the data by a function. The frequency distribution can be unimodal, bimodal or
multimodal distributed depending on the amount of peaks in the distribution [Str79,
S.53f].

This work will test different normal distributions in the simulation to determine the
number of samples. In the system the distributions are handled as noise and compared
with the output value. The normal distribution is the most frequently used function
and defined by N (µ, σ2) which is

N (µ, σ2) ∼ 1√
2πσ2

exp

(
−(e − µ)2

2σ2

)
.

For most distributions a sample size of 30 is suitable to approximate the PDF. In fact,
even a smaller sample size is possible if the distribution is symmetric (e.g. Gaussian)
[Fis12].

4. Learning the Motion Uncertainty

In order to get a first impression of the motion model of the Spheros, we made several
experiments with two different Spheros. The following section presents these experi-
ments and identifies current problems in their motion. Furthermore, we describe our
approach for learning the motion uncertainty.

4.1 Motion Analysis of Sphero

Before we present our idea, we describe the experimental motion analysis of two Spheros.
First, it starts with an experiment of the Sphero’s motion which is initiated by an An-
droid application, the SPRK Lightning Lab for Sphero Version 2.0.31. Further-
more, we present the results of two Spheros and different surfaces, PVC floor coating
and a mat floor. The mat’s height is about 8 cm. Moreover, we compare the measured
surfaces with an ideal environment.

4.1.1 Experimental Setup

The following consideration was made in using the app. The heading is controlled by
the app since a LED indicates the direction. Nevertheless, the light is the only indicator
for the heading. In addition, the Spheros were identified by their LED blinking. For the
experiments we used the Sphero PGW (Purple, Green, White) (Sphero PGW) and the
Sphero YRB (Yellow, Red, Blue) (Sphero YRB). We made 30 repetitions of the each
run and measured the distance to the first sample point ptarget . Then, we determined
the distribution using Matlab R2014a.

The speed value s is a scaled value which represent the velocity of the Sphero. It is in
the range of 0 ≤ s ≤ 255 and has no defined unit. To assign a lower velocity than 200
cm/sec, we need to scale the s value. For this, we compute the ratio of the maximum
velocity and top speed in Equation 4.1.

200

255
=

1

s
⇔ s =

255

200
⇔ s = 1.275 (4.1)

With this base, we calculated the corresponding value for the distance of 50 cm which
we wanted to reach with t = 2sec. Therefore, we can use 25 in the ratio of Equation 4.2
and solve with respect to s .

1Google Play Store https://play.google.com/store/apps/details?id=com.sphero.sprk&hl=en
(Received 07.05.2017)

https://play.google.com/store/apps/details?id=com.sphero.sprk&hl=en

24 4. Learning the Motion Uncertainty

200

255
=

25

s
⇔ s =

25

200
× 255⇔ s = 31.875 (4.2)

For our second distance test we chose d = 100cm. We set the speed to s = 31.875 and
computed the corresponding time for this distance according to Equation 4.3.

t =
d

s
⇔ t = d 100

31.875
e ⇔ t ≈ 3.2 (4.3)

Table 4.1: Speed results

speed s d in cm t in sec

255 200 1
1.275 1 1

31.875 ≈ 32.0 50 2
32.0 100 3.2

At last we approximate the resulting value to s ≈ 32.0. We developed two test programs
for the SPRK Lightning Lab app for measuring the motion error of the two Spheros
in three different environments. One ideal environment with disturbance as low as
possible (less dust, even and no skewness). The second surface is the PVC2 floor (dusty
and bumpy) and the third environment is the mat floor. In our experiments we chose
the parameters according to Table 4.1 to drive the Sphero 50 or 100 cm straight ahead
with the desired velocity and duration.

For comparing reasons, we did the experiments with fully loaded robots. We could not
exclude that the performance of the robot is influenced by a low battery status. For
example, the acceleration is small and consequently the robot drives slower than with
a fully charged battery.

4.1.2 Experimental Results

The mentioned setup for the parameters leads to a theoretical computed target point.
This theoretical target point is in the distance of 50 or 100 cm. We replaced it by the
actual target point ptarget in the experiment. This point ptarget was determined after the
first movement of the Sphero when the actual heading of the robot is known. Then, we
calculated the error between actual position preal and ptarget . We sampled 30 times to
determine the robot’s error function.

Table 4.2 shows all processed experiments, including the planned driven distances and
their actual target points ptarget . Additionally, for each experiment the mean error µ
and standard deviation σ were calculated and presented in Table 4.3.

2Polyvinylchlorid

4.1. Motion Analysis of Sphero 25

Table 4.2: Experiment with two Spheros

Robot Floor d (cm) ptarget

PGW Ideal 50 (52, 0)
PGW PVC 50 (52, 0)
PGW PVC 100 (93, 0)
YRB PVC 50 (66, 0)
YRB PVC 100 (105, 0)
PGW Mat 50 (35, 0)
PGW Mat 100 (61, 0)
YRB Mat 50 (45, 0)
YRB Mat 100 (77, 0)

Ideal Surface

The first test was done in the ideal environment. The robots were driving from pstart =
(0, 0) with t = 2sec and s = 32, see in Table 4.1 and Table 4.3. The Sphero start
driving at position pstart = (0, 0) and stops at the reference point ptarget = (52, 0), this
is shown in Figure 4.1(a). This point is used to calculate the error e with the difference
to the real position preal of the robot according to

e = (ptarget − preal).

0 20 40 60 80 100 120

−60

−40

−20

0

20

40

x

y

p
real

p
target

Origin

(a) Straight 50 cm - real position preal

−6 −4 −2 0 2 4 6 8 10

−2

−1

0

1

2

3

4

5

6

7

E rro r in x

E
r
r
o
r
in

y

(b) Error distribution for both directions

Figure 4.1: Error distortion - Ideal floor for Sphero PGW

26 4. Learning the Motion Uncertainty

Figure 4.1(a) illustrates the motion of the Sphero PGW and refers the deviation to the
target point ptarget . Figure 4.1(b) shows the distortion of the Sphero’s motion error.
The distribution is well defined with a low deviation according to Table 4.3. On the top
and on the right diagram, the plotted functions show the error deviation of the x- and
y-direction. The mean value is µ = (1.97, 2.35)T and a deviation of σ = (2.42, 1.64)T .

PVC Floor

We did further experiments on PVC coating floor for both Spheros in distances of about
50 cm (Figure 4.2). The results are shown in Figure 4.2 and Table 4.3.

−6 −4 −2 0 2 4 6 8 10 12

0

5

10

15

20

25

E rro r in x

E
r
r
o
r
in

y

(a) Sphero PGW - 50 cm

−5 0 5 10 15 20 25 30 35

−10

0

10

20

30

40

50

60

70

E rro r in x

E
r
r
o
r
in

y

(b) Sphero YRB - 50 cm

0 2 4 6 8 10 12 14

−5

0

5

10

15

20

E rro r in x

E
r
r
o
r
in

y

(c) Sphero PGW - 100 cm

−12 −10 −8 −6 −4 −2 0 2 4 6

−30

−20

−10

0

10

20

E rro r in x

E
r
r
o
r
in

y

(d) Sphero YRB - 100 cm

Figure 4.2: Error Distortion for straight motion on PVC floor

The Sphero PGW has a mean error of µ = (3.32, 15.97)T (Figure 4.2(a)) . Therefore, the
robot drives about 3.32 cm too far in x-direction and has a high deviation in y-direction.
In addition, this environment with the driving distance of 50 cm are troubling for the
Sphero YRB. It results into a widely spreading distribution with huge values (Figure

4.1. Motion Analysis of Sphero 27

4.2(b) and a mean error of µ = (11.48, 30.87)T . For both robots and the distance of 50
cm, the experiments indicate the drift of the orientation in the y-direction.

In order to measure the distance of 100 cm, we applied s = 32 and t = 3.2sec to the
robot. The Sphero PGW has a mean error of µ = (6.50, 9.60)T (Figure 4.2(c)). The
Sphero YRB has an mean error of µ = (−2.03,−2.88)T (Figure 4.2(d)). Both error
functions have a high deviation and are wide spread.

The Sphero PGW has a higher mean error in x-direction when driving 100 cm whereas
the y-direction the mean error is higher for 50 cm (Table 4.3). The results for the
Sphero YRB are completely different in both distances. On the one hand, the error is
large for the 50 cm in both direction, but it is small for the 100 cm distance. On the
other hand, for the y-direction there is a high deviation. Thus, the measures of the
Sphero YRB spread widely for both distances (Figure 4.2(b) and Figure 4.2(d)).

We observe a large difference, if we compare these results to those of the ideal surface.
All values for the PVC floor have a higher error and deviation for both robots.

Floor Mat

We processed the third experiment on a mat floor which is slightly textured, elastic and
soft. The mat has a thickness of about 8 cm. Once again, we used the distances of 50
cm and 100 cm for both Spheros (Figure 4.3). The results of the error are shown in
Figure 4.3 and Table 4.3.

We applied the values of s = 32, d = 50 cm and t = 2.0sec sec to the robot. The Sphero
PGW and Sphero YRB have a mean error of µ = (0.55, 7.17)T and µ = (3.02, 8.50)T ,
shown in Figures 4.3(a) and 4.3(b). For both robots, a high disturbance in y-direction
and smaller deviation in x-direction can be observed.

In order to measure the distance of 100 cm, we applied s = 32 and t = 3.2sec. The
Sphero PGW has a mean error of µ = (2.57, 6.18)T and a deviation of σ = (2.46, 4.86)T

(Figure 4.3(c)). For the Sphero YRB, however, the mean error is smaller than for the
first Sphero with µ = (1.75, 4.82)T and a deviation of σ = (2.34, 3.78)T with respect to
Figure 4.3(d) and Table 4.3.

The motion error of Sphero PGW differs less in x-direction comparing both experiment
with d = 100 and d = 50 cm. Nevertheless, for the y-direction the error is large for both
distances. This also holds for the Sphero YRB. The deviations are for both settings
close to each other (Table 4.3).

The mat floor provides more stable results for all robots and environment, but compar-
ing the results of the ideal surface there is lower accuracy for the PVC floor.

28 4. Learning the Motion Uncertainty

−3 −2 −1 0 1 2 3 4

−5

0

5

10

15

20

E rro r in x

E
r
r
o
r
in

y

(a) Sphero PGW - 50 cm

−4 −2 0 2 4 6 8 10

0

5

10

15

20

E rro r in x

E
r
r
o
r
in

y

(b) Sphero YRB - 50 cm

−6 −4 −2 0 2 4 6 8

−5

0

5

10

15

20

E rro r in x

E
r
r
o
r
in

y

(c) Sphero PGW - 100 cm

−6 −4 −2 0 2 4 6 8

−4

−2

0

2

4

6

8

10

12

14

16

E rro r in x

E
r
r
o
r
in

y

(d) Sphero YRB - 100 cm

Figure 4.3: Error distortion for straight motion on mat floor

4.1.3 Evaluation of Experimental Results

Basically, the results of the experiments show that the motion model of the two Spheros
are different and are influenced by the environment. Therefore, it is necessary to rec-
ognize and learn the environment so that the systematic failure can be corrected. The
error distributions spreads widely. It seems that for the experiment YRB-PVC-50 the
Sphero YRB has received an inner drift and therefore deviate strongly in one direction
(Figure 4.2(b)). The internal mechanics are slightly different between the two Spheros
and indicates other influences on the uncertainty. Another impact could be the slipping
of the wheels inside the shell.

In general, we observed that there is a higher impact in y-direction. Therefore, the
rotation towards the left or right of the robots movement is possible. The errors differs
less in x-direction, thus the robot drives a bit too far or too little to the target position.
The wheels can slip on the shell’s ground or the shell itself can slip on the underground.

4.1. Motion Analysis of Sphero 29

We emphasize that for the different distances, the curves look are similar, but the error
seems not to be cumulative for the Sphero PGW (Figure 4.2(a)).

We observed a low deviation in the ideal environment. Whereas the PVC floor environ-
ment is not ideal as it was dusty or has an uneven and irregular surface. The deviation
from the ideal value varies depending on the environment, as you can see in Table 4.3.

Table 4.3: Results of two Spheros

Robots Floor Distance (cm) µ σ

PGW Ideal 50 (1.97, 2.35)T (2.42, 1.64)T

PGW PVC 50 (3.32, 15.97)T (3.01, 5.30)T

PGW PVC 100 (6.50, 9.60)T (2.89, 5.09)T

YRB PVC 50 (11.48, 30.87)T (6.97, 13.62)T

YRB PVC 100 (−2.03,−2.88)T (3.14, 9.14)T

PGW Mat 50 (0.55, 7.17)T (1.35, 4.65)T

PGW Mat 100 (2.57, 6.18)T (2.46, 4.86)T

YRB Mat 50 (3.02, 8.50)T (2.14, 4.18)T

YRB Mat 100 (1.75, 4.82)T (2.34, 3.78)T

30 4. Learning the Motion Uncertainty

4.2 Learning Methods

We have identified that there is no general model for all Spheros. In the following
section we present our three approaches to learn the motion uncertainty for each robot.
The concept is based on the knowledge of the PMM, RL and the previous experiments.
We determine the systematic error by measuring the motion errors and calculate the
mean value. This feedback is applied to the next motion of the robot.

Sphero

Noise N

Memory M

p s preal

µc

Figure 4.4: Closed loop feedback system

Figure 4.4 presents a short overview of a closed loop control system which provides
feedback to the system. The robot’s position p = (x , y)T is determined by the outer
system. Speed s is computed based on ptarget and p. Due to a noise function N the
Sphero is disturbed. The algorithm calculates the difference to the desired position
ptarget and saves the error in an array M. From this step on, the algorithms differ.
Algorithm 1 (ATC) needs several training iterations. The other two methods adapt
directly to the error and apply the value µc as correction into the system.

The robot’s motion is calculated by the robot’s position and a target position ptarget .
It is represented as vector which indicates the motion in the x- and y-directions. The
desired target position is initialized by ptarget = (0, 0)T . Moreover, it is moved with each
step into x-direction and a speed of starget = (50, 0)T . An artificial error ε is calculated
by N and added to the robot position. This systematic error is determined as the mean
value of observed errors.

4.2.1 Algorithm with Training Concept (ATC)

First, we introduce ATC, (Algorithm 1, p. 75) which is a method using several training
steps to provide a stable robot control in a specific environment.

The algorithm starts with the position p and generates a random noise error ε according
to a given distribution, for example Gaussian with µ = 5 and σ = 2.5. This value
simulates the stochastic failure of the robotic’ system. The noise ε is added to the
position which results into the real position preal . The speed s is computed by the
ptarget and p. In each iteration the difference between preal and ptarget is computed and
stored in the Memory M. This array is used to determine the systematic failure f1(M)
which needs to be corrected.

4.2. Learning Methods 31

f1(M) = µc =
1

|M|

|M|∑
i=1

Mi (4.4)

Then, the goal position ptarget is moved using starget and the calculation starts again with
creating the random error ε. If the maximum of training steps T has been reached,
the correction value µc is calculated using the Memory M using Equation 4.4. In the
second part of the algorithm, this correction term µc is used to compensate the applied
error and to move more accurate.

4.2.2 Algorithm with Incremental Averaging (AIA)

The next proposed method is AIA. (Algorithm 2, p. 76). It is designed to directly
correct a received error by a feedback function. We assume that a robot using this
algorithm could make it fast adaptable to changing environments. The method uses
Incremental Averaging which calculates in each iteration the mean and uses this value
as an input for further calculations of the mean. Incremental Averaging can directly
compute the current mean of the received error with the result that the value can
assigned as the correction.

This method is similar to the ATC. Once more, it starts with the position p and
generates a random noise error ε according to a given distribution. This value is added
to p which results into preal of the simulated robot. After computing the error e at
the current position, the correction value µc is computed by using the previous µc and
e according to Equation 4.5 which is the computation of an incremental mean. This
value is used as an input for the position.

f2(µt−1
c , e) = µtc = µt−1

c + 0.5 ∗ (e − µt−1
c) (4.5)

4.2.3 Incremental Alpha Method (IAM)

At last we present the method IAM (Algorithm 3, p. 76) which modifies the AIA
slightly. With this approach we analyse if a different learning rate α is beneficial for
adapting to a given environment. This parameter α modifies the impact of the new
error. In AIA we use α = 0.5, whereas here, we choose α = 0.1. This means that the
current error has only a small impact on the correction value. This method is designed
to generate a stable and dynamic controller for changing environment.

Here, we use Equation 4.6 for computing the correction value µc which is used as an
input for the position calculation. The equation needs the previous µc and the current
error e as input.

f3(µt−1
c , e) = µtc = µt−1

c + α ∗ (e − µt−1
c) (4.6)

32 4. Learning the Motion Uncertainty

5. Simulation of the Motion Model

In the following section, we describe the simulations1. of the motion model using the
three methods from Section 4.2 for different experiments. Firstly, we explain our pa-
rameters and input values. Secondly, we present the results of four different experiments
and compare the methods. Each experiment was repeated 100 times.

5.1 Program

In order to evaluate the algorithms, we propose four tests to determine the effectiveness
of our approach. The following parts present the parameters in the experiments and
the evaluation measures. Furthermore, we describe shortly an example plot.

5.1.1 Input

First, we determine the maximum number of iterations for the training of ATC. This
outcome is used in further analysis, e.g. the distribution test. In addition, we use real
data which we had collected in the experiments (see Motion Analysis of Sphero in Sec-
tion 4.1). At last, we determine the influence of a dynamic changes of the noise function
and evaluate our algorithms. The following list illustrates the processed experiments:

1. Maximum training size: To determine the stable value for ATC, we change the
memory size to |M| ∈ {10, 20, 30, 50, 100}

2. Gaussian distortion of µ ∈ {−5, 15} and σ ∈ {1, 2.5, 4, 5.5, 7} (Figure 5.1)

3. Analysis on the collected real data of Section 4.1

4. Changing environment expressed through a Gaussian distribution and our col-
lected real data.

1The simulation was done with MATLAB R2014a on a Toshiba Personal Computer, Laptop: Win-
dows 10, 64-bit operating system with an Intel processor i5-5200 CPU @ 2.20GHz and 8 GB RAM.

34 5. Simulation of the Motion Model

−25−20−15−10 −5 5 10 15

0.2

0.4

x

y

Figure 5.1: PDF of N (µ, σ2) applied as noise ε to the system.

5.1.2 Success Rate

We determine a satisfying result by AE. We calculate AE between the correction value
µc and actual µ which is the applied value for creating the noise:

AE = |µ| − |µc|

Example Plots

Figure 5.2 presents a possible solution for this algorithm. For each position (blue) we
calculate the difference to ptarget (green), the reference point, as an error. This error is
stored in the memory which is presented on the left side of the sub plots for the x- and
y-direction. On the right side is the PDF of the memory.

In general, ATC trains first its memory and determines then the systematic error. The
mean value of the error memory is then used for correction which is µc = (3.73, 16.03)T .
Here, the correction value is assigned for all positions greater than 1500 for x-direction
(5.2(a))

AIA calculates a correction value µc directly from the given parameter. As an example,
Figure 5.2(b) presents the results after applying noise of the real data file # 3. Starting
at a disturbed position, only a few samples are needed to correct the given error. Here,
the mean correction value is µc is (3.77, 16.69)T .

5.1. Program 35

0 500 1000 1500 2000 2500
−25

−20

−15

−10

−5

0

5

10

X Po se

Y
P
o
s
e

p
real

p
target

0 10 20 30
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30
0

20

40

I tera t io n

Y
P
o
s
e

−10 −5 0 5 10 15
0

0.1

0.2 x c = 3 .7 3

C o rrect io n Va lu e X

P
D
F

−10 0 10 20 30
0

0.1
y c = 1 6 .0 3

C o rrect io n Va lu e Y

P
D
F

(a) ATC

0 500 1000 1500 2000 2500
−30

−20

−10

0

10

20

X Po se

Y
P
o
s
e

p
real

p
target

0 10 20 30 40 50
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30 40 50
0

20

40

I tera t io n

Y
P
o
s
e

−10 −5 0 5 10 15
0

0.1

0.2
x c = 3 .7 7

C o rrect io n Va lu e X

P
D
F

−10 0 10 20 30
0

0.1
y c = 1 6 .6 9

C o rrect io n Va lu e Y

P
D
F

(b) AIA

Figure 5.2: They show the process of two methods (ATC, AIA) when Real Data File
Number 3 was used as error input. ptarget (green) and preal (blue)

0 500 1000 1500 2000 2500
−20

−15

−10

−5

0

5

10

15

X Po se

Y
P
o
s
e

p
real

p
target

0 10 20 30 40 50
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30 40 50
0

20

40

I tera t io n

Y
P
o
s
e

−10 −5 0 5 10 15
0

0.1

0.2
x c = 2 .3 8

C o rrect io n Va lu e X

P
D
F

−10 0 10 20 30 40
0

0.1 y c = 1 5 .0 9

C o rrect io n Va lu e Y

P
D
F

Figure 5.3: They show the process of IAM when Real Data File Number 3 was used as
error input. ptarget (green) and preal (blue)

Figure 5.3 presents a solution for one configuration with real data file #3 using IAM. It
takes a few more iterations until the systematic error is corrected than with AIA. The
correction value for µc = (2.38, 15.09)T of IAM. With this data, we can compare the
absolute error (AE) of our algorithms with the initial sample experimental data. The
mean error of file # 3 is µ = (−3.32,−15.97)T . Therefore, the best value for correction
is µc = (3.32, 15.97)T .

36 5. Simulation of the Motion Model

5.2 Results

As we mentioned before, we ran four experiments to simulate the motion model of the
Sphero. In the following section, we present further details of the results. For the first
and second experiment, we applied the same noise function in x- and y-direction. For
the two last experiments, we further included real data and therefore, the noise differs
in both directions.

5.2.1 Maximum Training Size for ATC

For ATC, we tested how many training steps the method requires until the systematic
error has been learned. The values should spread around the given expectation value µ.
For this, we chose ten Gaussian distributions and repeated each experiment 100 times:

• N (−5, 1), N (−5, 2.5), N (−5, 4), N (−5, 5.5), N (−5, 7)

• N (15, 1), N (15, 2.5), N (15, 4), N (15, 5.5), N (15, 7)

With these functions we generated a random value and applied it on ATC as noise value
ε for the x- and y-direction. Figure 5.4 shows the number of iterations |M| according
to the correction value µc. The function N (−5, 1) spreads less, and a memory size of
|M| = 10 seems sufficient to determine a stable systematic error.

10 20 30 50 100
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

To ta l I tera t io n s

C
o
r
re

c
t
io

n

D isto rt io n fo r N (-5 ,1)

X
Y

(a) Correction for N (−5, 1)

10 20 30 50 100
−22

−20

−18

−16

−14

−12

−10

−8

To ta l I tera t io n s

C
o
r
re

c
ti
o
n

D isto rt io n fo r N (1 5 ,7)

X
Y

(b) Correction for N (15, 7)

Figure 5.4: Different memory sizes for training. With the boxplot3 the changes in
median (horizontal line), mean (plus sign) and IQR is visible.

The tables in Section A.2.1 (p. 77ff) present the difference between the µ and µc for
ten distributions. For N (−5, 1), the median value e∗ is close to the mean value µc, this
indicates that the function is symmetric (Table 5.1).

3We used the package of boxplot2 https://github.com/kakearney/boxplot2-pkg (last access
05.07.2017)

5.2. Results 37

We further observed that a high number of training steps increases the accuracy of the
method and the absolute error is small. We applied a threshold of 1 % to the given µ
to determine a stable behaviour. For accepting the corresponding training size the AE
should be smaller than 0.05 for N (−5, σ) and N (15, σ) it should be less than 0.15.

Table 5.1: Distribution N (−5, 1) for x- and y-direction

µc AE σc |M| e∗

(4.99, 5.00)T (0.01, 0.00)T (0.31, 0.34)T 10 (5.04, 5.00)T

(5.00, 5.00)T (0.00, 0.00)T (0.22, 0.22)T 20 (5.02, 5.00)T

(5.04, 5.01)T (0.04, 0.01)T (0.19, 0.16)T 30 (5.01, 5.01)T

(5.00, 5.01)T (0.00, 0.01)T (0.13, 0.13)T 50 (4.99, 5.00)T

(5.00, 5.00)T (0.00, 0.00)T (0.09, 0.10)T 100 (5.00, 5.00)T

In summary, we can determine that 70 % of the tested noise functions have an AE
which is the acceptable for |M| = 30. For |M| ∈ 10, 20 it is 40 %, |M| = 50 has
also a value of 70 % and for |M| = 100 it is 80 %. Less size for the training lowers
the performance of the method, whereas more iterations only increase the accuracy a
little. Nevertheless, a high number of trainings steps needs more computational time,
and since the |M| = 30 has an acceptable pay off with a small training size and less
errors, we use |M| = 30 for further experiments.

5.2.2 Changing Distortion

For identifying the behaviour of our methods, we used Gaussian distributions with
µ ∈ {−5, 15} and σ ∈ {1, 2.5, 4, 5.5, 7} in several experiments. We accept the methods
to computing suitable correcting values if the AE is smaller than % 10 of the applied
µ. For µ = −5 it should be smaller than 0.5 and for µ = 15 is should be less than 1.5.

Results of ATC

The results of ATC are displayed in Figure 5.5, Table 5.2 and Table 5.3. The boxplot in
5.5(a) shows that the y-part of the correction values in σ ∈ 4, 5.5, 7 are slightly shifted.
For σ = 4 and σ = 7 the deviation is smaller than for the x-values.

For µ = −5 and σ ∈ {4, 5.5, 7} the difference of AE to the generated correction value µc
is larger than the 10 % threshold for at least one direction, see Table 5.2. Therefore, in
40 % of the distributions a stable value is computed. For µ = 15 the method calculates
acceptable values for all distributions, regarding to Table 5.3.

38 5. Simulation of the Motion Model

1 2.5 4 5.5 7
−10

−5

0

5

10

15

20

σ

P
D
F

o
f
C
o
rr
e
c
ti
o
n

D isto rt io n fo r N (-5 ,σ)

X
Y

(a) Correction for N(-5,σ)

1 2.5 4 5.5 7
−30

−25

−20

−15

−10

−5

0

σ

P
D
F

o
f
C
o
rr
e
c
ti
o
n

D isto rt io n fo r N (1 5 ,σ)

X
Y

(b) Correction for N(15,σ)

Figure 5.5: Distortions for |M| = 30

Table 5.2: Distribution results for µ = −5 and |M| = 30 for x- and y-direction

N (µ, σ) µc AE σc e∗

N(-5.00, 1.00) (4.95, 4.88)T (0.05, 0.12)T (0.49, 0.76)T (4.98, 4.94)T

N(-5.00, 2.50) (5.24, 5.16)T (0.24, 0.16)T (1.71, 1.63)T (5.19, 5.10)T

N(-5.00, 4.00) (4.19, 5.34)T (0.81, 0.34)T (2.11, 1.76)T (3.77, 5.48)T

N(-5.00, 5.50) (3.77, 5.65)T (1.23, 0.65)T (3.60, 3.37)T (3.21, 5.41)T

N(-5.00, 7.00) (5.01, 6.34)T (0.01, 1.34)T (4.46, 2.51)T (5.40, 6.12)T

Table 5.3: Distribution results for µ = 15 and |M| = 30 for x- and y-direction

N (µ, σ) µc AE σc median e∗

N(15.00, 1.00) (-14.98, -14.92)T (0.02, 0.08)T (0.59, 0.47)T (-14.97, -14.95)T

N(15.00, 2.50) (-15.24, -14.68)T (0.24, 0.32)T (1.77, 1.53)T (-15.23, -14.72)T

N(15.00, 4.00) (-15.35, -14.93)T (0.35, 0.07)T (2.65, 2.73)T (-14.78, -15.70)T

N(15.00, 5.50) (-15.46, -15.84)T (0.46, 0.84)T (2.36, 4.96)T (-15.68, -16.95)T

N(15.00, 7.00) (-14.92, -14.71)T (0.08, 0.29)T (3.61, 4.00)T (-15.22, -14.75)T

Results of AIA

The boxplot in Figure 5.6 illustrates the differences of the experiments for median
(horizontal line), the mean (plus sign) and deviation. The boxplot in 5.6(a) shows that
the values of x-part of the correction in σ ∈ 5.5, 7 is smaller than for the y-values.

5.2. Results 39

1 2.5 4 5.5 7
−5

0

5

10

15

20

σ

P
D
F

o
f
C
o
rr
e
c
ti
o
n

D isto rt io n fo r N (-5 ,σ)

X
Y

(a) Correction for N (−5, σ)

1 2.5 4 5.5 7
−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

σ

P
D
F

o
f
C
o
rr
e
c
ti
o
n

D isto rt io n fo r N (1 5 ,σ)

X
Y

(b) Correction for N (15, σ)

Figure 5.6: Comparison for |M| = 30

For µ = −5 and σ ∈ {5.5, 7} the difference AE to the generated correction value µc
is larger than the 10 % threshold for at least one direction, respectively to Table 5.4.
Thus, 60 % of the values are acceptable. For µ = 15 the method calculates acceptable
correction values for all distributions, regarding AE of Table 5.5.

Table 5.4: Distribution N (−5, σ) for x- and y-direction

N (µ, σ) µc AE σc median e∗

N(-5.00, 1.00) (4.90, 5.18)T (0.10, 0.18)T (0.50, 0.56)T (4.92, 5.26)T

N(-5.00, 2.50) (4.80, 5.25)T (0.20, 0.25)T (1.26, 1.21)T (4.99, 5.41)T

N(-5.00, 4.00) (5.17, 4.90)T (0.17, 0.10)T (2.25, 2.21)T (5.09, 5.22)T

N(-5.00, 5.50) (5.17, 5.70)T (0.17, 0.70)T (2.17, 4.20)T (4.77, 6.18)T

N(-5.00, 7.00) (5.42, 6.52)T (0.42, 1.52)T (4.14, 4.09)T (5.30, 6.10)T

Table 5.5: Distribution N (15, σ) for x- and y-direction

N (µ, σ) µc AE σc median e∗

N(15.00, 1.00) (-14.92, -15.05)T (0.08, 0.05)T (0.53, 0.71)T (-14.89, -15.08)T

N(15.00, 2.50) (-15.28, -14.92)T (0.28, 0.08)T (1.32, 1.43)T (-15.09, -14.80)T

N(15.00, 4.00) (-14.51, -14.73)T (0.49, 0.27)T (2.11, 2.16)T (-13.98, -14.44)T

N(15.00, 5.50) (-16.06, -13.84)T (1.06, 1.16)T (3.50, 2.95)T (-17.03, -14.16)T

N(15.00, 7.00) (-14.32, -14.86)T (0.68, 0.14)T (3.42, 3.20)T (-13.83, -14.52)T

40 5. Simulation of the Motion Model

Results of IAM

The boxplot in Figure 5.7 shows that the distributions spread widely for all σ. For
N (−5, 5.5) the AE is greater than the threshold of 10 % (Table 5.6). Therefore, 80 %
of the correction values µc are acceptable. For the µ = 15 the values are lower than the
threshold (Table 5.7).

1 2.5 4 5.5 7
−6

−4

−2

0

2

4

6

8

10

12

14

σ

P
D
F

o
f
C
o
rr
e
c
ti
o
n

D isto rt io n fo r N (-5 ,σ)

X
Y

(a) Correction for N(-5,σ)

1 2.5 4 5.5 7
−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

σ

P
D
F

o
f
C
o
rr
e
c
ti
o
n

D isto rt io n fo r N (1 5 ,σ)

X
Y

(b) Correction for N(15,σ)

Figure 5.7: Distortions for |M| = 30

Table 5.6: Distribution N (−5, σ) with |M| = 30 for x- and y-direction

N (µ, σ) µc AE σc median e∗

N(-5.00, 1.00) (4.77, 5.05)T (0.23, 0.05)T (0.52, 0.37)T (4.64, 5.10)T

N(-5.00, 2.50) (4.83, 4.94)T (0.17, 0.06)T (1.51, 1.46)T (4.85, 5.21)T

N(-5.00, 4.00) (4.87, 4.72)T (0.13, 0.28)T (2.31, 2.63)T (4.55, 4.90)T

N(-5.00, 5.50) (5.73, 4.93)T (0.73, 0.07)T (3.28, 3.44)T (5.98, 4.11)T

N(-5.00, 7.00) (4.89, 4.66)T (0.11, 0.34)T (3.96, 3.48)T (4.93, 4.88)T

Comparison of the methods for Changing Distortion

Comparing the results of the three methods, we can observe that the minimal value
of AE is given with ATC, for both µ values and the best trained function is N (µ, 1),
whereas N (µ, 4) has a worse AE. We further determine that ATC has 7 out of 10 correct
values, if we apply a 10 % threshold of the µ. AIA has 8 out of 10 and IAM 9 out of 10
correct values. We conclude that IAM shows a good performance for the distribution
test due to its smaller difference in AE.

5.2. Results 41

Table 5.7: Distribution N (15, σ) with |M| = 30 for x- and y-direction

N (µ, σ) µc AE σc median e∗

N(15.00, 1.00) (-14.92, -14.97)T (0.08, 0.03)T (0.62, 0.57)T (-14.93, -15.06)T

N(15.00, 2.50) (-14.91, -14.84)T (0.09, 0.16)T (1.29, 1.32)T (-15.23, -14.73)T

N(15.00, 4.00) (-15.61, -14.76)T (0.61, 0.24)T (2.26, 2.51)T (-15.25, -14.41)T

N(15.00, 5.50) (-15.43, -15.61)T (0.43, 0.61)T (3.22, 3.43)T (-15.69, -16.01)T

N(15.00, 7.00) (-14.89, -15.88)T (0.11, 0.88)T (4.22, 3.91)T (-15.02, -15.46)T

5.2.3 Applying the Real Data

For the real data test we have chosen three data sets of Section 4.1. Table 5.8 displays
which collected real data is assigned to the File Number and used for identification. We
remind here that for File Number 2 and File Number 3 the error distributions are not
symmetric and spread widely for the y-direction. The x-directions spread only slightly.

We accept the methods to calculate suitable correcting values if the AE is smaller than
% 10 of the applied µ. Therefore, it should be smaller than 0.5 or 1.5 depending on the
given µ.

Robots Floor Distance (cm) File Number

PGW Ideal 50 1
YRB Mat 50 2
PGW PVC 50 3

Table 5.8: Real experiments

Results of ATC

The training involves 30 iterations for each of the 100 experiments. Figure 5.8(a)
presents the simulation results for the real data of the configuration “PGW-Floor-Ideal-
50” File Number 1. For this, and according to Table 5.9, the values of µc is (2.33, 2.59)T

and the deviation σc is (1.37, 1.21)T .

For the configuration “PGW-Floor-PVC-50” File Number 2 the PDF is presented in
Figure 5.8(b). Here, the µc = (3.20, 8.50)T and the deviation σc = (1.32, 3.00)T . Here,
ATC the trainings size is suitable to determine reasonable values.

The last experiment was done for “YRB-Floor-Mat-50” File Number 3 and the result
has a higher deviation with µc = (2.89, 14.65)T and σc = (1.97, 4.08)T (Figure 5.8(c)).
The ATC is troubled by the highly skewed distribution of File Number 3. Nevertheless,
for all data sets, the difference AE is smaller than 10 % of the given µ. Therefore, we
indicate that the algorithm is suitable for the given data.

42 5. Simulation of the Motion Model

0 500 1000 1500 2000 2500
−6

−4

−2

0

2

4

X Po se

Y
P
o
s
e

0 10 20 30
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30
−10

0

10

I tera t io n

Y
P
o
s
e

p
real

p
target

−5 0 5 10
0

0.2

x c = 2 .3 3

C o rrect io n Va lu e X

P
D
F

−2 0 2 4 6 8
0

0.2

0.4 y c = 2 .5 9

C o rrect io n Va lu e Y

P
D
F

(a) File Number 1

0 500 1000 1500 2000 2500
−20

−15

−10

−5

0

5

10

X Po se

Y
P
o
s
e

0 10 20 30
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30
0

10

20

I tera t io n

Y
P
o
s
e

p
real

p
target

−5 0 5 10
0

0.2

x c = 3 .2 0

C o rrect io n Va lu e X

P
D
F

−10 0 10 20 30
0

0.1

0.2
y c = 8 .5 0

C o rrect io n Va lu e Y

P
D
F

(b) File Number 2

0 500 1000 1500 2000 2500
−30

−20

−10

0

10

20

X Po se

Y
P
o
s
e

0 10 20 30
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30
0

20

40

I tera t io n

Y
P
o
s
e

p
real

p
target

−10 −5 0 5 10 15
0

0.1

0.2 x c = 2 .8 9

C o rrect io n Va lu e X

P
D
F

−10 0 10 20 30
0

0.1

0.2
y c = 1 4 .6 5

C o rrect io n Va lu e Y

P
D
F

(c) File Number 3

Figure 5.8: Comparison for ATC and |M| = 30

Table 5.9: Real data, resulting values for ATC for x- and y-direction

µ µc AE σc File Number

(-1.97, -2.35)T (2.33, 2.59)T (0.36, 0.25)T (1.37, 1.21)T 1
(-3.02, -8.50)T (3.20, 8.50)T (0.18, 0.00)T (1.32, 3.00)T 2
(-3.32, -15.97)T (2.89, 14.65)T (0.43, 1.32)T (1.97, 4.08)T 3

Results of AIA

The simulation results for the real data of the configuration file # 1 is presented in
Figure 5.9(a). For this, the µc = (1.99, 2.61)T and the deviation σc = (1.35, 0.92)T ,
according to Table 5.10. For the file # 2 the PDF is presented in Figure 5.9(b) and
µc = (3.03, 8.60)T . The result of the last experiment is done with data file # 3 (Figure
5.9(c)) with µc = (3.54, 15.90)T and σc = (1.78, 2.90)T .

0 500 1000 1500 2000 2500
−6

−4

−2

0

2

4

6

X Po se

Y
P
o
s
e

0 10 20 30 40 50
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30 40 50
−10

0

10

I tera t io n

Y
P
o
s
e

p
real

p
target

−5 0 5 10
0

0.2

x c = 1 .9 9

C o rrect io n Va lu e X

P
D
F

−2 0 2 4 6
0

0.2

0.4 y c = 2 .6 1

C o rrect io n Va lu e Y

P
D
F

(a) Ideal Real data

0 500 1000 1500 2000 2500
−20

−15

−10

−5

0

5

10

15

X Po se

Y
P
o
s
e

0 10 20 30 40 50
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30 40 50
0

10

20

I tera t io n

Y
P
o
s
e

p
real

p
target

−2 0 2 4 6 8
0

0.2

0.4 x c = 3 .0 3

C o rrect io n Va lu e X

P
D
F

0 5 10 15 20
0

0.1

0.2 y c = 8 .6 0

C o rrect io n Va lu e Y

P
D
F

(b) YRB Real data

0 500 1000 1500 2000 2500
−30

−20

−10

0

10

20

X Po se

Y
P
o
s
e

0 10 20 30 40 50
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30 40 50
0

20

40

I tera t io n

Y
P
o
s
e

p
real

p
target

−5 0 5 10 15
0

0.2
x c = 3 .5 4

C o rrect io n Va lu e X

P
D
F

0 5 10 15 20 25
0

0.1

0.2 y c = 1 5 .9 0

C o rrect io n Va lu e Y

P
D
F

(c) PGW Real data

Figure 5.9: Comparison for AIA and |M| = 30

5.2. Results 43

Table 5.10: Real data, resulting values for AIA for x- and y-direction

µ µc AE σc File Number

(-1.97, -2.35)T (1.99, 2.61)T (0.02, 0.26)T (1.35, 0.92)T 1
(-3.02, -8.50)T (3.03, 8.60)T (0.01, 0.10)T (1.04, 2.42)T 2
(-3.32, -15.97)T (3.54, 15.90)T (0.23, 0.07)T (1.78, 2.90)T 3

Results of IAM

The simulation results for the real data of the file # 1 is presented in Figure 5.10(a)
and, according to Table 5.11, the µc = (1.74, 2.38)T . For the data of file # 2, the
corresponding PDF is presented in Figure 5.10(b) and the result of µc = (3.26, 8.72)T .
The last experiment was done for file # 3 which is Figure 5.10(c). It has a higher
deviation than the other data with µc = (2.65, 15.41)T .

The resulting µc are all below the threshold of 10 % of the corresponding µ.
0 500 1000 1500 2000 2500

−6

−4

−2

0

2

4

X Po se

Y
P
o
s
e

0 10 20 30 40 50
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30 40 50
−10

0

10

I tera t io n

Y
P
o
s
e

p
real

p
target

−5 0 5 10
0

0.2

x c = 1 .7 4

C o rrect io n Va lu e X

P
D
F

−2 0 2 4 6 8
0

0.2

0.4 y c = 2 .3 8

C o rrect io n Va lu e Y

P
D
F

(a) Ideal Real data

0 500 1000 1500 2000 2500
−20

−15

−10

−5

0

5

10

X Po se

Y
P
o
s
e

0 10 20 30 40 50
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30 40 50
0

10

20

I tera t io n

Y
P
o
s
e

p
real

p
target

−2 0 2 4 6 8
0

0.2

x c = 3 .2 6

C o rrect io n Va lu e X

P
D
F

−5 0 5 10 15 20
0

0.1

0.2
y c = 8 .7 2

C o rrect io n Va lu e Y

P
D
F

(b) YRB Real data

0 500 1000 1500 2000 2500
−30

−20

−10

0

10

20

X Po se

Y
P
o
s
e

0 10 20 30 40 50
−10

0

10

I tera t io n

X
P
o
s
e

0 10 20 30 40 50
0

20

40

I tera t io n

Y
P
o
s
e

p
real

p
target

−5 0 5 10
0

0.1

0.2 x c = 2 .6 5

C o rrect io n Va lu e X

P
D
F

0 5 10 15 20 25
0

0.1

0.2
y c = 1 5 .4 1

C o rrect io n Va lu e Y

P
D
F

(c) PGW Real data

Figure 5.10: Comparison of error distortion for IAM and |M| = 30

Table 5.11: Real data, resulting values for IAM for x- and y-direction

µ µc AE σc File Number

(-1.97, -2.35)T (1.74, 2.38)T (0.23, 0.03)T (1.37, 1.01)T 1
(-3.02, -8.50)T (3.26, 8.72)T (0.24, 0.22)T (1.22, 2.63)T 2
(-3.32, -15.97)T (2.65, 15.41)T (0.67, 0.56)T (1.94, 3.09)T 3

44 5. Simulation of the Motion Model

Comparison of the methods for Real Data Distortion

Table 5.12 holds the values for accepting the method which is successful in correcting
the error. We observe that the minimal value of AE is given for AIA, whereas ATC and
IAM have larger AE values for all distributions. We assume that ATC is troubled by
the highly skewed distribution of File Number 3, for File Number 2 it has archived best
results. The best method for correcting the real data noise is AIA due to its smaller
difference to the acceptable AE.

Table 5.12: Results of AE for each method

Acceptable AE ATC AE AIA AE IAM AE File Number

(0.20, 0.24)T (0.36, 0.25)T (0.02, 0.26)T (0.23, 0.03)T 1
(0.30, 0.85)T (0.18, 0.00)T (0.01, 0.10)T (0.24, 0.22)T 2
(0.33, 1.60)T (0.43, 1.32)T (0.23, 0.07)T (0.67, 0.56)T 3

5.2.4 Changing Environment

The last experiment we performed was with four different functions which we applied
directly to the methods. For 50 iterations we applied a Gaussian distribution which
differs in x- and y-direction and the real data of Chapter 4, see Table 5.8 and Table 5.13.

We made one small change in ATC, so that the method changes its correction value
based on the size of the samples data in its memory M. If the residual of the division
|M| ÷ 30 is zero (modulo operation), the method calculates a new mean error and
applies the new correction value into the system.

Table 5.13: Experiments

Data µ σ Position

N ((15, 7)T , (−5, 2.5)T) (15,−5)T (7, 2.5)T 0 ≤ x < 2500
File Number 1 (1.97, 2.35)T (2.42, 1.64)T 2500 ≤ x < 5000
File Number 2 (3.02, 8.50)T (2.14, 4.18)T 5000 ≤ x < 7500
File Number 3 (3.32, 15.97)T (3.01, 5.30)T 7500 ≤ x < 10000

In Figure 5.11 experimental results are presented for each algorithm 5.11(a) - 5.11(c)
compared to the motion with no correction term applied, called Default, in Figure
5.11(d). The plots illustrate the change every 2500 steps in x-direction for each algo-
rithm.

We further performed the experiment with 100 repetitions. The results of the density
functions for the last 30 iterations in Figure 5.12. The values of ATC are more close to
the last given function (#3) than the other two results. The AE of the last iteration
is as followed. For ATC the absolute error is AE = (0.22, 0.26)T , for AIA it is AE =
(0.7, 0.75)T and at last the AE = (0.25, 0.0)T for IAM.

5.2. Results 45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−20

−15

−10

−5

0

5

10

x

y

p
real

g
ref

0 10 20 30
−10

0

10

t

e
x
(
t
)

0 10 20 30
0

20

40

t

e
y
(
t
)

−5 0 5 10 15
0

0.1
0.2 x c = 3 .83

C o rre c tion fo r x (t)

P
D
F

0 10 20 30
0

0.1

0.2
y c = 17 .83

C o rre c tion fo r y (t)

P
D
F

(a) #1: ATC

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−15

−10

−5

0

5

10

15

x

y

p
real

g
ref

0 10 20 30
−10

0

10

t

e
x
(
t
)

0 10 20 30
0

20

40

t

e
y
(
t
)

−10 −5 0 5 10 15
0

0.1

0.2
x c = 2 .17

C o rre c tion fo r x (t)

P
D
F

−10 0 10 20 30 40
0

0.1 y c = 14 .70

C o rre c tion fo r y (t)

P
D
F

(b) #2: AIA

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−15

−10

−5

0

5

10

15

x

y

p
real

g
ref

0 10 20 30
−10

0

10

t

e
x
(
t
)

0 10 20 30
0

20

40

t

e
y
(
t
)

−10 −5 0 5 10 15
0

0.1

0.2 x c = 3 .80

C o rre c tion fo r x (t)

P
D
F

−10 0 10 20 30 40
0

0.1
y c = 16 .65

C o rre c tion fo r y (t)

P
D
F

(c) #3: IAM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−25

−20

−15

−10

−5

0

5

x

y

p
real

g
ref

0 10 20 30
−10

0

10

t

e
x
(
t
)

0 10 20 30
0

20

40

t

e
y
(
t
)

−10 −5 0 5 10 15
0

0.1
0.2 x c = 3 .33

C o rre c tion fo r x (t)

P
D
F

−10 0 10 20 30 40
0

0.1 y c = 16 .17

C o rre c tion fo r y (t)
P
D
F

(d) Default

Figure 5.11: Changing Environment

ATC AIA IAM
−5

0

5

10

15

20

25

A lg o r ith m

C
o
r
r
e
c
t
io

n

X
Y

Figure 5.12: Boxplot of the different methods for the last 30 iterations.

46 5. Simulation of the Motion Model

Comparison of the methods for Changing Environment

In general, the results are close to each other. The learning approaches AIA and IAM
can adapt fast to the new environment, whereas ATC needs time for training. We
compared the methods in the changing environment by dividing the results into four
steps (Table 5.14). Before the change of the noise function, we determine the current
correction value, compare it with the given µ and calculate AE. ATC has the best
value in the first part. We determine that AIA has the best values in the second and
forth part. At last, IAM performs best in the third part. Thus, AIA has in two parts
the lowest AE of all methods which is an indication that it determines a reasonable
correction value in the changing environment.

Table 5.14: AE for Changing Environment

0 ≤ x < 2500 2500 ≤ x < 5000
µ = (15,−5)T AE µ = (−1.97,−2.35)T AE

ATC (−14.75, 5.17)T (0.25, 0.17)T (1.88, 2.00)T (0.9, 0.35)T

AIA (−13.54, 5.76)T (1.46, 0.76)T (1.85, 2.22)T (0.13, 0.13)T

IAM (−16.22, 5.56)T (1.22, 0.56)T (2.38, 3.07)T (0.41, 0.72)T

5000 ≤ x < 7500 7500 ≤ x < 10000
µ = (−3.02,−8.50)T AE µ = (−3.32,−15.97)T AE

ATC (2.98, 7.80)T (0.05, 0.70)T (3.80, 17.25)T (0.48, 1.28)T

AIA (3.43, 9.07)T (0.41, 0.57)T (2.57, 15.28)T (0.75, 0.69)T

IAM (3.09, 8.47)T (0.07, 0.03)T (2.25, 13.93)T (1.07, 2.04)T

5.3 Conclusion

In this chapter we presented our methods with typical noise data, received by Gaussian
models or real data experiments. The noise functions indicate the given environment of
our robot and influence the systematic error which the methods need to correct. We have
shown that for ATC a trainings size of |M| = 30 is sufficient for the chosen distributions.
However, the method is not useful for different functions and noise values. Especially,
for the Gaussian distribution experiment, we could expound a more stable calculation
of the correction value with IAM. Both experiments, including the experimental data
presented in Section 4.1, had shown that the method AIA has a better performance
indicated by a low AE than ATC or IAM.

For hardware programming with the Sphero robots, we concluded that AIA seems
to perform slightly better than the other two methods. Thus, ATC and IAM have
acceptable AE values.

6. Evaluation of Spherical Robots

In this chapter we present our program implemented in ROS and Python to evaluate
the functionality of our algorithms. Firstly, we present our program1 and the input.
Secondly, the evaluation is shown.

6.1 Implementation

For the final experiments on the Spheros, it was necessary to make changes on the
existing system. Therefore, we present the framework of the Sphero ROS interface
which we have introduced in Section 3.2.

6.1.1 General Concept

Basically, five nodes are necessary to get the system running (Figure A.1, appendix
on p.80). The order in which the individual nodes should be started is indicated by
the ascending sorting of the nodes A-F. The camera pylon node connects the Kinect
camera with the ROS nodes. The tracking node uses the camera image to determine the
exact position preal of the Spheros and identifies the individual Spheros by colour. The
sphero node creates and registers the Bluetooth connection between the main computer,
the ROS Master, and the individual Spheros. For a detailed illustration of all active
ROS nodes when a Sphero is driving, we refer to the rqtgraph on page 81 of the
appendix.

The flow chart illustrated in Figure 6.1 presents our developed ROS nodes. Before the
nodes sphero main and sphero calc ae started, the user fixes the parameters. Then, the
node sphero main performs the experiments. It loads a list of points which form the
trajectory. Then, it publishes each point as next target. The sphero calc subscribes the
Topic and receives the next target point. The node computes a vector from the current
position to a target point. The resulting polar coordinates are converted into euclidean
coordinates and then transformed into the RCS. This vector is called forward. It is
passed to the sphero driver which applies the values for the motor. If the correction
value is calculated by the learning methods, the value is add to the forward vector.

Our learning approach is implemented in the sphero main and sphero calc. For evalua-
tion we further programmed two helper classes evaluationUtilities and experimentUtili-
ties. The user sets his choice of parameters in the sphero main. Here, the user needs to

1Implementation was done on a desktop computer using a 64-Bit operating system of Ubuntu 14.04.

48 6. Evaluation of Spherical Robots

fix the type of learning method and the absolute system path to a list of points. These
points form the trajectory which the robot has to drive.

set
parameters

next
point?

reached
point?

stop calculate
forward

move
forward

publish
data

receive
data

calculate
correction

sphero main

no

yes

sphero calc

no

yes

Figure 6.1: Flow chart

Moreover, for evaluation we set the updateDistance, minSpeed, maxSpeed and
alpha value in the experimentUtilities and sphero calc node. If the parameters are set,
the user starts the program according to Figure A.1.

6.1.2 Algorithm Details compared to Simulation

In general the algorithm is adapted to the real-world application as described in the
simulation chapter. It should be noted here that each iteration refers to a possible
change of direction of the Sphero control. Then, the error is passed to the error mem-
ory and a correction value is calculated. After the first 30 iterations |M| = 30, the
program calculates the mean value for correction and passes this value into the forward
movement.

Our program has five parameters which can be changed:

1. updateDistance (u) fixes the distance value when a new error is computed.

2. radius (r) of each target point when its get accepted as reached point.

3. minSpeed is the minimum speed for the robot.

4. maxSpeed fixes the maximum speed for the robot.

5. alpha with αAIA = 0.5 or αIAM = 0.1 we fix the learning rate α.

6.1. Implementation 49

Moreover, we point out that each target point has a specific radius which determines
the status if the point has been reached by the robot. Then, the next target point will
be transferred by the sphero main node.

The methods use the parameter updateDistance to determine the point when the
error value is calculated and processed into the learning methods. The default values
for both radius and updateDistance are 20 (pixels).

6.1.3 Calibration

The Sphero is hard to handle in an autonomous way because the heading of the robot
is unknown. For this, we need a calibration to determine the RCS’s heading. The
coordinate system of the Spheros initializes at its own 0◦ angle which is the y-axis
in euclidean space. We need to transform the left-handed system into a right-handed
system by mirroring and rotating the x-axis. This is done by calibrating the robot at the
start of the sphero calc node which handles the communication with the interface to
the motors. With starting the node, the Sphero’s initial position porigin and the current
position preal are determined. Then, the algorithm transforms the pcalib and calculates
the angle offset γ of the RCS and the GCS:

pcalib = (preal − porigin)

γ = atan2(py
calib,p

x
calib)

After the calibration is finished, the Sphero starts to drive the trajectory. To determine
the forward vector, we compute the angle β which is the difference of the offset γ and
θ. The θ is the angle between preal and ptarget and is computed by:

θ = atan2(py
target − py

real,p
x
target − px

real)

β = γ − θ

Furthermore, the angle β is transformed from polar coordinates into euclidean coordi-
nates which are sent to the sphero driver which is the interface to the motors.

6.1.4 Speed Adaptation

For processing experiments we further used a non linear function to compute the scalable
speed value s . With our proposed function (Equation 6.1) the speed value s is higher if
the distance to the target position is further apart. If it is close to target point ptarget ,
the robot should be slower.

The camera has a resolution of 1600 x 1200 pixel and covers 4 x 3 m of the area, this
results into 4 pixel/cm. The speed s is in the range of {0, 255}. With s = 255 the

50 6. Evaluation of Spherical Robots

velocity of the Sphero would be at the maximum (200 cm/ sec). The value of the speed
s is calculated using Equation 6.1 which corresponds to Figure 6.2. The speed depends
on the distance drt between the current position preal and the next desired destination
ptarget . If the distance drt is larger than 140 pixel, we fixed the maximum speed to
maxSpeed which is 60 in our experiments. If the user fixed the minSpeed to 10, only a
minimal speed of 25 can be used (according to the nonlinear function).

s(drt) =

{
maxSpeed−minSpeed

disMax−drt ×maxSpeed + minSpeed , if drt ≤ 140

maxSpeed , otherwise
(6.1)

50 100 150 200 250

10

20

30

40

50

60

drt

s(drt)

Figure 6.2: The speed value of s(drt) depends on the distance to the next target.
Parameters chosen for this function: minSpeed = 10, maxSpeed = 60 and disMax = 200.

6.2. Experiments 51

6.2 Experiments

This section presents the development of the real-world experiments2. We used one
single experiment which drives the trajectory. In total, we performed experiments with
up to seven Spheros. The Spheros are identified by their blinking colours and listed
below:

• Sphero GPR (Green, Purple, Red) (Sphero GPR)

• Sphero PGW

• Sphero WBR (White, Blue, Red) (Sphero WBR)

• Sphero GGY (Green, Green, Yellow) (Sphero GGY)

• Sphero GWP (Green, White, Purple) (Sphero GWP)

• Sphero OBO (Orange, Blue, Orange) (Sphero OBO)

• Sphero OOP (Orange, Orange, Purple) (Sphero OOP)

The environment is a green thin carpet which lies on the flat floor. For evaluation of our
learning methods, we set the parameters in the experiment according to Table 6.1 and
changed only updateDistance ∈ {20, 50} and radius ∈ {20, 50}. We chose this values to
identify different behaviours and to determine if the updateDistance needs to be bigger
than the size of the Sphero. Additionally, we analyse the accuracy which depends on
the radius around the target point.

The Spheros drive in a cyclic trajectory (Figure 6.3). The points m1 = (500, 700) and
m2 = (900, 700) are our measurement points. Being more specific, only points located
on the curves at the left and right side are sent to the Spheros. With this approach, the
robots need to drive the distance of 400 pixel (1 meter) without further target points in
the trajectory. We anlayse the driven mean distance µd between the points m1 and m2,
and determine if the correction is successful. This is measured by calculating the MAE
of the measured distance dm with the help of Equation 6.2. The distance depends on
the radius which indicates when a point has been reached. We further call the area of
the circle with centre point m1 or m2 target region.

MAE =
1

#samples

#samples∑
i=1

|di − 400| − 2r (6.2)

We further use our presented methods and compare them with the default behaviour if
no correction value is applied to the movement, called Default. Each test was proceeded

2We analyse the results with MATLAB R2014a.

52 6. Evaluation of Spherical Robots

Figure 6.3: Trajectory. The desired spline is sampled on eight specific points (green)
and resulted into 50 points which lie on the red spline.

Table 6.1: Parameter settings

Parameter Value

minSpeed 10
maxSpeed 60

αAIA 0.5
αIAM 0.1

as long as possible until the battery of the robot was empty. Due to the unknown
charging status we get different samples sizes (between 30 and more than 200).

We decided to use three robots to process the main parameter changing experiments.
It took between 30 and 60 minutes depending on the battery power of the robots.
Therefore, for all 96 experiments mentioned in Table 6.2, we needed up to 100 hours to
process all experiments.

6.3. Results 53

6.3 Results

In this section, we determine how our presented learning methods work on the real
robots. Firstly, we present the calibration experiment for two different target radius
and compare two Spheros. Secondly, we show the results for several parameter settings,
mainly for three Spheros and analyse the capabilities of the Spheros in the carpet envi-
ronment. Table 6.2 shows the number of samples received by the processed experiments.
Experiments which were not processed with a specific Sphero are marked with X.

Table 6.2: Sample sizes with corresponding robot and parameter settingsTabelle3

Seite 1

Default ATC

IAM AIA GPR PGW WBR GGY GWP OBO OOP

69 33 30 24 X X X X X X X X X X

39 34 25 22 X X X X X X X X X X

26 61 X X 76 60 X X X X X X X X

72 109 X X 62 88 X X X X X X X X

Carpet u=20; r=20
171 216 71 51 200 203 123 119 243 160 203 127 114 58

42 174 44 49 87 198 45 95 63 38 144 40 8 46

Carpet u=50; r=20
76 63 80 78 89 57 X X X X X X X X

22 42 38 54 112 99 X X X X X X X X

Carpet u=20; r=50
107 81 126 75 70 110 X X X X X X X X

43 89 142 57 88 83 X X X X X X X X

Carpet u=50; r=50
52 51 62 112 85 45 61 49 X X X X X X

88 65 112 116 79 65 43 108 X X X X X X

PVC u=50; r=50
113 95 60 59 82 59 X X X X X X X X

40 63 76 58 92 79 X X X X X X X X

Carpet non-periodic
u=20; r=20

Carpet non-periodic
u=50; r=50

As mentioned before, the task of the Spheros is to keep the distance between the two
measurement points as small as possible. For the boxplots, we consider that a robot
performs excellent if its mean and median are close to 400 (pixel) and its spread less. In
addition, less outliers is preferable which also depends on the sampling size. We further
determine a better behaviour by checking the MAE, µd , σd and the number of samples
(#sample).

We filtered some outliers from the following results which were created by the tracking
system. For example, we measured a samples distance of about 2000 pixel in less than
4 seconds which is not possible to drive such high amount in such less time. Moreover,
the tracking error is visible in the plot of the driven position. In total, we delete between
one and two tracking errors in 13 files In following the unit of measure is in pixel if
nothing specific is written. This means instead of writing µd = 498 pixel, we only write
µd = 498.

54 6. Evaluation of Spherical Robots

6.3.1 Parameter Tests without periodic Calibration

Here, we show the results for the experiment if only at the beginning the calibration of
the RCS is performed.

1. Parameter Test: Carpet non-periodic u = 20, r = 20

The boxplots of the Spheros present the result of the measure distance dm using u = 20,
r = 20 and the calibration of the RCS at the beginning of the experiment (Figure 6.4).

The Sphero GPR has the smallest mean value for the default behaviour. All distribu-
tions are widely spread and askew. Including the information of Table 6.3, the MAE of
the default method is high with 60 pixel and µd = 498. The deviation is high with 115.

The Sphero PGW performs excellent using AIA. For this robot MAE has a value of
3 pixel and µd = 440. The PDF has µd = 440 and, due to the small sample size, it
spreads widely with deviation of σd = 113. The other methods behaves poorly with
MAEs between 37 and 82. The number of samples are low for all experiments because
the Spheros tends to drive in circular path around a target point for all experiments.

GPR
300

400

500

600

700

800

900

1000

1100

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(a) Sphero GPR

PGW
300

400

500

600

700

800

900

1000

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(b) Sphero PGW

Figure 6.4: Test with u = 20 and r = 20 on carpet floor

2. Parameter Test: Carpet non-periodic u = 50, r = 50

The results of the second experiment which was done with the Spheros GPR and WPR
are illustrated in 6.5(a) and Table 6.4.

For these settings, the Sphero GPR using IAM performed poor with a MAE of 48.
The MAE of the other methods are zero which indicates that the robots using these
methods have reached the target region (radius of 50 pixel around the target point). If
we further consider µd and σd the default method is slightly better than AIA for Sphero
GPR. We observed from the experiment that only the Sphero GPR using the default
method tends to circle around a target point. The robot behaved more correct using

6.3. Results 55

Table 6.3: Test with u = 20 and r = 20 on carpet floor

Sphero GPR PGW

Default µd 498 521
σd 115 89

MAE 60 82
samples 69 30

ATC µd 554 476
σd 168 73

MAE 114 37
samples 33 24

AIA µd 531 440
σd 142 113

MAE 92 3
samples 34 22

IAM µd 534 496
σd 196 122

MAE 102 61
samples 38 25

AIA, since it did not tend to drive circular paths around a target point. Therefore, the
sample size is big for AIA, whereas the sample size is very small for Default.

The Sphero WBR has a PDF which spreads widely for the Default. In this method,
we determined a lot outliers comparing with the other three techniques. The robot
behaved best using AIA if we also consider µd = 416 and σd = 68 because the MAEs
are all zero for the four techniques.

GPR
300

400

500

600

700

800

900

1000

1100

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(a) Sphero GPR

WBR
300

400

500

600

700

800

900

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(b) Sphero WBR

Figure 6.5: Test with u = 50 and r = 50 on carpet floor

56 6. Evaluation of Spherical Robots

Table 6.4: Test with u = 50 and r = 50 on carpet floor

Sphero GPR WBR

Default µd 393 450
σd 23 77

MAE 0 0
samples 26 76

ATC µd 410 444
σd 26 46

MAE 0 0
samples 61 60

AIA µd 406 416
σd 24 68

MAE 0 0
samples 109 88

IAM µd 541 425
σd 176 48

MAE 48 0
samples 72 62

The duration for both tests are listed in Table A.10 and Table A.11 on page 102f. The
second test with a larger radius was between 0.5 and 1.0 sec faster than the first test.
In summary, we state that the learning methods are worse than the default driving
without any correction term. We observed that the robots tend to drive a circular path
around a target point after some time for all four methods. To determine a more stable
movement and to generate more samples, we used the repartition of the calibration for
the further experiments.

6.3.2 Parameter Tests with periodic Calibration

Figure 6.6 contains different plots which show the position of the Sphero GPR for the
experiment u = 20 and r = 20. Figure 6.6(a) shows an example of a tracking error
by the camera. The straight line, starting from point (300, 700) and going to point
(650, 100) is an indicator that the camera was distracted by another light reflection and
detected the Sphero on the wrong position. We identify how much the RCS changes for
a single robot using a specific method. In Figure 6.6(b) the drift of the RCS is visible
as each calibration is displayed (x is between 200 and 500, y is between 700 and 900).
We proceed to rerun the calibration after six samples (three cycles of the trajectory) at
the starting point of the trajectory. More plots are in the appendix on pages 82ff. The
colour indicates how often certain points were reached by the robot.

6.3. Results 57

(a) Default (b) ATC

(c) AIA (d) IAM

Figure 6.6: Changes in the RCS of Sphero GPR (u = 20, r = 20)

1. Parameter Test: Carpet u = 20, r = 20

For this experiment, we used seven Sphero robots and applied the parameters of Ta-
ble 6.1. With r = 20 pixel, the target radius is very small (5 cm) and smaller than the
Sphero itself. Therefore, the accuracy to move to the point should be precise. With this
setup, the methods work different for each robot. Figure 6.7 (part A) and Figure 6.8
(part B) present the resulting boxplots for each method. It is generated by computing
the length of the driving path between the two measurement points. Each plot presents
one observed Sphero and Default indicates that no learning and correction value has
been used.

The Sphero GPR has large values for MAE using Default and IAM (105 and 133). The
distribution of these methods spread widely with values up to 800 pixel and σ of about
111. The mean values µd indicate also lower performances than AIA (Figure 6.7(a)).
For AIA and ATC the MAEs are zero. This shows that the robot behaves well using

58 6. Evaluation of Spherical Robots

GPR
300

400

500

600

700

800

900

1000

1100

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(a) Sphero GPR

PGW
350

400

450

500

550

600

650

700

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(b) Sphero PGW

WBR
350

400

450

500

550

600

650

700

750

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(c) Sphero WBR

GGY
300

350

400

450

500

550

600

650

700

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(d) Sphero GGY

Figure 6.7: 1. Parameter test with u = 20 and r = 20 on carpet floor (part A). The
mean value µd is illustrated as the plus sign.

AIA which is slightly better than ATC considering that the µd and σd are both smaller.
Additionally, more outliers exist in the ATC.

The boxplot of the Sphero PGW displays that Default is the best option for this robot
since the deviation of the function is small. There are some outliers, but the Sphero
PGW performs best with the default method (Figure 6.7(b)). Only the default method
archives a MAE of zero, whereas the other the values are 17 ≤ MAE ≤ 74.

The next boxplots in Figure 6.7(c) show the Sphero WBR. There are also a lot of
outliers for each method, but the sampling size is between 89 and 203 (Table 6.3),
therefore it could be more likely to observe also outliers. Additionally, the PDF is a
bit askew (indicated by the mean and median value). The Sphero WBR archives with
all method best results for the MAE. Only if we also consider µd and σd we state that
IAM is slightly better than the other methods.

6.3. Results 59

The Sphero GGY has boxplots of Default and AIA which spread widely and they have
the same deviation of 78 both. The robot archives the best results using ATC. Then, it
has a MAE of zero by a sample size of 119. In addition, IAM has a MAE of zero, but
it has slightly worse values for the other parameters.

GWP
300

400

500

600

700

800

900

1000

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(a) Sphero GWP

OBO
300

400

500

600

700

800

R ob o t
D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(b) Sphero OBO

Figure 6.8: 1. Parameter test with u = 20 and r = 20 on carpet floor (part B)

OOP
350

400

450

500

550

600

650

700

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

Figure 6.9: 1. Parameter test with u = 20 and r = 20 on carpet floor (Sphero OOP)

The Spheros GWP behaves poor with IAM and MAE = 136. In contrast to this, the
default method works best, regarding to MAE = 12 and smaller values for µd and σd
than the other techniques. The PDFs of AIA and IAM are widely spread and have
values for σd = 126 and σd = 86.

The boxplot of the Sphero OBO shows that using the method IAM generates the best
behaviour since its PDF is less scattered than the other methods. The mean distance
µd is 452 calculated by 144 samples. In addition IAM has the smallest MAE with 14.

60 6. Evaluation of Spherical Robots

The Sphero OOP is an exception since it behaves best with using IAM (Figure 6.9).
Nevertheless, the sample size is too small for valid analysis because charging the Sphero
is defect. Therefore, we do not use this result. Then, the best behaviour is archived by
using the default method which has also the smallest MAE of 21. The PDFs for the
remaining three methods are widely spread and slightly askew.

Table 6.5: 1. Parameter test with u = 20 and r = 20 on carpet floor

Sphero GPR PGW WBR GGY GWP OBO OOP

Default µd 547 424 433 453 450 476 459
σd 111 54 65 78 69 91 73

MAE 108 0 0 16 12 38 21
samples 171 71 200 123 243 203 114

ATC µd 434 514 435 423 506 466 512
σd 55 52 59 43 70 74 89

MAE 0 74 0 0 67 28 72
samples 216 51 203 119 160 127 58

AIA µd 413 452 431 493 476 470 486
σd 45 75 70 78 126 101 74

MAE 0 17 0 53 39 33 47
samples 174 49 198 95 38 40 46

IAM µd 572 465 421 428 575 452 431
σd 112 93 54 69 86 79 72

MAE 133 33 0 0 136 14 0
samples 42 44 87 45 63 144 8

In summary, it can be stated that the Spheros GPR, WBR, OBO and GGY profit from
applying a correction value, whereas the Sphero PGW, GWP and OOP are getting
worse (Table 6.5). A suitable correction depends on the method and the Sphero. The
best behaviour is developed by the Sphero GPR using AIA. The duration for sampling
seems to correspond to the best results (page 102, Table A.12). In addition, for the
Sphero OOP using IAM, we could only sample eight times, since charging this Sphero
seems to be defect.

2. Parameter Test: Carpet u = 50, r = 20

For the second test with r = 20, we changed the update distance when an error value
gets samples and influences the correction (here u = 50). For this experiment, we used
three Sphero robots and applied the parameters of Table 6.1. The results are presented
in Figure 6.10, Table 6.6 and the corresponding duration in Table A.13.

The Sphero GPR behaves best using ATC with a MAE of 10. In contrast to this
the incremental learning methods AIA and IAM perform worse and their PDF spread
widely. These methods have high values with MAE = 94 and MAE = 101.

For this parameter settings, the Sphero PGW archives its best results if it also uses
ATC since the MAE is 1. Moreover, the deviation is relatively small with σd = 57

6.3. Results 61

compared to the other techniques. The deviation of AIA is high with σd = 154 which
is also displayed in the boxplot.

The results of Sphero WBR are displayed in last boxplot and shows that Default has the
smallest deviation, but also a lot outliers. The MAE is zero for Default, ATC and AIA.
For AIA the mean value is the smallest and therefore, we conclude that this method
works best for Sphero WBR with these settings.

The duration is presented in Table A.13 on page 103. The values spread between 3.396
(WBR using default method) and 5.281 (GPR using IAM) seconds. ATC is faster than
Default for all three Spheros. AIA and IAM take less time for Sphero WBR, whereas
the other two Spheros need more time compared to Default.

GPR
300

400

500

600

700

800

900

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(a) Sphero GPR (u = 50, r = 20)

PGW
300

400

500

600

700

800

900

1000

1100

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(b) Sphero PGW (u = 50, r = 20)

WBR
350

400

450

500

550

600

650

700

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(c) Sphero WBR (u = 50, r = 20)

Figure 6.10: 2. Parameter test with u = 50 and r = 20 on carpet floor

62 6. Evaluation of Spherical Robots

Table 6.6: 2. Parameter test with u = 50 and r = 20 on carpet floor

u = 50, r = 20
Sphero GPR PGW WBR

Default µd 471 453 419
σd 60 75 25

MAE 35 21 0
samples 76 80 89

ATC µd 441 430 416
σd 56 57 43

MAE 10 1 0
samples 63 78 57

AIA µd 528 501 408
σd 147 154 32

MAE 94 75 0
samples 42 54 99

IAM µd 533 492 440
σd 149 119 71

MAE 101 58 16
samples 22 38 112

3. Parameter Test: Carpet u = 20, r = 50

The following experiment has a higher radius for the target region. With r = 50 pixel,
the target radius is not too small (12.5 cm) and slightly bigger than the Sphero itself.
For this test, we used three Spheros and applied the parameters of Table 6.1. The
results are presented in Figure 6.11, Table 6.7 and the corresponding duration is listed
in Table A.13.

The boxplots of the Sphero GPR shows that the IAM performs poor with a wide spread-
ing PDF, whereas the others archive better results. For Default and AIA the median
and the mean value are very close and therefore, the distribution is more symmetrical
than the other ones. In addition, the MAEs are zero, except for the IAM which is 20.
AIA and Default have the same value in µd (Table 6.7), but for the deviation AIA is a
little better.

In the boxplots of the Sphero PGW, it seems that all methods are well distributed and
the ATC works best. For Figure 6.11(c), ATC archives worse results than the other
methods which are close to each other and hold small distance values. For the Sphero
PGW the fastest method was IAM, it also generated good values for the distances.
Nevertheless, all presented methods work fine since µd and σd are small for all methods.
The MAE is zero for all applied methods and indicates that the robot always reaches
the target region.

The boxplots of the Sphero WBR displays that ATC spreads widely. Though, the MAE
is zero for all methods. Additionally, the Sphero WBR has a tie among Default and

6.3. Results 63

AIA for µd and σd . Only the sample size differs and since the sample size is bigger in
AIA, we conclude that this method works stable.

The duration is presented in Table A.13. The values spread between 3.256 (WBR using
IAM and 4.378 (GPR using IAM) seconds. Only IAM used with Sphero PGW or Sphero
WBR is slightly faster than Default.

GPR
300

400

500

600

700

800

900

1000

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(a) Sphero GPR (u = 20, r = 50)

PGW
360

380

400

420

440

460

480

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(b) Sphero PGW (u = 20, r = 50)

WBR
350

400

450

500

550

600

650

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(c) Sphero WBR (u = 20, r = 50)

Figure 6.11: 2. Parameter test with u = 20 and r = 50 on carpet floor

64 6. Evaluation of Spherical Robots

Table 6.7: 2. Parameter test with u = 20 and r = 50 on carpet floor

u = 20, r = 50
Sphero GPR PGW WBR

Default µd 404 406 408
σd 18 16 13

MAE 0 0 0
samples 107 126 70

ATC µd 409 405 461
σd 33 14 73

MAE 0 0 0
samples 81 75 110

AIA µd 404 408 408
σd 16 15 13

MAE 0 0 0
samples 89 57 83

IAM µd 516 412 409
σd 183 14 11

MAE 20 0 0
samples 43 142 88

4. Parameter Test: Carpet u = 50, r = 50

The last tests use the parameters u = 50 and r = 50 and was done on the Spheros GPR,
PGW, WBR and GGY. The boxplots are presented in Figure 6.12 and Figure 6.13.

GPR
300

350

400

450

500

550

600

650

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(a) Sphero GPR (u = 50, r = 50)

PGW
300

350

400

450

500

550

600

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(b) Sphero PGW (u = 50, r = 50)

Figure 6.12: 3. Parameter test with u = 50 and r = 50 on carpet floor (part A)

The boxplots of the Sphero GPR, presented in Figure 6.12(a), has the smallest deviation
for AIA, but all methods have small deviation between 22 and 38. The spreading of
each distribution is small, and only a few outliers exist. The MAEs are zero for all
methods. More details are presented in Table 6.8. We conclude that the Sphero GPR

6.3. Results 65

works best if it uses the default behaviour. After all, the standard deviation is smaller
using AIA and not Default. Moreover, the values of µd are very close to each method.

The boxplots of the Sphero PGW (Figure 6.12(b)) show that the median values are very
close to each other. The PDFs deviate less and also the MAEs are zero. For the IAM,
we identify a smaller value for the standard deviation than for the Default which has
the smallest µd . Preferring small µd and MAE, we conclude that the default method
works best with Sphero PGW.

The next boxplots of the Sphero WBR display the high deviation of ATC (6.13(a)).
Moreover, the distribution is askew, indicated by the difference between median and
mean. The robot behaves fine using IAM which has a small µd and σd .

The Sphero GGY generates outliers with using Default, ATC and AIA. Best working
method is IAM which results into small median and mean values. Moreover, the distri-
bution spreads less, regarding to Figure 6.13(b). For the Spheros WBR and GGY the
incremental learning approach IAM results into the best behaviour. For both, the µd
and σd are small. For the four robots, the MAE is zero for all applied methods.

WBR
300

400

500

600

700

800

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(a) Sphero WBR (u = 50, r = 50)

GGY
300

400

500

600

700

800

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(b) Sphero GGY (u = 50, r = 50)

Figure 6.13: 3. Parameter test with u = 50 and r = 50 on carpet floor (part B)

66 6. Evaluation of Spherical Robots

Table 6.8: Boxplots of 4. Parameter test with u = 50 and r = 50 on carpet floor

Sphero GPR PGW WBR GGY

Default µd 395 402 428 435
σd 26 27 47 67

MAE 0 0 0 0
samples 52 62 85 61

ATC µd 412 412 481 458
σd 38 33 111 104

MAE 0 0 0 0
samples 51 112 45 49

AIA µd 403 404 448 437
σd 22 26 82 34

MAE 0 0 0 0
samples 65 116 65 108

IAM µd 419 403 408 401
σd 23 24 17 25

MAE 0 0 0 0
samples 88 112 79 43

Experiments on PVC floor: u = 50, r = 50

For the last experiment we changed the environment and did the tests on the PVC floor
for three different Spheros (Figure 6.14 and Figure 6.15).

GPR
200

400

600

800

1000

1200

1400

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(a) Sphero GPR

PGW
200

400

600

800

1000

1200

1400

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

(b) Sphero PGW

Figure 6.14: Test with u = 50 and r = 50 on PVC floor (Sphero GPR, PGW)

The PDFs for each method of the Sphero GPR has small values, except of IAM. The
deviation is only low for Default which is σd = 41. For all methods several outliers
exist. The best mean value has the default method with µd = 396, whereas IAM has
the highest values in mean and standard deviation. The MAE is zero for the default

6.3. Results 67

behaviour, ATC and AIA, whereas for IAM the MAE is 30. We conclude that the robot
performs well using the default method due to MAE and µd .

The Sphero PGW behaves similar to the previous mentioned robot. The default method
seems to perform better here, than the learning techniques. Default has small values
for µd = 398 and a deviation of σd = 28. Again, IAM is the only method with an
error unequal to zero (which is 34). The Sphero PGW behaves best using the default
method.

WBR
200

400

600

800

1000

1200

1400

R ob o t

D
i
s
t
a
n
c
e
d

m

D isto r t io n

Default
ATC
AIA
IAM

Figure 6.15: Test with u = 50 and r = 50 on PVC floor (Sphero WBR)

Table 6.9: Test with u = 50 and r = 50 on PVC floor
Sphero GPR PGW WBR

Default µd 396 398 480
σd 41 28 174

MAE 0 0 0
samples 113 60 82

ATC µd 467 464 507
σd 137 110 155

MAE 0 0 10
samples 95 59 59

AIA µd 463 467 412
σd 148 125 30

MAE 0 0 0
samples 63 58 79

IAM µd 504 529 500
σd 256 176 175

MAE 30 34 9
samples 40 76 92

The last robot, Sphero WBR, archives best results using AIA, regarding to Table 6.9,
µd = 412 and σd = 30. The PDF of the method AIA is well spread and symmetric
(according to similar values for mean and median). The other functions deviate higher.

68 6. Evaluation of Spherical Robots

ATC has high values. The position plots of this robot in Figure A.22 (p.101) further
shows the unstable behaviour. Since MAE is zero for Default and AIA, the Sphero
WBR archives best results for MAE and µd using AIA.

6.4 Problems

Different issues occur in programming and testing. One main problem of the system is
the tracking of the robot. Since our computer is in a shared laboratory, it is necessary
that the available computational power is used for the image processing of the camera
tracking. Sometimes, the camera has difficulties in finding the position of the Sphero
due to light issues. Moreover, the Sphero’s logo makes the diffuse light a bit darker.
Therefore, in some positions of the robot it is more difficult to track. A solution for the
light issue is to use the rosrun rqt reconfigure rqt reconfigure command in a terminal. A
window opens in which the user can change the camera settings. For a better tracking
result, it can help to change the parameter’s value ExposureTimeAbs of the cam0.

In some of the experiments the robot stopped instead of driving. It seems that the
sphero calc crashes with no warning. It is not possible to determine the charging level
of the Sphero. Only two states are available loaded and empty, also indicated by a red
blinking LED. In addition, the robot’s battery loses it power if it is not used, even in
the charging station after it was fully loaded. Due to the crashing ROS node and the
battery, the sample’ size differs for each experiment.

Another issue is the RCS. We have shown that the RCS is not stable in the whole ex-
periment. Therefore, we fix the calibration and change the speed based on the distance.
The closer the robot is to the target, the slower the robot drives. We further reran the
calibration after several samples. We assume that changes in the RCS could occur due
to slipping inside the shell. The calibration is only handleable with one robot in the
arena. We need a better determination of the RCS for each robot or we use another
version of the Spheros. Then, the Spheros have an additional LED light which could
be used to determine the current heading of the Sphero.

A higher velocity of the Spheros would be desirable to speed up the robot and to drive
faster. Controlling a fast robot is more difficult and decreases the accuracy, since it
could result in a behaviour that more points were over run and it can be necessary
to drive back to the point. We used a speed calculation based on the distance to the
desired goal and set the maximum speed to 60.

6.5 Conclusion

We resume that learning the motion error is partially successful. The MAE results
of our processed experiments are summarized in Table 6.10 which further shows the
parameter settings. Experiments which were not processed with a Sphero are marked
with X. For a specific Sphero the colour-coded cells indicate the winner method with
the best results in MAE, µd and σd . For example, the Sphero GPR has the lowest MAE

6.5. Conclusion 69

value in method Default which is MAE = 60 in Carpet periodic u = 20 and r = 20. For
Sphero GGY and Carpet u = 20 and r = 20, the best method is ATC since µd and σd
are smaller than for IAM which MAE is also zero. In total, in 16 out of 24 experiments
the Spheros improved their behaviour and performed better than the default method.
In eight experiments the default method and the AIA behaved better than the others.
Each method of ATC and IAM archived only in four experiments best results.

Table 6.10: MAE results for each method. According to the 2 x 2 matrix on the top left
corner, the winner methods are colour-coded in the corresponding cells. In clockwise
ordering the MAE is displayed of Default (yellow), ATC (red), AIA (purple) and IAM
(light blue). The blue, green and red dashed boxes corresponds to the comparison
between the applied parameters (Carpet/ PVC floor; u = 20 or u = 50 and r = 20 or
r = 50) Tabelle2

Seite 1

Default ATC

IAM AIA GPR PGW WBR GGY GWP OBO OOP

60 114 82 37 X X X X X X X X X X

102 92 61 3 X X X X X X X X X X

0 0 X X 0 0 X X X X X X X X

48 0 X X 0 0 X X X X X X X X

Carpet u=20; r=20
108 0 0 74 0 0 16 0 12 67 38 28 21 72

133 0 33 17 0 0 0 53 136 39 14 33 X 47

Carpet u=50; r=20
35 10 21 1 0 0 X X X X X X X X

101 94 58 75 16 0 X X X X X X X X

Carpet u=20; r=50
0 0 0 0 0 0 X X X X X X X X

20 0 0 0 0 0 X X X X X X X X

Carpet u=50; r=50
0 0 0 0 0 0 0 0 X X X X X X

0 0 0 0 0 0 0 0 X X X X X X

PVC u=50; r=50
0 0 0 0 0 10 X X X X X X X X

30 0 34 0 9 0 X X X X X X X X

Carpet non-periodic
u=20; r=20

Carpet non-periodic
u=50; r=50

We further compare two different values for the updateDistance in Carpet u = 20 and
r = 20 and Carpet u = 50 and r = 20. In Table 6.10 the MAE of the three robots are
displayed, highlighted by the green dashed box. Table 6.11 shows this results.

We state that the Sphero GPR behaves better using u = 50 and Default or IAM,
compared to u = 20 since the MAEs decrease. The Sphero PGW performs well using
ATC and u = 50 since the MAE decreases. In addition, the Sphero WBR archives
best results with u = 50. For Default, ATC and AIA the MAE is zero and the µd is
smaller than with u = 20. Nevertheless, considering also µd and σd , the Spheros GPR
and PGW are more accurate with u = 20. We note that the Sphero GPR and PGW

70 6. Evaluation of Spherical Robots

perform excellent with u = 20, r = 20 using AIA and Default. On the other hand the
Sphero WBR behaves better using AIA with u = 50 and r = 20.

Table 6.11: MAE comparison of u = 20 and u = 50.Tabelle4

Seite 1

Default ATC
IAM AIA GPR PGW WBR

Carpet u=20; r=20
108 0 0 74 0 0
133 0 33 17 0 0

Carpet u=50; r=20
35 10 21 1 0 0
101 94 58 75 16 0

For identifying if the radius size influences the performances of the robots, we chose
two sizes r = 20 and r = 50 in the experiments Carpet u = 20 and r = 20 and Carpet
u = 20 and r = 50. In Table 6.11 the results are displayed. We observe that for
all three Spheros the MAE is smaller or zero if r = 50 is used compared to r = 20.
It allows more space between the measurement points due to the radius r = 50. We
further tested with the settings Carpet u = 50 and r = 50. Here, the MAEs are zero
for each method applied on the four robots. Changing the updateDistance from 20 to
u = 50 increases the performance of the Sphero GPR using IAM.

Table 6.12: MAE comparison of r = 20 and r = 50.Tabelle4

Seite 1

Default ATC
IAM AIA GPR PGW WBR

Carpet u=20; r=20
108 0 0 74 0 0
133 0 33 17 0 0

Carpet u=20; r=50
0 0 0 0 0 0
20 0 0 0 0 0

We further analyse the two different environments using Carpet u = 50 and r = 50
and PVC u = 50 and r = 50 as the last comparison. The blue dashed box marks these
results in Table 6.10. In Table 6.13 the values are extracted. In general, the MAEs are
zero or smaller than 35. The Spheros behave erroneous using ATC or IAM on the PVC
floor. Therefore the environment impact on the motion of the robots. In addition, the
robots drive faster on PVC floor.

We summarize that the robots are much faster with using r = 50. Our experiments on
the carpet have shown that if the target region has a radius of r = 20 the duration of
each sample has a higher mean value µt than using r = 50. It means that for r = 20 it
takes more time to reach the target region. We assume that the Spheros slightly miss
the measurement point and has to drive back to reach its target region. This results
into a higher µd values for r = 20 than for r = 50. The movement of the Spheros on
the PVC floor is much faster than on the carpet since it has less stiction.

6.5. Conclusion 71

Table 6.13: MAE comparison of PVC floor and carpet.Tabelle4

Seite 1

Default ATC
IAM AIA GPR PGW WBR

Carpet u=50; r=50
0 0 0 0 0 0
0 0 0 0 0 0

PVC u=50; r=50
0 0 0 0 0 10
30 0 34 0 9 0

For the experiments with r = 20, we conclude that the Sphero PGW works fine with
u = 20 and the default method. Additionally, the Sphero GPR uses this parameter but
operate better using AIA. This method is also the best, if using the Sphero WBR and
applying u = 50. For this results the RCS is stabilized by repeating the calibration.
We suggest to use the following settings for each Sphero, considering a high accuracy
due to a small radius size and a small MAE:

• u = 20 and r = 20 with Default → Spheros PGW and GWP

• u = 20 and r = 20 with ATC → Sphero GGY

• u = 20 and r = 20 with AIA → Sphero GPR

• u = 20 and r = 20 with IAM → Sphero OBO

• u = 50 and r = 20 with AIA → Sphero WBR

• Sphero OOP is defect.

In general, we have shown that learning is more successful and less erroneous than
the default method. For example, the Spheros PGW and GWP archive an excellent
performance with high accuracy using default method and the parameters u = 20 and
r = 20. The other robots perform better using one of the presented learning approaches.
Four out of six robots increase their performance with the learning methods. For other
Spheros which were not tested, but could be part of a swarm, we suggest to use u = 50
and r = 50 for a small error.

72 6. Evaluation of Spherical Robots

7. Conclusion

In this thesis we presented three approaches for learning the motion uncertainty of
Spherical Robots. We further described how the robots are influenced by uncertainty.
Additionally, we analysed the movement of two Spheros (PGW and YRB) and identified
their erroneous behaviour of driving straight with a constant speed value. We did this
experiments on three different environments: ideal PVC floor and mat. Firstly, we have
measured that the error spreads less if the environment is ideal which has less dust,
no skewness and is even. Secondly, depending on the robot and the environment we
have shown that the distortion is high on PVC floor and Sphero YRB. This robot is
distracted and the error has higher values for y-direction than for x-direction. On mat
floor the robots were less distracted, therefore the error values were smaller and the
PDF spreads less.

With this behaviour in mind, we developed three methods to correct the motion error.
The algorithms ATC, AIA and IAM uses the ideas of PMM and RL to calculate a
correction term. We simulated the motion of the robot and applied our methods to
demonstrate if those are suitable controller. Here, we applied different disturbances on
the system to generate a behaviour which is close to the real Spheros. We processed four
test and determined first that a training size of 30 is sufficient for ATC to stabilize the
correction value if the distribution is symmetric. The next test assessed if the methods
can handle different Gaussian noise functions applied as error into the simulated robotic
system. IAM has most of the distribution tests the smallest AE, if we apply a 10 %
threshold of the given µ. Then, for IAM 9 out of 10 µc are acceptable calculated.
For the last two experiments (Applying real data and changing environment) of the
simulation, AIA received best results comparing the AE values. However, there is no
actual winning method in the simulation.

Therefore, we used all three approaches for the realization experiments. In addition
to the simulation, we developed with ROS an environment for further experiments,
including an arena with a carpet and PVC floor as terrain. In this system the motion
error is collected and used for calculation if the correction term which is applied in the
motion of the Sphero. For evaluation, we processed about 96 experiments with different
robots and parameter settings. We further have shown that the RCS needs periodic
calibration since it is not stable. We identified those robots which behave fine using
the default method. Nevertheless, our learning methods work for some other Spheros.
Furthermore, we determined that the robots can work well using one of the presented
learning methods. For this, the parameters should be u = 20 and r = 20 or u = 50

74 7. Conclusion

and r = 20 depending on the Sphero. In addition, on the PVC floor it took less time
to process the experiments. In total, four out of six robots improved their behaviour
by using one of the learning methods. These robots became more precise in driving.
Though, we could not determine the best method which is usable on all Spheros. Taken
all results together, we observe that AIA has performed in two out of four simulated
experiments well and it could further improve two Spheros (GPR and WBR) in the
real-world experiments.

In future, it is necessary to identify the heading of the Spheros directly from camera
tracking. Additionally, in further projects changes in the parameters settings, e.g. a
radius between 20 and 50 pixel could improve the accuracy and lower the MAE. We only
processed a series of experiments with one parameter set for the PVC floor. Therefore,
upcoming projects could analysis the behaviour of Spheros on different surfaces such
as sand or water and include the learning methods. For this surfaces a more dynamic
speed function is necessary to adapt the Sphero to the current surface, and to control
the robot precisely. We used only a single robot at the time for measuring. In further
projects it is possible to have a swarm of the Spheros for solving specific tasks. For
this it is necessary to identify each robot and to plan the motion of each robot. We
imagine that an occupancy grid which stores probabilities if a robot is at a certain time
at the position which corresponds to a specific cell of the grid map. Other projects
could use the simulation environment of Gazebo for planning. Additionally, it could be
used for creating a maze. The simulated Spheros could solve tasks such as driving to
a specific position. This maze could be built in reality and compare the results with
the simulation. A requirement for this would be that the camera which is used for
tracking could further identify the environment with the result of a valid path planing.
Using the existing joystick interface a user can control a robot, e.g. in a racing scenario
for several robots. The user could try to catch a specific robot or to escape the other
autonomously driving robots. This could be realized by a 3D maze with high and low
spots, walls, bridges, smooth and rough surfaces in which the motion of the Spheros
differ.

In terms of intra-disciplinary the Spheros could be used in a swarm display, combining
the ideas of Alonso et al. and Kohana et al. [KO14, AMBR+]. Imagine a touch screen
where a user draws an image and the drawing is processed in (nearly) real-time as
positions to the Spheros. This project could use ROS for applying commands to the
robots, visualization techniques for user-interface to provide a suitable human-computer
interaction and swarm intelligence for controlling the behaviour of many robots.

We resume that there are some interesting research question in the field of SMRs. Our
project had shown that some of the robots perform well using the default method,
whereas others benefit from the learning. In our realization part, in 16 out of 24 ex-
periments the Spheros improved their behaviour and performed better than the default
method. Therefore, we conclude that it is possible to increase the motion accuracy by
learning the motion uncertainty of SMRs.

A. Appendix

A.1 Algorithms

Algorithm 1 ATC
Require:
µ, σ . For noise distribution
ptarget , p . Initialize values
T . Assign maximum training steps
maxIteration . maximum of simulation steps
return None

while t ≥ T do . Until maximum training steps reached
ε = N (µ, σ) . Generate noise
s = ptarget - p . Compute speed vector
preal = p + s + ε . Assign noise to pose
e = ptarget - preal . Compute error of current pose
M(t) = e . Remember error
p = preal
ptarget = ptarget + sref . Move target for next iteration

end while

µc = f1(M) . Calculate systematic error (Equation 4.4)

while i ≥ maxIteration do
ε = N (µ, σ)
s = ptarget - p
preal = p + s + ε
p = preal + µc . Correct systematic error
ptarget = ptarget + sref

end while

76 A. Appendix

Algorithm 2 Algorithm with Incremental Averaging
Require:
µ, σ . For noise distribution
ptarget , p . Initialize values
maxIteration . maximum of simulation steps
return None

while t ≥ maxIteration do . Until maximum training steps reached
ε = N (µ, σ) . Generate noise
s = ptarget - p
preal = p + s + ε . Assign noise to pose
e = ptarget − preal . Calculate error of current pose
µtc = f2(µt−1

c , e) . Calculate correction value (Equation 4.5)
p = preal + µtc . Correct systematic error
ptarget = ptarget + sref . Move target point for next iteration

end while

Algorithm 3 Incremental Alpha Method
Require:
µ, σ . For noise distribution
ptarget , p . Initialize values
maxIteration . maximum of simulation steps
return None

while t ≥ maxIteration do . Until maximum training steps reached
ε = N (µ, σ) . Generate noise
s = ptarget - p
preal = p + s + ε . Assign noise to pose
e = ptarget − preal . Calculate error of current pose
µtc = f3(µt−1

c , e) . Calculate correction value (Equation 4.6)
p = preal + µtc . Correct systematic error
ptarget = ptarget + sref . Move target point for next iteration

end while

A.2. Simulation Results 77

A.2 Simulation Results

A.2.1 Maximum Training Size

Table A.1: Distribution N (−5, 2.5)

µc AE σc |M| e∗

(5.00, 5.00)T (0.00, 0.00)T (0.81, 0.73)T 10 (4.93, 5.05)T

(4.95, 4.89)T (0.05, 0.11)T (0.61, 0.63)T 20 (4.96, 4.93)T

(4.98, 4.99)T (0.02, 0.01)T (0.47, 0.49)T 30 (4.99, 4.95)T

(4.97, 5.01)T (0.03, 0.01)T (0.33, 0.41)T 50 (5.00, 5.05)T

(5.00, 5.00)T (0.00, 0.00)T (0.26, 0.24)T 100 (5.01, 5.02)T

Table A.2: Distribution N (−5, 4) for x-and y-direction

µc AE σc |M| e∗

(4.92, 5.18)T (0.08, 0.18)T (1.30, 1.16)T 10 (5.03, 5.16)T

(5.03, 5.07)T (0.03, 0.07)T (0.88, 0.96)T 20 (5.10, 4.99)T

(4.92, 4.90)T (0.08, 0.10)T (0.74, 0.79)T 30 (4.92, 4.87)T

(4.96, 5.05)T (0.04, 0.05)T (0.58, 0.53)T 50 (4.89, 5.10)T

(4.94, 5.05)T (0.06, 0.05)T (0.39, 0.41)T 100 (4.93, 4.97)T

Table A.3: Distribution N (−5, 5.5) for x-and y-direction

µc AE σc |M| e∗

(4.65, 4.96)T (0.35, 0.04)T (1.90, 1.80)T 10 (4.57, 4.85)T

(4.87, 5.16)T (0.13, 0.16)T (1.24, 1.29)T 20 (4.89, 5.17)T

(4.98, 4.97)T (0.02, 0.03)T (1.04, 1.01)T 30 (4.97, 4.95)T

(4.92, 5.10)T (0.08, 0.10)T (0.70, 0.77)T 50 (4.88, 5.18)T

(4.96, 4.97)T (0.04, 0.03)T (0.65, 0.57)T 100 (4.96, 4.98)T

78 A. Appendix

Table A.4: Distribution N (−5, 7) for x-and y-direction

µc AE σc |M| e∗

(4.94, 5.06)T (0.06, 0.06)T (1.87, 2.38)T 10 (4.71, 5.28)T

(4.90, 4.54)T (0.10, 0.46)T (1.60, 1.49)T 20 (4.83, 4.52)T

(5.10, 5.12)T (0.10, 0.12)T (1.29, 1.26)T 30 (5.29, 5.11)T

(5.00, 4.86)T (0.00, 0.14)T (0.96, 0.86)T 50 (5.06, 4.75)T

(4.91, 4.92)T (0.09, 0.08)T (0.69, 0.68)T 100 (4.87, 4.97)T

Table A.5: Distribution N (15, 1) for x-and y-direction

µc AE σc |M| e∗

(-15.05, -15.04)T (0.05, 0.04)T (0.29, 0.29)T 10 (-15.06, -15.04)T

(-15.01, -15.02)T (0.01, 0.02)T (0.21, 0.22)T 20 (-15.00, -15.06)T

(-15.00, -14.99)T (0.00, 0.01)T (0.17, 0.16)T 30 (-15.01, -14.99)T

(-15.01, -14.99)T (0.01, 0.01)T (0.14, 0.14)T 50 (-15.02, -14.98)T

(-14.99, -15.01)T (0.01, 0.01)T (0.10, 0.10)T 100 (-14.99, -15.01)T

Table A.6: Distribution N (15, 2.5) for x-and y-direction

µc AE σc |M| e∗

(-15.21, -14.86)T (0.21, 0.14)T (0.79, 0.85)T 10 (-15.11, -15.01)T

(-14.97, -14.97)T (0.03, 0.03)T (0.56, 0.57)T 20 (-14.89, -15.01)T

(-15.12, -15.01)T (0.12, 0.01)T (0.45, 0.46)T 30 (-15.09, -15.05)T

(-15.09, -15.01)T (0.09, 0.01)T (0.37, 0.37)T 50 (-15.11, -15.02)T

(-14.97, -14.99)T (0.03, 0.01)T (0.28, 0.24)T 100 (-14.99, -14.93)T

A.2. Simulation Results 79

Table A.7: Distribution N (15, 4) for x-and y-direction

µc AE σc |M| e∗

(-15.11, -15.07)T (0.11, 0.07)T (1.29, 1.18)T 10 (-15.23, -15.17)T

(-14.88, -15.10)T (0.12, 0.10)T (0.90, 0.81)T 20 (-14.95, -15.09)T

(-14.90, -14.94)T (0.10, 0.06)T (0.67, 0.73)T 30 (-14.94, -15.01)T

(-15.01, -15.10)T (0.01, 0.10)T (0.64, 0.51)T 50 (-14.99, -15.07)T

(-15.01, -14.94)T (0.01, 0.06)T (0.42, 0.39)T 100 (-15.00, -14.98)T

Table A.8: Distribution N (15, 5.5) for x-and y-direction

µc AE σc |M| e∗

(-15.00, -15.34)T (0.00, 0.34)T (1.80, 1.75)T 10 (-15.23, -15.19)T

(-14.79, -14.94)T (0.21, 0.06)T (1.04, 1.07)T 20 (-14.92, -14.93)T

(-15.12, -15.16)T (0.12, 0.16)T (1.01, 1.02)T 30 (-15.05, -15.22)T

(-14.96, -15.00)T (0.04, 0.00)T (0.71, 0.83)T 50 (-15.06, -14.97)T

(-14.99, -15.03)T (0.01, 0.03)T (0.52, 0.51)T 100 (-15.00, -15.06)T

Table A.9: Distribution N (15, 7) for x- and y-direction

µc AE σc |M| e∗

(-14.82, -14.88)T (0.18, 0.12)T (2.35, 2.23)T 10 (-14.87, -14.70)T

(-14.93, -14.83)T (0.07, 0.17)T (1.59, 1.35)T 20 (-14.91, -14.85)T

(-14.98, -14.90)T (0.02, 0.10)T (1.22, 1.28)T 30 (-14.78, -14.81)T

(-14.78, -15.01)T (0.22, 0.01)T (0.96, 1.00)T 50 (-14.77, -15.00)T

(-15.08, -15.04)T (0.08, 0.04)T (0.70, 0.74)T 100 (-15.06, -15.03)T

80 A. Appendix

A.3 Realization Results

sphero
main
(F)

sphero
node
(C)

ROS
MASTER

(A)

sphero
calc
(E)

tracking
pose
(D)

camera
pylon
(B)

arena

A roscore

B roslaunch camera pylon
cam.launch

C rosrun sphero node
sphero.py

D rosrun tracking
pose sphero.py

E rosrun sphero calc
calc.py

F rosrun sphero main
main.py

Figure A.1: Basic Structure of the ROS components. On the left side there is an
overview of all nodes needed to be started. On the right side are the corresponding
terminal commands.

A.3. Realization Results 81

F
ig

u
re

A
.2

:
rq

t
gr

ap
h

82 A. Appendix

A.3.1 Positions

Positions on carpet with (u = 20, r = 20)

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.3: Positions of Sphero GPR with u = 20, r = 20. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

A.3. Realization Results 83

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.4: Positions of Sphero PGW with u = 20, r = 20. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

84 A. Appendix

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.5: Positions of Sphero WBR with u = 20, r = 20. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

A.3. Realization Results 85

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.6: Positions of Sphero GGY with u = 20, r = 20. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

86 A. Appendix

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.7: Positions of Sphero GWP with u = 20, r = 20. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

A.3. Realization Results 87

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.8: Positions of Sphero OBO with u = 20, r = 20. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

88 A. Appendix

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.9: Positions of Sphero OOP with u = 20, r = 20. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

A.3. Realization Results 89

Positions on carpet with (u = 50, r = 20)

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.10: Positions of Sphero GPR with u = 50, r = 20. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

90 A. Appendix

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.11: Positions of Sphero PGW with u = 50, r = 20. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

A.3. Realization Results 91

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.12: Positions of Sphero WBR with u = 50, r = 20. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

92 A. Appendix

Positions on carpet with (u = 20, r = 50)

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.13: Positions of Sphero GPR with u = 20, r = 50. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

A.3. Realization Results 93

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.14: Positions of Sphero PGW with u = 20, r = 50. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

94 A. Appendix

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.15: Positions of Sphero WBR with u = 20, r = 50. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

A.3. Realization Results 95

Positions on carpet with (u = 50, r = 50)

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.16: Positions of Sphero GPR with u = 50, r = 50. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

96 A. Appendix

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.17: Positions of Sphero PGW with u = 50, r = 50. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

A.3. Realization Results 97

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.18: Positions of Sphero WBR with u = 50, r = 50. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

98 A. Appendix

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.19: Positions of Sphero GGY with u = 50, r = 50. The colours indicate how
often certain points were reached by the robot. Form blue, light blue, yellow to red,
corresponds to less reach, sometimes, more often, reached a lot.

A.3. Realization Results 99

Positions on PVC floor with (u = 50, r = 50)

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.20: Positions of Sphero GPR with u = 50, r = 50 (PVC). The colours indicate
how often certain points were reached by the robot. Form blue, light blue, yellow to
red, corresponds to less reach, sometimes, more often, reached a lot.

100 A. Appendix

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.21: Positions of Sphero PGW with u = 50, r = 50 (PVC). The colours indicate
how often certain points were reached by the robot. Form blue, light blue, yellow to
red, corresponds to less reach, sometimes, more often, reached a lot.

A.3. Realization Results 101

(a) Default (b) ATC

(c) AIA (d) IAM

Figure A.22: Positions of Sphero WBR with u = 50, r = 50 (PVC). The colours indicate
how often certain points were reached by the robot. Form blue, light blue, yellow to
red, corresponds to less reach, sometimes, more often, reached a lot.

102 A. Appendix

A.3.2 Tables

Table A.10: Calibration test with u = 20 and r = 20 on carpet floor

Sphero GPR PGW

Default µt 4.312 4.842
samples 69 30

ATC µt 4.794 4.172
samples 33 24

AIA µt 4.965 4.06
samples 34 22

IAM µt 4.729 4.572
samples 38 25

Table A.11: Calibration test with u = 50 and r = 50 on carpet floor

Sphero GPR WBR

Default µt 3.376 3.672
samples 26 76

ATC µt 3.312 3.602
samples 61 60

AIA µt 3.182 3.376
samples 109 88

IAM µt 4.409 3.465
samples 72 62

Table A.12: 1. Parameter test with u = 20 and r = 20 on carpet floor

Sphero GPR PGW WBR GGY GWP OBO OOP

Default µt 4.888 3.793 3.702 3.749 3.76 4.226 3.835
samples 171 71 200 123 243 203 114

ATC µt 3.661 5.292 3.748 3.402 4.452 4.098 4.409
samples 216 51 203 119 160 127 58

AIA µt 3.402 4.266 3.713 4.454 4.296 4.279 4.449
samples 174 49 198 95 38 40 46

IAM µt 5.2 4.309 3.58 3.651 5.329 4.055 3.733
samples 42 44 87 45 63 144 8

A.3. Realization Results 103

Table A.13: 2. Parameter test with u = 20 and r = 50 (left), or u = 50 and r = 20
(right) on carpet floor

u = 20, r = 50 u = 50, r = 20
GPR PGW WBR GPR PGW WBR

Default µt 3.272 3.456 3.286 4.182 4.228 3.396
samples 107 126 70 76 80 89

ATC µt 3.321 3.526 3.744 3.86 4.053 3.786
samples 81 75 110 63 78 57

AIA µt 3.317 3.47 3.287 5.281 5.373 3.514
samples 89 57 83 42 54 99

IAM µt 4.378 3.383 3.256 4.931 4.726 3.754
samples 43 142 88 22 38 112

Table A.14: 3. Parameter test with u = 50 and r = 50 on carpet floor

Sphero GPR PGW WBR GGY

Default µt 3.281 3.432 3.52 3.528
samples 52 62 85 61

ATC µt 3.353 3.61 4.071 3.751
samples 51 112 45 49

AIA µt 3.355 3.583 3.787 3.399
samples 65 116 65 108

IAM µt 3.239 3.419 3.287 3.332
samples 88 112 79 43

Table A.15: Test with u = 50 and r = 50 on PVC floor

Sphero GPR PGW WBR

Default µt 2.972 3.132 3.546
samples 113 60 82

ATC µt 3.512 3.592 3.832
samples 95 59 59

AIA µt 3.349 3.638 3.045
samples 63 58 79

IAM µt 3.858 4.073 3.694
samples 40 76 92

104 A. Appendix

Bibliography

[AM11] H Vahid Alizadeh and Mohammad J Mahjoob. Quadratic damping model
for a spherical mobile robot moving on the free surface of the water.
In Robotic and Sensors Environments (ROSE), 2011 IEEE International
Symposium on, pages 125–130. IEEE, 2011. (cited on Page 9)

[AMBR+] Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Stefan Haag,
Gilles Caprari, Roland Siegwart, and Paul Beardsley. Displayswarm: A
robot swarm displaying images” iros 2011 open research demonstration”.
(cited on Page 8 and 74)

[AMBR+12] Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Roland Sieg-
wart, and Paul Beardsley. Image and animation display with multiple
mobile robots. The International Journal of Robotics Research, 31(6):753–
773, 2012. (cited on Page 2 and 8)

[AQN06] Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. Using inaccurate
models in reinforcement learning. In Proceedings of the 23rd international
conference on Machine learning, pages 1–8. ACM, 2006. (cited on Page 14)

[BA00] Shourov Bhattacharya and Sunil K Agrawal. Spherical rolling robot: A
design and motion planning studies. IEEE Transactions on Robotics and
Automation, 16(6):835–839, 2000. (cited on Page 9)

[BBPG97] Antonio Bicchi, Andrea Balluchi, Domenico Prattichizzo, and Andrea
Gorelli. Introducing the” sphericle”: an experimental testbed for research
and teaching in nonholonomy. In Robotics and Automation, 1997. Pro-
ceedings., 1997 IEEE International Conference on, volume 3, pages 2620–
2625. IEEE, 1997. (cited on Page 9)

[BFBD13] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo.
Swarm robotics: a review from the swarm engineering perspective. Swarm
Intelligence, 7(1):1–41, 2013. (cited on Page 7)

[Bor04] Christian Borgelt. Intelligente Datenanalyse - Vorlesungsskript. http:
//docplayer.org/3935072-Intelligente-datenanalyse.html, 2004. Accessed:
2017-07-03. (cited on Page 22)

http://docplayer.org/3935072-Intelligente-datenanalyse.html
http://docplayer.org/3935072-Intelligente-datenanalyse.html

106 Bibliography

[BTA06] Douglas A Bristow, Marina Tharayil, and Andrew G Alleyne. A survey
of iterative learning control. IEEE Control Systems, 26(3):96–114, 2006.
(cited on Page 14)

[CB14] Igor Cizelj and Calin Belta. Control of noisy differential-drive vehicles
from time-bounded temporal logic specifications. The International Jour-
nal of Robotics Research, 33(8):1112–1129, 2014. (cited on Page 11)

[CMEM+16] JM Rodiguez Corral, A Morgado-Estevez, D Cabrera Molina, F Perez-
Pena, Claudio Antonio Amaya Rodŕıguez, and Antonio Abad Civit Bal-
cells. Application of robot programming to the teaching of object-oriented
computer languages. International Journal of Engineering Education,
32(4):1823–1832, 2016. (cited on Page 10)

[CP13] Jon Carroll and Fabrizio Polo. Augmented reality gaming with sphero. In
ACM SIGGRAPH 2013 Mobile, page 17. ACM, 2013. (cited on Page 10)

[CV07] Sonia Chernova and Manuela Veloso. Confidence-based policy learning
from demonstration using gaussian mixture models. In Proceedings of the
6th international joint conference on Autonomous agents and multiagent
systems, page 233. ACM, 2007. (cited on Page 13)

[DFG+13] Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco Mon-
dada, Stefano Nolfi, Tarek Baaboura, Mauro Birattari, Michael Bonani,
Manuele Brambilla, Arne Brutschy, et al. Swarmanoid: a novel concept for
the study of heterogeneous robotic swarms. IEEE Robotics & Automation
Magazine, 20(4):60–71, 2013. (cited on Page 2)

[DFR15] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaus-
sian processes for data-efficient learning in robotics and control. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(2):408–
423, 2015. (cited on Page 13)

[DLR77] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum like-
lihood from incomplete data via the em algorithm. Journal of the royal
statistical society. Series B (methodological), pages 1–38, 1977. (cited on

Page 13)

[EHHR13] Aulia El Hakim, Hilwadi Hindersah, and Estiko Rijanto. Application of
reinforcement learning on self-tuning pid controller for soccer robot multi-
agent system. In Rural Information & Communication Technology and
Electric-Vehicle Technology (rICT & ICeV-T), 2013 Joint International
Conference on, pages 1–6. IEEE, 2013. (cited on Page 14)

[EP04] Austin I Eliazar and Ronald Parr. Learning probabilistic motion models
for mobile robots. In Proceedings of the twenty-first international con-
ference on Machine learning, page 32. ACM, 2004. (cited on Page 13)

Bibliography 107

[Fis12] Ismor Fischer. Introduction to Statistical Methods: 5.2 Formal Statement
and Examples. University Lecture, University of Wisconsin-Madison,
2012. Accessed: 2017-07-03. (cited on Page 22)

[GK90] Hiroaki Gomi and Mitsuo Kawato. Learning control for a closed loop
system using feedback-error-learning. In Decision and Control, 1990.,
Proceedings of the 29th IEEE Conference on, pages 3289–3294. IEEE,
1990. (cited on Page 14)

[IB16] M Ioannou and T Bratitsis. Utilizing sphero for a speed related stem
activity in kindergarten. 2016. (cited on Page 10)

[JBH07] Vrunda Joshi, RN Banavar, and Rohit Hippalgaonkar. Design, modeling
and controllability of a spherical mobile robot. In 13th Natl Conf on
Mechanisms & Machines (NaCoMM07) IISc, Bangalore, India, pages 1–
6, 2007. (cited on Page 9)

[JCGC12] Mariano Jaimez, Juan J Castillo, Francisco Garćıa, and Juan A Cabrera.
Design and modelling of omnibola c©, a spherical mobile robot. Mechanics
based design of structures and machines, 40(4):383–399, 2012. (cited on

Page 9)

[KBP13] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning
in robotics: A survey. The International Journal of Robotics Research,
32(11):1238–1274, 2013. (cited on Page 14)

[KO14] Masaki Kohana and Shusuke Okamoto. Sphero control system using a
web browser. In Network-Based Information Systems (NBiS), 2014 17th
International Conference on, pages 606–610. IEEE, 2014. (cited on Page 10

and 74)

[KPST15] Konstantinos Karydis, Ioannis Poulakakis, Jianxin Sun, and Herbert G
Tanner. Probabilistically valid stochastic extensions of deterministic mod-
els for systems with uncertainty. The International Journal of Robotics
Research, 34(10):1278–1295, 2015. (cited on Page 14)

[LWMC13] Andrew W Long, Kevin C Wolfe, Michael J Mashner, and Gregory S
Chirikjian. The banana distribution is Gaussian: A localization study
with exponential coordinates. Robotics: Science and Systems VIII, page
265, 2013. (cited on Page 12, 13, and 19)

[MZFC15] B; Eskubi-Astobiza J Mendez-Zorrilla, A; Garcia-Zapirain and
L Fernandez-Cordero. Sphero as an interactive tool in computer
games for people with id. In Computer Games: AI, Animation, Mobile,
Multimedia, Educational and Serious Games (CGAMES), 2015, pages
99–102. IEEE, 2015. (cited on Page 10)

108 Bibliography

[Nis14] Simon Andreas Engstrøm Nistad. Sphero NAV-Robotic Navigation and
Control Platform. Master’s thesis, UiT Norges arktiske universitet, 2014.
(cited on Page 10 and 19)

[NM12] Iñaki Navarro and Fernando Mat́ıa. An introduction to swarm robotics.
ISRN Robotics, 2013, 2012. (cited on Page 7)

[NTP11] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control: a
survey. Cognitive processing, 12(4):319–340, 2011. (cited on Page 13)

[Raw00] J. B. Rawlings. Tutorial overview of model predictive control. IEEE
Control Systems, 20(3):38–52, Jun 2000. (cited on Page 14)

[RCN14] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Pro-
grammable self-assembly in a thousand-robot swarm. Science,
345(6198):795–799, 2014. (cited on Page 8)

[RMJ16] M Roozegar, MJ Mahjoob, and M Jahromi. Optimal motion planning and
control of a nonholonomic spherical robot using dynamic programming
approach: simulation and experimental results. Mechatronics, 39:174–
184, 2016. (cited on Page 9)

[Str79] Regina Strom. Wahrscheinlichkeitsrechnung, mathematische Statistik und
statistische Qualitätskontrolle. Fachbuchverlag, 1979. (cited on Page 21

and 22)

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.
(cited on Page 11, 12, and 13)

[TT07] Gerald Teschl and Susanne Teschl. Mathematik Für Informatiker – Anal-
ysis und Statistik, volume 2 of eXamen.press. Springer-Verlag, Berlin,
Heidelberg, New York, 2 edition, September 2007. (cited on Page 21)

[VTKP09] Nikos Vlassis, Marc Toussaint, Georgios Kontes, and Savas Piperidis.
Learning model-free robot control by a Monte Carlo EM algorithm. Au-
tonomous Robots, 27(2):123–130, 2009. (cited on Page 15)

[WPN14] Justin Werfel, Kirstin Petersen, and Radhika Nagpal. Designing collec-
tive behavior in a termite-inspired robot construction team. Science,
343(6172):754–758, 2014. (cited on Page 2)

[WT90] Greg CG Wei and Martin A Tanner. A monte carlo implementation of the
em algorithm and the poor man’s data augmentation algorithms. Journal
of the American statistical Association, 85(411):699–704, 1990. (cited on

Page 15)

Bibliography 109

[YHK16] Sung-Hoon Yu, Chang-Ho Hyun, and Hyo Seok Kang. Robust dynamic
surface tracking control for uncertain wheeled mobile robot with skidding
and slipping. In Control and Robotics Engineering (ICCRE), 2016 IEEE
International Conference on, pages 1–4. IEEE, 2016. (cited on Page 11)

[YS07] Tomi Ylikorpi and Jussi Suomela. Ball-shaped robots. Technical report,
2007. (cited on Page 9)

110 Bibliography

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Motivation
	1.2 Goal of this Thesis
	1.3 Structure of the Thesis

	2 Related Work
	2.1 Swarm Robotics
	2.2 Spherical Mobile Robot
	2.3 Uncertainty in Robotic Control
	2.4 Motion Model Adaptation

	3 Background
	3.1 Sphero
	3.2 ROS Environment
	3.3 Measures for Evaluation

	4 Learning the Motion Uncertainty
	4.1 Motion Analysis of Sphero
	4.1.1 Experimental Setup
	4.1.2 Experimental Results
	4.1.3 Evaluation of Experimental Results

	4.2 Learning Methods
	4.2.1 Algorithm with Training Concept (ATC)
	4.2.2 Algorithm with Incremental Averaging (AIA)
	4.2.3 Incremental Alpha Method (IAM)

	5 Simulation of the Motion Model
	5.1 Program
	5.1.1 Input
	5.1.2 Success Rate

	5.2 Results
	5.2.1 Maximum Training Size for ATC
	5.2.2 Changing Distortion
	5.2.3 Applying the Real Data
	5.2.4 Changing Environment

	5.3 Conclusion

	6 Evaluation of Spherical Robots
	6.1 Implementation
	6.1.1 General Concept
	6.1.2 Algorithm Details compared to Simulation
	6.1.3 Calibration
	6.1.4 Speed Adaptation

	6.2 Experiments
	6.3 Results
	6.3.1 Parameter Tests without periodic Calibration
	6.3.2 Parameter Tests with periodic Calibration

	6.4 Problems
	6.5 Conclusion

	7 Conclusion
	A Appendix
	A.1 Algorithms
	A.2 Simulation Results
	A.2.1 Maximum Training Size

	A.3 Realization Results
	A.3.1 Positions
	A.3.2 Tables

	Bibliography

