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Abstract

In this thesis, a method for tracing the influence of the initial population
throughout the generations in evolutionary algorithms (EAs) is proposed and
evaluated. The algorithm tracks the influence by attaching markers on genes,
linking to the initial population. The algorithm is implemented for bit vector
and integer vector representations. Besides the tracable evolutionary algorithm
(T-EA), four metrics to measure the impact of an individual from the initial
population are proposed. The concept of tracing the impact will be evaluated
using three problems, the Max Ones problem, the 0/1 Knapsack problem and
the (Un)bound Knapsack problem. With the evaluation of the framework,
assumptions regarding the influence if the initial populations on the result of
an EA are discussed and answered.
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1. Introduction

Evolutionary algorithm (EA) are one of the three biology inspired methods in
the field of computational intelligence. Based on the concept of evolution in na-
ture, they try to solve complex optimization problems by modeling populations
of solutions, evolving them over many generations to find an optimum. The
problems to be solved can be highly diverse, ranging from optimising shapes
of wind tourbines or areoplane wings, optimizing the structure and training
neuronal networks (NNs), to applications in the medical domain.

EAs generally are considered to be understandable white boxes, but under-
standing the learning process is still challenging, especially for complex prob-
lems. While fields like explainable artificial intelligence (XAI) have already
emerged for NNs, better understanding the results of EAs is still largely un-
explored.

One important factor on the results of an EA is the initial population. While
seeding the initial population is already an established field of research, all of
these methods are solely based on the evaluation of the quality of the result.
To better understand the influence of the first generation, this thesis proposes
the tracable evolutionary algorithm (T-EA), a form of EA capable of tracking
the influence of the initial population through the generations to the final
result. Measuring the impact of an individual on the last generation, besides a
simple counting approach, three additional metrics for measuring the impact
of an individual are proposed, using the fitness of the individuals as well as
the diversity of the population.

Traceability for EA has been implemented for bit vector and integer vector rep-
resentations. It is evaluated using three different optimizations problems, the
Max Ones problem, the 0/1 Knapsack problem and the (Un)bound Knapsack
problem. First, a proof of concept evaluation of selected testruns is provided
to show the information gain when evaluating single and multiple testruns. Fi-
nally, three hypotheses are used to test the T-EA, to compare the four impact
metrics with each other and to gain some general knowledge about the relation
between the initial population and the resulting impact of the individuals. For
this reason, the hypothesis are aimed at general assumptions regarding the
impact of individuals or mutation on the last generation.
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1. Introduction

1.1. Structure of the thesis

Completing this chapter, the structure of the thesis is presented in the form
of the headline of the chapter, as well as a short description of its content.

Basics The second chapter explains the basics of the thesis, starting with
the optimization problem in section (2.1), followed by an explanation of
EA in section (2.2), finally describing the problems used to evaluate the
thesis in section (2.3).

Motivation and Related Work explains both the related work as well as
motivation for the thesis. The first section (3.1) and second section (3.2)
show motivations from the field of XAI and automatic parameter tuning
in EA. The section (3.3) showcase the related fields of study of seeding the
initial population in EA. Closing the chapter is section (3.4), showcasing
the current use of historical markers in EA.

Traceable Evolutionary Algorithms explains the concept of T-EAs. First,
the concept of traceIDs for genes is presented in section (4.1), showing
also first examples of the tracking process. Secondly in section (4.2),
four different metrics for measuring the impact of an initial individual
are proposed.

Experimental Setup first describes three hypothesis about the development
of gene heritage through the EA in section (5.1). Secondly the test
design for the three hypothesis as well as the configurations for the three
problems used are presented in section (5.2).

Evaluation first provides a proof of concept evaluation, showing the capa-
bilities of the T-EA for a single and multiple runs in section (6.1), then
evaluates hypothesis explained in the previous chapter in section (6.2).

Conclusion and future Work Closing the thesis, this chapter summarizes
the results discussed in the previous evaluation chapter in section (7.1)
and gives an outlook on the potential future developments of the T-EA
in section (7.2).
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2. Basics

Understanding the basics of evolutionary algorithms (EAs) as well as the prob-
lems analyzed in this thesis are crucial when analyzing the impact of the initial
generation on the last. Therefore, this chapter first describes the basics of an
optimization problem, then explains the necessary parts of EAs for the topic
of this thesis and finally focuses on the problems used to analyze the proposed
metrics.

2.1. Optimization Problem

Optimization problems [25, p. 189] are a pair of a solution space (G) and an
evaluation function (g : G→ R), assigning the quality g(x) to each candidate
of solutions (x ∈ G). The goal is to find the globally best solution x′ with
∀x ∈ G : g(x) 6 g(x′). An example of those two spaces can be seen in figure
(2.1).

G

ℝ
fg

G

W
S

F

d

Figure 2.1.: Relation between the solution space (G) with the evaluation func-
tion (g) and the search space (S) with the optimization algorithm
(f), connected by the encoding (d).

Solving an optimization problem is done by searching the best solution in the
search space (S) with an optimization algorithm (f : S → R). Connecting
the search space with the solution space is an encoding (d : S → G ⊆ W ).

3



2. Basics

The search space needs to include the optimal solution, but can also include
unfeasible solutions (S * F ), representing incorrect solutions in the solution
space (W * G). One type of optimization algorithm that can solve such
optimization problems are EAs, described in more detail in the next section.

2.2. Evolutionary Algorithms

EAs try to find the best solutions in optimization problems, described in the
previous section. The principle of EAs is inspired by evolution in the real world.
A population of solutions is evolved over many generations by recombining and
altering them, filtering worse solutions by selection to gradually improve the
solutions over time. Kruse et al. split EAs into the following parts [25, p. 195]:

• A population of individuals, which represents a subset of candidate
solutions to the problem.

• An encoding for the individuals, which allows to represent candidate
solutions for the given problem. Individuals can be encoded in different
ways, most commonly as a data-vector, a tree or a graph. The represen-
tation of the individual is also called genotype or genome. The genotype
represents a solution of the problem in the search space. The individ-
ual attributes of an individual are called genes, while a value of a gene
is called an allele. The real solution in the solution space is called a
phenotype.

• A fitness function to evaluate the individuals in the context of the
problem.

• Generations, iterations of the EA.

• Genetic operators to generate new individuals, which can be done
through crossover and mutation. Crossover is done by picking two indi-
viduals as the parents and combining them into new individuals, called
offspring. In mutation, the genes of an individual are randomly altered
to create a new one.

• Two selection mechanisms, one that picks the individuals for the ge-
netic operators and another that specifies how many individuals from
the old generation and how many of the offspring created by the genetic
operators are picked to survive to the next generation.

• A termination criterion defining the conditions to end the search.

4



2.2. Evolutionary Algorithms

Depending on the problem, the implementation of an EA will differ. There are
many types of EAs, like genetic algorithms [25, 245 ff.], evolutionary strategies
[25, 257 ff.], evolutionary programming [25, 257 ff.] or many other population
based approaches.

evaluation terminate?initial pop result

breeding-
selection

crossover

mutation

evaluation

enviromental-
selection

No

Yes

Figure 2.2.: Visual representation of the general framework of an EA.

Figure (2.2) shows the structure of a generic EA. The algorithm needs an
initial population as an input, which can be generated or provided by the
decision maker. Before starting the loop, the initial population is evaluated
and tested for termination. Starting the loop, the breeding-selection starts the
breeding-process, selecting individuals for recombination in crossover. Several
selection operators were proposed in the literature. One of the simplest is the
random selection, where every individual has the same probability of being
selected, regardless of its fitness. A fitness based selection mechanism would
be the roulette wheel selection [25, 221 f.], where the probability of being
selected depends on the fitness of the individual. Individuals with a higher
fitness therefore will be picked with a higher probability than individuals
with a lower fitness. Another fitness based approach is tournament selection
[25, 229 f.]. In this approach, the parents are picked by randomly selecting
for both parents, depending on the tournament size, k individuals from the
current generation. Of those k individuals, the best one wins the tournament
and is selected as a parent. This process is performed for both individuals
entering crossover.
After the selection process, the genetic operators are applied to generate
the offspring. The number of generated offspring can vary depending on
the environmental-selection. It is both possible to generate more offspring
than the population size allows, the exact amount needed or less than the
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population size, needing to select individuals from the current generation to
pass into the next generation.
Figure (2.3) shows an example of a one-point crossover [25, p. 236] of two
individuals. The genome of both is cut at one random place and the genes on
the left are swapped, creating the offspring. Extending this crossover-type,
two-point or n-point crossover split the individuals according to their name in
two or n pieces. Other approaches include the uniform crossover [25, p. 237],
where an exchange probability determines if a gene is swapped or not, or the
shuffle crossover, which shuffles the genes of the selected individuals, applies
another crossover type, most commonly a form of n point crossover, and
finally deshuffles the genes of the produced offspring.
After crossover, mutation is applied by a pre-defined probability on the genes
of the individuals, altering it to a new value. Depending on the implementa-
tion this new value can be based on the old gene-value or randomly generated,
independent of the old gene-value [25, 233 ff.].

1 1 1 0 1 1 0 0 0 1

  parents   offspring

1 0 0 1 1 1 1 1 1 1

Figure 2.3.: Example of a one-point-crossover operation between two individ-
uals, encoded as bit-vectors.

After generating the new individuals, they need to be evaluated with the
fitness function. This function assigns a mathematical value to each individ-
ual, based on the objective of the problem. This allows the comparison of
the individuals in the scope of the optimization problem. Hence optimiza-
tion problems can have a single-objective or multiple-objectives. Multiple
objectives can be optimized by using a separate fitness function for each
objective, resulting not in a single best result but a multitude of best results
in a so called pareto-front [25, 280 ff.]. However, the problems later discussed
in this thesis all have a single objective. Evaluating the individuals also
needs to take into account possible constraints of the problem. If a problem
has constraints, invalid/unfeasible solutions can occur, meaning that a gene
combination which represents a solution that is not valid and does not fulfill
the constraints. Coello gives a basic overview of constraint handling in [4].
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There are several options for handling such constraints, the most common
being feasibility preserving methods [4, 11 ff.]. The principle of this method
is to only generate feasible offspring through crossover and mutation. Other
methods use a penalty function [4, 3 ff.] as an addition to the fitness function
to compute the fitness. The penalty can be a fixed value, indicate the amount
of violation and possibly change with the generation counter. Another possible
approach is the parameter free approach [4, 15 f.]. As the name suggests,
no additional penalty parameter is used, instead, feasible solution are biased
through the fitness function itself, for example by strictly differentiating
between feasible and unfeasible solutions assigning only positive fitness values
to feasible and negative values to unfeasible solutions. This way, depending
on the selection-mechanism, valid individuals have an advantage at being
selected over invalid individuals.

The environmental-selection heavily depends on the number of generated
offspring from the genetic operators. A simple selection method is the genera-
tional approach [25, p. 232], where a predefined number of the old individuals,
called elites [25, p. 230], is passed to the next generation, while the remaining
number of individuals is generated using the genetic operators, so no extra
selection is required. There are several other selection mechanisms, specifying
how many of the old individuals and the offspring will pass into the next
generation. An example for an environmental-selection that allows generating
more new individuals than needed is the (µ+λ)-selection [25, p. 258]. The
best µ individuals among the old individuals and the offspring will pass into
the next generation. λ represents the number of newly generated individuals
in this case. Selecting the individuals for the next generation can also be done
with the same selection methods as the breeding-selection.

The evolutionary process finally ends when the termination criteria is met.
Most often this is a fixed number of generations, but it can also include
other factors like reaching a fitness value or not improving for n number of
generations.

2.3. Problems

This chapter explains the three problems used to evaluate the capabilities of
the later proposed tracable evolutionary algorithm (T-EA). Besides the general
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problem, the encoding and fitness equations are also discussed. The specific
parameters for the test setup follow in a later chapter.

2.3.1. Max Ones Problem

The Max Ones Problem is a simple problem designed for testing purposes.
The representation of the genotype is a bit vector or string with a fixed length,
consisting of ones and zeros. The goal is to reach the maximum amount of
ones in the string, so that there are only ones and no zeros. The fitness, shown
in equation (2.1), is calculated by the number of ones in the vector divided
by the number of genes in the genotype for normalization. The problem is
unconstrained and can reach fitness values from 0 to 1.

fMaxOnes(~x) =

∑n
i=0(~x[i])

n
(2.1)

The problem is very simple and can even be solved more easily by a human
than an EA. The advantage here is that the fitness value of an individual can
be easily calculated by just looking at the number of ones in an individual,
which makes it possible to built a specific starting population based on the
fitness value. Of course, depending on the parameters, the problem can be
engineered to be more difficult for EAs, for example by increasing the number
of genes. The purpose for this problem is not to pose a difficult task for the
evaluation, but to be able to engineer starting populations and to analyze the
schema of the initial population with regards to the resulting population.

2.3.2. Knapsack Problem

The Knapsack Problem consists of the task of filling up a knapsack with items
to get the maximum amount of value. The knapsack has a maximum carrying
capacity and the items have a price and a weight attached to them. The goal
is to find the most valuable combination of items that is still fitting into the
knapsack. Some of the many variation of the Knapsack Problems are described
by Kellerer et al. in [23]. The two most common types, the 0/1 Knapsack
and the (Un)bounded Knapsack Problem are used in this Thesis. In the 0/1
Knapsack Problem, every item can be picked just once to be placed in the
knapsack, while in the (Un)bound Knapsack Problem every item can be picked
several times. The following two sections will explain the implementation of
both problems with regards to the encoding, fitness function and constraints.
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0/1 Knapsack Problem

In the 0/1 Knapsack Problem, also described by Sahni in [35], every item
can be placed just once in the knapsack. Each possible item therefore can be
represented as a bit, consisting the genome of a bit vector. The cost and weight
of the items need to be stored in separate vectors, as well as the maximum
weight. Figure (2.4) shows an example of the encoding of a 0/1 Knapsack
Problem. The maximum weight, cost- and weight-vectors are stored globally
for all individuals, while the genome of the individuals is storing whether an
item is present in the knapsack or not. Since the genome is stored as a bit-
vector, the values can only be 0 or 1.

Item 1 2 3 4 5

Cost 33 24 36 37 12

Weight 15 20 17 8 31

Ind 1 1 0 1 1 0

Ind 2 1 0 1 1 1

Ind 3 1 1 1 0 1

weight fitness

40 106

71 -1

83 -17

Max-weight 70

Figure 2.4.: Example of the encoding of a 0/1 Knapsack Problem.

For handling the constraint of the maximum weight of the knapsack the before-
mentioned parameter-free approach [23, 187 ff.] can be used. Therefore, calcu-
lating the fitness is split into two parts: a positive fitness when the knapsack
is not overweight, and a negative fitness if the knapsack is overweight. Equa-
tion (2.2) shows this fitness function, with the cost of item i being c(i) and
the weight of item i being w(i). If the total weight in an individual (wind(~x))
is bigger than the maximum allowed weight (wmax), the fitness will be the
difference between wmax and wind(~x). That means, individuals who are more
overweight are ranked worse than individuals being just slightly overweight.
If wind(~x) is in the allowed range, the fitness will be the sum of the number
of times an item is present in the knapsack (~x[i] multiplied by the cost of the
item c(i)). The weight of the individual is computed using equation (2.3).

f(x) =

{
wmax − wind(x) if wind(x) ≥ wmax∑m

i=0 x(i) · c(i) otherwise
(2.2)
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wind(x) =
m∑
i=0

x(i) · w(i) (2.3)

In the example in figure (2.4), the weights of individuals is calculated with
equation (2.3) and the fitness with equation (2.2). Ind 1 has a weight lower
than the maximum, therefore the fitness is calculated by the sum of the costs
of the items in the knapsack. Ind 2 and ind 3 are both overweight, so the
fitness is the difference from the actual weight to the maximum allowed weight.
Since ind 2 is less overweight than ind 3, its fitness value is better. That way
the selection operators can differentiate between individuals which are more
overweight, being less feasible than solutions which are less overweight. This
ensures an improvement per generation, even if no individual of the starting
population is fulfilling the weight constraint.

The disadvantage of the 0/1 Knapsack Problem in contrast to the Max Ones
Problem is that it is hard to handcraft starting populations with specific char-
acteristics. On the other hand it is a more complex, NP-hard problem, that
poses a bigger challenge for EAs, potentially giving a more interesting insight
when analyzing the impact of the starting population through the generations.

(Un)bound Knapsack Problem

The implementation of the (un)bound Knapsack Problem [23, p. 175] is very
similar to the 0/1 Knapsack Problem. The main difference is the encoding of
the individuals. Instead of a bit vector, an integer vector is used, since items
can be placed more than once into the knapsack. Because integer values can be
negative, and a negative amount of items is also not allowed in this problem,
we need to set a min-value that the genes are allowed to reach, in this case 0
for all genes. It is also preferable to set the max-value for each gene to the
maximal amount that an item can be placed into the knapsack before getting
too heavy, to limit the number of times an item can be placed to a reasonable
amount. Otherwise, mutation operations have a high chance of resulting in
too big numbers, rendering them ineffective and hampering the improvement
of the evolutionary process. An encoding of a (un)bound Knapsack Problem
can be seen in figure (2.5).

Calculating both the weight (equation (2.3)) as well as the fitness (equation
(2.2)) can be done with the same equations as the binary-knapsack imple-
mentation. Figure (2.5) also shows the corresponding fitness-values for each
individual, similar to the previous implementation.
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Item 1 2 3 4 5

Cost 33 24 36 37 12

Weight 15 20 17 8 31

Min 0 0 0 0 0

Max 4 3 4 4 2

Ind 1 2 0 1 2 0

Ind 2 0 0 0 3 1

Ind 3 1 3 0 0 0

weight fitness

63 106

55 123

75 -5

Max-weight 70

Figure 2.5.: Example of the encoding of a (Un)bound Knapsack Problem.

The (Un)bound Knapsack Problem was chosen to analyze a second datatype
besides the bit-vector. It also proposes a harder challenge than the binary-
knapsack problem, since the search-space is much bigger than in the other
problem.

After presenting the basics of EAs and the problems used later in this thesis,
the next chapter focuses on the motivation and related work leading to the
concept of tracking genes in EAs.
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3. Motivation and Related
Work

Analyzing the impact of the initial population in an evolutionary algorithm
(EA) is a novel approach. Though historical markers in EAs as well as the
analysis of the starting population are not novel, they were never used to an-
alyze the impact of the initial population. The practice of trying to explain
the results of intelligent systems like neuronal networks is also an active field
of research. This chapter first analyzes this field of explainable artificial in-
telligence (XAI). Then we look into the related fields of seeding the initial
population and automatic parameter tuning in EAs. Finally we discuss the
use of historical markers in the evolution of neuronal network topologies.

3.1. Explainable Artificial Intelligence

XAI most often referes to the interpretability problem of black box machine
learning systems, especially neuronal networks (NNs). In recent years, NNs
gained a lot in popularity, since advancements in computational resources, new
and improved algorithms and the availability of data grew over time. Through
those advancements, the application in critical areas like the medical domain,
self driving cars or the finance sector become more common. With the use of
such systems in those areas, it is being questioned if we can trust black-box
systems like NNs. The problem most often derives from segregated input data,
as Zou and Schiebinger mention in their article [45], especially in the medical
domain, because generating data here is often costly. An example is a recent
algorithm from Esteva et al. detecting skin cancer [10], which was trained with
129,450 images, but fewer than 5% of those images represented dark skinned
individuals [45]. To regain the trust in artificial intelligence (AI), the field of
XAI has emerged, trying to shine a light into the black box that is the decision
process of NNs.

There are already a variety of approaches trying to explain the decisions made
by AI. Dosilovic et al. categorize them into integrated interpretability, ad-
hoc interpretability and ad-hoc explainability [9]. They define interpretability
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as being able to humanly understand the decision-making method and ex-
plainability as explaining the decision of more complex structures through the
collection of interpretable features. The three categories can be described as
follows:

integrated interpretability Integrated interpretability methods are only re-
lying on interpretable structures itself like decision rules, trees or tables.
In [20], Huysmans et al. these three approaches are compared. How-
ever, limiting the structure to be humanly understandable is limiting
performance for interpretability. There are also hybrid models, like [16]
proposed by Gestel et al., that combine an interpretable model with
some black box operators to increase performance, at the expense of
interpretability.

post-hoc interpretability Post-hoc methods on the other hand try to explain
more complex structures, which can not easily be interpreted by itself.
Interpretability can still be achieved, e. g. through interpretable proxy
models, meaning models with integrated interpretability resembling more
complex structures like NNs. Zoho et al. [44] for example generated
rules approximating an assembly of neuronal networks. There are also
visualization-based approaches, for example Zeiler and Fergus [43] tried
visualizing the intermediate layers of a NN while Cortez and Embrechts
[5] are proposing the sensitivity analysis method, trying to visualize input
effects on the model response and feature importance.

post-hoc explainability Explainability methods also provide an explanation
in the form of text or visualizations for every decision. An example for
text explanations comes from Hendricks et al. [19], proposing so called
”visual classification” describing image classification. Datta et al. [7]
presents a method explaining the outputs with the degree of influences
from the inputs.

EAs are widely considered to be white boxes, since the learning process itself
often times is understandable. However, the learning-process quickly becomes
incomprehensible for humans when using complex fitness functions. Although
the result is interpretable through the fitness function most of the time, and the
evolutionary process is comprehensible for humans, understanding the origin of
the result is hard to understand, especially for complex problems. Tracing the
impact from the initial population through an EA can be seen as a first step
towards a post-hoc explanation of the evolutionary dynamics when generating
results with such algorithms.
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3.2. Automatic parameter tuning in EAs

One motivation for tracking the impact of the initial population in EAs is to
better understand the evolutionary dynamics, subsequently leading to a better
understanding and improved parameter tuning. EAs have many parameters
to be set beforehand, for example the population size, the mutation rate or the
number of generated offspring. The reason for this configurability is the wide
range of possible problems with differing optimal settings. Finding the right
parameters is important for the success of the EA. While it is still common
to tune the parameters based on conventions, ad hoc decisions or testruns of
varius configurations, automated approaches have been developed, with irace
[27] being a popular parameter tuning framework.

The name irace stands for iterative racing. It generally consists of three steps:

1. sampling new configurations according to a particular distribution

2. selecting the best configurations from the newly sampled ones by the
means of racing

3. updating the sampling distribution in order to bias the sampling towards
the best configurations

The term racing describes the analysis of the different configurations. A race
starts with all configurations being analyzed for a fixed amount of steps. After
these initial steps, the worst performing configurations are discarded and the
race continues with the remaining, surviving, configurations, repeating the
process of discarding solutions until a minimal number of configurations is
met. This allows for a faster, less resource demanding runtime than entirely
analyzing all the configurations. The distribution for the next generation of
configurations is then altered towards the best found in the race by modifying
the mean and standard deviation. This process is repeated until a termination
criteria is met, similar to an EA.

However, although improvements can be shown with automatic parameter
tuning [27], the underlying process is a black-box, not leading to a better
understanding of why the parameters are tuned the way they are. Since the
procedure is iterative, very computationally intense problems still pose a prob-
lem to runtime. Insights on the evolutionary dynamics could potentially lead
to an improvement of the parameter tuning, whether by hand or automated.
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Year Authors Approach Result quality Runtime Population Diversity
2004 Maaranen, Miettinen, and Mäkelä [28] yes yes no
2005 Kimura and Matsumura [24] yes yes no
2013 Kazimipour, Li, and Qin [22] yes no no
2009 Pant, Thangaraj, and Abraham [29] yes no yes
2007 Rahnamayan, Tizhoosh, and Salama [33] yes yes no
2012 Dong et al. [8] yes no no
2007 Gao and Wang [14] yes yes no
2012 Gao and Liu [13] yes yes yes
2011 Gutiérrez et al. [18] yes yes yes
2007 Uy et al. [40] yes yes no
2012 Peng et al. [31] yes no no
2001 Leung and Wang [26] yes no no
2009 Gong et al. [17] yes no no
2008 Rahnamayan, Tizhoosh, and Salama [34] yes yes no
2010 Peng and Wang [32] yes yes no
2009 Wang et al. [41] yes yes no
2009 Dasgupta et al. [6] yes yes no
2013 Ali, Pant, and Abraham [2] yes yes no
2013 Sharma and Tyagi [37] no no no
2017 Younis, Yang, and Passow [42] yes yes no
2017 Gaina, Lucas, and Perez-Liebana [12] yes no no
2015 Friedrich and Wagner [11] yes yes no

Table 3.1.: Comparison of the evaluation of seeding techniques in literature.

3.3. Seeding the initial population in
evolutionary algorithms

Studying the effect of the initial population on the result in EAs has been a
popular field of study over the last decades. The process of initializing the
initial generation on EAs is also known as seeding the initial population. Al-
though EAs most of the time are initialized randomly [21], studies have been
done on other seeding methods, trying to improve the performance of the
EA. However, the evaluation of such seeding techniques is almost always done
by studying the quality of the results and the runtime. Table (3.1) shows a
collection of papers which propose or analyze seeding techniques in EAs, com-
paring the evaluation process. Most papers ran performance tests based on
the quality of the result, with the quality being measured by the success rate
or the approximation quality of the optimization. Additionally, the computa-
tional effort was also analyzed on most cases. However, only [29], [13] and [18]
analyzed an additional parameter, the population diversity. All three papers
analyze the initialization of particle swarm optimization, where the population
diversity plays an important role for adjusting exploration and exploitation.
However, no additional parameters where analyzed when comparing the results
between different seeding techniques.
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This work tries to close this gap by studying the impact of the starting popula-
tion on the last generation. Analyzing the dynamics inside an EA through the
impact of single individuals might yield new information which could improve
seeding procedures in the future.

3.4. Historical markers for genes in other
approaches

The paper Evolving Neuronal Networks through Augmented Topologies [38]
from Stanley and Miikkulaien published in 2001 was the first publication where
historical markers were proposed to track the heritage of genes in EAs, though
not for analyzing the impact of the starting population. Standley and Miikku-
laien proposed a new method for generating both the weights and the topol-
ogy of NNs with evolutionary algorithms. Historical markers, or innovation-
numbers as they are called in the paper, are markers attached to the data of a
gene, pointing back to its origin. To understand why innovation numbers are
necessary for their method, the encoding of the NNs in the EA, the mutation
and crossover operation as well as the competing conventions problem needs
to be explained.

1 2 3

4

5
nr. 1 2 3 4 5

type input input input hidden output

in 1 2 2 3 4

out 4 4 5 5 5

weight 0.7 -0.5 0.5 0.2 0.4 

active en en dis en en

innov. 1 3 4 5 6

Node-genes:

Connection-genes:

Genome (Genotype): Network (Phaenotype):

Figure 3.1.: Neuroevolution of augmented typologies (NEAT) encoding of a
NN. The genome is shown on the left and the resulting network
on the right. The genome is split into two vectors, the node genes,
defining the nodes, and the connection genes, defining the connec-
tions of the network.

Figure (3.1) shows the encoding of an individual, with the corresponding net-
work. The NEAT encoding, NEAT standing for neuroevolution of augmented
topologies, is a direct encoding of the network structure. As the example
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shows, the genome is split into two types of genes, the node genes and the
connection genes. As their names suggest, the node genes define the nodes
of a network, specifying the role as input-, hidden- or output nodes. The
connection genes define the connections between the nodes, storing the in
and out nodes that they connect, a weight, a flag if the connection is enabled
or disabled, and an innovation number, the equivalent tracking number
to the traceID in this thesis. The NEAT encoding does not strictly fulfill
the structural requirements of a NN, so infeasible individuals are possible.
Consequently, the mutation and especially the crossover operators need to
satisfy these constraints to produce feasible offspring.

1 3 4 5 6

1->4 2->4 2->5 3->5 4->5

en en dis en en

1 2 3

4

5

1 3 4 5 6 7

1->4 2->4 2->5 3->5 4->5 3->4

en en dis en en en

1 2 3

4

5
mutate: add connection

1 3 4 5 6

1->4 2->4 2->5 3->5 4->5

en en dis en en

1 2 3

4

5

1 3 4 5 6 7 7

1->4 2->4 2->5 3->5 4->5 3->4 6->5

en en dis dis en en en

1 2 3

4

5
mutate: add node

6

Figure 3.2.: The two types of mutation in NEAT, the add connection and add
node mutation. The encoding for the connection genes is shown
in a reduced form over the networks, with the innovation number
on top, following the in and out nodes and the enabled flag on the
bottom.

The two types of mutation operations, one for each gene type, can be seen in
figure (3.2). On the left side is the add connection mutation, which adds a new
connection to the network. The right side shows the add node mutation, which
adds a new hidden layer node on an existing connection into the network.
Adding a new node requires the deactivation of the old connection and the
addition of two new connections, connecting the old "out node" with the new,
as well as the new node with the old "in node". All newly added connections
get an individual innovation number counted upwards. The only exception,
giving two connections the same innovation number, occurs if by chance the
same connection is formed in two individuals at the same time. Giving two
connections the same innovation number is necessary, since they are used to
differentiate them in crossover, as later described. If the same connection
is added multiple times in the same generation, they should therefore have
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the same innovation-number. There is also a third, non structural mutation,
altering the weights of the connections.

1 2

CA B

3

1 2

AC B

3

[A, B, C] [C, B, A]

Crossovers: [A, B, A] or [C, B, C]

Figure 3.3.: The competing-convention-problem showing 2 out of 6 possible
permutations of the same solution of a NN. Without matching the
nodes, the resulting offspring will lose information.

Since the network’s growth is unconstrained in the NEAT encoding, the
crossover should make sure that it only produces valid new individuals without
unconnected nodes or connections with no in or out node. Not getting stuck
in local optima, the resulting networks also should represent good solutions.
Besides unfeasible networks, information loss is a big issue in the so called
competing conventions problem, shown in figure (3.3). The example consists
of two permutations of a solution representing the same result. On the left
side, the hidden-layer-nodes are ordered [A, B, C], and on the right side [C, B,
A]. Crossing over two permutations of the same solution almost always results
in information loss, resulting in the networks with hidden-layers [A, B, A] or
[C, B, C]. Comparing the topology with a dedicated algorithm is computa-
tionally expensive, therefore the paper proposes a way to match genes by their
historical information through the innovation number. In the crossover opera-
tion, genes can be exactly matched, since the same innovation number implies
the same heritage. Figure (3.4) shows the matching of the genes using this
information. Non matching genes are classified disjoint if they occur inside
the range of the innovation numbers of both parents, and excess if they are
outside the range of one parent. Since the weights of the individuals could have
developed independently, the same innovation numbers do not imply the same
weights in both individuals. Matching genes are therefore chosen randomly
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from both parents, while the disjoint and excess genes are chosen from the
parent with the higher fitness. In the example, the same fitness is assumed,
so the disjoint and excess parts of both individuals are chosen. This way,
the resulting genotype represents a valid solution with no notable information
loss, and without computationally intense operations slowing the evolutionary
process.

1 2 4 5 6

1->4 2->4 2->5 3->5 4->5

en en dis en en

1 2 3

4

5

1 2 3 4 6 7 8

1->4 2->4 2->4 2->5 4->5 1->6 6->4

dis en en dis en en en

1 2 3

6

4

parent 1

5

parent 2

X

1 2 3 4 6 7 8

1->4 2->4 3->4 2->5 4->5 1->6 6->4

dis en en dis en en en

1 2

1->4 2->4

en en

1 2 3 4

1->4 2->4 3->4 2->5

dis en en dis

4 5 6

2->5 3->5 4->5

dis en en

6 7 8

4->5 1->6 6->4

en en en

parent 2:

parent 1:

1 2 3 4 5 6 7 8

1->4 2->4 3->4 2->5 3->5 4->5 1->6 6->4

dis en en dis en en en en

offspring:

1 2 3

6

4

5

disjoint

disjoint excess excess

Figure 3.4.: Example crossover operation in the NEAT encoding. Two indi-
viduals are combined by sorting the genes into matching, disjoint
and excess by their innovation number. Matching genes then are
chosen randomly, disjoint and excess are chosen from the better
fitness parent. The individuals are assumed to have the same fit-
ness in this example, therefore the genes from both parents where
picked.

The NEAT encoding later was expanded by Stanley and Miikkulaien to Hyper-
NEAT [15], generating connective compositional pattern producing networks
(connective CPPNs) for the generation of complex connectivity patterns with
regularities and symmetries. Thereafter HyperNEAT was further developed
to the ES-HyperNEAT [3].
Also in the original NEAT encoding, L. Pastorek and M. O’Neill proposed
and compared a context-free approach to assign innovation-numbers, meaning
that the same connections are always assigned the same innovation-number,
not just if the same connection appears in the same generation [30].

As a historical marker, the innovation-number differs in a few ways from the
traceIDs in this thesis, mainly since the innovation-numbers are not directly
linked to the weight of a connection, with the only purpose of tracking the
heritage for non computationally intense comparison reasons in crossover. In
contrast, the traceIDs explained in the next section are directly linked to the
data of a genome, changing if they are randomly mutated, since the goal is the
computation of the impact of the starting individuals.
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4. Traceable Evolutionary
Algorithms

This chapter contains the description and definition of the tracable evolution-
ary algorithm (T-EA). The T-EA operates like a normal evolutionary algo-
rithm (EA), with the addition of traceIDs, a historical marker pointing back to
the origin of each gene. From these markers, the impact of the first generation
into the last can be computed. The following sections provide an explanation
of traceIDs and the four different impact metrics. At first traceIDs are de-
scribed, how they are implemented and how they work in the EA. Secondly,
this chapter focuses on the calculation of the impact from the traceIDs, as well
as discussing differences, advantages and disadvantages of each metric.

4.1. TraceIDs

To be able to trace the ancestry of genomes of an individual, each gene
needs an identifier linking it to the initial population. This Identifier is called
traceID. To link traceIDs and data, they are stored in a tuple, called traceable
datatype. In this case, we have a traceable boolean for bit vectors and a
traceable integer for integer vectors. All operations can be performed like in
a typical EA, using the data part of the tuple.

1 1 1 0 1

0 0 1 1 0

1 0 0 1 1

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

   genomes    traceIDs

Ind 1

Ind 2

Ind 3

Figure 4.1.: Example of the genomes of a population in the Max Ones Problem
(left) and the corresponding traceIDs (right) in initialization.
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4. Traceable Evolutionary Algorithms

Figure (4.1) shows a made up example of a bit vector starting population.
For better readability the tuples are displayed as two separate vectors with
the data part on the right and the traceIDs on the left. The traceIDs are
initialized with the corresponding individual number, so Ind 1 gets traceID 1
in each genome, Ind 2 with traceID 2 and so on. Mutated genes get assigned
negative traceIDs counting down from -1 for each occurring mutation. Going
through crossover and mutation operations the traceIDs will mix and show
the origin of a given gene in the starting population. The following part
first shows how the traceIDs behave in crossover and how mutation is handled.

1 1 1 0 1 1 0 0 0 1

   gen 0    gen 1

genes

traceIDs

1 0 0 1 1 1 1 1 1 1

1 1 1 1 1 3 3 3 1 1

3 3 3 3 3 1 1 1 3 3

parent 1

parent 2

parent 1

parent 2

Figure 4.2.: Example of a crossover operation from a Max Ones problem where
the genomes are on the top and the corresponding traceIDs on the
bottom.

Figure (4.2) shows an example of a one point crossover operation on a
bit vector. The top shows the data part of the tuple, the bottom shows
the traceIDs. Just like a typical crossover operation, the genomes of two
individuals are cut and the pieces are rearranged into two new individuals.
Since the genes are a tuple of data and traceIDs, the genes in the offspring in
gen 1 can be traced to the genes of the individuals in gen 0. Two point and
n point crossover, as well as other crossover types, would work in a similar
way, since the traceIDs are directly linked to the single genes. Crossover types
that combine the genomes of two individuals instead of cutting and mixing
are currently considered. In further generations, the traceIDs will get more
mixed up than in this example, like in the figure (4.3), showing the first and
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last generation in the Max Ones Problem.

1 1 1 0 1

0 0 1 1 0

1 0 0 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

1 1 1 -2 1

1 1 2 2 -1

1 1 1 3 3

   gen 0    gen n

genes

traceIDs

Ind 1

Ind 2

Ind 3

Ind 1

Ind 2

Ind 3

Figure 4.3.: Example of an initial population (left) and a final population
(right) with the corresponding traceIDs in the Max Ones prob-
lem.

In figure (4.3) we can see an initial population of a Max Ones Problem, with
the last generation on the right side and the traceIDs beneath them. Colored
in red are negative traceIDs, showing the mutations. Since this thesis focused
on uniform mutations, it was sufficient to assign negative values to mutated
genes, since they are not influenced by the original gene. To differentiate the
mutations, the negative values are counted down from -1 to the negative of
the overall occurred mutations. Not assigning every mutation the same ID
allows for the analysis of the impact of each occurring mutation instead of
just all of the mutations combined, as well as computing an entropy over each
gene which is needed for the impact metrics explained in the next section.
Mutation types depending on the original gene data are not sufficiently
tracked by this approach, since there is no link from the negative traceID to
the original gene, which could be expanded in the future.

Through crossover and mutation the last generation of individuals of figure
(4.3) are all optimal. The resulting last population of each generation is just a
mix of the genomes from the initial generation, plus those newly generated by
mutation. Looking at the traceIDs we can analyze what gene came from which
starting individual. This way we can see that in genes 1 and 2, individual 1 is
dominating through the whole generation, while genes 3 and 4 are more mixed
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4. Traceable Evolutionary Algorithms

with different traceIDs. Besides analyzing such phenomenon, counting the
traceIDs can be used to compute a more general impact metric of a starting in-
dividual on the last generation, which will be discussed in the following section.

4.2. Impact Metrics

To describe the impact from an individual of the initial population on the
last generation using T-EA, this thesis proposes four different measures called
impact metrics. In the following sections, first the counting-based impact (CI)
is proposed, extending it to a fitness-based impact (FI), an entropy-based
impact (EI) and finally the combination of both, the fitness-entropy-based
impact (FEI).

4.2.1. Counting-based Impact

As already hinted in the traceIDs section, the simplest approach to calculate
the impact is the counting-based impact (CI), presented in equation(4.1). This
metric is calculated by summing the occurrence of the traceID of starting
individual k. The function t(xPi,j) returns the traceID of gene j in individual i.
The resulting sum is divided by the number of genes in the whole population
(n · m) to normalize the values.

IC(k) =
1

n ∗m

n∑
i=0

m∑
j=0

(
t
(
xPij
)

== k
)

(4.1)

The CI represents a simple and normalized metric which directly shows the
impact from the initial generation into the last. Figure (4.4) shows an example
of a last generation of a Max Ones Problem. To compare the CI to the other
three impact metrics, the figure also shows the fitness of the individuals as well
as the entropy of the traceIDs, which is needed to calculate the other impact
metrics. The resulting impacts can be seen in the table (4.1). Focusing on the
results of the CI, we can see that individual 1 from the starting population
has the highest impact with 35% of the genes having its traceID, followed in
order by individual 3 with, individual 2 and finally individual 4 with the lowest
impact of 10%.
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data

0 0 0 0 0

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

fitness

0

1

0

0

traceIDs

1 1 3 3 3

2 2 2 2 2

1 1 4 4 3

1 1 3 3 1

Ind 1

Ind 2

Ind 3

Ind 4

entropy 0.8 0.8 1.5 1.5 1.5

Figure 4.4.: Example of a generation in the Max Ones problem. In addition
to the gene data, the fitness, the traceIDs as well as the entropy
of the traceIDs are shown.

individuals CI FI EI FEI
traceID 1 0.35 0.28 0.3 0.24
traceID 2 0.25 0.4 0.25 0.4
traceID 3 0.3 0.24 0.34 0.27
traceID 4 0.1 0.08 0.11 0.09

Table 4.1.: The normalized impacts from figure (4.4). The values are rounded
to two decimal places.

However, the CI sums up each occurrence with no regard to the fitness of an
individual, which might not be an ideal representation, since individuals with
a higher fitness have a bigger impact on the successive generations.
Besides taking fitness into account, it also might be preferable to look at the
entropy of each genome when computing the impact. A traceID in a non
dominated gene might have a higher impact than a traceID in an already
dominated and therefore decided gene. As well as the FI, the EI is discussed
in more detail in a later section.

4.2.2. Fitness-based Impact

To address the imbalance when counting every traceID the same in the CI,
even though the fitness values might be different, the fitness-based impact
(FI) takes fitness into account. FI is calculated similarly to CI, by summing
up the occurrences of the traceID of an individual, like equation (4.2) shows.
But instead of summing each occurrence of a traceID, it is summed up by
fd
(
XP

i

)
, the distance the fitness (f(XP

i )) of individualXP
i to the lowest fitness

in generation P , fmin(P ), shown in equation (4.3). TraceIDs in individuals
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with a higher fitness will therefore add a higher value than individuals with a
lower fitness, resulting in a higher impact from those individuals.
Normalizing the fitness this way is required, since negative values can occur in
constraint problems, like the Knapsack problems in this thesis, if the solution
an individual represents is unfeasible. Multiplying by a negative value would
therefore result in a negative impact, which should be avoided.
However, the resulting impact is still dependent on the overall fitness of the
generation, making it unnormalized. Although it is possible to just use the
unnormalized values, it is harder to compare results between generations with
a high difference in the overall fitness, or to the other impact-metrics. To
transform the FI back to a percentage-value between 0 and 1, we need to
normalize it. Equation (4.4) shows the normalization process, dividing the
calculated IF (k) by the sum of the impacts of all traceIDs.

IF (k) =
n∑

i=0

m∑
j=0

(
t
(
xPij
)

== k
)
· fd (Xp

i ) (4.2)

fd (Xp
i ) = f(Xp

i )− fmin(P ) (4.3)

InormF (k) =
IF (k)∑n
i=0 IF (i)

(4.4)

The resulting impact values from the CI example in figure (4.4) can be seen
in table (4.1). Even though traceID 1 occurs most often and has the highest
CI, its FI is just the second highest. TraceID 2, making up only 25% of the
last generation, has the highest FI, since individual 2 in which it occurs has
a higher fitness than the individuals of the other traceIDs. Having a clearly
better fitness than the other individuals makes individual 2 more likely to
survive into the next generation, meaning the traceIDs in that individual are
more likely to survive into the next generation as well. This evolutionary
advantage is clearly reflected in the FI of this example, presumably showing
a more accurate distribution than the CI. The downsides of calculating the
FI is that it is slightly more computationally expensive than the CI, since an
additional normalization step is needed. It is also a more abstract impact-
metric, since it is a little more complex than just counting the traceIDs.

To compare the impact-metrics outside of theoretical examples, the results of
the impact-metrics are further compared in chapter 6.
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4.2.3. Entropy-based Impact

The idea behind the entropy based impact calculation is a little more compli-
cated than the FI. If a gene is dominated by a traceID, meaning the traceIDs
for a specific gene are equal across all individuals, the impact will be counted
many times, which leads to a high CI and possibly FI. Since this gene is al-
ready decided and not prone to change in following generations, the impact
might be unproportionally high. Genes which are consisting of many different
traceIDs on the other hand are not yet decided and have therefore a higher
impact on the next generations than dominated and decided genes.

To balance that phenomen, the EI takes the Shannon-entropy of each gene
into account, just like FI takes fitness into account. The entropy for each gene
is a suitable metric for this. Equation (4.6) shows how the Shannon-entropy
H
(
ΨP

j

)
[36] is calculated. It is the negative sum of Pk times the logarithm

of base 2 of H
(
ΨP

j

)
is therefore low if there are few different traceIDs in one

gene and high if there are many different traceIDs. Equation (4.5) shows how
the EI is calculated. Just like in the FI, instead of counting up one for every
traceID occurrence, the EI counts up by the entropy of the gene the traceID
counted is located. Since H

(
ΨP

j

)
can be zero if the gene is totally dominated

by a traceID, a one is added, to ensure that the impact never counts 0. Like
the FI, the EI needs to be normalized at the end for comparison reasons, shown
in equation (4.5), since the entropy of the genes is not summing up to one.

IE(k) =
n∑

i=0

m∑
j=0

(
t
(
xPij
)

== k
)
· (1 +H

(
ΨP

j

)
) (4.5)

H
(
ΨP

j

)
= −

n∑
i=0

Pk · log2(Pk) (4.6)

Pk =
1

n

n∑
j=0

(t(xP0,0) == k) (4.7)

InormE (k) =
IE(k)∑n
i=0 IE(i)

(4.8)
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Looking at the EI in (4.1) from the example in figure (4.4), we can see that
traceID 3 actually has the highest EI, compared to traceID 2 for the InormF (k)
or traceID 1 for IC(k). Looking at the distribution of the traceIDs in the genes,
with their respective entropy, we can see that traceID 3 is present in genome
3, 4 and 5. These genomes have a higher diversity in them than the first two,
resulting in a higher entropy. Since traceID 3 is present in the genes with the
higher entropy, it is valued higher when the impact is calculated. The EI is
an interesting metric especially in cases where the entropy of the genes is not
equal. If the entropy is similar over all genes, it will return similar values like
the CI.

The disadvantage of including the entropy is the higher computation time
compared to the other two approaches. Since the entropy of each gene needs
to be calculated beforehand, the run time therefore is not linear any more
with O(n2). The current implementation of the impact also does not take
into account the case of two traceIDs having the exact same data-value in the
same gene. If both traceIDs have the same data-value, they could potentially
both survive, resulting in a higher entropy, even though the gene has the same
data-value for every individual.

To analyze this phenomenon, as well as getting a better understanding of the
usefulness of the EI, the results of InormE need to be studied in more detail in
chapter 6.

4.2.4. Fitness-Entropy-based Impact

The final impact, the combined FEI takes both the fitness of the individual
as well as the entropy of each gene into account. The result can be seen in
equation (4.9). Just like IF or IE, the combined impact needs to be normalized
since it is this time dependent on both the overall fitness of the population, as
well as the summed entropies of each genome.

IE·F (k) =
n∑

i=0

m∑
j=0

(
t
(
xPij
)

== k
)
· f (xpi ) · (1 +H

(
ΨP

j

)
) (4.9)

InormF ·E (k) =
IE·F (k)∑n
i=0 IE·F (i)

(4.10)

Taking both fitness and entropy into account should result in the most differ-
entiated impact of the four proposed. The results in table (4.1) from figure
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(4.4) show that traceID 2, which has the highest FI, also has the highest com-
bined impact. TraceID 3, which has the highest EI, has the second highest
overall impact, with traceID 1, having the greatest CI, just reaching the third
highest combined impact.

The advantage of InormF ·E is, that it takes both corrections to the original impact-
metric into account. Its disadvantage is the high computation-time from the
entropy. Of course, more testing is needed to analyze the results further than
the theoretical examples.
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To evaluate the proposed tracable evolutionary algorithm (T-EA), this chapter
describes the test setup for the evaluation. First, three hypothesis about evo-
lutionary algorithms (EAs) are formulated, to test and compare the results of
the four impact metrics. After that, the test configurations and experimental
setup for the three hypothesis are discussed.

5.1. Hypotheses

To evaluate the T-EA, three hypotheses are used. The goal of these hypothe-
ses is to show the capabilities from gaining knowledge from EAs through the
traceIDs and to compare and test the four impact metrics in the process. The
evaluation should answer some general assumptions about the relation between
the starting fitness of the individuals and the result, regarding the impact of
the individuals as well as the impact of mutation. For this reason, the following
three hypotheses where formulated:

1. The ranking of the 5 highest fitness individuals from the initial popula-
tion should match the mean impact ranking of the final generation over
the 31 runs.

2. If the fitness is the same for all individuals of the initial population, the
medium impact on the last generation over 31 runs will be relatively
equal.

3. The better the best fitness individual of an initial population, the lower
the mutation impact will be in the final generation.

To evaluate the hypotheses, the next section will focus on the test design and
the configurations used for the testruns.
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Parameters Max Ones 0/1 Knapsack (Un)bound Knapsack
generations 20
population size 20
breeding selection tournament selection with a tournament size of 2
crossover type two piont crossover
mutation type bit flip mutation uniform mutation
mutation probability 1% 5%
elites 2 per generation

Table 5.1.: Overview of the general test configurations of the three problems.

5.2. Test design

To evaluate the hypotheses presented in the section before, the three problems
explained in section 2.3 are used. The different parameter configurations as
well as the different initial populations used are discussed in this section.

Table (5.1) shows the general test configurations for all tests. Every test is
conducted over 20 generations with 20 individuals, with tournament selection
with a tournament size of 2 as a breeding selection and two point crossover as
the crossover operator. The difference in mutation type and probability from
the (Un)bound Knapsack problem to the other two problems derives from
the different encoding. In every run, 18 new individuals are generated and
pass with 2 elites from the current generation as the offspring into the next
generation, so no extra environmental selection is required in this case.

The genome size as well as the seeding of the initial population is varying for
each hypothesis and will be discussed in the following sections.

Since every hypothesis has different requirements, different tests need to be
used to evaluate them. For example hypothesis 2 needs starting populations
with an equal fitness in each individual, while hypothesis 1 needs an initial
population with a different initial fitness, allowing for ranking them by fitness.
In the following parts, the different tests and evaluation techniques used for
the three hypotheses are presented.

Hypothesis 1

To evaluate the first hypothesis, all three problems are used. This way, poten-
tial results specific to a problem or an encoding can be differentiated. Each
problem is run with three different difficulties, resulting in nine different con-
figurations. Tuning the difficulty is done by adjusting the genome length for
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Problems Easy Medium Hard
Max Ones 10 30 100
0/1 Knapsack 10 20 50
(Un)bound Knapsack 5 10 20

Table 5.2.: The genome length used for every difficulty level of the three prob-
lems.

each problem. Table (5.2) provides an overview of the genome lengths used.
The knapsack configurations used are from the Universidad del Cauca [1] and
can be also found in Appendix A.

To analyze the behavior of the impact over multiple runs, the population used
for each problem needs to stay the same. To avoid distorted results due to
an unproportionally high or low fitness in the starting population, a selection
of five different initial populations is used. To get an approximation of which
starting populations have a good or a bad fitness, 1000 initial populations
were generated and sorted by their best fitness individual. From those, the
two populations with each the highest and lowest best fitness are chosen. In
addition, three other populations with equal distance between each other and
the worst and best are chosen. Throughout this thesis, each of the initial
populations, short pop, is referred to with a number, corresponding to its
initial fitness. Pop 1 refers to the worst initial population, pop 2 to the second
worst, pop 3 to the average, pop 4 to the second best and pop 5 to the best
population the problem is initialized with. Therefore, each of the nine problems
is run with five different starting populations, resulting in 45 tests overall. For
all tests, the median over 31 testruns will be analyzed.

To evaluate the first hypothesis, the mean impact rankings over the 31 testruns
of the top 5 initial fitness individuals of a given population are compared
with each other. Since every problem is run in three difficulties with five
different initial populations, 15 rankings are compared. This is totalling to 45
comparisons over different problems in different difficulties, which is a basis
for a meaningful result.

Hypothesis 2

To compare the impact in same fitness initial populations, the randomly gener-
ated populations from hypothesis 1 can not be used. Instead, they need to be
specifically built to have the same initial fitness. Building initial same fitness
populations is a complex task in the Knapsack problems. Furthermore, the
low amount of items used for these tests often results in a low diversity when
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trying to achieve the same fitness. Therefore, to analyze hypothesis 2, only
the Max Ones problem is used, since same fitness populations can achieve a
higher diversity as well as being built more easily.

Like in table (5.2) for hypothesis 1, the Max Ones problem is run with three
different difficulties through adjusting the genome length. The three difficulties
are also run with five different initial populations, with a fitness of 0.1, 0.3, 0.5,
0.7 and 0.9 for each individual. To create the initial populations, the starting
populations of the Max Ones problem from hypothesis 1 were randomly altered
to fit the fitness values. All configurations are also analyzed by the median of
31 runs.

To evaluate the difference of the final impact of each traceID, the difference
from the highest to the lowest mean impact in the last generation over the 31
runs was used.

Hypothesis 3

Analyzing hypothesis 3 does not require separate tests, but can be done by
analyzing the results of the three tests described in hypothesis 1 as well as
the same fitness Max Ones test used in hypothesis 2 as an interesting extreme
case. Since the selected initial populations are already ranked by their best
initial fitness, the mutation impact can directly be compared for populations
of the same problem and difficulty.

To evaluate the hypothesis, the average mutation impact over 31 runs is used.
The results of the five different populations used for each difficulty in each
problem then can be compared, since they all are run with the same test con-
figurations. As the initial populations 5 always have a higher best initial fitness
than the other populations, because of the selection of the initial populations
described in the explanation of hypothesis 1, the resulting mutation impact of
them is assumed to be lower. This relation between the best initial fitness and
the resulting mutation impact will be evaluated in the next chapter, to show
if the assumption of the hypothesis 3 can be found true or false.
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To evaluate the four impact metrics along with the tracable evolutionary al-
gorithm (T-EA), this chapter first provides a proof of concept evaluation. For
this, two populations of the easy 0/1 Knapsack are picked, first evaluating a
single testrun from both, then the results of all 31 runs for both populations
are evaluated. Secondly, the three hypotheses of this thesis are evaluated and
discussed.

6.1. Proof of concept evaluation

To show the capabilities of the T-EA and bridge the gap between the eval-
uation of a single run briefly explained in chapter 4.1 and the evaluation of
the hypotheses, this chapter first provides a proof of concept. First, an ex-
ample evaluation of a single run, then an evaluation of multiple runs, before
evaluating all tests for the hypotheses in the next section.

6.1.1. Evaluating a single run

To show the capabilities of T-EA in a single-run analysis, two runs, each
from a different starting population, were picked. First, the 24th run from
population 2 in the easy 0/1 Knapsack problem is discussed, followed by run
3 of population 5 of the easy 0/1 Knapsack problem. Both runs show different
results, but still can be compared to each other since they are a result for the
same problem and run with the same configurations, just with different initial
populations.

Run 24 of population 2 from the easy 0/1 Knapsack problem

Figure (6.1) shows the data and results for testrun 24 of population 2 for the
easy 0/1 Knapsack problem. This figure consist of multiple graphs showing
different metrics and information. Graph (6.1.a) shows the fitness of the initial
population, graph (b) the fitness over all generations, graph (6.1.c) the com-
bined entropy per generation and graph (d) the combined entropy and fitness.
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The combined entropy of a generation is the sum of the entropy of every gene
in the population of that generation. The graphs (6.1.e), (6.1.f), (6.1.g) and
(6.1.h) show the four different impact metrics.

Looking at graph (6.1.e), showing the results of the counting-based impact
(CI), we can see every traceID starts with the same value, since all genes are
still in their initial positions. This already changes in generation 1, with the
amount of traceIDs found in this generation dropping from the initial 20 to
only 10, with the mutation impact also appearing. Only about half of the
initial 20 traceIDs passing into the first generation can be explained through
the tournament selection operator used, and the elite size of two. It can also
be noted that only four of the initial traceIDs survived to the last generation.
While traceID 3 had the highest impact in the first generation, its impact
drops over the next generations, rising again after generation 7 to the second
highest CI at the end. TraceID 6, having the highest initial fitness, starts with
a lower impact in generation 1. Even though its impact rises in generations
2, 3 and 4, it quickly drops again settling with the lowest impact reached
in the last generation. The second highest initial fitness traceID 11 also has
the second highest impact in the second generation. Then it gets the highest
impact from the third generation until the end. TraceID 2 also survives to the
last generation with the fourth highest CI, even though it has a negative initial
fitness. The mutation impact with traceID m steadily rises until generation 7,
then changes only slightly in the further generations, finally having the third
highest CI after traceIDs 11 and 3. From generation 10 on, the CI is relatively
similar, with only minor changes occurring.

Comparing the CI shown in graph (6.1.e) to graph (6.1.f), where the fitness-
based impact (FI) metric is shown, some differences can be found. While
the CI starts with the same impact values for all individuals, the FI already
has impact differences in the first generation, since the initial fitness of the
individuals is not the same. The values for generation 1 are also different, with
the impact for the traceIDs 2, 8, 9, 15, 19 and 20 being noticeably lower in the
FI than in the CI. On the other hand, the impact of the traceIDs 3, 6, 11 and
16 is higher in the FI than in the CI. The traceIDs which do not survive to the
next generations are rated lower and the traceIDs which do survive to the next
generation are rated higher, with the exception of traceID 2 and 16. However,
the values for the FI and the CI get more similar in further generations, being
nearly indistinguishable in the graphs from generation 10 on. This could be
due to the individuals having a similar fitness from this generation, as shown
in graph (6.1.b). In generation 9, the fitness graph reaches its highest value
for the first time, with all individuals having a positive fitness value.
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The overall fitness of the later generations sometimes being lower could be due
to the crossover or the mutation making the overall weight in the knapsack too
heavy in some individuals. The mutation impact not rising higher in further
generations is an indicator of the low probability for a mutation operation to
improve an individual.

The EI, shown in graph (6.1.g), starts out like the CI with every traceID having
the same impact in the initial population, since the entropy per gene is still
equal for all genes in the first generation. This similarity also continues in the
first generations. From generation 10 and on, however, the values of traceID 6
are a little higher than in the CI and the FI. This fact, mixed with the overall
low impact of traceID 6 suggest it not dominating one single gene, but being
mixed throughout many genes, increasing their entropy. Also, the impact of
traceIDs 2 and m are not as constant as in the CI. However, the differences in
the values are comparably low.

Graph (6.1.h), showing the FEI, predictably shows a mix of the developments
found in the FI and EI. While the combined impact is similar to the FI in the
early generations, it is more similar to the EI later on.
The four impact metrics being similar can be explained with graph (6.1.c). The
exponentially dropping entropy per gene, which already reaches a relatively low
value in generation 10 suggests a quick domination of one or two individuals in
the tests, which indicates the selective pressure is to high. When all individuals
in a generation have the same traceID in each gene, the entropy of every
gene will be low for all genes, leading to the EI being similar to the CI. All
individuals being similar also leads to similar fitness values for each individual,
which itself leads to the FI being similar to the CI. If both the fitness and
entropy factors are similar, the combined FEI also produces similar results
to the other three metrics. This therefore can explain the similar results for
the four impact metrics. The disadvantage of a low diversity in a population
was discussed by Sudholt and Dirk in [39]. Besides not being able to compare
the four impact metrics with each other, this also has negative effects on the
performance of the evolutionary algorithm (EA). The low entropy reached in
this run therefore could be an indicator changing the breeding and selection
process to promote a better diversity throughout the run. This would not only
have a positive effect on the performance but also provide different results
for the four impact metrics, which would allow for a better comparison and
discussion of the four metrics proposed.

Comparing the impact reached in the final generation with the initial fitness,
table (6.1) shows a comparison between the ranking of the initial fitness and
the ranking for each impact metric for run 24 of population 2 of the easy
0/1 Knapsack problem. TraceID 6 has the highest initial fitness, however
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6.1. Proof of concept evaluation

it has the lowest impact in the four metrics among the surviving traceIDs,
even behind the before mentioned traceID 2, which only was the 15th best
initial individual with a negative initial fitness. The highest impact traceID
was traceID 11, which reached impact values around 50% for all of the metrics.
TraceID 3, having the fourth best initial fitness, had the second highest impact
with around 27% in the four metrics. The third highest impact in the four
metrics was the mutation impact, with about 10% to 13%, followed by traceID
2 with around 9.5% and finally traceID 6 with around 2.3% impact in the four
metrics. The third highest initial fitness was traceID 17, which was not found
in the last generation.

traceID 6 11 3 2 m
initial fitness 1 (184) 2 (182) 4 (153) 15 (-82) x

CI 5 (0.020) 1 (0.49) 2 (0.265) 4 (0.095) 3 (0.130)
FI 5 (0.022) 1 (0.496) 2 (0.272) 4 (0.094) 3 (0.117)
EI 5 (0.024) 1 (0.498) 2 (0.269) 4 (0.095) 3 (0.114)
FEI 5 (0.027) 1 (0.504) 2 (0.276) 4 (0.094) 3 (0.099)

Table 6.1.: Impact ranking of the remaining traceIDs in run 24 of population
2 from the easy 0/1 Knapsack problem. The traceIDs are sorted
by their initial fitness. The corresponding impact values are shown
in brackets.

As already discussed, the four impact values are very similar, with the highest
difference having traceID 11 with 1% between the four metrics. This also leads
to the four impact metrics having the same rank.
Comparing the initial fitness rank with the impact rank yields some unexpected
results. TraceID 11 having the highest impact and traceID 3 the second highest
in the last generation could be explained with the low initial fitness difference
to the best initial fitness traceID 6. However, traceID 6 having the best initial
fitness but the lowest recorded impact in the four metrics, and traceID 2 being
found in the last generation even though it only has the 15th best initial
fitness does not fit the hypothesis 1. Another possible reason could be found
comparing the best fitness reached in this run, which is 246, with the best
fitness reached in run 3 of population 5 found in figure (6.2.b), which is 295.
That shows the testrun did not find the global optimum, with traceID 11
potentially being a deceptive individual, leading the EA into a local optimum.
If this result is an outlier or an indicator for other factors then the initial fitness
contributing to the final impact ranking needs to be evaluated in the multi-run
tests and the evaluation of hypothesis 1.
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6. Evaluation

Run 3 of population 5 from the easy 0/1 Knapsack problem

Figure (6.2) shows the same visualization as in the previous section, but for
run 3 of population 5 from the easy 0/1 Knapsack problem. Graph (6.2.a)
again shows the fitness of the initial population, graph (6.2.b) the fitness of
the population per generation, graph (6.2.c) the entropy per gene and graph
(6.2.d) the combined fitness and the entropy per gene over the generations.
The graphs (6.2.e), (6.2.f), (6.2.g) and (6.2.h) show the CI, FI, EI and FEI

Like in pop 2, the CI shown in graph (6.2.e) starts with every individual having
the same impact in the initial population. Equivalently to the previous run,
the amount of traceIDs present in the second generation is reduced drastically
to only 9, again about half of the initial 20. Only 3 different traceIDs, including
mutation, survive to the last generation. The mutation impact this time first
appears in generation 2. Starting in generation 1, traceID 16, which has the
highest initial fitness, also has the highest CI, which is only growing in the
further generations, already reaching an impact of over 90% in generation 5.
The only other traceID from the initial population surviving to the end is
traceID 14, reaching only an impact of about 5% from generation 5 onwards.
The mutation impact reached a small peak in generation 3, then dropped
down again, even disappearing completely in the generations 8, 16 and 18,
only reaching a CI of 1.5%. Comparing the CI of this run to the run 24 of pop
2, we can see that the values seem to converge faster in this run, not having
significant changes from generation 5 on, while the evaluated run of pop 2 took
twice as long to reach that state. This quicker convergence could be a result of
this population reaching a better optimum faster than the previous. If this is
due to the best initial fitness of population 5 being higher than the best initial
fitness of population 2, it would need to be checked in further tests.

Taking a look at graph (6.2.f) for the FI, the initial fitness again is not similar
to the differences in the initial fitness of the individuals. Also, the impact in
generation 1 shows increased impact values for the traceIDs 7, 14, 16 and 20,
two of which are surviving to the last generation. Unlike in the run analyzed
in population 2 though, we can see differences throughout the whole run in
the mutation impact, which is lower in the FI than in the CI, hinting at
mutation worsening the fitness of individuals more than improving it. Looking
at the fitness over the generations in graph (6.1.b), we can also see that the
fitness peaks in the generations 8, 11, 16 and 18, which includes the three
generations where the mutation impact is 0%, with generation 11 also having
a low mutation impact.

The entropy impact in graph (6.2.g) also starts with every traceID having the
same impact in the beginning. Like in the evaluation of run 24 population 2,
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6. Evaluation

it has very similar values to the CI, especially in first generations. The values
in the later generations are also similar, the impact of the traceIDs 14 and m
being a little higher, but not in a significant way.

The combined FEI shown in graph (6.2.h) starts similarly to the FI, with the
impact in the first generation, and the general development until generation
5, being relatively similar to the FI. Also like the FI, the FEI shows a smaller
impact for the mutation. The impact for traceID 14 on the other hand is more
similar to the EI.

In general, the difference in the four impact metrics is very small, with no sig-
nificant differences in the later generations. In this run, the drop in the impact
graph is even steeper than in the run analyzed in population 2. This could be
due to the higher best initial fitness in this run, however, to get reliable results
more runs need to be evaluated. The concern about the breeding process not
allowing for enough diversity is now increased, since this second run also shows
a quick drop in the entropy per gene, with the four impact metrics achieving
very similar results.

Also equivalent to pop 2, the impact of generation 0 for the FI and FEI do
not start with equal values. While the fitness difference from the best to the
second best and third best individual is higher in pop 5, the bigger difference
in impact is still boosted by the traceIDs representing just one individual. For
this reason, traceID 16 already has an initial FI and FEI of over 90%. However,
unlike in run 24 of pop 2, the impact value of traceID 16 remains high until
the last generation.

traceID 16 14 m
initial fitness 1 (295.0) 5 (145.0) x

CI 1 (0.945) 2 (0.040) 3 (0.015)
FI 1 (0.955) 2 (0.062) 3 (0.006)
EI 1 (0.919) 2 (0.062) 3 (0.019)
FEI 1 (0.933) 2 (0.060) 3 (0.007)

Table 6.2.: Impact ranking of the remaining traceIDs in run 3 of population 2
from the easy 0/1 Knapsack problem. The traceIDs are sorted by
their initial fitness. The corresponding impact values are shown in
brackets.

Taking a closer look at the results in the last generation for the four impact
metrics, table (6.2) shows the initial fitness ranking of the traceIDs in the last
generation, as well as the impact ranking of the four metrics. TraceID 16
having the highest initial fitness also has by far the highest impact in the four
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6.1. Proof of concept evaluation

metrics with values ranging from 93% to 95%. The second highest impact is
on traceID 14, only having the fifth best initial fitness, with values from 4%
to 6%. Mutation had the least impact at the end, only having an impact of
1.9% in the EI, and having a near zero impact in the FI and FEI. Like in the
previous population, the initial fitness ranking was not really representative
for the resulting impact values. While traceID 16 had by far the highest initial
fitness, traceIDs 7, 6 and 5, having the 2nd, 3rd and 4th best initial fitness,
did not survive to the last generation. The fitness difference to traceID 14 this
time is not as high as in the previous run, where traceID 2 had a bad, negative
initial fitness. However, even though the result might be not as extreme as
last time, the general trend for hypothesis 1 still continues. For more reliable
results, every run from every problem should be evaluated.

The very high impact values for traceID 16 could be a result of the initial
fitness being significantly higher than the ones from the other traceIDs. How-
ever, if impact values this high are also found in the other testruns needs to be
evaluated in the multi-run evaluation. The generally lower mutation impact
could be a result of a much higher best initial fitness, which could be a hint for
the result of hypothesis 3. However, the mutation impact being low for the FI
and FEI also imply that the mutation is not producing good results. In a real
world problem, this could be an indicator to make changes to the mutation
operator. However, as no better result than the fitness of 295 reached in this
testrun was found in the other results of the easy 0/1 Knapsack problem, the
population could have reached the global optimum. As the fitness and entropy
graphs showed, the population converged rapidly, meaning that mutation po-
tentially was not able to have a positive impact after generation 4, which could
also be a reason for its low impact.

Discussion

A few hypotheses can be made when analyzing the results from the two runs.
Both runs show a fast drop in the entropy per gene, leading to the conclusion
that the breeding mechanism could be improved by allowing more diversity.
Run 24 of population 2 not reaching the global optimum further supports that
argument. This also results in the four impact metrics being fairly similar,
which can also be seen in the ranking in the last generation. The initial fitness
ranking not being similar to the impact ranking in the last generation already
hints at results for hypothesis 1, and raises the question of which factors may
also have an influence on the impact of an individual other than its initial
fitness. Besides these general findings, two very different developments in the
impact of the individuals where observed. Whether these differences can be
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6. Evaluation

explained through its initial populations or the fitness reached, and how the
results of both populations compare to the other 30 testruns, needs to be
evaluated in the next section.

Although the analyzed runs already hint at a result for hypothesis 1 and 3, no
conclusive information can be gained by just analyzing one single run. While
these single-run evaluation capabilities might be useful to gain more detailed
information about the behavior of an EA, the randomness through selection,
crossover and mutation varies the result. Therefore, to get reliable results,
more than one run for each population in each test is required. For this reason,
the next section shows an evaluation of the easy 0/1 Knapsack problem for
more than the two runs shown in this example.

6.1.2. Evaluating multiple runs

To show that the traceIDs can also be used to provide information not only
about a single testrun, this section first focuses on the evaluation of all testruns
of population 2 from the easy 0/1 Knapsack problem. After this, the results of
the testruns of population 5 from the easy 0/1 Knapsack problem are evaluated.
Finally, the results of both are shortly discussed.

Multi-run evaluation of population 2 from the easy 0/1 Knapsack
problem

To evaluate the result of the multiple runs, figure (6.4) shows the results of all
runs in the final population both for run 2 and 5 as box plots. The left side
shows the results for pop 2, with graph (6.4.a) again shows the initial fitness,
while graph (6.4.b) shows the results of the CI, graph (6.4.c) the results of the
FI, graph (6.4.d) the results of the EI and graph (6.4.e) the results of the FEI.

The results for the four impact metrics being fairly equal is not only found in
the single-run evaluation, but also in the multi-run analysis of the box plots.
As only the last generation is visualized, the results are all very similar, with
just some small changes being found in the outliers, like for example traceID 5
or 8. Not only are the median and the quartiles similar across the four metrics,
the majority of the outliers are also similar according to the four graphs. To
understand the reason behind the similar values, figure (6.3) shows the average
of the entropy of every gene in the last generation. Taking a look at the graph,
the highest average entropy of a gene for this test is found in gene 4, with
a value of 0.18, with the overall average being at about 0.125. These values
suggest a very low diversity in the last generation for each run. This further
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6.1. Proof of concept evaluation

confirms the believe, that the diversity allowed by the breeding operators is
too low in this experiments and the population gets dominated by the same
individual in the last generation. Whether this effect is specific to the 0/1
Knapsack problem, to the difficulty of the problem or to the initial population
employed will be evaluated in the following sections.
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Figure 6.3.: The mean entropy per gene in the last generation of population 2
of the easy 0/1 Knapsack problem.

Since the four impact metrics are so similar, the further evaluation refers to the
impact as the impact of all four metrics at the same time. In all four box plots,
only the traceIDs 11, 6 and m had median values above 0%. Furthermore, the
traceIDs 3, 17 and 19 had positive values for the upper quartile. The traceIDs
9 and 10 did not have any run with an impact over 0%, while the traceIDs 1,
7 and 18 only had one, with the one run of traceID 1 even reaching about 30%
impact in all of the metrics. TraceID 11 having the highest median impact
matches the result of the single-run evaluation. However, we can see that the
single-run result is a high impact outlier, with an impact of about 50% in the
four metrics, just above the upper quartile, the median lying around 30% in all
four metrics. The ranking of the single-run evaluation for traceID 6 however
does not match, only having the 5th highest impact in the single run, while
having the second highest median impact, just above the mutation. However,
the result still is inside the lower quartile. TraceID 3, which had the second
highest impact in the single-run evaluated, overall has a median impact of 0%.
The single-run result, like in the traceID 11, is again an outlying value just
above the upper quartile. Also an outlying value was the result of traceID
2, which had a surprising impact in the run 24 of population 2, even though
it was ranked low compared to the other traceIDs with regards to the initial
fitness.
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Figure 6.4.: Box Plots of population 2 (left graphs) and population 5 (right
graphs) of the easy 0/1 Knapsack problem. The top graphs rep-
resents the fitness of the initial populations, with the following
graphs showing the results of the four impact metrics of the last
generation as a Box Plot.
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6.1. Proof of concept evaluation

In general, all results in the last generation are very spread. While traceID 11
has the highest median traceID with 30%, its lower quartile reaches values just
below 20%, and the upper quartile values of just below 50% in all four metrics,
with outlying values reaching from 0% impact to about 80% impact. The upper
quartile of traceID 6 also reaches to about 30% impact, suggesting that there
are cases where traceID 6 has a higher impact than traceID 11. While the
fitness difference of these two traceIDs are comparably similar, more extreme
outliers can also be found. The before mentioned traceID 2 has one outlier
in every metric, showing an impact value of around 50%, which suggests it
having the highest impact in the whole run. These high outliers can also be
found in the traceIDs 3 and 5. Comparing the impact results for all of the 31
runs with the initial fitness ranking, a brought connection between the initial
fitness value and the resulting impact can be made. While traceID 6 and 11
are switching the first and second places in the fitness and impact ranking, the
difference in the initial fitness ranking is very small. Also traceID 17, having
the third highest initial fitness, while having a median impact of 0%, is found
to have the third highest upper quartile. This trend is also followed for the
traceIDs 3 and 19, having the fourth and fifth highest initial impact and also
the fourth and fifth highest quartiles. The lower impact traceIDs 9 and 10,
having no recorded run over 0%; the traceIDs 1, 4, 15, 13 and 18, having
only one; and the traceID 13 having two runs with an impact over 0%. One
exception for this is the before mentioned traceID 2.

While a general connection between the initial fitness and the resulting impact
can be assumed over these many runs, the spread of the results as well as the
single-run evaluated suggest that this effect only exists for the evaluation of
the average over the multiple runs. The resulting impact metrics in one single
run therefore could be very different from the initial fitness ranking, with the
higher initial fitness only suggesting a higher probability of a high impact. The
relations of the median impact not matching with the relations in the initial
fitness also suggests another factor than the initial fitness having an influence
on the impact results in the last generation. As the box plots do not show the
best fitness reached in the final generation, it has to be noted that this results
did not reach the assumed global optimum of 295, with a mean fitness result
of 273.2 and a standard deviation of 26.3. This further indicates traceID 11
leading the initial population into local optima. For more reliable information,
these results need to be evaluated against the results of other testruns in the
evaluation of the hypotheses.
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Multi-run evaluation of population 5 from the easy 0/1 Knapsack
problem

The box plots for population 5 of the easy 0/1 Knapsack problem are also
visualized in figure (6.4). Graph (6.4.f) shows the initial fitness, while graph
(6.4.g) shows the results of the CI, graph (6.4.h) the results of the FI, graph
(6.4.i) the results of the EI and graph (6.4.j) the results of the FEI.

Immediately noticeable is that the four impact metrics seem very similar, like
in the evaluation of population 2, even down to the outliers. This time, a
difference between the CI/FI and the impact metrics considering entropy EI
and FEI, can be found. Like in the evaluation of run 3, the impact of the
dominating traceID 16 is a little lower for the EI and FEI, and the impact of
the results of the other traceIDs are a little higher. Nevertheless, the changes
in value are relatively small and do not change the results in a significant way.
The reason for the similar values can again be attributed to a low diversity
in the last generation, equalising the differences in the four impact metrics.
This is proven by figure (6.5), showing the average entropy per gene in the
last generation of the 31 runs of population 5. Compared to the previous run,
the highest entropy of a single gene is a little higher, but with about 0.24,
it is still very low. This consolidates the theory of the breeding operator not
allowing enough diversity in the easy 0/1 Knapsack problem tests, proposed
in the evaluation of the single runs of populations 2 and 5. Whether the same
effects can also be found for the other difficulty levels and problems will be
analyzed in the evaluation of the hypotheses.
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Figure 6.5.: The mean entropy per gene in the last generation of population 5
of the easy 0/1 Knapsack problem.
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6.1. Proof of concept evaluation

Further evaluating the four impact metrics shows only traceIDs 16 and m have
a median impact above 0%, with the impact of mutation also being near 0%,
not dropping presumably because of the reoccurring mutation. Furthermore,
only traceID 1 has also an upper whisker, which however gets only up to circa
2% impact in all four metrics. The traceIDs 3, 4, 5, 10, 15, 18 and 19 did not
have a single run with an impact value above 0%. The rest of the traceIDs
managed only some outlying results above 0% impact.
Comparing the results to the previously evaluated single run, we can see that
traceID 16 having this high of an impact in all four metrics was no outlying
result. Furthermore, the low mutation impact recorded is also found in the
other testruns. TraceID 14 having the second highest impact however was not
as common, with only three of the 31 runs showing impact values above 0%.

The impact results in the last generation are less spread compared to the
evaluation of population 2. The lower quartile of traceID 16 starts at around
80% for the CI and FI and stretches to 95% impact in the second quartile, with
the lowest outlying run still reaching about 40% impact. The outliers of all
other traceIDs are mostly in the range up to 20% impact, with some exceptions
reaching up to about 40% impact. This low spread indicates traceID 16 having
the highest impact in all runs this time, with just one outlier in traceID 20
potentially having a better EI and FEI in one run. The very high mean value
of traceID 16 also suggests that the result of just two traceIDs surviving (three
with the mutation impact) in the evaluated run 3 was not an outlying result.

Comparing the initial fitness ranking, the highest impact traceID has also
the highest initial fitness. Since traceID 1 also has an upper quartile, it can
be counted as the second highest impact individual, while only having the
4th highest initial fitness. However the traceIDs 6, 7 and 8 also have a high
amount of outlier results above 0% impact. TraceID 14, having the 5th highest
initial fitness, only has three runs with an above 0% impact, and traceID 15
having the 6th highest initial fitness does not have one single run with an above
0% impact. TraceID 20, on the other hand, has more outliers than expected,
given its average initial fitness. In conclusion, the comparison between the
initial fitness and the impact yields similar results like in population 2. The
final impact of a traceID on average seems to be connected to the initial fitness,
but other factors also seem to have an influence. Also the spread of solutions
suggests individual results may differ from the average, even though the spread
is lower than for population 2.

While population 2 did not find the global optimum in most testruns, the
result of population 5 always reached the assumed global optimum of 295.
This indicates the initial individual corresponding to traceID 16 already being
very good, explaining its high impact. The impact of mutation being lower in
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all four metrics than in the previous evaluation of population 2 might also be
explained by this, as a quick conversion to the best result does not leave much
room for mutation to improve the population.

Discussion

Comparing the results of the evaluation of the multiple runs to the two single
runs analyzed in the previous section, both similarities as well as differences can
be found. First of all, the results of the four impact metrics were very similar.
The reason for this is a low diversity of individuals in the last generation, as
the average entropy per gene showed. For this reason, no real comparison
can be made between the four impact metrics. To be able to compare the
four metrics, and also to improve the results of the EA, the breeding operator
should be changed for future tests of the 0/1 Knapsack problem.
The results of the last generation in both single-run evaluations were found to
be no outliers in the multi-run evaluation. Because of a high spread of results
in both population 2 and 5, no single run can represent an average of all of
the results. The spread of information being lower for population 5, which has
a higher initial fitness might be one indicator for this phenomenon. However,
a lower difference in the fitness of the top 5 initial individuals in population 2
could also be a reason.
On average, a connection between the initial fitness ranking and the achieved
impact could be loosely drawn, however other factors seem to also have an
influence on the final impact ranking than the initial fitness. Evaluating the
other tests in hypothesis 1 might give some additional information to estimate
the reason for a high or low impact. The mutation impact being lower in
population 5 than in population 4 fits into the assumption of hypothesis 3.
Whether this trend continues for the other populations and the other tests
needs to be evaluated with the other testruns.

6.2. Evaluation of the hypotheses

The following section shows and discusses the results of the three hypotheses
layed down previously. Similar to the multi-run evaluation, only the results of
the last generation will be used to evaluate the hypothesis, as they are based
on assumptions regarding the impact of the initial population on the final
generation. The hypothesis are discussed separately.
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Hypothesis 1

The first hypothesis to be evaluated is the ranking of the 5 highest fitness
individuals matching with the impact ranking. This means, the best fitness
initial individual (rank 1) should also have the highest impact, the second best
fitness initial individual (rank 2) should have the second highest impact, and
so on. To test this, the three problems are used as described in section (5.2).
As every test configuration is run 31 times, and to avoid outlying solutions
distorting the result, the mean impact ranking over those runs is used.

For the evaluation of the first hypothesis, the table (6.3) shows the results
for the Max Ones problem, the table (6.4) for the 0/1 Knapsack problem and
the table (6.5) for the (Un)bound Knapsack problem. These three tables are
structured the same, showing the fitness rank in the first row, with the four
impact metrics shown below. For the impact metrics, the amount of matching
impact and fitness rankings is shown, as well as the amount of populations with
a better or worse impact rank than their fitness rank. Since each problem is run
with five populations in three difficulty levels, there are 15 test configurations
per problem for which the mean impact ranking is compared. The results
shown in the three tables are also shown in the appendix (B.2), were the fitness
and impact rankings are presented separate for each population. Following the
evaluation of hypothesis 1, first the results of the three problems are shown.
Thereafter, the results will be compared and discussed, finally concluding if
the assumption of hypothesis 1 is right.

fitness rank 1 2 3 4 5
CI rank matching 0 / 13 / 2 1 / 12 / 2 2 / 6 / 7 3 / 2 / 10 5 / 1 / 9
FI rank matching 0 / 13 / 2 1 / 12 / 2 2 / 6 / 7 3 / 2 / 10 5 / 1 / 9
EI rank matching 0 / 13 / 2 1 / 12 / 2 2 / 6 / 7 3 / 2 / 10 4 / 2 / 9
FEI rank matching 0 / 13 / 2 1 / 12 / 2 2 / 6 / 7 3 / 2 / 10 4 / 2 / 9

Table 6.3.: The four impact rankings matching with the fitness ranking of the
Max Ones problem. Each cell shows the amount of times the impact
rank was better / matching / worse than the initial fitness ranking
for the 15 different test configurations.

Looking at the matching values for the Max Ones problem in table (6.3), we
can see the values for the four impact metrics being nearly identical. Only the
fifth best impact ranking shows a slight difference, with an additional impact
rank matching for the EI and FEI, which had a better impact rank in the
other two metrics. This hints at the trend also found in the two populations of
the 0/1 Knapsack problem evaluated in the proof of concept evaluation, which
showed the diversity in the last generation to be very small, resulting in similar
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impact values. The reason for the four impact metrics being similar will be
discussed in more detail after the results of the three hypotheses are shown.
Conparing the results of all five fitness ranks with each other, we can see a
clear decrease in matching ranks from fitness rank 1 to 5. While the best
fitness traceID was found to have the highest impact in all four metrics in
13 of the 15 test configuration, and the second best fitness traceID to have
the second highest impact in 12 of the 15 test configurations, the values drop
significantly for the further ranks. While the third best initial fitness rank
still had a matching impact ranking six times, the result for the fourth and
fifth best fitness rank only show one and two cases of a matching fitness and
impact ranking, with matching impact rankings almost being an exception.
Instead, both the amount of better and worse impact rankings rise constatnly.
While a lower matching percentage for the lower fitness ranked traceIDs seems
probable, since they can not only have a lower but also a higher value, the
extreme drop in the matching percentage raises the question for other factors
having an influence on the final result. These reasons could include the fitness
of the individuals being similar or the same, or certain individuals having a
higher chance of producing good offspring in crossover. These possible factors
will be further discussed after analyzing the other tests.

fitness rank 1 2 3 4 5
CI rank matching 0 / 12 / 3 1 / 10 / 4 5 / 4 / 6 5 / 5 / 5 5 / 3 / 7
FI rank matching 0 / 12 / 3 1 / 10 / 4 5 / 3 / 7 5 / 4 / 6 6 / 3 / 6
EI rank matching 0 / 12 / 3 1 / 11 / 3 4 / 5 / 6 5 / 5 / 5 6 / 3 / 6
FEI rank matching 0 / 12 / 3 1 / 11 / 3 4 / 5 / 6 5 / 5 / 5 6 / 3 / 6

Table 6.4.: The four impact rankings matching with the fitness ranking of the
0/1 Knapsack problem. Each cell shows the amount of times the
impact rank was better / matching / worse than the initial fitness
ranking for the 15 different test configurations.

The 0/1 Knapsack problem tests in table (6.4) show similar results to the Max
Ones problem before. Again, the results for the four impact metrics are very
similar, the differences this time are higher. Only the best fitness individual
(rank 1) this time shows the same values in the four metrics. The differences in
the other metrics are still very low though, with all but the third fitness rank
only having one matching case more or less for each metric. The third fitness
rank is showing a difference in matching cases of two for the four metrics in
this case. As the proof of concept evaluation already showed for some of the
0/1 Knapsack tests, the reason for the impact metrics showing this similar
results is that the diversity in the last generation is very low. Smaller changes
between the impact metrics here could therefore be a result of the differences
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overall being very small, resulting in small changes being enough to change
the impact ranking. However, this will be discussed in more detail later in this
section.
Comparing the initial fitness ranks with the impact rankings reveals similar
results to the results from the Max Ones problem. The best initial fitness
traceID this time had in 12 of the 15 test configurations also the highest mean
impact in all four metrics. The second best fitness traceID managed to have a
matching CI and FI in 10 and a matching EI and FEI in 11 cases. The fourth
and fifth highest fitness ranks show matching impact values in around 5 cases,
with the FI being an exception, showing only 3 and 4 matching values, with
both better and worse rankings being found. The fifth fitness rank showing
three matching cases in all four metrics.
While the results are similar to the Max Ones problems, they show a smoother
drop in matching values in the top 5 initial fitness traceIDs. Also the 0/1
Knapsack problem rankings show more rankings being better, and especially
in the fourth and fifth highest fitness rank fewer impact rankings being worse
than the initial fitness rank. The general trend of the best two fitness ranks
having a matching impact rank with the remaining ranks showing far fewer
matching results is still found though.

fitness rank 1 2 3 4 5
CI rank matching 0 / 13 / 2 1 / 11 / 3 1 / 5 / 9 4 / 1 / 10 5 / 6 / 4
FI rank matching 0 / 13 / 2 1 / 11 / 3 1 / 5 / 9 4 / 1 / 10 5 / 6 / 4
EI rank matching 0 / 13 / 2 1 / 10 / 4 2 / 5 / 8 3 / 1 / 11 5 / 6 / 4
FEI rank matching 0 / 13 / 2 1 / 10 / 4 2 / 5 / 8 4 / 2 / 9 3 / 5 / 7

Table 6.5.: The four impact rankings matching with the fitness ranking of the
(Un)bound Knapsack problem. Each cell shows the amount of
times the impact rank was better / matching / worse than the
initial fitness ranking for the 15 different test configurations.

Evaluating the (Un)bound Knapsack problem tests shown in table (6.5), again
the values between all four metrics are very similar. Like in the rankings of the
0/1 Knapsack problem, only the highest fitness rankings shows equal impact
rankings for all four metrics. The differences again are minor, with all but one
having only a one case difference.
Comparing the differences between the fitness ranking and the impact ranking,
again the highest fitness traceID is matching in the most cases, with 13 out of
the 15 tests for the four impact metrics. The second highest fitness traceID is
matching in 11 cases for the CI and EI and 10 cases for the other two metrics.
The third fitness rank had a matching impact metric in 5 cases. The fourth
fitness rank only once matching with all impact values, which is lower than for
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the other two metrics. The fifth best fitness traceID having matching impact
values in 6 cases, or 5 for the FEI, indicates the fourth rank having an outlying
value.
In general, the results are in line with the other two tests though. Since
the fourth highest fitness traceID is different in all initial populations, the
low values can not be attributed to a specific initial population. However, the
results of the Max Ones problem also showing low values for the fourth highest
fitness traceID indicates the values having a higher variance in the lower initial
fitness ranks than in the higher, where the results seem more similar.

Before comparing the results of the three tests with each other, the reason for
the low differences of the impact metrics is evaluated here. The proof of concept
evaluation of population 2 and 5 of the easy 0/1 Knapsack tests already showed
a low diversity in the last generation by evaluating the entropy of the traceIDs.
To check if this assumption is right, the accumulated mean entropy of the last
generation from all tests used is shown in figure (6.6). The results in the
graph show an interesting pattern, with the higher fitness initial populations
5 having a lower entropy in every configuration than the lower fitness initial
populations 1. The highest entropy is in population 1 of the hard (Un)bound
Knapsack problem. However, comparing the test configurations needs to take
the amount of genes of each test configuration into account. While evaluating
the accumulated entropys of the different problems and configurations further
certainly could show some interesting information, the most important finding
for hypothesis 1 is the mean entropy of every test run being very low for
all genes. This directly proves the assumption of the breeding not allowing
a diverse enough population. This means, a comparison between the four
impact metrics will not yield many differences in the result. As the data of
hypothesis 1 already showed, most rankings are very similar, with only minor
differences found. While there can be differences found in the four impact
metrics, especially in the early generations of the proof of concept evaluation
of the single run showed, the last generation of both the single and multi-run
evaluation already showed the data being very similar. For this hypothesis, the
differences found in the four metrics come down to very similar mean impact
values for some ranks, meaning small changes in the impact metrics due to
fitness and entropy changes from occurring mutation where enough to switch
some ranks. The only conclusion comparing the four metrics therefore can be
that tests with a very similar population in the last generation also show little
differences in the four impact metrics.
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Figure 6.6.: The summed mean entropy in the last generation for the three
problems used in hypothesis 1. Each column is showing a differ-
ent problem type and each row a different difficulty level of the
problems.
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Besides the four impact metrics showing similar data, the results are also
consistent over the three different problems. This indicates that the problem
type and the specific data structure does not have a big influence. The biggest
influence on the result needs to come from the common breeding operators
used between the three problems. Since the impact from mutation is not
taken into account in these rankings, the difference in mutation probability
between the bit vector represented Max Ones and 0/1 Knapsack problems
compared to the integer vector represented (Un)bound Knapsack problem also
does not have a big influence. To understand why the probability of a matching
fitness and impact rank is dropping with the fitness rank in all tests, it needs
to be discussed what influences there might be for a gene to survive to the
last generation or not. The most obvious influence is the fitness of the initial
individual which the traceID is connected with. One reason for the best and
second best individual having such high matching rate could be the elitism of
the breeding process. Since the two best individuals always pass into the next
generation by default, their traceIDs always survive into the second generation.
The rest of the initial populations are picked at random for the tournament
selection. The tournament size of 2 means for each crossover candidate, two
random individuals from the current generation are picked, with the one with
better fitness being selected for crossover. This means, even though a better
fitness increases the chance of winning the tournament, the selection still has
a random factor on it, which also has an influence on the impact of the initial
individuals, especially if two traceIDs have a similar initial fitness. Since for
every two parents, two offsprings are created, the two point crossover used
does not specifically alter the impact of certain traceIDs in that way.
Besides the fitness of the initial individuals, a second possible influence on
the impact of the last generation could be the combinability of individuals.
The term combinability in this case describes the probability of an individual
producing a good or bad offspring in crossover. A good combinability therefore
means a higher chance of good offspring, while a bad combinability means a
higher chance of producing lower fitness offspring. While the probability of
such a combinability having a big influence on the result seems low for the
used crossover operators, not only needing to match the right individuals but
also the right gene parts, it is certainly possible for it to have an effect for
traceIDs having a similar initial fitness. This could potentially explain the
fact found in the proof of concept evaluation for pop 2, having only the second
highest impact on the best initial fitness traceID.
Besides the initial fitness and the potential combinability, the third factor to be
considered is the randomness through the breeding operator, already discussed.
As the proof of concept evaluation showed, the results for all tests are highly
spread. Since every test configuration is run 31 times, random influence could
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therefore also be a reason for some mean impact rankings not matching with
their initial fitness rank, especially in scenarios with a low impact difference.

Although there are many different reasons for the results shown in this sec-
tion, a definitive conclusion can only be reached for hypothesis 1. While the
assumption of the fitness ranking matching with the impact ranking mostly
holds true for the best and second best initial fitness traceID, the following
ranks having a higher chance of being better or worse than their initial fitness
rank indicates another factor than the initial fitness having an influence on
the final impact ranking. Therefore it can be concluded that the assumption
of hypothesis 1, the ranking of the top 5 initial fitness individuals having a
matching impact ranking over the 31 testruns, is wrong. While the first two
initial fitness ranks show a high probability of matching fitness and impact
ranks, there is a high spread found in the following initial fitness ranks, with
not even a single one of the 45 testruns showing perfectly matching fitness and
impact ranks.

Hypothesis 2

Hypothesis 2 assumes the mean impact difference to be low for initial popu-
lations with the same fitness for all individuals. Therefore, initial populations
fitting this criteria were created for the Max Ones problem (referred to as same
fitness Max Ones problem), as the three problems used in hypothesis 1 did not
satisfy this requirement. Like in hypothesis 1, the mean impact over 31 runs
for every population is used. This means, the difference between the highest
and lowest mean impact of the traceIDs from a given population is evaluated.
As the single-run proof of concept evaluation showed, not all traceIDs manage
to survive to the last generation. To avoid the lowest impact value to always
be 0%, distorting the results, the difference in mean impact was evaluated.
The mutation impact was not considered for the evaluation, since it does not
have an initial fitness and would also distort the impact comparison of the
individuals.

To evaluate hypothesis 2, the impact difference for each metric is visualized in
figure (6.8). The figure shows three graphs, graph (6.8.a) for the easy, graph
(6.8.b) for the medium and graph (6.8.c) for the hard tests. Every difficulty
shoes the differences in the four impact metrics per population.

The first thing to notice when evaluating the graphs is that the differences
found in the four impact metrics again are very similar. Similarly to the
prevouis test setups, the reason can be found when evaluating the accumulated
mean entropy of the same fitness Max Ones problem. Figure (6.7) shows the
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Figure 6.7.: The summed mean entropy in the last generation for the same
fitness Max Ones problem used for hypothesis 2. Graph (a) shows
the results of the easy difficulty, graph (b) the results of the
medium difficulty and graph (c) the result of the hard difficulty.

accumulated mean entropy of the last generations of the 31 runs for each
population in each difficulty level. The same trend as for the previous tests
can be found, with the entropy of the initial populations 1 being lower than
the entropy of the populations 5. While the values are about 0.5 higher than
the entropy values of the Max Ones problem from hypothesis 1, they still are
very low for the same fitness Max Ones problem, with the highest value being
found in the population 5 from the hard difficulty. Again, when comparing
the different difficulties, the gene count needs to be kept in mind. Although
the initial population has the same fitness in every individual, the entropy of
each test configuration still is very low. This means the last generation is still
composed mostly of the same individual. While gene wise, every test reached
the global optimum with a fitness of 1 in the end, with some individuals being
an exeption because of an occurring bit flip mutation, the entropy per gene
of the data being low is not suprising. However, the entropy of the traceIDs
being low implies the dominance of one single individual throughout the run.
Especially interesting is the initial populations having a lower entropy, even
though the number of ones per gene is much higher than in the other initial
populations.
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Figure 6.8.: The difference between the highest and the lowest mean impact for
every population from the same fitness Max Ones problem. Graph
(a) shows the results of the easy tests, graph (b) of the medium
tests and graph (c) of the hard tests.

Since these similar entropy values can also be found for the same fitness initial
populations, the reason for the dominance of a traceID can not be attributed to
the initial fitness. This indicates that the first individual reaching an optimum
quickly dominates the population. While only having one optimum might
not be an issue for the Max Ones problem, only having one optimum, for
other problems like the Knapsack problems also used in this thesis, the EA
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might easily get stuck in a local optimum. Besides the implications on the
performance loss of the EA, this also means a comparison between the four
impact metrics does not yield interesting results, since the four impact metrics
are all similar. As already mentioned, all tests of the same fitness Max Ones
problem result in finding the optimum fitness of 1. This means the small
differences in the values are due to the bit flip mutation worsening an optimal
individual. The following evaluation of the mean impact differences therefore
does not compare the four impact metrics with each other.

Taking a closer look at the results of the easy difficulty in figure (6.8), the
highest impact difference can be found in population 2 with about 11% for the
four metrics. The second highest value is found in population 5 with an impact
difference of about 8% in the four metrics, closely followed by population 3.
The fourth highest impact difference can be seen in population 4 with values
just under 7.5%. Population 1 has the lowest impact difference of just under
4%.
The medium tests have a highest impact difference of about 9%, slightly lower
than the easy tests. Population 2, 3 and 4 are all closely below 7%, with pop-
ulation 1 again having the lowest value of just under 4%.
The impact differences for the hard tests seem to be more similar, with popu-
lation 3 having the highest impact difference of just under 8%, closely followed
by population 4 and 5 at about 7.6% in the four metrics. Population 1 had the
fourth highest difference just under 7.5%. Population 2 had the lowest impact
difference with about 5%, which is a little higher compared to the other two
difficulties.

While the impact differences overall are fairly low, the distance from the highest
impact of 11% being more than twice as high than the lowest recorded mean
impact difference of only 4% raises the question on the reason for the difference
in the final values. There are four possible factors that could be the reason
for a higher impact difference. Firstly, impact differences of individuals inside
of one population could lead to a higher or lower mean impact difference.
Secondly, the overall best initial fitness or medium initial fitness of a population
compared to another population could also have an influence generating a
higher fitness difference. Thirdly, the combinability of individuals could be a
factor for a higher or lower mean impact difference. Finally, the randomness
in the breeding process is also a factor for mean differences in the end. These
four factors will now be discussed to find the reason for the differences found
in figure (6.8).

The first possible reason, the impact differences inside of a population, can be
ruled out for this test, since the populations all have the same fitness in all
individuals by the nature of the test design.
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To evaluate the second possible reason of fitness differences between the five
initial populations used, a relation between the initial fitness and the resulting
impact difference would need to be found. Since the best initial fitness and
the mean fitness of a generation is the same for all populations, no separation
needs to be done for this special case. Looking at the data of all four difficul-
ties of the three tests in figure (6.8), no real trend can be found between the
initial fitness differences of the populations and the resulting impact difference
visualized. The lowest impact differences are primarily found in populations
1, which have the lowest initial fitness, for the easy and medium tests, and in
population 2 for the hard tests. However, population 2 in the easy test having
the highest impact difference also shows that high differences in the popula-
tions with a low initial fitness are also possible. In general, the highest fitness
differences appear all over the spectrum of initial fitnesses with population 2
in the easy tests, population 5 in the medium tests and population 3 in the
hard tests. This suggests the initial fitness not having an influence on a higher
or lower fitness difference for this same initial fitness test.
The third possible factor for a higher or lower impact difference might be the
combinability of the individuals of an initial population. Combinability refer-
res to two individuals having a better chance to produce a good offspring in
crossover. If there is an individual having a particularly good combinability
with the rest of the population, the influence of such an individual should
on average be higher than for other individuals, in theory leading to a bigger
impact difference. If on the other hand, the combinability of an individual is
lower with the rest of the population, it should have, on the other hand, a lower
impact on average, also leading to a higher average fitness difference. Because
the objective of the Max Ones problem is to maximise the amount of ones in
the genes, the combinability is directly linked to the amount of ones present in
an individual. Because every individual has the same fitness and therefore also
the same amount of ones in its genes, the only other factor remaining should
be the distribution of the ones inside of the individuals. However, for this
theory, the combinability should be lower for the highest and lowest fitness
initial populations, with a spiking impact difference for the medium fitness
populations 3. For the high fitness starting populations, especially population
5 of each difficulty, where every individual has a fitness of 0.9 out of 1.0, nearly
every recombination will result in the best fitness individual. That means the
surviving individuals are chosen basically at random through the tournament
selection, meaning the combinability of all individuals would be fairly equal,
resulting in a similar impact for each individual over many runs. On the other
hand, for the lower fitness initial populations, the recombination of individuals
also produces fairly low fitness individuals, with mutations always having the
highest impact. This can also be observed in the box plot visualizations for
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the same fitness Max Ones problem in appendix (B.1.4). The medium impact
individuals on the other hand should be more influenced by the combinability.
While it can be observed that the initial populations 1 have a lower mean
impact difference in the easy and medium tests, the hard tests show a higher
impact difference in the first population. Also, the assumption that the initial
populations 5 have a lower impact difference can not be found. While more
research into the possibility of the combinability of individuals having an in-
fluence on the result needs further research, for now it can be assumed that
combinability is not the reason for the differences in values found.
The first three possible influences to the differences in the data leaves varia-
tion through the randomness in the breeding procedure as the most probable
factor.

Despite the differences found in the data, it can be concluded that in initial
populations with the same fitness, the impact for each individual is similar at
the end. Even though there are cases where some individuals had a higher
impact than others, the difference between the best and worst impact was at
most about 11%. Because of the high spread found in the proof of concept eval-
uation, which is also found in the box plots of the same fitness max ones tests
in the appendix section B.1, the results of this evaluation can not necessarily
reflect the results of one single run. Furthermore, not all traceIDs surviving to
the last generation results in the impact difference being equal to the highest.
The low impact difference therefore reflects a low medium impact, meaning
the probability of one traceID making it to the last generation is fairly equal.
While hypothesis 2 may not be true evaluating one individual testrun, it holds
true when evaluating a multitude of runs.

Hypothesis 3

The third hypothesis assumes the impact of mutation lower for initial popula-
tions with a higher best fitness. To evaluate this, the mean mutation impact
for every initial population from every problem is shown in four separate fig-
ures. The three problems also used in hypothesis 1 are presented in figure
(6.9), showing the results for the normal Max Ones problem. Figure (6.10)
shows the results of the 0/1 Knapsack problem and figure (6.11) the results of
the (Un)bound Knapsack problem. The same fitness Max Ones problem from
hypothesis 2 is also used in hypothesis 3 as shown in figure (6.12). The visual-
izations for all four problems are structured the same. The left row shows for
each difficulty a bar chart, in which for every population the best initial fitness
as well as the medium fitness per generation is visualized. The graphs (a) show
the tests of the easy difficulty, the graphs (c) for the medium difficulty and the

62



6.2. Evaluation of the hypotheses

graphs (e) for the hard difficulty. The right row also shows a bar chart for each
difficulty. Each graph shows for all four metrics the mean mutation impact
per population. In addition, a trend line for every impact metric is plotted,
showing the trend from populations 1, with the lowest best initial fitness, to
populations 5, with the highest best initial fitness. The graphs (b) shows the
easy difficulty, graphs (d) the medium and graphs (f) the hard.

Since the same problems are used like in the previous two hypothesis, the
following evaluation is also not expected to show significant differences between
the four impact metrics. While this time some small differences in the mutation
impact can be found, the values overall are very similar again.

Evaluating the four figures, we can see that the best initial fitness rises lin-
early from the populations 1 to the populations 5 for all problem types in all
difficulties. This can be attributed to the selection mechanism mentioned in
the experimental setup, picking the initial populations with the most equal
distance between each other. Although the hypothesis 3 is based on the as-
sumption of the best initial fitness having an influence at the resulting mutation
impact of the four metrics, the average fitness of the initial populations also is
visualized for comparison purposes.

Looking at figure (6.9) for the Max Ones problem, we can see that all three
difficulties show a clear downward trend in the mutation impacts from popu-
lation 1 to population 5. In graph (6.9.b), showing the easy tests, we can see
that the four impact metrics are relatively similar. Pop 1, pop 2 and pop 3
show a little higher values for the entropy considering EI and FEI, while pop
4 has slightly higher CI and FI. However, the differences in these metrics are
not very significant, with all four metrics showing the same development over
the five populations. Pop 1 has the highest mutation impact of over 30% in all
four metrics. The four impact values drop about 8% to 10% impact each turn
to about 2% mutation impact for every metric in pop 5. The change from pop
2 to pop 3 is the only exception, with a drop of just 1% EI and FEI, and about
3% for the CI and FI. The reason for this lower change between pop 2 and
pop 3 can not be explained with the initial fitness of population 2 or 3. While
the best initial fitness has, due to the generation process of the populations,
a fairly equal distance between each population, the mean initial fitness also
rises steadily from population 1 to 5, and does not show a significantly lower
change between population 2 and 3.
The medium tests in graph (6.9.d) start with a mutation impact of about 25%
in pop 1. This time, the changes between population 1 to 2, and the changes
between population 4 to 5 are similar, with a drop of about 3%. Also the
changes between the populations 2 to 3 and 3 to 4 are similar with a drop of
about 10% impact in all four metrics. This time, a potential reason for the
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Figure 6.9.: Visualization of the Max Ones problem for hypothesis 3. The
left graphs shows the best and average initial fitness of the five
populations as a bar chart, graph (a) for the easy, graph (c) for
the medium and graph (e) for the hard tests. The right side shows
the mutation impact of the four impact metrics per population,
also as a bar chart, with graph (b) showing the easy, graph (d)
the medium and graph (f) the hard test results.
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lower drop rates from pop 1 to 2 and pop 4 to 5 can be found in the corre-
sponding fitness of the initial population in graph (6.9.c). Both the best initial
fitness, as well as the medium fitness of the initial populations change slightly
higher from pop 2 to 3 and pop 3 to 4. Comparing the results of the four
impact metrics, again the entropy considering EI and FEI are a little higher
than the CI and FI for pop1, pop2, pop3 and pop 4. Pop 5 again shows similar
values for all four metrics.
The results of the hard difficulty of the Max Ones problem in graph (6.9.f)
show a more equal change in mutation impact over the five populations. Com-
pared to the other three difficulties, the impact metrics considering entropy
also have higher values than the impact metrics not considering entropy. This
time though, a clear difference can be found in all five populations. Starting
with a mutation impact of about 19% for the EI and the FEI, the values of
these two metrics drop about 4% for every population. The CI and FI start
lower with about 15% mutation impact, also falling linearly. Comparing this
result to the initial fitness of the populations of the hard tests in graph (6.9.e),
we can see the drop in mutation impact, correlating more with the best initial
fitness increasing linearly from pop 1 to pop 5. On the other hand, the average
impact of the populations sees a jump from pop 1 to pop 2, changing much
slower, which is not found in the mutation impact of the five populations.
All in all, the assumption of the mutation impact being lower for an individual
with a better initial fitness holds true for all three difficulties of this Max Ones
tests. However, even though the changes in best initial fitness are linear, both
the easy and the medium tests had one outlying smaller change between two
initial populations, which also could not be explained with the average fitness
of the initial populations.

Evaluating the results of the 0/1 Knapsack tests, shown in figure (6.10), we can
already find results not matching to the assumption of hypothesis 3. Starting
with the easy difficulty shown in graph (6.10.b), while we still see a downward
trend between each initial population, the change from pop 2 to pop 3 is very
high compared to the changes found in the previous Max Ones tests, with the
mutation impact being similar from pop 3 to pop 4, slightly dropping again
in pop 5. The high change in average fitness between pop 2 and pop 3 could
be an explanation for the high change in mutation impact between the two
populations. However, the average fitness of another population does suggest
no link between the average fitness and the impact through mutation. The
average fitness of population 5 is actually lower than for pop 4 and pop 3, while
having a smaller mutation impact in all four metrics than those populations.
This means, that neither the best initial fitness, increasing linearly from pop
1 to pop 5, nor the average initial fitness can be the only factor for the impact
of mutation. Comparing the four impact metrics with each other, they are
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Figure 6.10.: Visualization of the 0/1 Knapsack problem for hypothesis 3. The
left graphs shows the best and average initial fitness of the five
populations as a bar chart, graph (a) for the easy, graph (c) for
the medium and graph (e) for the hard tests. The right side shows
the mutation impact of the four impact metrics per population,
also as a bar chart, with graph (b) showing the easy, graph (d)
the medium and graph (f) the hard test results.
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again very similar. However, while in the Max Ones tests the CI always had
similar values to the FI, and the EI always had similar values to the FEI, this
time the four impact metrics show different results. This time, the FI seems
to have the lowest value in all five populations, with pop 1 being an exception
with the FEI being the lowest. The EI this time is always the highest impact
metric, again with pop 1 being one exception with the CI being the highest.
The results of the medium tests in graph (6.10.d) surprisingly do not show
a continuous downward trend in the mutation impact from one population
to another. While the overall trend from pop 1 to pop 5 still shows a lower
mutation impact for a higher best initial fitness, the result of pop 2 is an
outlier with an unexpectedly low mutation impact of only about 5% for all
four metrics compared to the about 15% mutation impact in pop 1 and about
10% mutation impact in pop 3. Comparing this result to the initial fitness in
graph (6.10.c), no connection between the average fitness or the best initial
fitness can be found. Comparing the four impact metrics, only minor changes
are found, with the FI being the lowest in all populations and the EI being the
highest.
Moving on to the hard tests in graph (6.10.f), no outlying results can be found
this time, with an even decrease between all of the five populations. Similar to
the Max Ones tests, the metrics considering entropy show higher values than
the CI or FI in all five populations. Notable this time though is the overall
small decrease in mutation impact from about 15% for the CI and FI in pop
1, to about 8% for both metrics in pop 5, with the EI and FEI having around
a 2% higher mutation impact. This could be due to the average impact of the
populations also changing relatively little from pop 1 to pop 5. However, other
examples before, like the hard Max Ones tests, showed no such correlation.
The medium tests might prove the assumption of hypothesis 3 wrong. While
randomness in the breeding process also can have an effect on the final result,
it seems not probable in this case because of the clear difference between the
values of pop 2 to pop 1 and pop 3. This leads to the conclusion of another
factor having an influence on the mutation impact. However, even though
there are outliers found in the 0/1 Knapsack problem, overall the best initial
fitness seems to have an influence on the impact of the mutation, since all tests
show a drop in mutation impact from pop 1 to pop 5.

Figure (6.11) shows the data of the (Un)bound Knapsack tests. Similar to the
previous 0/1 Knapsack tests, not all difficulties show a clear downward trend
in the mutation impact from the populations 1 to 5.
In the easy tests in graph (6.11.b), we can see population 1 starts with the high-
est average mutation impact of about 40%, falling to about 30% in population
2. However, from population 2 to population 3, the impact of all four values
actually increased. The change from population 3 to population 4 is especially
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notable, with it being one of the two times in the evaluation of hypothesis 3,
where not all of the four impact metrics are increasing or decreasing at the
same time. While the values of the CI and FI decrease slightly from pop 3 to
pop 4, the values of the EI and FEI increase. The increase in EI shows, that
many different negative traceIDs boost the entropy values, meaning no single
mutation is dominating in the last generation. The FI being lower than the
other four metrics indicates that the mutations do not have a positive impact
on the fitness of the individuals. Population 5 finally has the lowest mutation
impact of about 20%.
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Figure 6.11.: Visualization of the (Un)bound Knapsack problem for hypothesis
3. The left graphs shows the best and average initial fitness of
the five populations as a bar chart, graph (a) for the easy, graph
(c) for the medium and graph (e) for the hard tests. The right
side shows the mutation impact of the four impact metrics per
population, also as a bar chart, with graph (b) showing the easy,
graph (d) the medium and graph (f) the hard test results.
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Comparing the results to the initial fitness in graph (6.11.a), we can see the
mutation impact neither matching to the development of the best initial fitness
of the populations, nor the average fitness. While the graph correlates for pop
1, pop 2 and pop 5, the populations 3 and 4 are not in line with the assumption
of the hypothesis, this time even having different values for throughout the four
impact metrics.
The medium tests visualized in graph (6.11.d) on the other hand are more
streamlined, steadily decreasing from population 1 to population 5. Like in
the easy difficulty, we can see the FI always has the lowest average mutation
impact value. Comparing this to the CI, it again suggests that some mutations
are slightly decreasing the fitness of an individual in the last generation. Since
the mutation FI still starts with 50% impact in population 1, and still has
about 30% average FI in pop 5, mutation overall had a big influence on the
final result. The EI always being the highest average mutation impact of the
four metrics suggests, on the other hand, that the entropy of the individuals
with mutation in them is high, possibly meaning different mutation traceIDs
boosting the diversity in the last generation. Comparing the results to the
initial fitness in graph (6.11.c), the change in mutation impact from pop 2 to
pop 3 being the smallest can neither be explained with the best initial fitness,
nor the with the mean initial fitness.
The hard difficulty tests are shown in graph (6.11.f). Like in the other two
difficulties, the FI is the lowest of the four impact metrics, and the EI the
highest. The only exception found in all of the (Un)bound Knapsack tests is
population 2, with the CI being lower by a small margin. The mutation impact
change from pop 1 to pop 2 is the second time where not all of the four impact
metrics rise or drop at the same time, with the CI having a higher value in pop
1 than in pop 2, while the other three metrics have a lower value. Overall the
mutation is not showing a clear downward trend with the best initial fitness
rising, with the lowest mutation impact value being the FI of pop 4 with a
value of 38%. One reason for the fairly similar values across five populations
in the hard test may be found in the initial fitness, shown in graph (6.11.e).
Compared to the other populations, the changes in the best initial fitness as
well as the average fitness shows a smaller relative range compared to the other
tests.
The overall smaller changes in the mutation impact compared to the previous
Max Ones or 0/1 Knapsack problem might be a result of the initial populations
having a bad fitness compared to the other tests. In general, the average fitness
of all populations is negative, even for the populations 5, with the best fitness.
This indicates that even the better initial populations are not really good.
While the average initial fitness sows negative values for all populations in
all difficulties, even the best initial fitness shows negative values, except in
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the easy tests. This might explain the rather high mutation impact in the
populations 5 and potentially also the lower drop in mutation impact from
pop 1 to pop 5.
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Figure 6.12.: Visualization of the same fitness Max Ones problem for hypothe-
sis 3. The left graphs shows the best and average initial fitness of
the five populations as a bar chart, graph (a) for the easy, graph
(c) for the medium and graph (e) for the hard tests. The right
side shows the mutation impact of the four impact metrics per
population, also as a bar chart, with graph (b) showing the easy,
graph (d) the medium and graph (f) the hard test results.

Finally, figure (6.12) shows the results of the same fitness Max Ones problem.
As the fitness of every individual is the same, the average initial fitness and the
best initial fitness of every population is the same on the left graphs (6.12.a),
(6.12.c), and (6.12.e). Also, the height of the fitness values is the same for all
three difficulties, with the populations 1 having an initial fitness of 0.1, the
populations 2 an initial fitness of 0.3, the populations 3 an initial fitness of 0.5,

70



6.2. Evaluation of the hypotheses

the populations 4 an initial fitness of 0.7 and finally the initial populations 5
an initial fitness of 0.9. While both the best initial fitness and the average
initial fitness are the same in all populations, the resulting mutation impact
of the three difficulties show two different trends.
The mutation impact in the easy tests, visualized in graph (6.12.b), drops
exponentially. Starting in pop 1 with a value of about 50% mutation impact,
the mutation impact of pop 5 does not even reach 1% mutation impact, with
all four metrics being very similar over all populations.
The mutation impact of the medium tests on the other hand shows a more
linear drop, starting at about 38% for all four values, dropping about 9% for
every population, finally reaching about 2% for pop 5. Again, the four impact
metrics are similar; however, in populations 2, 3 and 4 the EI and FEI show
a slightly higher values than the other two metrics, comparable to the results
of the other Max Ones problem.
The hard difficulty also shows this higher values for the metrics considering
entropy, starting with a considerable impact difference of about 3% between the
two groups. This difference however gets smaller in pop 4, being similar again
in pop 5. All four metrics this time also show a relatively linear downward
trend from pop 1 to pop 2.
While two of the three tests showed a linear trend from the lower initial fitness
pop 1 to the higher initial fitness pop 5, with the mutation impact dropping
continuously, the results of the easy tests still raise questions as to the reason
for the different results, since this time, initial populations all had the same
initial fitness. Comparing the result to the easy 0/1 Knapsack tests, which
also showed a quick drop in the mutation impact of all four metrics from
pop 1 to pop 5, may lead to the assumption of the easy difficulty with a
lower gene count could be a reason for this quicker drop. However, the easy
(Un)bound Knapsack problem and the Max Ones problem both do not show
this trend. While the higher values in the (Un)bound Knapsack problem could
be explained with a bad initial fitness in all five populations, the Max Ones
problem still does not fit this explanation.

The first thing to note for the evaluation of hypothesis 3 is that some dif-
ferences between the four impact metrics can be found. This can largely be
attributed to the way the traceIDs for mutated genes are assigned. While the
mutation is shown as a whole in all figures, every mutation initially gets its
own negative ID, to be able to separate them when calculating the values for
entropy and fitness. Every occurring mutation therefore has its own ID, with
the impact of all negative traceIDs later being summed to the mutation impact
visualized. This explains the effect found that the values for the CI and FI are
lower than the impact of the entropy based EI and FEI, found in the graphs
(6.9.a), (6.9.b), (6.9.c), (6.10.c), (6.12.b) and (6.12.c). Since mutations occur
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between each generation, they can never be phased out of a gene completely.
Other graphs showing a smaller FI than the other metrics, suggest the newly
occurring mutation is not improving the individuals, together with the low
entropy in the last generation indicating a local optimum. This is especially
noticeable for both Knapsack problems in the figures (6.10) and (6.11). While
the entropy of the last generation from every problem run suggests a very sim-
ilar population, some differences still can be found for the mutation impact.
However, no significantly big differences could be found throughout the run,
with the differences being explainable with the method of assigning traceIDs
for mutation.
Moving on and comparing the four different tests with each other, we can see
some interesting trends. A higher mutation impact, especially in the better
fitness initial populations, can be found in the tests with a negative mean
or best fitness in the initial population. This can not only be seen in the
(Un)bound knapsack tests in figure (6.11), but also in the hard 0/1 Knapsack
tests in figure ((6.10).f). While the initial fitnesses of the Max Ones , 0/1
Knapsack and (Un)bound Knapsack problems can hardly be compared, even
the populations 5 having a negative fitness is a good indicator for a bad initial
population. Therefore, the impact of mutation being higher in these cases is
in line with the assumption of hypothesis 3. While in general a downward
trend could be found from pop 1 to pop 5 in all tests, the outliers as well
as the general development of the mutation impact could not be explained
just with the best initial or average fitness of the corresponding populations.
While there is an inherent random factor throughout in the results because
of the breeding process, more extreme outliers, like pop 2 in the medium 0/1
Knapsack problem, hint at other factors also having a possible effect in the
development of an EA. The average impact of the initial population does not
seem to be one such factor, with neither the two knapsack tests nor the two
Max Ones tests showing a strong correlation. One possible factor could be the
combinability of individuals, already discussed in hypothesis 2. If individuals
of a population do not combine well with each other, there is a heavy reliance
on mutation to improve the population. On the other hand, if the individuals
of a population do combine well with each other, there is a smaller reliance
on the mutation to improve the population. When converging quickly to the
global optimum, mutation could even worsen the otherwise good solutions, as
the proof of concept evaluation for run 3 of population 5 from the easy 0/1
Knapsack problem showed. However, assigning a combinability to individuals
of a population is heavily dependent on the intended solution and not trivial
for complex problems like the Knapsack problems. Further research into the
theory is needed to provide information about its impact on the result of an
EA.
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However, the general assumption of a higher best initial fitness in an initial
population leading to a lower impact in mutation holds true for the tests
conducted, with only the before mentioned population 2 of the medium 0/1
Knapsack problems being an exception. While there might be other factors
contributing to the influence of mutation, the best initial fitness seems to have
a major influence on the impact of mutation, with all difficulties of all problems
showing a lower mutation impact for a higher initial fitness. The bad initial
populations of the Knapsack problems having a comparably higher mutation
impact further confirms this hypothesis. As with the hypothesis before, since
the proof of concept evaluation showed a large spread in the results in the final
population, this finding might not reflect the results of one single run.
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Closing the thesis, the conclusion of the proof of concept evaluation as well as
the three hypothesis is reached. An outlook on possible future expansions and
directions for tracable evolutionary algorithms (T-EAs) is also given.

7.1. Conclusion

To track the impact of the initial generation throughout the generations of
an evolutionary algorithm (EA), the T-EA was proposed, tracking genes to
individuals from the initial generation by attaching a traceID to every gene.
Alongside, four metrics of measuring the impact where presented. The fitness-
based impact (FI) extends the basic counting-based impact (CI) by taking the
fitness of the individual the gene is in into account, while the entropy-based
impact (EI) is dependent on the entropy from the gene counted. Combining
both, the fitness-entropy-based impact (FEI) is based both on fitness and
entropy.

To evaluate the proposed T-EA and its four metrics for measuring the impact,
three tests where designed, spanning not only different problems but also two
different representations, the bit vector and the integer vector. All tests where
not only run in three difficulty levels, but also with 5 different initial popu-
lations, to ensure comparable and robust results spanning different starting
conditions. The goal of these three hypotheses was to show the capabilities of
information gain through the tracking of gene heritage, as well as answering
general assumptions about the inter workings of EAs.

Before evaluating the three hypotheses, a proof of concept evaluation of popu-
lation 2 and 5 from the easy 0/1 Knapsack problem was done, with the goal of
showing the capabilities as well as gaining information on a more basic level.
First, a single run of both populations was evaluated. In both of those runs, a
quick domination of one single individual was found, with the result of the last
population being very similar. Therefore, the results of the four impact met-
rics were also very similar in the later generations. However, some differences
in the initial generations could be found. The early generations still showed
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some differences though, with the FI favoring better fitness individuals whose
genes survived to the last generation. The EI on the other hand showed higher
results for lower impact traceIDs. However, due to the quick drop in entropy
over the generations and the later populations featuring very similar individ-
uals, no conclusive comparison could be done for the metrics. Another effect
to be noted was the low amount of genes of the initial population surviving to
the last generation. This effect might very well be linked to the very similar
individuals in the last generation and should be revisited in a future test with
a better breeding operator.
Moving on to the results of the multi-run evaluation of the populations 2 and
5, the results of all four impact metrics where found to be similar even in very
outlying impact results, proving the breeding operator didn’t provide enough
diversity. Besides this, the results also were found to be very spread, especially
for the lower initial fitness individuals of a population, with the mean impact of
only 3 traceIDs in population 2, and only 2 traceIDs in population 5 exceeding
0% impact. The high spread of results shows the findings in this thesis to be
applicable more on the average of many testruns, showing a probable result,
but not neccecarily being comparable to one single testrun. Furthermore, for
population 2 the initially best fitness traceID was not found to have the highest
impact at the end.

While the proof of concept evaluation of the two selected populations already
showed hints to the results of the hypotheses, the evaluation of all of the
tests brought more reliable results outside of the easy difficulty and the 0/1
Knapsack problem. The first finding for all three hypotheses was again the
results for the four impact metrics being very similar. This again could be
attributed to one single individual dominating the last population in all tests.
This proved the similar results not being a reason of the easy difficulty, but of
the breeding operator not allowing for enough diversity throughout the testrun.
Because of the similar results, the comparison of the four impact metrics was
complicated, with only the values for hypothesis 3 finding some differences,
explainable through the assignment of traceIDs for mutated genes.
The evaluation of hypothesis 1 showed the top 5 initial fitness ranking not
matching with the impact ranking of the four metrics. While for the fitness
ranks 1 and 2 the ranks matched up in the majority of cases, this was not
found for the further fitness ranks. While no strong correlation between the
initial fitness could be found for hypothesis 1, the other two hypotheses showed
different values. The impact differences being low for the same fitness Max
Ones problem proved hypothesis 2 to be true, and the initial fitness having
an influence at the resulting impact. Variations in the data still raise the
questions for other factors having an influence on the result. Evaluating the
third hypothesis also showed an influence that the best initial fitness individual
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of a population has on the impact of mutation. The impact of mutation overall
was found to be lower in populations with a higher best initial fitness, not
only comparing a specific difficulty in a specific problem, but also overall.
This was shown espacially by the two Knapsack problems when having all
negative initial populations. However, irregularities in the data also raised the
question for other influences on the impact on the survival of a gene other than
the fitness of its initial individual. Possible influences found include a possible
better chance of survival through a better combinability with other individuals
or the configuration of the breeding operator itself with factors like the elite
size. Of course, all results need to be viewed with the test configurations in
mind. Changing the breeding operator will have a significant influence on the
result.

Since the concept of tracking the influence of the initial population is a novel
approach, there are still a lot of areas to be explored with the current state of
the framework. Furthermore, the T-EA can also be expanded to include more
representations and breeding operators. Therefore, the next section is closing
the thesis by showing the potential future development of the framework.

7.2. Future Work

Describing the possible future work can be split into two parts. First, other
interesting areas to be tested with the existing implementation of T-EAs are
explored. Secondly, possible extensions of the framework will be discussed.

Since the topic of this thesis is in a quite novel field, there is a lot of potential
for future work to be done. While the data used in this thesis covers differ-
ent problems of different difficulty levels, the test configuration largely was
the same for all test, with the mutation probability being the only difference.
Comparing the influence of different breeding operators and initial configu-
rations could be investigated. Also, as the four impact metrics showed very
similar results due to the low entropy found in the last generation, further tests
are needed for a conclusive comparison. Not only can different breeding oper-
ators be evaluated, but also other different compositions of initial populations.
Related to that, the combinability of individuals mentioned in the thesis also
needs further research as a possible factor for the survival of genes in the EA.
Finally, it could be evaluated if there is a certain distribution of the impact
results found when evaluating multiple testruns.

Because the T-EA framework currently only supports bit vector and integer
vector representations, the implementation of other data types is needed to
cover a wider range of problems. Besides other representation options, the
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framework currently only supports gene swapping crossover operators, as well
as random mutation. The heritage of a gene not being picked from a single
individual, but being a combination of the values of both can not be repre-
sented by a single traceID, but is a combination of two. Updating the struc-
ture of T-EA will therefore be necessary. Saving more than one traceID with
an accompanying influence percentage could enable tracking for this type of
crossover operators.
Furthermore, mutation operators not randomly assigning new values, but al-
tering the existing value by some amount, are also not sufficiently tracked with
the current data structure. A possible expansion would be to track both the
original traceID as well as the difference to the original gene value from the
current one.
Challenges of the data visualization also need to be overcome, especially for
problems with a high number of individuals in the initial population. Since
the problems used in this thesis all had only 20 individuals in the initial popu-
lation, only 20 traceIDs needed to be evaluated. Since in real world scenarios,
the number of individuals in the initial population can be much bigger, solu-
tions need to be developed to clearly show the data. Possible solutions could
include intelligent filtering or grouping. The same is true regarding the num-
ber of generations visualized.
Finally, evaluating the data over many runs does not take into account the
quality of the solution. As the FI is taking the fitness of the inidivual into ac-
count, including such information, like the best fitness reached in a run, when
building a mean impact over a number of runs could also be researched.
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A. Knapsack configurations
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Conf 2

Max weight 269

Cost Weight

55 95

10 4

47 60

5 32

4 23

50 72

8 80

61 62

85 65

87 46

Conf 3

Max weight 878

Cost Weight

44 92

46 4

90 43

72 83

91 84

40 68

75 92

35 82

8 6

54 44

78 32

40 18

77 56

15 83

61 25

17 96

75 70

29 48

75 14

63 58

Conf 4

Max Weight 599

Cost Weight

94 485

506 326

416 248

922 421

649 322

237 795

457 43

815 845

446 955

422 252

791 9

359 901

667 122

598 94

7 738

544 574

334 715

766 882

994 367

893 984

633 299

131 433

428 682

700 72

614 874

874 138

720 856

419 145

794 995

196 529

997 199

116 277

908 97

539 719

707 242

569 107

537 122

931 70

726 98

487 600

772 645

513 267

81 972

943 895

58 213

303 748

764 487

536 923

724 29

789 674

Conf 1

Max Weight 80

Cost Weight

33 15

24 20

36 17

37 8

12 31

Figure A.1.: Configurations of the Knapsack Problems. Conf 1 is used for the
easy (Un)bound Knapsack, Conf 2 for the easy 0/1 Knapsack
and the medium (Un)bound Knapsack, Conf 3 for the medium
0/1 Knapsack and the hard (Un)bound Knapsack, and Conf 4 for
the hard 0/1 Knapsack.
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Figure B.1.: Box Plots of populations 1, 2 and 3 from the easy Max Ones
problem tests.
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Figure B.2.: Box Plots of populations 4 and 5 from the easy Max Ones problem
tests.
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Figure B.3.: Box Plots of populations 1, 2 and 3 from the medium Max Ones
problem tests.
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Figure B.4.: Box Plots of populations 4 and 5 from the medium Max Ones
problem tests.
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Figure B.5.: Box Plots of populations 1, 2 and 3 from the hard Max Ones
problem tests.
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Figure B.6.: Box Plots of populations 4 and 5 from the hard Max Ones problem
tests.
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Figure B.7.: Box Plots of populations 1, 2 and 3 from the easy 0/1 Knapsack
problem tests.
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Figure B.8.: Box Plots of populations 4 and 5 from the easy 0/1 Knapsack
problem tests.
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Figure B.9.: Box Plots of populations 1, 2 and 3 from the medium 0/1 Knap-
sack problem tests.
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Figure B.10.: Box Plots of populations 4 and 5 from the medium 0/1 Knapsack
problem tests.
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Figure B.11.: Box Plots of populations 1, 2 and 3 from the hard 0/1 Knapsack
problem tests.
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Figure B.12.: Box Plots of populations 4 and 5 from the hard 0/1 Knapsack
problem tests.
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B.1. Box Plots

B.1.3. (Un)bound Knapsack problem
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Figure B.13.: Box Plots of populations 1, 2 and 3 from the easy (Un)bound
Knapsack problem tests.
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 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20
individuals of the starting population

200

0

200

fit
ne

ss

(Un)bound Knapsack Easy Pop4
(a)

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 m
individuals

0.0

0.2

0.4

0.6

co
un

tin
g 

im
pa

ct

(b)

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 m
individuals

0.0

0.2

0.4

0.6

0.8

fit
ne

ss
 im

pa
ct

(c)

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 m
individuals

0.0

0.2

0.4

0.6

en
tr

op
y 

im
pa

ct

(d)

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 m
individuals

0.0

0.2

0.4

0.6

0.8

fit
ne

ss
 e

nt
ro

py
 im

pa
ct

(e)

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20
individuals of the starting population

0

200

fit
ne

ss

(Un)bound Knapsack Easy Pop5
(f)

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 m
individuals

0.00

0.25

0.50

0.75

co
un

tin
g 

im
pa

ct

(g)

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 m
individuals

0.00

0.25

0.50

0.75

1.00

fit
ne

ss
 im

pa
ct

(h)

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 m
individuals

0.0

0.2

0.4

0.6

0.8

en
tr

op
y 

im
pa

ct

(i)

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 m
individuals

0.00

0.25

0.50

0.75

1.00

fit
ne

ss
 e

nt
ro

py
 im

pa
ct

(j)

Figure B.14.: Box Plots of populations 4 and 5 from the easy(Un)bound Knap-
sack problem tests.
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B.1. Box Plots
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Figure B.15.: Box Plots of populations 1, 2 and 3 from the medium (Un)bound
Knapsack problem tests.
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Figure B.16.: Box Plots of populations 4 and 5 from the medium (Un)bound
Knapsack problem tests.
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B.1. Box Plots
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Figure B.17.: Box Plots of populations 1, 2 and 3 from the hard (Un)bound
Knapsack problem tests.
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Figure B.18.: Box Plots of populations 4 and 5 from the hard (Un)bound Knap-
sack problem tests.
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B.1. Box Plots

B.1.4. Same Fitness Max Ones Problem tests
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Figure B.19.: Box Plots of populations 1, 2 and 3 from the easy same fitness
Max Ones problem tests.
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Figure B.20.: Box Plots of populations 4 and 5 from the easy same fitness Max
Ones problem tests.
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B.1. Box Plots
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Figure B.21.: Box Plots of populations 1, 2 and 3 from the medium same fitness
Max Ones problem tests.
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Figure B.22.: Box Plots of populations 4 and 5 from the medium same fitness
Max Ones problem tests.

110
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Figure B.23.: Box Plots of populations 1, 2 and 3 from the hard same fitness
Max Ones problem tests.

111
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Figure B.24.: Box Plots of populations 4 and 5 from the hard same fitness Max
Ones problem tests.
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B.2. Hypothesis 1 additional plots
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Figure B.25.: Top 5 Max Ones problem fitness vs impact ranking. The left
column shows the easy tests, the middle column the medium
and the right the hard tests. Each graph represents the initial
fitness rank on the top, with the ranking of the four impact
metrics below.
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Figure B.26.: Top 5 0/1 Knapsack problem fitness vs impact ranking. The left
column shows the easy tests, the middle column the medium and
the right the hard tests. Each graph represents the initial fitness
rank on the top, with the ranking of the four impact metrics
below.
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Figure B.27.: Top 5 (Un)bound Knapsack problem fitness vs impact ranking.
The left column shows the easy tests, the middle column the
medium and the right the hard tests. Each graph represents
the initial fitness rank on the top, with the ranking of the four
impact metrics below.
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Figure B.28.: The difference between the highest and the lowest mean impact
for every population from the Max Ones problem (used for hy-
pothesis 1). Graph (a) shows the results of the easy tests, graph
(b) of the medium tests and graph (c) of the hard tests.
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Figure B.29.: The difference between the highest and the lowest mean impact
for every population from the 0/1 Knapsack problem. Graph (a)
shows the results of the easy tests, graph (b) of the medium tests
and graph (c) of the hard tests.
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Figure B.30.: The difference between the highest and the lowest mean impact
for every population from the (Un)bound Knapsack problem.
Graph (a) shows the results of the easy tests, graph (b) of the
medium tests and graph (c) of the hard tests.
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