
OTTO-VON-GUERICKE UNIVERSITY MAGDEBURG

FACULTY OF COMPUTER SCIENCE
INSTITUTE OF KNOWLEDGE AND LANGUAGE ENGINEERING

MASTER THESIS

Procedural Level Generation
with Answer Set Programming

for General Video Game Playing

Author:

Xenija NEUFELD

Supervised by:

Prof. Dr. Sanaz MOSTAGHIM

Dr. Diego PEREZ-LIEBANA

December 1, 2015

Statutory declaration

I assure that this thesis is a result of my personal work and that no other than the
indicated aids have been used for its completion. Furthermore I assure that all
quotations and statements that have been inferred literally or in a general manner
from published or unpublished writings are marked as such. Beyond this I as-
sure that the work has not been used, neither completely nor in parts, to pass any
previous examination.

Magdeburg, December 1, 2015 Xenija Neufeld

1

Abstract

This thesis proposes an automatic way of level generation for arbitrary games
that are described in Video Game Description Language (VGDL). Procedural
Content Generation has become a popular technique in the last years. Different
approaches have been investigated and optimized for different purposes. The most
of them are search-based and need a fitness function for the evaluation of gener-
ated solutions. For that reason, they can only be used for the application they
were created for and are not applicable for a general generator. To overcome this
problem, we use Answer Set Programming (ASP) which is a constraint-solving
method. It finds solutions through deductive reasoning and does not require a
fitness function.

The proposed approach works as follows: the VGDL description of a game
is transformed into ASP rules. Along with some style constraints, these rules
provide multiple levels. Though, not all of these levels are solvable and well-
designed. For this reason, a simple Evolutionary Algorithm (EA) is used to opti-
mize the quality of the levels. The created ASP generators are evaluated with the
help of game-playing agents with different skill levels. Thereby, we use the dif-
ference between their performances as a measure of level quality, assuming that
the difference should be higher for well-designed levels. Finally, the generators
are evolved using simple mutation operators. The experimental work performed
in this thesis consists of level generation for 20 games provided by the GVG-AI
framework. It shows that it is possible to create interesting level generator using
this approach and outlines some possible directions for future work.

Contents

Statutory declaration 1

1 Introduction 3
1.1 Motivation . 5

2 State of the Art 6
2.1 Search-based Methods . 7
2.2 Formal Grammars . 9
2.3 Constructive Methods . 10
2.4 Constraint Solving Methods . 10

3 Background 12
3.1 Video Game Description Language (VGDL) 12
3.2 GVG-AI Framework . 12
3.3 ASP . 15

4 Map Generation through ASP 17
4.1 Basic ASP Rules . 17
4.2 Auxiliary Methods . 18
4.3 Information Gain from VGDL Descriptions 19
4.4 Game-specific ASP Rules . 21
4.5 Additional ASP Rules . 28

5 Evolution of ASP Rulesets 31
5.1 Population Creation . 31
5.2 Fitness Evaluation . 32
5.3 Selection . 34
5.4 Mutation of additional ASP Rules 35

1

6 Experimentation 36
6.1 Results . 37

7 Conclusions and Future Work 46
7.1 Conclusions . 46
7.2 Future Work . 48

A Auxiliary Methods 49

B Detailed Results of all Games 52
B.1 Results in the first Game Set . 52

B.1.1 Aliens . 52
B.1.2 Boulderdash . 54
B.1.3 Butterflies . 56
B.1.4 Chase . 57
B.1.5 Frogs . 58
B.1.6 Missile Command . 60
B.1.7 Portals . 61
B.1.8 Sokoban . 63
B.1.9 Survive Zombies . 64
B.1.10 Zelda . 66

B.2 Results in the second Game Set 67
B.2.1 Camel Race . 67
B.2.2 Digdug . 69
B.2.3 Firestorms . 70
B.2.4 Infection . 72
B.2.5 Firecaster . 73
B.2.6 Overload . 74
B.2.7 Pacman . 75
B.2.8 Seaquest . 77
B.2.9 Whackamole . 78
B.2.10 Eggomania . 79

2

Chapter 1

Introduction

In the last few years, Procedural Content Generation (PCG) has become very pop-
ular in the video games industry and in research. This way of automatic creation
of game content provides multiple challenges and leads to various interesting out-
comes. There are many different methods to generate content procedurally, with
content being anything that is needed to create a game.

In this thesis, we concentrate on the procedural generation of game levels or
maps. There are multiple different algorithms for generating levels for certain
video games. In most cases, these approaches are search-based and need a fitness
function for the evaluation of the generated levels. They perform well, creating
levels for the game they are built for. Nevertheless, they are hardly applicable to
other games because every game has its own game mechanics, rules and goals.
For that reason, a unique fitness function is needed for every game and the search
space changes depending on the game.

Having to deal with this difficulty, it is even more interesting to create a gen-
eral generator that is able to build levels for any game. However, for that purpose,
we need an approach that does not rely on a specific fitness function and can work
with any search space without being bound to the domain of a specific game.

As a solution of that problem, we propose a level generator that is able to read
game descriptions written in Video Game Description Language (VGDL) and can
create levels for any of these games fully automatically. Our generator consists
of two main parts, using Answer Set Programming (ASP) and an Evolutionary
Algorithm (EA). First, it uses the VGDL-descriptions to generate maps with the
help of ASP and then the EA is used to optimize the difficulty levels of the maps.

An advantage of ASP is that the domain of a game, including the represen-
tation of its content, mechanics, and rules can be defined as logical expressions,

3

which can be used by ASP to find solutions through deductive reasoning. That
way, no fitness function is required at this point and the search space can be re-
duced by adding further constraints to the definition of the problem. Moreover,
ASP provides a possibility to optimize certain criteria of the generated solutions.

In this work, we describe the structure of the levels in form of ASP rules.
Therefor, we use the VGDL descriptions of games provided by the GVG-AI
framework. Currently, there are 60 single-player games available for the frame-
work. It is important to highlight that the generator is kept general, so that not
all information contained in the descriptions can be converted into ASP rules.
For that reason, we complete the missing information by adding random rules for
some unknown features of game objects. This way, we change the shape and the
size of the search space guiding the generator into different search directions.

Furthermore, we add some style constraints that optimize the horizontal and
vertical balance of game objects inside the levels. We assume that the optimization
of these features should increase the aesthetic value of the maps improving the
visual impression on players.

After the generation of the levels through ASP, we continue with a simple EA.
We use 2 game-playing agents with different skill levels to evaluate the quality
of the generated maps. As a measure of map quality we concentrate on the dif-
ficulty levels of the maps. Therefor, we compare the game scores achieved by
the agents assuming that the difference between the scores should be higher for
well-balanced levels. Whereas maps with the difficulty level being too low (or too
high) should be solved almost equally well (or bad) by both agents. Additionally,
using the agents, we can test whether the generated levels are solvable.

With the help of the agents’ scores, we select the best individuals following a
simple elitism strategy. Finally, the evolution of the levels is done by mutating the
randomly created ASP constraints.

This thesis is structured as follows: the current chapter outlines the motivation
for the thesis. Chapter 2 describes some approaches used for PCG. Chapter 3 pro-
vides background on VGDL, the GVG-AI framework and ASP. Then, Chapter 4
describes the process of level generation through ASP, followed by Chapter 5 that
details the evolution of level generators. Chapter 6 concentrates on the experimen-
tal work performed for this thesis. It includes the creation of levels for 20 games
provided by the GVG-AI framework and describes some general findings. Finally,
Chapter 7 concludes the thesis and outlines some directions for future work.

4

1.1 Motivation
Traditionally, game levels are created by a game designer. His task is to design
different levels in accordance with given game rules and make sure that they are
solvable. Furthermore, these levels should be interesting to play providing im-
mersive experiences to players. In some cases, the maps have to show different
difficulty levels, starting from an easier one and getting more difficult with grow-
ing player skills.

Depending on various factors, such as the size of a map and the variety of
assets in a game, the process of designing a level can take from some hours up to
several days. This can turn the development pipeline into a long and expensive
procedure, especially for games where a large, or even infinite, number of levels
is needed. Designing new levels procedurally could shorten the development time
and give game designers more time for other tasks.

Furthermore, as the design process is done by a human being, the diversity of
game levels is bound to the limits of the designer’s creativity. Thus, at some point,
a game designer is likely to create similar levels making them more predictable
and less interesting for a player. A procedural level generator could avoid such
repetitions and depending on the underlying algorithm, achieve a considerable
diversity of maps. These levels could have unexpected appearances being com-
pletely different from those of a human designer.

A general level generator that is able to create maps for any game is interesting
for multiple reasons. Having such a generator as a tool can be an advantage for
a game company. Especially, those companies, that specialize at the creation of
multiple small games e.g. for mobile devices could benefit from this tool. Often,
such games implement different game mechanics and rules having small maps
with a lot of different assets. Without being bound to a certain game, the generator
could be used in several projects providing appropriate maps for all of them and
saving a lot of resources.

Going one step further, this generator could be used for creation of completely
new games. Since it should be able to read any game description, new rules, game
mechanics and assets could be invented or recombined from old ones and put into
the generator. This way, the generator would provide solvable and interesting lev-
els for the newly invented game. These levels, in turn, would help game designers
to understand how the change of rules would influence the appearance of the game
and guide them in further development steps.

5

Chapter 2

State of the Art

Procedural Content Generation (PCG) is a way of content creation for an applica-
tion with the help of an algorithm. In general, this algorithm is able to create the
content using only some information stored inside of it. In this work, we speak
of generating content for video games where content can mean any kind of asset
that is used to build a game such as textures, models, maps, game mechanics and
rules, quests and audio files.

Currently, PCG methods are widely used by the game industry for creation
of different kinds of content. There are several tools that help game designers to
create game worlds and cities procedurally. Also, more and more games rely on
procedural quest generation.

In the academia, PCG is categorized as a sub-area of artificial and computa-
tional intelligence in games as it is described in [1]. Especially during the last few
years, PCG has gained a lot of interest from researchers. It provides a basis for
the research on different techniques such as search-based methods or constraint-
solving techniques. The major groups of PCG techniques will be described in
sections 2.1-2.4. The most of the current applications of PCG investigate a spe-
cific problem and have not (yet) been applied across different areas (games).

For classifying all the different methods, Togelius et al. [2] introduce a tax-
onomy of PCG describing the following seven dimensions in which an individual
method could be located:

• Online versus offline: defining whether the content is generated while play-
ing the game or before the game start

• Necessary versus optional: defining whether or not the content can be dis-
carded

6

• Degree and dimensions of control: defining the degree of control over the
generation space

• Generic versus adaptive: defining to what extent player behavior is consid-
ered during the generation process

• Stochastic versus deterministic: defining whether or not the same content is
created given the same starting parameters

• Constructive versus Generate-and-test: defining whether the content is gen-
erated once or after several runs through the generate-test loop

• Automatic generation versus mixed authorship: defining to what extent a
human game designer is able to guide the generation algorithm into desired
directions

While categorizing different PCG methods in these dimensions, Togelius et
al. also describe some desirable properties of a PCG solution such as speed, re-
liability, controllability, expressivity and diversity, creativity and believability [2].
Depending on the application, current methods try to optimize these properties to
different extents, often, taking tradeoffs between e.g. speed and quality.

2.1 Search-based Methods
Search based methods such as e.g. an Evolutionary Algorithm (EA) or exhaus-
tive search are generate-and-test methods and belong to the mostly investigated
methodologies for PCG in academia. The general idea behind such methods con-
sists of applying a search algorithm on a search space representing the content and
measuring the quality of found solutions with the help of a fitness function.

Depending on the kind of game content that should be generated, its represen-
tation can be e.g. a vector of numbers, a graph or even a sequence of predefined
micro-patterns that show parts of the content as described for Super Mario Bros
levels in [3, 4]. Levels for 2D games, in most cases, can be described by a grid
of cells or tiles. That way, grids can be represented by a (two dimensional) array
of integers with each integer representing one of the available game objects in the
game world. This representation is often used for so called Rogue-like games or
dungeons as shown in [5–7].

Apart from the content representation, the fitness function plays an important
role in a search algorithm. It defines a measure of the quality of solutions and

7

guides the search process towards better results. Though, for the search process
to work properly, the fitness function has to be designed carefully modeling de-
sired properties of the content. In some cases, it is possible to define measurable
properties of the content such as the number of particular objects on a map or the
distance between them. Though, in most cases, finding the right fitness function
is a difficult task.

In addition to a fitness function, constraints can be used to discard infeasible
contents such as e.g. levels that are not solvable. Though, sometimes, even infea-
sible solutions are kept for future evolution steps like it was done for a strategy
game in [8].

Furthermore, to overcome the difficulties of defining one fitness function that
contains all necessary features, multi objective optimization can be applied using
multiple fitness functions. For example in [8] the weighted sum of six different
fitness functions was optimized in the process of creation of levels with better
competitive play between two players.

Here, the results have shown that the maps that were optimized on multiple
functions were more appropriate for use in strategy games than those optimized on
a single function. Although, the simultaneous optimization of multiple functions
has shown limited efficiency and could become slower and more difficult with a
higher number of functions.

Another experiment has used the NSGA-II algorithm for multi objective opti-
mization creating maps for a similar strategy game [9]. It has shown comparable
results having created playable maps.

An alternative search based method that does not require a fitness function is
e.g. novelty search. Instead of optimizing a function it aims to reach a great di-
versity of solutions. A variation of novelty search was used in [7] where levels for
the same problem as in the previous methods were generated. Results have shown
that using novelty search requires a tradeoff between the diversity of solutions and
the number of feasible solutions that are found by the algorithm.

In summary, search based methods can be used for PCG, especially for level
generation. Though, they require a good choice of content representation and the
fitness function to work properly. Furthermore, their efficiency can decrease with
a growing search space and additional constraints are needed to filter out infeasible
solutions.

8

2.2 Formal Grammars
Formal grammars are widely used in many different areas in computer science.
A grammar consists of an alphabet and a set of production rules. These rules
describe how a new string is build out of the symbols of the alphabet. Therefor,
one or more symbols on the left-hand side of a rule are replaced by one or more
symbols on the right-hand side of it. A generative grammar can be deterministic,
with exactly one rule for each sequence on the left-hand side, or non-deterministic
with multiple rules for the same group of symbols.

Some symbols are called terminals and cannot be replaced. Terminals are, nor-
mally, represented by lowercase characters. An example for a non-deterministic
grammar with the terminal t would be: S ! St; S ! t. The uppercase character S
is a non-terminal symbol that has two rules for its replacement. Conventionally,
the character S is used as a start symbol of a grammar.

Originally, grammars were used for modeling natural languages. Though, dur-
ing the last years, they were introduced in many other fields. For example, a spe-
cial form of a grammar, called L-System is used for graphical interpretation and
generation of plants. The mostly known example application of an L-System is
SpeedTree, a tool that procedurally generates vegetation and is widely used in
many games 1.

However, vegetation is not the only thing that can be procedurally generated
with the help of a formal grammar. Recently, there have been several examples
where grammars were used for generation of missions in a game [10,11] and level
generation.

For example, Shaker et al. have used Grammatical Evolution for generation
of Super Mario Bros levels [12]. Thereby, levels were represented by a set of
chunks where a chunk was a game object such as e.g. a canon or a coin with
distinguishable properties. A design grammar was created to build levels out of
these chunks and the results from this grammar were evolved with an Evolutionary
Algorithm. After having resolved conflicts such as overlapping of chunks, the
results have shown playable levels.

It has been shown that formal grammars can be used for level generation.
However, designing a grammar is a difficult task that requires prior knowledge
of the content domain. Having designed the grammar correctly, it can be used
to create new content very fast. Though, a grammar is very domain specific and
cannot be used across different games.

1http://www.speedtree.com

9

2.3 Constructive Methods
Constructive methods, in contrast to e.g. search-based methods, produce only one
solution per run. The general idea behind all constructive methods is that they start
at one point and generate the content step-by-step. Shaker et al. distinguish be-
tween the two alternative ways of building dungeons or levels for platform games
space partitioning and cellular automata [13].

Space partitioning is based on the idea, that the space (of a level) can be di-
vided into subspaces building a tree. The leaves of that tree can represent a room
or an empty space with the root node representing the entire space. Children of
the same parent are connected through a corridor so that bigger rooms and dun-
geons can be created. The generation process of the tree can be random or follow
certain rules. Resulting dungeons have a very organized structure without any
overlapping areas.

Another way of building a dungeon is by using a cellular automaton. Cellular
automata are used in many different areas in computer science. Consisting of
a grid, they define a set of states and transition rules. Each cell of the grid is
changing its state accordingly to the transition rules taking into account its own
previous state and those of its neighbors in the defined neighborhood. That way,
clusters of cells with the same state can be build which, used in level generation,
can be recognized as dungeons.

Johnson et al. have used cellular automata for real-time generation of cave-
like dungeons [14]. Each cell of the grid they used could be a wall, a rock or
floor. With certain probabilities cells could change their state e.g. from floor to
rock. Running for a certain number of times, the algorithm created tunnels with
different widths. The aim of this work was to create infinite caves in real-time, so
that a player could play a game forever. Results have shown this method as very
effective for this purpose.

In general, constructive methods show good results in terms of efficiency when
creating levels in real-time. Though, due to their nature, they provide limited
control over the output.

2.4 Constraint Solving Methods
Constraint solving methods, as the name suggests, provide solutions to problems
described through constraints. In contrast to search-based methods, where the
entire search space is investigated, here, constraints reduce the search space. That

10

way, only feasible solutions are provided with each of them meeting the desired
criteria. A fitness function is not needed in that case.

Constraints can be expressed as hard constraints that cannot be violated or
soft constraints that may be violated. Besides, a logic that describes the problem
domain has to be formulated. This logic and the defined constraints are then
passed to a program called solver which finds solution candidates to the logic
problem. An example for a constraint solving method is constraint propagation
which was used for level population in [15]. An alternative method is Answer Set
Programming (ASP) which is described in more detail in section 3.3.

Recently, it has been shown that ASP can be used for procedural generation of
game rules creating new variations of games [16]. Furthermore, it can be used
to create not only levels for mazes and dungeons [17, 18] but also for puzzle
games [19]. Furthermore, it was used to create new game mechanics in [20]. The
game mechanics and the structure of the content can be defined through logical
expressions.

Having sufficient knowledge about the game, it is possible to formulate con-
straints which, being solved, result in playable game levels. All formulated con-
straints are guaranteed to be met in all solutions.

11

Chapter 3

Background

In this section, we discuss in more detail the background about the essential com-
ponents of the generator developed in this work. First, we describe VGDL, then,
we provide a short description about the GVG-AI Framework and explain the
concepts behind ASP.

3.1 Video Game Description Language (VGDL)
Many 2D games can be described with the help of VGDL which was originally
implemented by Tom Schaul in Python [21]. Every game object can be defined as
a sprite in the SpriteSet, including some properties like orientation and movement
abilities. Furthermore, a LevelMapping section contains the representation of each
object on the 2D map. The InteractionSet defines which effects are applied to
objects when they collide with each other, and finally the TerminationSet defines
which conditions have to be met for the game to end. An example description of
the game Aliens (based on Space Invaders) is shown in Figure 3.1.

3.2 GVG-AI Framework
The GVG-AI framework was developed for the General Video Game AI Compe-
tition which takes place since 2014 [22]. It provides an environment for agents
that should be able to play any game that is given to them. Thereby, the agents
have access to only a small part of the information about the game without being
able to read the game rules directly.

12

Figure 3.1: VGDL description of the game Aliens.

Being developed in Java, the framework gets the VGDL description of a game
and a low-level map sketch for this game as input to run the game. Figure 3.2
shows a map sketch for the game Frogs on the left side and its high-level repre-
sentation in the game on the right side.

The framework provides a graphical user interface (GUI) visualizing the play
of an agent to its developer. Furthermore, it offers a possibility for a human player
to play the game himself. In case that multiple runs of a game are required, the
framework offers a possibility to do the runs without a GUI providing the desired
output through a console.

The advantage of working with the framework instead of the VGDL descrip-
tions directly is that the framework converts the entire game information into Java
structures. That way, it is much easier to access certain parameters of game ob-
jects, without the need of reading strings from a text file. Furthermore, the frame-

13

Figure 3.2: Map sketch for the game Frogs on the left side and its high-level
representation in the GVG-AI framework on the right side.

work creates collections of e.g. all colliding effects in a game which make it
possible to iterate through them and make queries.

Games Provided by the Framework

Even though we are speaking of a framework for general video game playing, the
types of games that can be created and played in this framework are constrained by
several criteria. Currently, the framework provides 60 manually designed games.
All those games are 2D, one-player games that use grid levels. Each game object
has the size of exactly one cell (tile) in that grid.The games are run in real time
giving an agent 40ms to perform an action.

A collision between two game objects is recognized when both of them are
on the same tile. There are two types of effects of a collision, those that have
an impact on one of the colliding objects and those that affect both participants.
Currently, there are 9 binary effects and 13 unary effects defined in the framework
that can be used in the VGDL description of a game. Adding a new effect in
VGDL would require its Java-definition in the GVG-AI framework.

A player can perform the following 5 actions: left, right, up, down, use. De-
pending on the type of the game, a subset of these actions is actually available, i.e.
in some games there is no need for the player to use anything, so, only 4 actions
are available to him. The types of actions that the player is able to perform define
the type of the player avatar. In total, there are 6 different avatar types such as
e.g. a HorizontalAvatar that is able to move left and right and a ShootAvatar that
has an orientation in the game world and can perform all actions. The type of the
avatar can also be specified in VGDL.

As can be seen on the list of actions, the player can only move vertically or
horizontally inside the grid. Thus, games where a jump action should be imple-

14

mented, would require some physics effects. These are already implemented in
the framework, though, no sufficient testing has been done on them and no games
implementing physics are (yet) provided by the framework.

To make the games interesting to play and provide different difficulty levels,
there are 6 different types of non-player-characters (NPCs) implemented in the
framework. As well, as the player, NPCs are able to shoot/use objects and move
in different directions. Some of them show intelligent behavior trying to chase the
player avatar or run away from him and some perform random actions. Also, the
types of NPCs can be specified in the VGDL description.

The framework provides some example sprites. Though, since every game
object has the size of one tile, it is very easy to change the sprites and create your
own assets. Furthermore, new levels for games can easily be created in a text file
considering the level mapping given in the VGDL description.

3.3 ASP
Answer Set Programming (ASP) is a declarative programming method which can
be used to describe rather what problem is to be solved instead of how it is to
be solved. Therefore, the problem needs to be expressed through logical terms
formulated in a specific language.

The language used in ASP is called AnsProlog. It is very similar to Prolog
with the difference that an AnsProlog program always terminates whereas a Pro-
log program can have infinite loops. The terms formulated in AnsProlog can be
atoms/facts (simple statements), predicates (statements with parameters), choice
rules (allowing a choice on elements) or integrity constraints (allowing condi-
tions). Figure 3.3 shows a simple ASP program with each type of expression im-
plemented there. Each line has a comment describing the kind of the expression
and its meaning.

When the program logic is formulated, it can be passed to a so-called grounder
program such as gringo1. A grounder translates the given problem into a proposi-
tional logic program which can be then passed to a solver e.g. clasp or smodels2

A solver provides solutions to the logic problems as answer sets using deductive
reasoning. The lower part of figure 3.3 shows the two answers delivered for the
problem that was defined on the top of the figure.

1Clasp, Gringo, Clingo: http://potassco.sourceforge.net/index.html
2Smodels: http://www.tcs.hut.fi/Software

15

Figure 3.3: A simple ASP program on the top and its two solutions on the bottom.
The program describes a two-player game that can be in one of the states playing
or gameOver having exactly one winner and one loser.

There are several programs available which combine a grounder and a solver.
One example of such a program is clingo which was developed at the university
of Potsdam. Clingo is used in the process of this work since it provides a good
documentation and can easily be executed not only from Eclipse but also from the
command line. A detailed users guide for clingo can be found in [23].

Independently from the choice of the solver and the search algorithm behind it,
resulting answer sets will be equivalent due to the semantics of ASP [18]. Though,
some tools provide ways for simplified search during the execution. For example,
when optimizing a certain parameter in the logic program, Clingo is able to save
the best solution found so far and discard all solutions that are worse during the
search process [23].

Every solution that is found by a solver is guaranteed to satisfy all constraints
defined in the logic program. By formulating certain constraints, the design space
can be incrementally specified and the search space is reduced. That way, un-
desired answers are excluded. When using ASP for procedural level generation,
desired properties of a level can be formulated incrementally as constraints and
appropriate levels will be generated. For this reason, ASP can be used for PCG
without using any evaluation function.

Nevertheless, the desired solutions can only be found if the game logic and
all dependencies between game objects are completely known to the user and are
correctly expressed in ASP. Some detailed explanations on building the design
space for a game are described in [16].

16

Chapter 4

Map Generation through ASP

Having introduced the basic components of our level generator, we now describe
how the generator creates the levels. Therefore, we describe the basic ASP rules
and some auxiliary methods that are used in the process of rule formulation.

Afterwards, we take a closer look at how the information from VGDL de-
scriptions is read in and handled by the GVG-AI framework. Then, we go into
more detail describing how game specific rules are derived from the VGDL de-
scriptions. Furthermore, we outline some rules that are used to improve the visual
impression of the generated levels.

Since it is not possible to infer all dependencies between game objects, we
then use an evolutionary algorithm which adds missing rules. All rules are written
by the generator into a separate file for each game which is finally passed to the
ASP solver for map creation.

To find levels that are more suitable for a certain game, we evaluate them by
letting two game-playing agents play them. The evolutionary algorithm used in
the generator and the evaluation of the generated levels is described in the next
chapter.

4.1 Basic ASP Rules
Before concentrating on the game descriptions expressed in VGDL and creating
game specific ASP constraints, we create some basic rules. As already mentioned
in section 3.2, the games that are provided by the GVG-AI framework are limited
by some properties. Therefore, they all have some parameters in common. Thus,
there are some basic ASP rules that are common for every game and can be used

17

Figure 4.1: Simple ASP rules for the game Aliens.

in further statements.
Basic rules include definitions like e.g. the Manhattan distance measure and

adjacency of tiles. Later, the first definition can be used e.g. for maximizing the
distance between certain objects. The adjacency of tiles can be used to check
whether there is a path between two objects. A path is then defined as a sequence
of passable adjacent tiles.

Furthermore, the dimensionalities of a level are defined in the basic rules pro-
viding knowledge about level borders. Since without loss of generality levels of
all games provided by the framework are surrounded by walls, one rule is formu-
lated at this point, placing wall sprites at corresponding tiles.

4.2 Auxiliary Methods
As already mentioned, all ASP rules for a game are written into a separate file that
is passed to the solver program Clingo. Since the generator is implemented In
Java, there are certain methods that have direct access to that file and are respon-
sible for writing rules into that file. For the Java program, ASP rules, as they are
described in figure 4.1, are strings that contain the names of certain game objects,
e.g. portalFast, avatar etc.

18

When designing the ASP program for a game, there can be many rules that are
written for different game objects being similar in their definition. For example,
there could be a rule saying that a coin should be reachable by the player, i.e. there
should be a path between them, and a rule saying that a diamond should also be
reachable by the player.In Java this would be one method called with two different
parameters (coin and diamond). Though, from the prospective of a Java program,
these rules are two strings with different substrings:

:- not reach(C1,C2) , sprite(C1, avatar), sprite(C2, coin). and
:- not reach(C1,C2) , sprite(C1, avatar), sprite(C2, diamond).
For the purpose of reusability, we implemented some auxiliary methods in

the generator that can be called with different parameters to write such strings.
Hereby, the parameters are written as substrings into the rule strings that are pre-
defined within these methods. These methods can be called whenever new infor-
mation about a game object is found and should be formulated as a rule. All rules
defined in that auxiliary methods are basic rules which can be combined into more
complex rules describing the dependencies between game objects in a better way.

For example, in the game Portals the player should be able to go through a
portal and each portal entry is assigned to its own portal exit. Thus, there should
be as many entries as exits in a level.

Combining the simple rule CreateAsManyOthersAsOnes(exit, entry) with the
rule CreateMinNumber(entry, 1) would result in levels having the same amount
of entries and exits with at least 1 pair of them. A full table of all auxiliary
methods with example parameters, a brief explanation about their functionalities
and resulting ASP rules can be found in appendix A.

4.3 Information Gain from VGDL Descriptions
The most challenging part of this work is the creation of game specific rules. Here,
one important task of the generator is the identification of all properties of game
objects and all dependencies between different objects. The next important step
is the understanding of the meaning of this information for the game play and the
formulation of corresponding rules, which is described in the next section.

Since the VGDL descriptions of games are given in text files, using the given
information in form of strings would be very complicated and not well man-
ageable. For that reason, the generator uses the implementation of the GVG-AI
framework which reads the textual descriptions and provides corresponding Java
representations.

19

With the help of the GVG-AI framework, the generator first creates an instance
of the Game object. That way, all information from the description file is read in
and provided in form of members of that object. Hereby, the most significant
information, contains collections of defined types of game objects, terminations
and collision effects. With each of them represented as an instance of the Content,
Termination and Effect class accordingly, the generator is able to easily access
their parameters. Furthermore, the Game class provides a mapping of character
representations of objects on the map sketch to the names of corresponding types
of game objects.

With these collections provided by the framework, all necessary information
can be derived by the generator. However, for a better handling of that informa-
tion, we introduce the two additional classes SpriteInfo and AvatarInfo. Using
these classes, we can save parameters of a certain sprite type or the player avatar
that are important for the formulation of ASP rules.

The class SpriteInfo saves, amongst other things, values such as the mini-
mum/maximum number of a certain type of game object in the level. Though,
the most important parameters that are saved for a sprite type are effects that are
applied on collisions with this kind of game object. Collision effects represent the
essential part of the VGDL descriptions, since they describe how the game works
and which rules are valid in the game. Therefore, it is very important to be able to
iterate through the defined effects and make fast queries.

In the VGDL description of a game, an effect is described in the following
way: avatar alien > killSprite scoreChange=-1

Here, avatar and alien are the two game objects that collide and the effect of
this collision is killSprite, i.e. the game object is killed or deleted from the game
world with a negative score change for the player. Thereby, the defined effect is
applied to the object that is named first, in this case the player avatar. If the alien
should be killed as well on this collision, there would be another similar effect
definition with the alien standing first and the avatar second.

Given this kind of effect descriptions, it is obvious, that there is always a
game object that is affected (here, the player avatar) and one that is affecting
(alien). For that reason, we save the corresponding effects for each type of game
objects in two mappings inside the SpriteInfo class. One of those mappings
maps the IDs of all game objects that are affected by this object type to corre-
sponding effects (HashMap<Integer, ArrayList<Effect>> affectedBy). The other
mapping does the same for objects that affect this object (HashMap<Integer,
ArrayList<Effect>> affects).

20

That way, we are able to iterate faster though the effects and query the corre-
sponding IDs of game objects. This information can be used e.g. if we know that
an object A is transformed into an object B when it collides with object C. Now,
we would like to know whether there is any object that transforms object B back
into object A. For that, we iterate through the affectedBy mapping of object B and
check for effects of the type transformTo. If there is such an effect defined in that
mapping, we can easily get the ID of the object that causes this transformation.

Another class that is added in the generator additionally to the SpriteInfo class
is called AvatarInfo. This class saves some of the necessary information about
the player avatar that is not directly provided by the GVG.AI framework. As
already mentioned in section 3.2, there are different types of avatars in the GVG-
AI framework which are defined through the actions that are available to the avatar
and through the specifications whether or not the avatar is oriented.

In case the player avatar is able to shoot in a game, among some other values,
we save a list of all the types of game objects that are used as ammunition by the
avatar. That way, it is possible to find out not only what the avatar affects directly,
but also what can be affected by his weapons.

Furthermore, we save a list of all possible subtypes of the avatar including
the corresponding parameters provided by the framework. An avatar can have
several subtypes in a game with one of them being active at the beginning at the
game. During the game, it is possible that the avatar transforms from one type
into another. For that reason, it is important to know all his subtypes and check
for effects not only of the one that is active at the beginning, but for those of all
of his subtypes. The ID of the subtype that is active at the game start is saved
additionally.

4.4 Game-specific ASP Rules
Having all the information described in the previous section, we are, theoretically,
able to formulate specific ASP rules that describe the current game. This step
could be easily done by a human game designer seeing all information at once.
However, an automatic generation of rules remains a difficult task. The generator
has to check the parameters of every single game objects, look for collision effects
with other game objects, probably look for transitive effects and, estimating their
meaning for the game, create corresponding ASP rules.

In this section, we outline the processes that take place during the rule creation
and give some examples. All rules described here were derived from the game

21

descriptions of the first training set provided by the GVG-AI framework and some
from the second set. Further games were not taken into account yet. For that
reason, we assume that there could be more rules added at this point to guarantee
more generality of the generator.

After the basic rules are created and the generator has the information descri-
bed in section 4.3, we start with a simple, although very important rule defining
which game objects can be placed as a sprite on a tile/grid cell. Not all game ob-
jects that are listed in the SpriteSet of a VGDL description can be drawn on a map
sketch. For example, game objects representing the ammo of the player cannot be
located on the map at the beginning of the game, since they are produces by the
player. For that reason, we check the LevelMapping of the VGDL description or
rather the charMapping provided by the framework and add corresponding game
objects to the rule that defines what a sprite can be. Additionally, we formulate a
constraint that allows maximal one sprite to be placed on one tile.

According to the description of the game Aliens provided in Figure 3.1, this
rule would look the following way:

0 {sprite(T, wall; portalFast; portalSlow; base; avatar) } 1:- tile(T).
After defining which sprites are allowed, we investigate which of them are

subtypes of the same object, i.e. they represent the same game object having
slightly different parameters. For example, in the Aliens description in Figure 3.1,
we see the lines:

portal >
portalSlow > SpawnPoint stype=alien cooldown=16 total=20 img=portal
portalFast > SpawnPoint stype=alien cooldown=12 total=20 img=portal

Here, the game object portal has the two subtypes portalSlow and portalFast
with portalFast having a higher frequency of spawning aliens. However, both of
them have the same function of spawning the same enemy entities. Having one
subtype in the level would make only a little difference to having the other one.
For that reason, we save all possible alternatives of each subtype in its SpriteInfo
which we described in section 4.3.

While checking for sprites that represent the ammo of the player or an NPC,
we also check whether any of them has an orientation. In most cases, a bullet is
represented by the Missile Java class which has a parameter orientation. If the
object, that fires this missile is also oriented and never changes its orientation and
the missile also does not change its direction, we formulate a rule that places the
shooting object on the map border that allows the longest way for the bullet to fly.

22

For example, Figure 3.1 shows the following lines:
portal > portalSlow > SpawnPoint stype=alien cooldown=16 total=20
alien > Bomber stype=bomb prob=0.01 cooldown=3 speed=0.8 img=alien
missile > Missile

bomb > orientation=DOWN color=RED speed=0.5 img=bomb
This sequence shows that a portal which is immovable spawns an alien that is

of the class Bomber and thus is oriented and moving right. The alien shoots with
a missile which is also oriented. Missile’s orientation is down. This means that
the aliens are moving horizontally and dropping bombs down. For that reason,
the aliens should be placed as close as possible to the upper border of the map.

However, aliens are not listed in the LevelMapping and cannot be drawn on
the map directly. That is why, the ASP rules that are created at this point, say that
every object of type portalSlow or portalFast should be placed on the uppermost
row of the level grid. To be more exact, the constraints say that it is not possible,
that a portal sprite is not on a tile of the topmost row.

:- sprite((X,Y), portalSlow) , not mindimY(Y-1) , tile((X,Y)).
:- sprite((X,Y), portalFast) , not mindimY(Y-1) , tile((X,Y)).
Checking for the orientation of the Missile is only one example parameter that

has an impact on the game play and the structure of the level. For example, entities
called Resource have parameters value and limit which can be used defining the
desired amount of these objects in the level, while entities called Flicker have
a limited lifetime which might be taken into consideration when defining their
positions on the map. At this point, it is very important to have a good knowledge
of all VGDL entities and their parameters to be able to define further important
ASP rules.

After defining sprite specific rules, we use the information that is saved in the
AvatarInfo class (described in section 4.3) and create avatar specific rules. Since
all games taken into consideration, are one player games, we define a rule that
places exactly one avatar onto the map. For games with more than one player,
this rule could be easily adapted. Depending on the type of the avatar and its
orientation, we define another rule that places the avatar on a border of the level
following the same principles as described in the Aliens example above.

In the next important step, we go through all termination conditions defined
for the game and create ASP rules that make sure that a game is not terminated
at its beginning, i.e. termination conditions are not satisfied. There are two types
of terminations defined in the framework, a Timeout and a SpriteCounter. The
former says that a game is over after a certain amount of time and the latter says
that it is over when there is a particular number of certain entities in the game.

23

Since the time condition can hardly be used on level generation, we concentrate
on the counter conditions.

A SpriteCounter condition defines the end of the game specifying the object
type and the limit of these objects in the level. Furthermore, it provides a boolean
value defining whether the player wins or loses the game meeting this condition.
In most cases, the limit is set to 0, meaning that the game is over when there are no
more objects of the given type in the game (i.e. they were collected or destroyed).
For example, the following termitation condition says that the player loses the
game when there is no avatar in the game:

SpriteCounter stype=avatar limit=0 win=False
However, in some cases the limit is set to a positive number meaning that

there should be exactly that many objects in the game for it to end, as e.g. the
game Eggomania is over when there is one broken egg:

SpriteCounter stype1=brokenegg limit=1 win=False
Furthermore, some games can be ended with the same result by satisfying one

of multiple conditions. For example, the player can win the game Aliens when he
either destroys all aliens in the level or when he destroys the portal that spawn the
aliens. These two conditions can be defined through a MultiSpriteCounter that, in
contrast to a SpriteCounter, specifies the limit of multiple game objects. Thereby,
the limit has to be reached for at least one of the specified object types as shown
in the following line from the Aliens description:

MultiSpriteCounter stype1=portal stype2=alien limit=0 win=True
Having the knowledge about the termination conditions, we can derive the

minimum or maximum amounts of the given game objects and save these amounts
in the corresponding SpriteInfo instances to make sure that these numbers are
never changed. Furthermore, we can now directly define ASP rules saying that
these conditions should not be satisfied at the beginning of the game by simply
negating the condition. For example, the ASP rule for the following description
line:

SpriteCounter stype=avatar limit=0 win=False
would look the following way:

counter(avatar, N) :- N = #count{sprite((X,Y), avatar)}.
:- counter(avatar, 0).

saying that it cannot be true that there is no avatar in the level.
Additionally to the numbers of game objects, we define further ASP rules that

are meant to make the level a little more difficult and interesting to play. For
example, a very common game mechanic is going through a door to end the level.
To force the player to perform multiple actions before reaching the door, we make

24

sure that he is not placed close to that door at the beginning of the game.
According to the VGDL description structure, that game rule would be defined

as a collision between the door and the avatar with the door sprite being deleted
from the level. So, if a termination condition says that the game is over when there
is no object of a certain type, such as e.g. an exitdoor, we check whether there
is such a collision defined for it. Therefore, we access the affectedBy array of
the exitdoor (described in section 4.3) and search for collisions with any subtype
of the avatar. In case that we find such a collision, we maximize the distance
between the door and the player using the MaximizeDistance method described in
section 4.2 .

In some cases, the subtype of the avatar that collides with the door is not the
same as the subtype that is placed on the map at the beginning of the game. That
means that the player has to satisfy a certain condition to be transformed into
another type. For example, in the game Zelda the player starts the game as the
subtype nokey. He has to collect/collide with the game object called key to be
transformed into the subtype withkey. Being an entity of the type withkey, he is
able to end the game by colliding with the entity goal. The following lines show
the corresponding parts of the VGDL description:

A > nokey
key avatar > killSprite scoreChange=1
nokey key > transformTo stype=withkey
goal withkey > killSprite scoreChange=1
SpriteCounter stype=goal win=True
With these game rules, the player has to perform even more actions to end

the game. To make the level even more interesting, we should not only maximize
the distance between the avatar and the goal but also the distance between the
avatar and the key and distance between the key and the goal. For that purpose,
we check whether the subtype of the avatar is different from the subtype that is
needed at the end. If so, we search for collisions that transform the avatar and
add corresponding rules maximizing the distances between the three object types
(avatar, key, goal).

Looking for transformations, we also check if the avatar is ever transformed
into any other subtype. In case there is only one transformation defined in the
VGDL description (e.g. nokey transformed into withkey) and the entity is never
transformed into something else, we can define a rule saying that there should be
exactly one game object that effects this transformation. As in the case of Zelda,
there should be only one key in the whole level.

25

After going through all termination conditions, we continue with an investi-
gation of all collision effects defined for a game. As already mentioned, collision
effects indirectly define the mechanics and rules of a game. Therefore, it is very
important to know how each single effect is defined in the VGDL and the frame-
work and to understand what impact it has on the game play.

In the final part of the definition of game specific ASP rules, we go through all
effects and create corresponding rules. At this point, we would like to emphasize,
that currently the rules are built based on the effects defined in the first game set
of the GVG-AI framework and therefore take into consideration only a subset of
all possible effects.

As an example for such an effect-rule pair we take the effect called
KillIfOtherHasMore as shown in the following line from the description of the
game Boulderdash:

exitdoor avatar > killIfOtherHasMore resource=diamond limit=9
In this case, the exitdoor disappears on collision with the avatar if the player

has collected more than 9 diamonds. This information implies that there should
be at least 10 diamonds in the level. Thus, having an effect KillIfOtherHasMore
we set the minimum number of diamonds on the map to 10.

Another effect is called BounceForward. It causes an object to move into the
opposite direction from the one in which the collision took place. That way, the
player is able to push boxes (into holes) in the game Sokoban as can be seen in the
following line:

box avatar > bounceForward
Since the player needs to reach the box from one side and the box has to be

pushed into the opposite direction, we create a rule allowing a box being placed
only in the following way: at least two opposite neighbors of it should not be im-
movable and indestructible at the same time. That means a box can have a wall
(which is immovable and indestructible) as its left neighbor but then its upper and
lower neighbors cannot be immovable. Though, a box can be completely sur-
rounded by other boxes, since all of them are movable so that the space around
the box in the middle can be freed by pushing away the surrounding ones. Fig-
ure 4.2 shows three examples that can be created following this rule as well as a
configuration that is not possible.

The last case that we describe here is the collision effect called TeleportToExit.
For example, in the game Portals the player can enter a door that represents the
entity portalentry and appear in front of another door that represents the portalexit.
Thereby, each portalentry is assigned to its own portalexit. Choosing the right
sequence of doors, the player should reach his goal.

26

Figure 4.2: Boxes in the first 3 levels on the left can be pushed by the player. The
box in the rightmost level cannot be pushed.

Having the following lines of the VGDL description, we see that a player
should teleport on a collision with a portalentry and we are able to find out how
the door pairs are called in the current game (entry1, exit1):

portalentry > Portal img=portal
entry1 > stype=exit1 color=LIGHTBLUE

avatar portalentry > teleportToExit
Knowing that the framework assigns an own exit to each entry, we now create

an ASP rule saying that there should be the same amount of both door types in the
map.

After creating the game specific rules that were partially described in this
chapter, we finally try to improve the visual impression of the resulting levels.
Inspired by the work described in [24], we assume that levels with a balanced
distribution of game objects are perceived by the player as more enjoyable and
interesting as those having unequally distributed objects on the map.

Therefore, we add two rules for every game object providing that vertical and
horizontal balance of these objects are sustained in every level. Vertical balance
is achieved through a rule that minimizes the difference of the number of certain
game objects on the left half and those on the right half of the map, whereas
horizontal balance is obtained through a similar ASP rule for the upper half and
lower half.

Optimization (in this case minimization) of certain criteria can be defined in
ASP directly. Thereby, the rules describing the problem are regarded as soft con-
straints. Thus, having a rule (hard constraint) that defines that a game object
should be placed in the uppermost row of a map, the horizontal balance rule will
be ignored. The following lines show the two ASP rules balancing the distribution
of wall sprites in a level:

27

hBalance(wall, N) :-
T = #count{sprite((X,Y), wall) : Y<=height/2},
B = #count{sprite((X,Y), wall) : Y>height/2}, N=#abs(T-B).

#minimize [hBalance(wall, N)=N@5].
vBalance(wall, N) :-

L = #count{sprite((X,Y), wall) : X<=width/2},
R = #count{sprite((X,Y), wall) : X>width/2 }, N=#abs(L-R).

#minimize [vBalance(wall, N)=N@5].
It is possible to optimize multiple functions at the same time in ASP. The im-

portance of each function can either be set by its priority or by setting weights for
each function and optimizing the weighted sum. Since the balance of all objects
in a level is regarded equally important, we set equal priorities for all balance
functions.

With the visual impression rules we finish the part of the work where we create
rules that are specific for a given game. Following the steps described in this
section we are able to create some rules that are based on the information from
the VGDL description of a game. Though, not all dependencies between game
objects can be derived from such a description. That is why the rules created so
far are not always sufficient and the search space resulting from these rules is still
too big. With the aim to decrease the size of the search space, we continue with
additional rules that are described in the following section.

4.5 Additional ASP Rules
In the previous section we have already shown a few examples of how certain
properties of game objects such as orientation or minimum amount can be derived
from the VGDL description of a game. Though, there are still many properties
that are not traceable by the level generator. For example, Figure 4.3 left shows
levels of the game Aliens that have multiple portals spawning the aliens. A human
designer would recognize that such a high number of portals is too difficult for the
player to handle. Furthermore, these levels have too many base tiles which have
to be destroyed either by the aliens or by the avatar.

Levels like these are created because there is no upper limit given on the num-
ber of portals or base sprites. Following the steps described in section 4.4 it is not
possible to find out how many objects of these types should be in a level since
there are no hints given in the VGDL description that is shown in Figure 3.1. That

28

Figure 4.3: Example maps for Aliens. Left: results of basic and game specific
rules; right: results after adding horizontal/vertical balance rules and number con-
straints. (0 - base; 1 - portalSlow; 2 - portalFast; A - avatar; w - wall)

way, the ASP solver searches through a huge search space and creates levels that
are not desirable.

To prevent the solver from creating such levels, we propose limiting the num-
ber of game objects that have no limits given through VGDL descriptions. Having
saved the lower and upper limits of each game object for which it was possible in
its SpriteInfo instance (described in section 4.3) the generator is able to identify
missing limits. Each of the missing amount limits is then set to a random number
between one and one fourth of the map size. That way, we can make sure that
there is always at least one object of each type, and at most one fourth of the map
size excluding maps that are full with objects of a single type as shown in Figure
4.3 left.

Furthermore, creating the limits for multiple subtypes of an object, we propose
handling them in a single rule. As already described in section 4.4, a portal in the
game Aliens is represented by a portalSlow and a portalFast. Setting the amount
limits for these two subtypes, we create a single rule saying that there should be at
least one of the two portalFast or portalSlow and having a map size of e.g. 80 grid
cells, the generator creates a rule defining an upper limit of 20 for both of them
together.

Limit constraints are one possibility to decrease the search space and exclude
levels that are very likely to be unplayable. Another possibility is to artificially
create dependencies between arbitrary game objects or add further properties us-
ing some of the auxiliary methods described in section 4.2.

29

For that purpose, we use the method called CreatePassableCellsAroundObject
adding or deleting a rule for each type of a game object that specifies how many of
its four neighbors (adjacent cells) should be passable. The chance of adding such
a rule to a certain game object is 50%. Thereby, a passable tile is defined as one
that the player can step on eventually collecting an item or destroying an object
on that tile. Thus, tiles with immovable objects that the player cannot destroy (or
collect) are regarded as impassable.

The information about passable neighbors is saved as well as every other infor-
mation in its SpriteInfo instance. In some cases, this information can be obtained
from the VGDL description, as described in section 4.4 for the boxes from the
game Boulderdash. Though, if no prior knowledge about the neighbors is given,
the generator sets the number of passable neighbors to a random number between
0 and 4.

That way, we can make sure that each game object can be accessed by the
player from at least one direction (or cannot be accessed at all). Though, it does
not necessarily mean, that the object is being placed in the middle of an empty
space because it still can be surrounded by other objects that are movable or de-
stroyable by the player. Setting the number of passable neighbors randomly, we
are changing the borders of the search space limiting its size.

At the moment, setting the missing limits randomly and assigning a random
number of passable neighbors are the only additional rules implemented in the
generator. Although, other constraints could be added at this point using more of
the auxiliary methods in future.

30

Chapter 5

Evolution of ASP Rulesets

In the previous section we have outlined how the generator creates a set of ASP
rules for a game, given its VGDL description. Such a ruleset can be then put into
the ASP solver which is able to find all possible solutions for the given problem.
As already described, each generated ruleset contains basic, game specific and
additional rules. Basic and game specific rules are assumed to fit the game de-
scription and exclude undesirable solutions. Whereas additional rules are created
randomly and cannot guarantee that the best solutions are created or excluded
through them. Thus, we cannot ensure that the desired subspace of the search
space, i.e. the one with the most interesting levels, is observed.

As a solution to this problem, we propose evolving the randomly created ad-
ditional rules through a simple evolutionary algorithm. By changing only the
additional rules, we can make sure, that the most important part containing the
basic and game specific rules sustains throughout the evolution process. Thereby,
we still can slightly change the shape of the observed search space looking for a
configuration of additional rules that provides solvable and the most interesting
levels.

In this section, we describe the evolutionary process showing how a popula-
tion of rulesets is created and evaluated. Furthermore, we go into more details
describing how the additional rules of selected rulesets are mutated.

5.1 Population Creation
As already mentioned in section 3.3, a solver program provides all possible solu-
tions of a given problem. Considering the relatively small number of constraints

31

that are defined in the ruleset creation phase, the solver finds a very large amount
of possible configurations of game objects on a map. Thus, we can obtain from
one ruleset many maps that lie very close to each other in the solution space and
have small differences in the positions of game objects. Though, all of these maps
satisfy all constraints defined in a ruleset.

Since we are not interested in testing maps that are very similar to each other
and we do not have the possibility to test all levels generated from a single ruleset,
we propose choosing randomly 5 maps from a ruleset. The randomness and the
number of desired solution can be set as parameters of the ASP solver. Though,
to be able to reconstruct the same levels from a ruleset we set a fixed seed of the
random generator as another solver parameter.

Furthermore, since we use optimization, balancing the distribution of game
objects on a map, we set the corresponding parameter of the solver to –opt-all.
That way, the solver finds only ’answer sets that are not worse than the best one
found so far’ [23]. Thus, each map provided by the solver is more balanced than
the previous one. However, it is not guaranteed that the last map delivered is the
optimum solution due to the random choice of solutions.

To further optimize the search for optimal solutions, we set another option of
the solver called –restart-on-model. With this mode turned on, the solver restarts
its search after finding an answer set recording solutions found so far. This way,
the search can be sped up and the current optimum is always recorded [23].

Creating 5 levels from each ruleset, we propose generating small populations
of 10 rulesets/individuals. Thereby, each ruleset has the same basic and game
specific rules and different additional rules. That way, the genes of an individual
save the information about the randomly generated amount limits of certain game
objects. Furthermore, some genes can contain the information about the number
of passable neighbor tiles of an object. As shown in figure 5.1, it is possible that
individuals have different lengths, since the rule defining passable neighbors is
added with a 50% chance for each object.

5.2 Fitness Evaluation
With all rulesets in a population containing game specific rules, we make sure
that the most important rules are taken into consideration in all generated maps.
However, due to the randomly created additional rules, we cannot guarantee that
all levels are solvable. Furthermore, we do not know which configurations of
additional rules provide more interesting levels.

32

Figure 5.1: Example chromosomes/rulesets. All individuals have the same basic
and game specific rules (gray) which are never changed. White: additional rules
that represent single genes.

Since it is a very difficult question to answer, we do not try to define what
interestingness regarding a video game means. Nevertheless, we do assume that a
game level is more interesting if it requires some efforts from a player than the one
that can be won immediately. Furthermore, we presume that a level that cannot be
solved by a player at all, is perceived as less interesting. Thus, an interesting level
should provide a certain degree of difficulty.

Following these assumptions and being inspired by the work by Nielsen et
al. [25], we propose measuring the quality of the generated levels through their
difficulty. The difficulty, in turn, can be measured using e.g. the game score
provided by almost every game or by the fact whether or not the game could be
won. Thus, a level with the desired degree of difficulty should be solved by a
skilled player with a higher score than by a player that has a lower skill level.

For that purpose, we let two different agents play each level from a population
multiple times. We use two controllers from the GVG-AI competition. The first
controller is called adrienctx. It ranked first in the competition in the year 2014
and is therefore supposed to be more intelligent. The second controller is sam-
pleMCTS which is provided with the GVG-AI framework and scored third in the
same years competition. This controller is used as the worse-playing agent.

For each generated ruleset in a population, we measure the difference between
the average scores achieved by each agent while playing the maps that were gener-
ated from this ruleset. Thereby, we assume that maps with higher score differences
have a better difficulty meaning that the agent with a higher skill level could han-
dle the game better than the worse one. Similarly, levels with lower differences
are assumed to have a worse difficulty level meaning that either the level was too
hard or too easy for both agents.

33

Since the most games observed in our studies are nondeterministic, we let each
agent play each level n times with n 2 {3, 10} and compute then the average score
achieved by each agent for each map. Afterwards, we compute the difference
between these values. We add a score bonus of 1000 points when at least one of
the agents wins the game to favor solvable levels. (In the GVG-AI competition, a
player gets a score of �1000 if he is disqualified for some reason. We change this
value to �10 to make sure that it does not overwrite the bonus points of 1000 in the
fitness function.) Because we generate 5 levels from each ruleset of a population,
we finally sum up the score differences of the 5 maps. That way, we get the fitness
value of a single ruleset F

R

as described in equation (5.1).

F

R

=
5X

1

1

n

nX

1

score

adrienctx

� 1

n

nX

1

score

sampleMCTS

+ 1000

!
(5.1)

n 2 {3, 10}

Playing each map e.g. 3 times by two agents may take up to hours. For that
reason, we limit the maximum number of game steps to 1000 (at the GVG-AI
Competition each game lasts for max. 2000 steps). At this point, the evaluation of
a map with the help of a human could be a faster method. Nevertheless, we aim
to have a completely automatic generator using the two controllers.

5.3 Selection
With the help of the fitness evaluation function described in the previous section,
we select the best individuals for the next population. Thereby, we follow a (µ+�)
elitism strategy with µ = � = 10. That way, we keep the best 10 solutions chosen
from the parents and the children ensuring that solutions with better combinations
of additional rules are kept for further improvements.

Furthermore, we keep an archive with the best 10 individuals found during all
generations. This allows us to determine the evolution of the rulesets. Addition-
ally, is saves the best (but different) solutions found throughout the evolutionary
process until we reach the termination criterion.

34

Figure 5.2: Mutation of a chromosome (ruleset) using two operators. Gray: basic
and game specific rules that are not mutated; green: unchanged genes (rules); yel-
low: changed numbers/genes; blue: added rules/genes; red: deleted rules/genes.

5.4 Mutation of additional ASP Rules
As already described in section 5.1, all rulesets of a population have the same
basic and game specific rules and different additional rules. The genes of the
individuals contain information about the randomly generated amount limits and
the number of passable neighbor tiles of certain game objects. However, these
numbers are randomly generated and do not guarantee the creation of levels with
the desired difficulties.

To change the shape of the search space and to guide the solver into different
directions, we propose using a mutation operator that randomly changes the addi-
tional rules. For that purpose, each additional rule described in section 4.5 has a
50% chance of being mutated. Thereby, each one of the amount limits is changed
to a random value. As already described, this random value is kept between 1 and
one fourth of the map size with the upper limit always being equal or higher than
the lower limit.

Regarding the rules that set the number of passable neighbors of a game ob-
ject, the mutator works according to the following rules: if there is no passable-
neighbors rule defined for a certain type of game objects, it is added with a chance
of 50%. Thereby, the number of passable neighbors is randomly set to a value be-
tween 0 and 4. In case, there is already such a rule defined for an object type, the
mutator deletes this rule with a possibility of 50%. Figure 5.2 shows an example
of the mutation process.

After applying these two kinds of operators to the 10 selected individuals,
we have a new population of rulesets. Having this population, we continue with
the evolution process described in the previous sections. That way, the generator
moves in the search space and creates different combinations of rules. The gener-
ated rulesets provide maps with different properties and difficulty levels resulting
in different fitness values.

35

Chapter 6

Experimentation

The experiments in this work contained two parts observing the levels build for
different games of the GVG-AI framework. In both parts, the generator evolved
the levels over 10 generations. The number of generations was held so low be-
cause of the very long time needed for the evaluation. Thereby, each population
contained 10 individuals which were sets of ASP rules. Each ruleset provided 5
levels with a relatively small size of 10 ⇥ 8 tiles. These levels were played by
two game-playing agents for maximum 1000 game steps each. The sum of the
differences between the scores of these agents represented the fitness value of a
ruleset. The best 10 individuals were selected into the next generation following
a µ + � elitism strategy. Furthermore, 10 best solutions were kept in an archive
throughout the evolution process.

First, the generator evolved levels for the first game set which contained 10
different games. This process was performed twice. In the first run, each agent
played each level 3 times. In the next run, we repeated this experiment letting each
agent play each level 10 times. A comparison between these results should provide
information about the impact of the number of runs per map on the evolution
process of the levels.

The second step contained the evolution of levels for the second set of 10
games. Here, the experiments were run with the same parameters as in the first
step and each agent playing each level 10 times. Since the generator was devel-
oped essentially based on the games from the first set, this step of the experiment
should provide information on the generality of the generator.

In the following section, we describe general findings from the results of both
experiment parts. For more detailed information about single games, the reader is
asked to refer to the descriptions placed in the appendix B.

36

6.1 Results
Generating rulesets for level creation, our aim was to find sets that were not only
solvable but also had interesting difficulty levels. According to the fitness function
described in section 5.2, a ruleset got a higher fitness value if all of its maps were
solvable. The digit in the thousands place represented, in most cases, the number
of solvable levels and the digits behind it represented the sum of the differences
between the agents scores. Thus, a ruleset having a fitness value above 5000 was
expected to have created 5 levels all of which were solvable by at least one of the
agents.

That way, the generator preferred rulesets that had more solvable levels to
those with a higher score difference. For example, if the sum of differences of a
ruleset was e.g. 55 and only 3 levels of this ruleset could be won, the ruleset got a
fitness value of 3055. If now, another ruleset had a lower score difference of e.g.
15 but all 5 levels could be won, then the ruleset got a fitness value of 5015. Thus,
despite having a lower score difference, the second ruleset was preferred by the
generator.

However, this fitness function could be changed depending on the users pref-
erences. If it is desired to have as many solvable levels as possible (as in our
case), the fitness function can be used to filter out the desired solutions. If it is
more important to have higher score differences and a ruleset that creates at least
one solvable map, than the fitness function should be adjusted giving e.g. a single
bonus of only 1000 points independently of the number of solved levels.

As the results of the experiments performed in this work have shown, the
generator was able to find solvable levels for all games. For the most games, it also
could find rulesets with fitness values above 5000. Furthermore, the final rulesets
saved in the archive for almost all games had a minimum value above 5000 as
shown in table 6.1. The only games for which the fitness value did not reach 5000
were Dig Dug and Eggomania having different reasons which are described later
in this section.

In general, the fitness values varied from game to game depending on the
scores that an agent could get in the game. For example, in the game Camel Race
an agent could only get a score of 1 if he won the game and a score of �1 if he
lost it. That way, the maximum possible difference between the two agents was
2. For that reason, the fitness values of rulesets from that game could not exceed
5002. Whereas in the game Sea Quest, a player could get 1000 score points for
destroying a certain object. Destroying multiple of these objects, the difference
between the agents could be far beyond 5000 as can be seen in table 6.1.

37

In this case, it was more difficult to interpret the results because we could
not say for sure, whether the fitness of a ruleset was above 5000 because all 5
levels could be solved or because the better player got a higher score than the
worse one. For that reason, we propose to adapt the fitness function and instead
of adding 1000 bonus points when a level is solved, add a value that is suitable for
the certain game taking into account the maximum game score.

Looking at the fitness curves of the different games, we could not only see
that solvable levels were generated but also how difficult it was for the generator
to find such levels and rulesets for certain games. For example, in the game Mis-
sile Command, the generator created multiple solvable maps already in the first
generation. So, the minimum fitness value in the archive was above 5000 already
after the evaluation of the second generation as it can be seen in the top row of
figure 6.1.

In contrast to that example, the generator had difficulties to find solvable levels
for the game Boulderdash. As we can see in the bottom row of figure 6.1, the
minimum fitness value in the archive in the experiment with 10 runs per map
reached 5000 only in the last generation (right column). With 3 runs per map,
there were still rulesets in the archive which had a value below 5000 even after 10
generations (left column). Thus, in this case, not all of the final rulesets produced
5 solvable levels each.

These results can be traced back to the fact that in Missile Command the gen-
erator only had to find a good balance between the positive and the negative game
objects, whereas in Boulderdash, it had to adjust a higher number of different
game objects. Furthermore, Boulderdash has more complicated game mechanics
including some physics which make it more difficult to find solvable levels.

Even though we can see such differences between the results of different
games, it is not enough to look only at the fitness values. It is also important
to have a closer look at the rulesets. For example, comparing the fitness values
achieved in the games from the first GVG-set played 3 times by each agent with
those where each agent played each level 10 times, we cannot recognize any mean-
ingful differences. However, looking closer at the concrete parameters defined in
the rulesets of the two experiments, we can see that in general, the generator cre-
ated slightly more difficult levels in the experiment with 10 runs per map.

A good example therefor, is the game Aliens that was already mentioned sev-
eral times in this work. In the original maps, there is usually one portal that
spawns aliens which the player has to shoot. After examining the final rulesets in
the archives of the two experiments, we noticed that in the part with 3 runs per
map, 8 out of 10 rulesets had only one portal as expected. In contrast to that, in the

38

Figure 6.1: Comparison of the fitness curves of the games Missilecommand (top)
and Boulderdash (bottom) for the experiments with 3 runs per map (left column)
and 10 runs per map (right column).

experiment with 10 runs per map, 9 out of 10 rulesets had 2 portals. Thereby, sets
with 1 portal had lower fitness values. Thus, with more runs, the score difference
between the two controllers was higher so that the generator preferred more diffi-
cult levels with 2 portals. Similar relations could be found in the results of other
games such as Chase where the generator created more enemies in the experiment
with 10 runs than in the one with 3 runs.

Furthermore, we could see that for some games from the second game set
where we have performed only experiments with 10 runs, the generator created
levels that were more difficult than the original ones. For example, in the game
Eggomania, there is usually 1 chicken that throws its eggs on the player who has
to catch all eggs and kill the chicken. However, 9 out of 10 resulting rulesets had
3 or even more (up to 8) chickens in their levels. A higher number of chickens
made the game more difficult and gave the playing agents the chance to increase
the difference between their scores.

Speaking about the difficulty in these games, we outline the amounts of game
objects that were set in the rulesets (described in section 4.5). Throughout all
games from both game sets, we could notice that the generator was able to find
acceptable amounts of objects. It performed especially well in those games, where

39

the fitness value directly depended on the amounts of certain game objects. Those
were the games where the player’s aim was to avoid or destroy some negative
objects at the same time collecting some positive objects. Hereby, the player
got score points for both actions which made it possible for the more intelligent
agent to gather more score points than the less intelligent one. That way, the
evolutionary algorithm could easily filter out solutions with a desirable balance
between the objects adjusting their numbers.

A good example for such a case is the game Infection where the player has
to infect hosts. Therefor, he has to get the infection from a virus and collide
with hosts avoiding the guardians that could heal him. In this case, the generator
preferred rulesets with a low amount of viruses (1 to 3), so it was not too easy to
win the game, and a medium amount of hosts and guardians having approximately
5 of each type in the levels. Rulesets with e.g. only 1 host or more than 3 viruses
could be easily solved by both agents which could be clearly seen on their fitness
values. Such rulesets had fitness values very close to 5000 which meant that the
score difference was around 0 (in contrast to that, the maximum fitness value
was 5069.4). Further examples for games with well-balanced levels were Missile
Command and Butterflies.

Furthermore, the previous example of Infection has shown that the number of
game objects that did not have a direct influence on the score could vary in the
final sets. For example, walls were only obstacles in Infection but did not give
any score, since they could not be destroyed. So, we could see that in the archive,
there were rulesets having as well only 1 as up to 10 wall sprites in their levels.
However, having more walls in a level meant that the agents had less space to
move around which made the level more difficult. This could be the probable
reason for the most final sets (6 out of 10) having only 3 or less walls.

Although, the generator performed generally well in balancing the amounts
of game objects, there were still exceptions where it could not reach the perfect
balance. For example, as already mentioned, in the game Dig Dug, none of the
rulesets got a fitness value above 5000. In this game, the player has to either
collect all goodies or kill all enemies who are spawned by spawn points. Taking
into consideration that each spawn point spawns 5 enemies and the created levels
had a relatively small size, it would be enough to have only 1 spawn point (and a
few enemies) in the level.

However, analyzing the 50 rulesets created throughout the whole evolution
process, we noticed that none of them had such a small number of spawn points.
That means that many levels were too difficult to solve which is the probable rea-
son why all rulesets had a fitness value below 5000. At this point, we assume that

40

having a mutation chance of 50% and the random number being chosen between 1
and 12 (for the given map size), 10 generations were not enough to create a ruleset
with the maximum number of spawn points set to 1. We further assume that more
generations (or higher population size) could help the generator to find a better
balance for this game.

Furthermore, some results have shown that it was wrong to assume that the
amount of every object type should always be at least 1 and at most 1/4 of the
map size. For example, in the original maps of Eggomania there are no wall tiles
inside the level except from the ones on the borders. If the egg thrown by the
chicken hits a wall tile, the player loses the game. Usually, this happens only
when an egg hits the bottom of the level.

However, since our generator created rulesets with the maximum amount of
wall tiles set to at least 1 more than was needed for the borders, the player often
could not prevent the egg from hitting the wall or the wall limited the players
movement. Examples of such levels are shown in figure 6.2 where wall tiles are
placed in such a way that the player is not able to catch the egg either because the
a wall tile is placed between him and the chicken (left) or because he cannot move
towards the egg (right). For this game, it would be more suitable to have no wall
tiles inside the levels.

Examples for games where the amount of certain objects should exceed 1/4
of the map size are Boulderdash and Dig Dug. In these games, the maps are nor-
mally completely covered with either dirt or walls which the player can destroy.
These elements have important functionalities and only through them some game
mechanics are made possible, e.g. the player can destroy a wall below a boulder
and make the boulder fall onto an enemy. Though, because the generator could

Figure 6.2: Examples of unsolvable levels for Eggomania. Left: the player cannot
catch the yellow egg before it collides with the wall tile; right: the player is unable
to move left to catch the egg.

41

not create a high number of these objects, the most levels had a very small amount
of them. That way, the agents were forced to use other game mechanics so that the
difficulty levels of these maps were not representative for these games. Moreover,
the created levels were very different from the original ones.

Another problem that we noticed for multiple games was the wrong amount of
exit doors in levels. There are many similar games such as Boulderdash, Portals
and Zelda where the player has to reach a goal or an exit. The main idea in such
games is that there is normally only one exit in the level and it is not easy to reach,
e.g. it is hidden behind some walls or needs a key to be opened.

However, in most cases, a VGDL description for such a game does not contain
the information that there should be only one exit. Usually, it only contains the
termination condition which says that the game is over when there are no more ex-
its in the level and that an exit disappears on collision with the avatar. Sometimes,
the avatar gets some additional score points colliding with the exit.

For that reason, the generator interpreted the exits as positive game objects
(collectables) that gave the agents more score points. Thus, having a higher
amount of exits in a level meant that the score difference between the agents could
be higher than in levels with less exits. So, the generator preferred levels with
multiple exits.

That way, the main idea behind reaching a single hidden exit was not sustained
in the generated levels and the agents aim changed to colliding with as many exits
as possible to get a higher score. Hereby, the generator could find a suitable
amount of exits to have an acceptable difficulty level but it could not produce
levels similar to the original ones.

To avoid such problems in future, we propose taking into account not only the
game score but also the time needed by the agents to solve the levels. That way, the
generator could prefer maps which the agent with a higher skill level could solve
faster than the weaker agent. We assume that thereby, in levels with multiple exits
both agents would need approximately the same (long) time whereas in a level
with only one exit the smarter agent could react faster than the worse one.

A general discovery that we could make looking at the generated levels, was
that all of them have shown an equal distribution of game objects having good
vertical and horizontal balance. Comparing the generated rulesets and their fitness
values, we could not make any significant statement about the mutation operator
that changed the number of passable neighbors for a game object. Some of the
final rulesets of every game had rules specifying the number of passable neighbors
and some did not. The fitness values seemed not affected by these rules. As a
possible reason for that, we see the fact that, in general, there were not many

42

objects in the levels that were impassable and could surround the objects.
Furthermore, the generator did not create any formations in the levels. For

games like Frogs, Portals or Pacman that was a serious problem since their game
mechanics rely on certain formations. In these games, lines of walls either build
labyrinths in which the player has to move wisely or they separate doors from
the rest of the environment making them unreachable. In Frogs, lines of water
and moving trucks represent a river and a highway that the player has to cross
carefully.

If these tiles are placed randomly in the level instead of the desired formations,
some game mechanics become useless. If there is no labyrinth in Pacman, the
player can move freely in level and can easily escape the ghosts and if there is
no river between the player and the exit in Frogs the player can win the game
very fast going directly to the exit. However, looking at the levels generated for
those games, we have noticed that there were no such structures so the generator
adjusted the difficulty of the maps by balancing the amounts of the game objects.

The reason for not creating any structures was that they were not defined in
the ASP rulesets. A possible solution for that problem could be the definition
of e.g. blocks or vertical and horizontal lines of objects of the same type and
an optimization of the number of such blocks/lines in the levels. An alternative
solution could be a constraint forbidding wall tiles (or other objects) to be placed
alone in the level, thus each tile would have to have at least one neighbor of the
same type.

Although not containing any formations was a problem for some games in
our case, it is uncertain whether this is always a problem or whether it could be
desired in some cases. Especially for new games, for which the user knows only
the game mechanics but does not have any original maps, the created levels could
provide help at polishing the mechanics.

Another point that did not work as desired in some games, was the placing
of oriented objects at the borders of the map. As already mentioned, we created
a rule that placed e.g. an object that was oriented left on the right border of the
map. That way, this object should be able to move or shoot left using the longest
distance. That worked out well in games like Aliens where the portals were placed
on the top of the map or Frogs where the trucks were placed on the left/right side
and moved towards the opposite wall.

However, it did not work, for example, in the game Camel Race. Here, the
VGDL description provided definitions of camels that were moving only left (or
only right). That way, the generator did not place all camels on one side of the
map. Instead they were placed on the opposite borders of the map depending on

43

theirs orientations having different distances to the goals. To avoid that problem,
the orientation rule could be e.g. added to the additional rules instead of the game
specific rules.

Even though the generator had problems creating levels for some very specific
games, it generated adequate maps for the most games. However, independently
from how well it performed in the generation process, it has shown a big problem
regarding its time consumption. Having chosen a small amount of only 10 gen-
erations for our experiments, we assumed that each evolution process would take
up to several hours. Though, we did not expect that evaluating some games would
take as long as it did.

The second column of table 6.1 shows the time needed for each game to per-
form the evolution process. As we can see, even for the experiments where each
agent played each map only 3 times, the generator needed from 3 hours 54 minutes
(Missile Command) up to 17 hours 25 minutes (Portals). As for the experiments
with 10 runs per map, the time ranged from 1 hour 15 minutes (Camel Race) to
79 hours 31 minutes (Sokoban).

These periods of time contained as well the time needed by the ASP solver to
find the solutions, as the time needed by the agents to play all levels. In general,
the time taken by the ASP solver did not exceed 5 minutes. However, if the
ruleset contained rules that made it unsolvable, e.g. it had inconsistent amounts of
objects, the solver tried to find a solution for a certain period of time before a new
ruleset was created. That way, creating a solvable ruleset could take more than 5
minutes.

Nevertheless, the most time-consuming process was the evaluation by the
agents. Depending on the positions of certain objects in the map, the game me-
chanics and the skill level of an agent, it could solve a level immediately (or lose)
or consume all 1000 game steps. That way, it was possible to have such a wide
range of time spans for different games.

44

Game Evolution Time Min.
Fitness
1st gen.

Max.
fitness
1st gen.

Min.
Fitness
10th
gen.

Max.
fitness
10th
gen.

Min.
fitness
archive
10th
gen.

Max.
fitness
archive
10th
gen.

Aliens (3) 5hrs 52mins -262.3 5015 930 5014 5014 5109
Boulderdash(3) 8hrs 30mins 9.7 2036.7 13.3 4038.7 4009.7 5053.3
Butterflies (3) 1hr 32mins -14.7 5006.7 3976.7 4996 5004 5049.3
Chase (3) 12hrs 31mins 4 5005.3 2009.3 5008.7 5007 5012
Frogs (3) 6hrs 8mins 10.7 5002.7 3002 5006.7 5005.3 5017.7
Missile Com-
mand (3)

3hrs 54mins 2002.3 5009.3 1.3 5018.7 5009.3 5018.3

Portals (3) 17hrs 25mins 0.7 4023.7 7.3 5024.3 5017.7 5031.3
Sokoban (3) 14hrs 45mins 0.7 4010 1008 5003 5000 5003
Survive Zom-
bies (3)

14hrs 16mins -2 4233.7 36 5243.7 5187 5393.3

Zelda (3) 7hrs 25mins 3015.7 5092 3034.3 5084 5095 5133.3
Aliens (10) 16hrs 10mins 843 5010.5 4918.6 5049 5020.8 5069.6
Boulderdash
(10)

27hrs 59mins 16.4 2035.3 1016.8 5040.2 5014 5048.9

Butterflies(10) 10hrs 21mins 3962.8 5000.8 4982.4 5000.4 5001.6 5012.6
Chase (10) 40hrs 20mins 4.4 5004.8 5001.3 5010.1 5007.9 5011.3
Frogs (10) 12hrs 15mins 1998.3 5033.7 3103.3 5012.7 5022 5037.7
Missile Com-
mand (10)

5hrs 9mins 2015.5 5016.8 1996.5 5010.4 5013.5 5021.1

Portals (10) 42hrs 53mins 6.8 4023 19 5022.4 5015.4 5034.7
Sokoban (10) 79hrs 31mins 5.3 5001.6 3001.6 5003.8 5001.6 5007.3
Survive Zom-
bies (10)

27hrs 9mins 4.6 5245.5 3 5419.5 5276.7 5424.1

Zelda (10) 23hrs 26mins 4035.6 5091.8 4032.5 5106.1 5086.2 5106.1
CamelRace
(10)

1hr 15mins 4999 5000.6 2999.4 5000.6 5000.6 5001.2

Digdug (10) 52hrs 17mins -66.9 3899.9 901 4951.8 3930.9 4964.2
Firestorms(10) 19hrs 47mins 1.1 5058.8 996.3 5068.1 5057.1 5072.9
Infection (10) 5hrs 54mins 5001.1 5025.2 5002 5004.1 5046 5069.4
Firecaster (10) 50hrs 49mins 4010.5 5034.6 3018.8 5027.8 5030.7 5045.2
Overload (10) 67hrs 49mins 18.4 4017.8 11.6 5028.1 5022.2 5085.5
Pacman (10) 11hrs 30mins 3053.3 5052.2 4110.4 5107.2 5090.6 5161.4
Seaquest (10) 27hrs 9mins -22522 24857.4 -18806 32417 24453 35549.3
Whackamole
(10)

26hrs 20mins 994.4 5055.5 19997.6 5072.7 5055 5077.1

Egoomania(10) 12hrs 42mins 1872.5 45524.9 1720.7 4726.5 4370 4787

Table 6.1: Results of the level generation for the first 20 games of the GVG-AI
framework. First 10 rows: games of the 1st game set with the agents playing
each level 3 times; next 10 rows: the same games with 10 runs per map; last 10
rows: experiments on the 10 games from the 2nd set with 10 runs per map. The
second column shows the time needed for the experiment. Further columns show
the minimum and maximum fitness in the: 1st generation, last generation, final
state of the archive.

45

Chapter 7

Conclusions and Future Work

This chapter summarizes the thesis and its outcomes and outlines possible direc-
tions for future work.

7.1 Conclusions
This thesis introduced a procedural level generator that has the aim to create maps
for any game described in Video Game Description Language (VGDL). Read-
ing the descriptions of the sprites and collision effects provided for a game, the
generator created corresponding rules for Answer Set Programming (ASP). To
complete missing information, random rules were added specifying amounts of
game objects and defining their neighborhoods. The generated rulesets were then
put into an ASP solver which found corresponding game levels through deductive
reasoning.

Afterwards, these rulesets were evolved using a simple Evolutionary Algo-
rithm in order to obtain not only solvable but also interesting levels. Therefor,
the generator created for each game populations of 10 rulesets with 5 maps each,
evolved them over 10 generations and evaluated their fitness with the help of two
game playing agents. Hereby, we took the difference between the game scores of
the two agents as a measure of level quality assuming that a well-designed level
would differentiate between the weaker and the smarter agent. This assumption
was based on a hypothesis that can be found in [25, 26].

In the experiments, the generator created levels for the first 2 game sets pro-
vided by the GVG-AI framework. Each set had 10 different single player games.
For the first set, we performed two steps, first, letting each agent play each map

46

3 times and second, letting them have 10 runs per map taking the average of the
scores achieved in these runs. For the second set, we only performed the experi-
ment with 10 runs per map.

Throughout the whole process of evolution of every game, 10 best solutions
were saved in an archive. That way, it was possible to access the best levels at the
end of the process and analyze not only the resulted fitness values but also the lev-
els. Even though we did not have many generations due to long evaluation times,
the results have shown that the EA still showed good performance. It performed
especially well in balancing the amounts of positive and negative game objects
finding maps with desired difficulty levels for the most games. Although in some
cases, more generations could provide a better fine-tuning of the numbers.

It is interesting that for some games, the generator created levels that were
more difficult than the original ones. Thus, levels with the increased difficulty
were more manageable for the smarter agent than for the weaker one allowing a
higher score difference between them. Also, we noticed that in the experiments
with the agents playing each map 10 times, the levels were slightly more difficult
than in the experiments performed with 3 runs per map.

Although the generator performed well in adjusting the numbers of game ob-
jects, it did not create any formations of game objects in the levels. For the most
games, that was not a problem because formations were not important in these
games. Considering the small size of the generated levels and the good vertical
and horizontal balance of objects, which sustained in all cases, the levels of these
games had a structure similar to many of the original maps. However, missing for-
mations were a problem for games that rely on certain structures such as labyrinths
or passable streets. Without these structures, some game mechanics became use-
less, so that the agents had to solve the game in a different way. That way, the
generated maps and their fitness values misrepresented the desired solutions.

Although the results of the process described in this thesis were satisfactory,
the method proved to take very long time for the evolution. Especially, the evalu-
ation performed with the help of the controllers was very time-consuming. With
only 3 runs per map, the process lasted for at least 3 hours per game. The max-
imum time needed for an experiment with 10 runs, exceeded 79 hours. Even
with fewer individuals or a smaller amount of generations, evaluating the maps
by letting game agents play them, would not allow using the generator for level
creation at runtime. For that reason, we do not recommend using this method if a
fast generation of maps is desired.

47

7.2 Future Work
Although the method proposed in this thesis cannot generate new levels very fast,
it is still interesting for many research areas and provides multiple directions for
future work. To analyze some minor problems described here, the initial piece of
future work would consist of performing experiments with more generations and
higher population sizes. Moreover, further experiments could be performed on all
60 games of the GVG-AI framework.

The levels created for this thesis, had a relatively small size. By increasing the
size of the levels, also the size of the search space would grow. We assume that
this could lead to much longer computation times of the ASP solver. That is why
the performance of the ASP solver should be tested on levels with a larger size.

For evaluation of the generated maps, this work concentrated on the differ-
ences of scores between the game playing controllers adrienctx and sampleMCTS.
However, there were multiple controllers in the competition of the year 2015 that
performed much better than both of these two agents. For this reason, further re-
search could be performed using newer agents with higher skill levels. Moreover,
the fitness function could be changed comparing more than only 2 controllers.

Additionally, we recommend taking into consideration not only the game score
but also the time needed by each agent to solve a level. That way, other techniques
such as Multi-Objective EA could be used to optimize multiple fitness functions.

In this work, we have already implemented some rules optimizing the vertical
and horizontal balance of the objects trying to improve the visual impression of
the maps. However, the levels did not have any formations. For that reason, we
propose adding further ASP rules to the rulesets optimizing the relation between
the number of objects and the number of distinct segments of these objects as
described in [24].

Furthermore, to evaluate the visual impression of the maps, it is not enough to
use game controllers or any fitness function. For that purpose, it would be more
interesting to include a human into the loop. Therefor, we propose performing
user studies searching not only for solvable levels with the desired difficulty but
also for maps with a certain aesthetic value.

Another possibility is to transform the methodology from a purely automatic
generator to a generator with mixed authorship. Thereby, the generator could cre-
ate ASP rules and a human game designer could then include or exclude certain
rules before the generator would perform the evaluation step. That way, the gen-
erator could be used as a tool creating not only levels but any other game assets.

48

Appendix A

Auxiliary Methods

49

Java Method with ex-
ample parameters

Description Rule example

Create Two Oppo-
site Neighbors Free
(”box”)

Makes sure that two opposite
neighboring cells of the object
are not impassable.

:- sprite((X,Y), box),
impassable((X-1, Y)),
not impassable((X+1, Y)).

Create N Passable
Cells Around Object
(”portal”, 3)

Creates a given number of cells
that are not impassable around
each obj of given type

0{impassable(T2) :
adjacent(T1,T2)}1
:- sprite(T1, portal).

Create Counter Termi-
nation Rule (”exit”, 0)

Makes sure that a SpriteCounter
termination condition is not met.

counter(exit, N)
:- N=#count{sprite((X,Y), exit)}.
:- counter(exit, 0).

Create Counter Ter-
mination Rule For
Subtypes(”portal”,
0, {”portalSLow”,
”portalFast”})

Makes sure that a MultiSprite-
Counter termination condition
is not met.

counter(portal, N)
:- M = #count{sprite((X,Y),
portalSlow},
K = #count{sprite((X,Y),
portalFast)}, N = K+M.
:- counter(portal, 0).

Create One If Other
Exists (”exit”, ”entry”)

If there is a sprite with the
second object, then also sprites
with the first object are created.

:- 1{sprite(T1, entry):tile(T1)},
{sprite(T2, exit):tile(T2)}0.

Create None If No
Other Exists (”exit”,
”entry”)

If there is no sprite with the sec-
ond object, then no sprite with
first object is created.

:- {sprite(T1, entry2):tile(T1)}0,
1{sprite(T2, exit2):tile(T2)}.

Create As Many Oth-
ers As Ones (”entry”,
”exit”)

If there are n objects of the first
type, creates n objects of the
second type.

X{sprite(T, exit1):tile(T)}X
:- setNumber(exit,X).
getNumber(entry1, N)
:- N = #count{sprite((X,Y),
entry1):tile((X,Y))} .
setNumber(exit, N)
:- getNumber(entry, N).

Create One Object
Rule (”avatar”)

Creates a rule saying that there
is exactly one object of the given
type.

:- not 1{ sprite(T, avatar):
tile(T)}1.

Create Orientation
Rule (”avatar”, ”UP”)

Puts the given object on the
boundaries of the map (if direc-
tion is ”UP”, object is on the
bottom etc.)

:- sprite((X,Y),avatar),
not maxdimY(Y+1), tile((X,Y)).

Minimize Distance
(”avatar”, ”diamond”)

Minimizes the distance between
the first and the second object
type

dis((X1,Y1), S1, (X2,Y2), S2 ,N)
:- sprite((X1,Y1),S1),
sprite((X2,Y2),S2),
N=#abs(X1-X2)+#abs(Y1-Y2).
#minimize[dis(C1, S1, C2, S2, N)
: S1 = diamond: S2 = avatar
= N @ 5].

50

Java Method with ex-
ample parameters

Description Rule example

Maximize Distance
(”avatar”, ”exit”)

Maximizes the distance between
the first and the second object
type

#minimize[dis(C1, S1, C2, S2, N)
: S1 = exit: S2 = avatar
= ((width-2)+(height-2))-N @ 5].

Reachable (”avatar”,
”exit”, false)

Creates a rule saying whether
there is a path between the first
and the second object.

:- not reach(C1,C2),
sprite(C1,avatar), sprite(C2,exit).

Maximize Vertical Bal-
ance (”wall”)

Minimizes the difference be-
tween the amount of objects on
the left half and on the right half
of the level.

vSymmetry(wall, N)
:- L = #count{sprite((X,Y), wall)
: X<width/2},
R = #count{sprite((X,Y), wall)
: X>=width/2}, N=#abs(L-R).
#minimize [vSymmetry(wall, N)
=N@5].

Maximize Horizontal
Balance (”wall”)

Minimizes the difference be-
tween the amount of objects on
the top half and on the bottom
half.

hSymmetry(wall, N)
:- T = #count{sprite((X,Y), avatar)
: Y<=height/2},
B = #count{sprite((X,Y), wall)
: Y>height/2}, N=#abs(T-B).
#minimize [hSymmetry(wall, N)
=N@5].

Create Min Dist
(”avatar”, ”crab”, 5)

Distance between the first and
the second object is minimum
X.

:- dist((X1,Y1), avatar,
(X2,Y2), crab, N), N<5.

Minimize Differ-
ence Between Types
({”crab”,”butterfly”,
”boulder”},
{”diamond”,”coin”})

Minimizes the difference be-
tween the amounts of the objects
from the first and the second list.

dif(pos, neg , M)
:- N=#count{sprite((X,Y),
crab;butterfly;boulder)},
P=#count{sprite((X,Y),
diamond; coin)},
M = #abs(N-P).
#minimize [dif(pos,neg,M)
=M@5].

Create Min Number
(”diamond”, 3)

Sets the minimum number of
given objects.

3 {sprite(T,diamond):tile(T)}.

Create Max Number
(”diamond”, 6)

Sets the maximum number of
given objects

{sprite(T,diamond):tile(T)} 5.

CreateMinNumberOf
Alternatives
({”portalFast”, ”portal-
Slow”}, 2)

Sets the minimum number of
one or more of the given sprite
types

2 {sprite(T, portalFast; portal-
Slow):tile(T)}.

CreateMaxNumberOf
Alternatives
({”portalFast”, ”portal-
Slow”}, 7)

Sets the maximum number of
one or more of given sprite
types.

{sprite(T, portalFast; portal-
Slow):tile(T)} 7.

Table A.1: Auxiliary Methods implemented in the generator with their descrip-
tions and exmples of resulting ASP rules.51

Appendix B

Detailed Results of all Games

B.1 Results in the first Game Set

B.1.1 Aliens

Figure B.1: Aliens levels. Left: level provided by the GVG-AI framework; right:
generated level.

In the game Aliens, the player is attacked by aliens who are spawned by a
portal. Usually, there is only one portal which is placed in one of the upper corners
of the level and spawns a limited number of aliens. Those are moving horizontally
going one row down when they reach the left/right border of the level. They throw
bombs down on the player who is placed on the lower border of the level and is
also moving left and right. The player is able to shoot back at the aliens getting 2
score points for each alien. The game is over when either the player or all aliens
are killed. Sometimes, there are some base tiles placed between the player and
the portal as shown in figure B.1 on the left side. Those tiles can be destroyed by
the player giving him 1 score point each.

The results of both experiments for Aliens have shown that it is possible to
create rulesets that provide solvable levels. As can be seen in the upper diagrams
of figure B.2, there were rulesets with fitness values above 5000 in all generations.

52

Figure B.2: Score differences for the game Aliens. On the left column, the results
of the experiment with the agents playing each level 3 times is shown. The right
column shows the results of the experiment with 10 runs per map. The upper row
shows the minimum, average and maximum fitness in the population per genera-
tion. The lower row shows the corresponding values of the individuals present in
the archive at each generation.

This value means that all 5 levels provided by the corresponding ruleset could be
solved by at least one of the agents.

The maximum fitness value achieved in the experiment with the agents playing
3 times each level was 5109 meaning that all levels were solved and the mean
difference between the agents scores was 109. The experiment with 10 runs per
map delivered a maximum difference of 69 with a fitness value of 5069 showing
only a slight difference to the first results.

Since the aliens were the only source of danger in this game, the amount of
the portals spawning the aliens was the main criteria of the level difficulty. In the
first experiment, 8 of the 10 final rulesets had only 1 portal in the levels which
corresponds to the original levels. However, letting the agents play each level
10 times has shown that having only 1 portal in the levels provided lower score
differences. This means that both agents could solve the levels almost equally
well with the levels being too easy for both of them. Hereby, all of the final sets
had 2 portals as can be seen on the right side of figure B.1, spawning more aliens

53

and providing a better/higher difficulty level for the agents. This fact can be used
to either increase the number of portals or their spawning rate in further levels,
generating more aliens and changing the difficulty that way.

Another noteworthy issue is that 9 of the 10 sets had a maximum amount of
base tiles being set to 9. Since the portals and the bases were the only objects in
the game, all those 9 rulesets provided the same 5 levels even though they had
different numbers for the minimum amounts of the base tiles. This fact can be led
back to the balancing of the object distribution in the levels showing that these 5
levels have the optimal distribution of the portals and bases in the levels found so
far.

B.1.2 Boulderdash

Figure B.3: Boulderdash levels. Left: level provided by the GVG-AI framework;
right: generated level.

Boulderdash is a game were the player has to collect a given number of di-
amonds (getting 2 score points each) to be able to go through the exit and win
the game. Usually, there is only one exit and many diamonds in the level. The
left part of figure B.3 shows that the most space of the level is covered with dirt
which can be destroyed by the player. Furthermore, there are a few enemies who
can be killed by the player. Therefore he should let a boulder fall on the enemy
destroying the dirt sprites under the boulder.

Although, the results of both experiments demonstrated in figure B.4 have
shown that the generated levels can be solved by the agents, no level had a struc-
ture similar to the one from the original levels (see the right part of figure B.3). In
both experiment, all final sets had barely any dirt in the levels. Through our upper
limit of the amount of an object set to one fourth of the map size it could not be
possible to cover the levels completely with dirt. However, the maximum amount
was not even set to one fourth but to lower numbers. That can be explained by the
fact that the dirt sprites did not have any direct influence on the player score and
sets with less dirt and more other objects (e.g. diamonds) provided higher fitness
values.

54

Figure B.4: Score differences for the game Boulderdash. On the left column,
the results of the experiment with the agents playing each level 3 times is shown.
The right column shows the results of the experiment with 10 runs per map. The
upper row shows the minimum, average and maximum fitness in the population
per generation. The lower row shows the corresponding values of the individuals
present in the archive at each generation.

Since the player was forced to collect at least 9 diamonds to win the game,
all final sets had that number of diamonds. However, the most rulesets in both
experiments had 2 or more exits because there was no information in the VGDL-
description of the game that only 1 exit was required.

The balance between the enemies and boulders which could kill them was lim-
ited by the fact that all boulders were placed in the uppermost row of the levels.
This happened due to the fact that the boulders could only fall/move down and the
corresponding rule described in 4.4 placed them on the top of the map. Therefore,
only a limited number of boulders could be placed in the level (max. 8). Further-
more, there was almost no dirt which would keep the boulders in their place, so
that they fell immediately at the game start and could not be used by the player to
kill the enemies. For that reason, all final sets from the first experiment had only a
single enemy allowing the agents to win the game by collecting all diamonds and
avoiding the enemy. The second experiment delivered sets with slightly higher
numbers of enemies providing a little higher difficulty level for the agents.

55

B.1.3 Butterflies

Figure B.5: Butterflies levels. Left: level provided by the GVG-AI framework;
right: generated level.

The game Butterflies has only 3 kinds of game objects: walls, butterflies and
cocoons. Usually, there is approximately the same amount of both kinds of ob-
jects. If a butterfly collides with a cocoon, the first one is cloned and the second
one disappears. The players aim is to kill all butterflies by colliding with them
(getting 2 score points for each) without losing all cocoons. Structures of wall
tiles may represent obstacles for all moving entities.

Figure B.6: Score differences for the game Butterflies. On the left column, the
results of the experiment with the agents playing each level 3 times is shown.
The right column shows the results of the experiment with 10 runs per map. The
upper row shows the minimum, average and maximum fitness in the population
per generation. The lower row shows the corresponding values of the individuals
present in the archive at each generation.

56

In this case, the results of both experiments that can be seen in figure B.6 also
showed that solvable levels can be created by the generator. However, the score
differences between the two controllers in the second experiment were very low
with a maximum difference of 12, 6 (49, 3 in the first experiment). This shows
that the game could be solved by the two controllers almost equally well. As can
be seen on the right side of figure B.5, the generated levels provided no structures
of walls as it is the case in the original level on the left side of the figure.

Thereby, the balance between the butterflies and the cocoons was achieved by
the most final rulesets in both cases. Only 4 individuals in the first experiment
and 2 in the second one had less butterflies than cocoons. Individuals that were
too easy for both controllers had fitness values around 5000 meaning that all maps
were solved but showing no difference between the agents. In some cases, sam-
pleMCTS controller scored even better than adrienctx as well in levels that were
too easy as in those that were too hard (e.g. had significantly more butterflies than
cocoons).

B.1.4 Chase

Figure B.7: Chase levels. Left: level provided by the GVG-AI framework; right:
generated level.

The only moving entities in the game Chase are the player and scared goats.
The player has to chase the goats and get 1 score point colliding with each of
them and making the goats angry. Avoiding the angry goats the player can win
the game when there are no more scared goats left. Structures of walls can be
obstacles and cover for all entities as shown on the left side of figure B.7.

In both experiments, the generator could easily create solvable levels with
rulesets having fitness values above 5000 as shown in figure B.8. The number
of walls in the levels was similar in both experiments having maximum 3 wall
tiles. However, it is noteworthy that the experiment with 3 runs per map provided
rulesets with an upper limit of goats set to 5 - 6 and the one with 10 runs per
map also had levels with 7 enemies. This shows that similarly to the game Aliens
described in section B.1.1, the rulesets of the second experiment had a slightly
higher difficulty level than those from the first experiment.

57

Figure B.8: Score differences for the game Chase. On the left column, the results
of the experiment with the agents playing each level 3 times is shown. The right
column shows the results of the experiment with 10 runs per map. The upper row
shows the minimum, average and maximum fitness in the population per genera-
tion. The lower row shows the corresponding values of the individuals present in
the archive at each generation.

Furthermore, the results have shown that the levels with less than 5 goats were
too easy for both controllers having a fitness value around 5000. Thereby, levels
with more than 7 goats had very low fitness values of around 5 being too difficult
for both agents. This example shows very well how the generator is able to balance
the number of game objects in a simple game. However, it is not able to generate
levels with structures, as can be seen on the right side of figure B.7.

B.1.5 Frogs
In the game Frogs, the player has to reach a goal crossing a street and a river.
Thereby, he has to avoid trucks driving on the street and for crossing the river
he must jump on logs floating in the water. As we can see on the left part of
figure B.9, the river and the street are clearly defined as horizontal structures with
the frog and the exit being on the different sides of them. The player gets 1 score
point when he reaches the goal.

58

Figure B.9: Frogs levels. Left: level provided by the GVG-AI framework; right:
generated level.

Figure B.10: Score differences for the game Frogs. On the left column, the results
of the experiment with the agents playing each level 3 times is shown. The right
column shows the results of the experiment with 10 runs per map. The upper row
shows the minimum, average and maximum fitness in the population per genera-
tion. The lower row shows the corresponding values of the individuals present in
the archive at each generation.

As figure B.10 shows, the generator could find solvable levels for this game.
However, the score differences were not high. The only type of game objects
that brought the agents score points were the goals and because of the way how
the goals and water were defined in the VGDL description, the generator handled
them both in one rule. So, the minimum and maximum amount was set to the sum
of water and goal tiles. That way, these numbers did not have direct influence on
the level structure and the fitness value. In most cases, there were multiple goals
in a level.

Looking at the structure of the generated levels, we can see on the right part

59

of figure B.9 that the trucks were placed on the borders of the map so that they
could move horizontally across the map. That way, the levels represented streets.
However, the water tiles were placed randomly in the maps, so that no rivers were
created.

B.1.6 Missile Command

Figure B.11: Missilecommand levels. Left: level provided by the GVG-AI frame-
work; right: generated level.

In Missile Command, the player has to defend a few cities from incoming
enemies. Each time that an enemy reaches a city, both disappear and the players
score decreases by 1 point. The player can shoot at the enemies getting 2 score
points for each killed enemy. He wins if he kills all enemies and loses if all cities
are destroyed. Usually, there are a few more enemies than cities and the two types
of objects are placed on the opposite sides of the level as it is shown on the left
side of figure B.11. The player is placed between the cities and the enemies. There
are no walls inside the level.

The results of both experiments of this game have shown that it was possible to
find solvable levels (see figure B.12). Furthermore, all final sets had 2�4 enemies
more than cities having a similar balance to the original levels. Rulesets with less
enemies than cities or a small amount of both object types were too easy for the
agents and had fitness values around 5000. Thereby, levels that had significantly
more enemies than cities were too difficult for both agents and got fitness values
much lower than 5000.

Although the generator found a good balance of game objects, it could not
recreate the level structure from the original levels. Even when the enemies and
the cities were spatially separated in the original maps, it was not described in the
VGDL description of the game. That way, all objects were placed randomly in the
levels as the right part of figure B.11 shows. However, this fact is not necessarily a
negative one, because levels where the enemies are closer to the cities may provide
a higher difficulty degree.

60

Figure B.12: Score differences for the game Missile Command. On the left col-
umn, the results of the experiment with the agents playing each level 3 times is
shown. The right column shows the results of the experiment with 10 runs per
map. The upper row shows the minimum, average and maximum fitness in the
population per generation. The lower row shows the corresponding values of the
individuals present in the archive at each generation.

B.1.7 Portals

Figure B.13: Portals levels. Left: level provided by the GVG-AI framework;
right: generated level.

The game Portals belongs to those games where the player has to reach the
goal which is present only once in a level. It is separated by walls and can be
reached by the player going through portals entries and coming out from portal
exits. There is always one special exit placed close to the goal. However, the
player does not know which entry leads to which exit. Finding out the connection

61

between the portals the player has to avoid enemies. Reaching the goal, the player
gets 1 score point.

Figure B.14: Score differences for the game Portals. On the left column, the
results of the experiment with the agents playing each level 3 times is shown.
The right column shows the results of the experiment with 10 runs per map. The
upper row shows the minimum, average and maximum fitness in the population
per generation. The lower row shows the corresponding values of the individuals
present in the archive at each generation.

Since the goal was the only entity that could bring the player some score points
in this game, all of the final rulesets produced by the generator had multiple goals,
as can be seen on the right side of figure B.13. The upper limit of the goals was
not set to 1 in the game specific rules because this information could not be de-
rived from the VGDL description of the game similarly to the game Boulderdash
described in section B.1.2.

The results of this game, shown in figure B.14, proved once more that the
generator is able to find maps with a good difficulty level by changing the number
of enemies. Levels which were relatively empty and were too easy had fitness
values around 5000. Those, with a high number of enemies got very low fitness
values.

However, this game has shown once again that the generator was not able to
produce levels with structures. The goals were not separated from the player as

62

in the original levels. Furthermore, there were barely any walls at all so that the
player could reach all portals and goals by moving through the level. Here, a rule
saying that the goal should not be reachable by the player would be desired. In
future, this could be achieved by adding such a rule (among others) randomly to
the ruleset as an additional mutation operator.

B.1.8 Sokoban

Figure B.15: Sokoban levels. Left: level provided by the GVG-AI framework;
right: generated level.

In the game Sokoban, a level contains a few holes and an equal or slightly
higher number of boxes. The players aim is to put all boxes into holes. Every
time that the player pushes a box into a hole, he gets 1 score point and the box
disappears. As the left part of figure B.15 shows, the original levels have a quite
small size leaving only a little space for the player to move.

The results of both experiments, have shown that the generator was able to
create rulesets with 5 solvable levels (see figure B.16). However, the highest score
difference achieved in the experiment with 3 runs per map was only 3 (5003)
and in the experiment with 10 runs 7.3 (5007.3). Since the scores in this games
depended directly on the number of boxes that the agents could push into holes,
the results show that the levels in the second experiment had a slightly higher
difficulty level.

In contrast to the original levels, all final sets of both experiments had fewer
boxes than holes. However, the levels in the second experiment had a higher
amount of both objects types than the levels in the first experiment. This shows
again that the maps of the second experiment were more difficult since the agents
had less space to move and needed more time to solve levels that were fuller.

Although the agents were able to solve many of the created levels, some maps
could not be won by the controllers although they could be solved by a human
player. These levels had a more similar structure to the original ones having more
boxes than holes. The fact that these maps could not be solved by the controllers

63

Figure B.16: Score differences for the game Sokoban. On the left column, the
results of the experiment with the agents playing each level 3 times is shown.
The right column shows the results of the experiment with 10 runs per map. The
upper row shows the minimum, average and maximum fitness in the population
per generation. The lower row shows the corresponding values of the individuals
present in the archive at each generation.

indicates that they do not perform very well in this game. Thus, they can only be
used for evaluation to a certain degree.

B.1.9 Survive Zombies

Figure B.17: Survive Zombies levels. Left: level provided by the GVG-AI frame-
work; right: generated level.

In the game Survive Zombies, the player has to escape Zombies. If he collides
with a zombie, he dies, unless he has collected honey. With the player having

64

honey, the zombie dies on a collision with a player. Besides the zombies, there
are some other creatures from hell who can kill the player but are not destroyable.
As it is shown on the left part of figure B.17, there are usually only a few zombies
and hell-creatures in a level and multiple honey vats. Furthermore, there are some
flowers (normally, the same amount as zombies) which spawn bees. The bees
create more honey colliding with zombies and killing them that way. The player
can only win the game, if he survives the game round.

Figure B.18: Score differences for the game Survive Zombies. On the left column,
the results of the experiment with the agents playing each level 3 times is shown.
The right column shows the results of the experiment with 10 runs per map. The
upper row shows the minimum, average and maximum fitness in the population
per generation. The lower row shows the corresponding values of the individuals
present in the archive at each generation.

The results shown in figure B.18 have proved that the generator could find
solvable levels for this game. Thereby, the fitness values in the final state of the
archive were higher in the experiment with 10 runs per map.

Looking at the generated rulesets, we have noticed that the generator bal-
anced the number of negative objects (zombies, hell creatures) and positive objects
(honey, flowers) very well in both experiments. However, the there was a visible
difference between their distribution. In the experiment with 3 runs, the generator
changed the difficulty through the number of zombies which can be killed in the

65

game. Here, the number of zombies was always very high (5 to 11) and the num-
ber of the positive objects was in most cases lower. Thereby, the amount of hell
creatures which could not be killed was never higher than4.

In contrast to that, the most of the final levels in the experiment with 10 runs
per map, had relatively low amounts of zombies but higher amounts of hell crea-
tures (5 to 8). Since the hell creatures could not be killed, we regard the levels
from the second experiment as more difficult that the ones from the first experi-
ment. Nevertheless, the general distribution of the game objects, that is shown on
the right part of figure B.17 was similar to the one in the original levels.

B.1.10 Zelda

Figure B.19: Zelda levels. Left: level provided by the GVG-AI framework; right:
generated level.

In the game Zelda, the player has to escape a dungeon through an exit door
first collecting a key. Usually, there is only one of each if these objects placed in
the level as shown on the left of figure B.19. Furthermore, there are a few enemies
which can be killed or kill the player. Collecting the key and reaching the goal
gives 1 score point each, whereas killing an enemy gives the player 2 score points.

The fitness values in both experiments of this game did not have any noticeable
difference. In both cases, the generator could find solvable levels with the most
rulesets having a fitness value above 4000 as shown in figure B.20.

Looking closer at the produced level, we have noticed that similarly to the
games Boulderdash and Portals, the generator created levels with multiple exits
(6 to 12). This happened due to the fact that a collision with an exit gave the
agents a score point. That way, the selection mechanism preferred levels where
the agents had a good chance to increase their score difference through goals.

Furthermore, the generated levels had very high amounts of enemies (10 to
12) as the right part of figure B.19 shows. The enemies were another element
that gave the agents more score points. With such a high amount of enemies, the
generator selected levels that had a much higher difficulty level than in the levels
provided by the GVG-AI framework.

66

Figure B.20: Score differences for the game Zelda. On the left column, the results
of the experiment with the agents playing each level 3 times is shown. The right
column shows the results of the experiment with 10 runs per map. The upper row
shows the minimum, average and maximum fitness in the population per genera-
tion. The lower row shows the corresponding values of the individuals present in
the archive at each generation.

B.2 Results in the second Game Set

B.2.1 Camel Race

Figure B.21: Camel Race levels. Left: level provided by the GVG-AI framework;
right: generated level.

In Camel Race, the player has to reach a goal before the other camels do so.
In the original levels, there are as many goals as camels and the goals and camels
are placed on the opposite sides of the level. In some cases, structures of walls
are placed in the level as obstacles preventing the camels from running straight

67

towards the goals which can be seen on the left side of figure B.21. The player
is able to get only 1 score point when he wins (reaches a goal first). If one of the
other camels wins, then the player gets a score of �1. Because it is possible to
get only these to different scores, the maximum difference that could be reached
in this game is 2. That is why the maximum difference in the results of this
experiment was only 1.2 with a fitness value of 5001.2.

Figure B.22: Score differences for the game Camel Race. On the left, the min-
imum, average and maximum fitness in the population per generation is shown.
On the right, are the corresponding values of the individuals present in the archive
at each generation.

Although many rulesets had fitness values around 5000 (see figure B.22), these
values were not meaningful because of the way how the levels were structured. In
contrast to the original levels, there was not the same amount of camels and goals
in the levels. Furthermore, the main difference between the generated and the
original levels was that in the generated ones, the camels were not placed on one
side of the level. Through the direction rule described in section 4.4, all camels
were placed in such a way that they could run the longest distance in the direction
that was defined in their characteristics. For example, all camels whose direction
was left were placed on the right border of the level and those with the direction
right were placed left. That way, goals, randomly moving camels, walls and the
player were placed randomly in the middle of the level as shown on the right side
of figure B.21. Thus, the distance between some goals and camels was smaller so
that they could win the game faster without having a higher skill level in this game.
So, the fitness values could be achieved through luck and cannot be regarded as
meaningful.

However, the question arises whether the fact that the amount of goals and
camels was not equal and that the goals did not have the same distance to all
camels is a negative point. Creating unexpected levels from given VGDL descrip-

68

tions could make the levels more interesting increasing their difficulty and even
provide ideas for new games.

B.2.2 Digdug

Figure B.23: Digdug levels. Left: level provided by the GVG-AI framework;
right: generated level.

The levels of the game Digdug look quite similar to those of the game Boul-
derdash described in section B.1.2. They are full of walls which can be destroyed
by the player as it is shown on the left of figure B.23. Furthermore, there are some
enemies in the game which are spawned by a few spawn points. The enemies can
be killed (and give 2 score points) or kill the player. Also, there are goodies which
the player can collect and get 1 point each. The player can shoot at the walls and
enemies with a boulder which he has to recollect before being able to reuse it. He
wins when he either kills all enemies or collects all goodies.

Figure B.24: Score differences for the game Digdug. On the left, the minimum,
average and maximum fitness in the population per generation is shown. On the
right, are the corresponding values of the individuals present in the archive at each
generation.

Since the spawn points and the enemies were the main source of danger in this
game, their amounts were very important. As the results in figure B.24 show, there
was no ruleset that had a fitness value above 5000 meaning that no set produced 5

69

maps that could be solved by an agent. Looking closer at all 50 rulesets generated
throughout the evolution process, we noticed that there was no set having only
1 spawn point and 1 enemy. These amounts would be enough for levels of such
a small size.However, the 10 generations were not enough to get a ruleset with
these numbers. Even though, 7/10 final rulesets had only a single spawn points,
they produced too many enemies providing a high difficulty level. That is also
the reason why 33/50 rulesets had a negative fitness value meaning that none of
their levels could be solved and in many cases sampleMCTS agent could handle
the game better than adrienctx.

The game could be won not only by killing enemies but also by collecting
all goodies which means that a high amount of enemies could be compensated
through a low amount of goodies. However, to win the game by collecting a
single goodie in a level with a lot of enemies the agent should be placed close to
that goodie. That can be seen in the levels of a ruleset which had a fitness value
of 1015, 6. This set had a maximum amount of spawn points set to 12 and only 1
goodie. Here, one of the generated levels could be won because the agents were
close enough to that goodie. Also, in other 4 levels adrienctx could score better
than sampleMCTS.

However, this individual was not saved in the archive because of the generally
low fitness value even though it showed a higher difference in scores. This ex-
ample shows two important things. First, since the fitness function always prefers
rulesets of which all 5 levels could be won, it is possible that sets with less solv-
able levels but a generally higher score difference are lost throughout the evolu-
tion process. Second, a higher population size and/or number of generations could
lead to levels which provided a better balance between game objects (enemies and
goodies).

B.2.3 Firestorms

Figure B.25: Firestorms levels. Left: level provided by the GVG-AI framework;
right: generated level.

In the game Firestorms the player has to reach a goal avoiding collisions with
fire. If the player collides with fire, his score decreases by 1 point. Furthermore,

70

he could die if he did not collect water in advance. As I is shown on the left part
of figure B.25, there are usually approximately as many water objects as spwan
points of fire and the avatar is placed far from the exit with walls building obstacles
on his way towards the goal.

Figure B.26: Score differences for the game Firestorms. On the left, the minimum,
average and maximum fitness in the population per generation is shown. On the
right, are the corresponding values of the individuals present in the archive at each
generation.

Since the only possibility to have a change in the game score was given by the
collisions with fire items, the score could only be negative. Thus, the difference
between the scores of the agents could only be positive if the weaker agent collided
with more fire items than the smarter one. However, to survive the collision, an
agent would have to collect water showing intelligent behavior. For that reason,
we assume that in the selected solutions in this process the generator selected
those levels, in which the weaker agent performed better than the smarter one.
This means, that the fitness function was not appropriate for that game and should
be changed in future.

Nevertheless, the generator created many solvable levels, as the results in fig-
ure B.26 show. However, looking at the final rulesets in the archive, we could
see that all of them had a very high amount of water tiles (8 - 12) and the num-
ber of spawn points of fire was never higher than 7. These numbers could prove
that the maps had low difficulty levels (with such a high number of water) that
even the weaker agent could perform well solving them. Thereby, levels with 12
spawn points had very low fitness values around 0 meaning that none of the agent
survived in these maps.

As in some other games described in this work, the generated level had mul-
tiple exits (see right side of figure B.25). Even though the exits did not give any
score points, having a high number of them meant that the agents needed more

71

time to solve the levels. For that reason, we propose taking into consideration the
time required by the agents, when computing the fitness value of a level.

B.2.4 Infection

Figure B.27: Infection levels. Left: level provided by the GVG-AI framework;
right: generated level.

In the game Infection, the player takes the role of the carrier of an infection
which he has to distribute among hosts. The player and the hosts can be infected
from a game object representing the virus or one of the infected entities. There are
a few viruses and hosts in a level. Furthermore, there are some spawn point which
spawn guardians who can heal as well the infected entities as the player. Colliding
with a guardian, the players score decreases by 1 point. When killing a guardian
with his sword or infecting a host, the player gets 2 score points. The player wins
when all hosts get infected. As can be seen on the left part of figure B.27, walls
may build obstacles for all moving entities in the level.

Figure B.28: Score differences for the game Infection. On the left, the minimum,
average and maximum fitness in the population per generation is shown. On the
right, are the corresponding values of the individuals present in the archive at each
generation.

All rulesets generated for this game had a fitness value above 5000 meaning
that all levels could be solved by at least one agent. However, there was a rec-
ognizable difference between well-balanced levels and those that were too easy

72

or too hard. All final sets had a fitness value above 5046 (see figure B.28) hav-
ing maximum 6 spawn points and 3 viruses. Whereas, e.g. levels that had more
viruses got significantly lower fitness values because the hosts could be infected
by the viruses without the agents help. These levels were too easy for both con-
trollers.

Here, the generator has shown again that it is able to find a good balance
between the virus objects and the host entities. Even though it wrongly handled
the hosts and guardians as subtypes of the same object and created a single rule
for both of them. This happened because of the way these agents were defined in
the VGDL description of the game. Since the walls did not play an important role
in the game, final rulesets had as well only 1 wall as up to 10 walls in their levels.
However, these wall tiles did not build any structures as it is shown on the right
part of figure B.27.

B.2.5 Firecaster

Figure B.29: Firecaster levels. Left: level provided by the GVG-AI framework;
right: generated level.

Similarly to many other games, the player has to reach a goal in the game
Firecaster. The goal is hidden behind walls and boxes which the player has to
destroy. For that purpose, the player needs to collect mana objects which he then
can use to shoot at the boxes. Collecting a mana object and destroying a box gives
the player 1 score point each. As the left part of figure B.29 shows, there is usually
only one goal in the level and a small amount of mana objects, so that the player
has to use them wisely to be able to reach the goal.

The results in this experiment have shown once again that the generator able
to find rulesets that provided solvable levels (see figure B.30). However, the main
aspect hereby was the balance between the number of the boxes and the mana
objects and not the structure of the level. The most sets had almost equal number
of boxes and mana. Such levels were preferred by the generator because they
gave the more intelligent player the chance to gain a higher score destroying more

73

Figure B.30: Score differences for the game Firecaster. On the left, the minimum,
average and maximum fitness in the population per generation is shown. On the
right, are the corresponding values of the individuals present in the archive at each
generation.

boxes. Levels with more mana than boxes were too easy for both players and got
fitness values around 5000.

Another interesting point is that the most levels had a high number of goals.
Though the goals did not have a direct influence on the score, they affected the
time required to solve the level. However, in the most cases, the goals were not
hidden behind boxes and could be reached by the agents all the time as it is shown
on the right side of figure B.29. Nevertheless, the agents destroyed the boxes
gaining more score points. Though, in those levels, were a goal was actually
hidden behind boxes and there were less mana objects than boxes, the agents could
not win the game. That way, levels that were more similar to the original ones,
had a fitness value below 5000 and were not chosen by the selection mechanism.

B.2.6 Overload

Figure B.31: Overload levels. Left: level provided by the GVG-AI framework;
right: generated level.

In the game Overload, the player has to reach a goal having collected 10 dia-
monds in advance. When he reaches the goal, he gets 1 score point. However, if

74

he collects 11or more diamonds and collides with a marsh, he dies. He can collect
a sword getting 2 score points and destroy marsh with this sword. Furthermore,
there is a NPC (randomly moving entity) who is also able to collect diamonds. As
we can see on the left part of figureB.31, there is usually only one sword and one
exit in the level with a low number of NPCs but a high number of marsh tiles and
diamonds.

Figure B.32: Score differences for the game Overload. On the left, the minimum,
average and maximum fitness in the population per generation is shown. On the
right, are the corresponding values of the individuals present in the archive at each
generation.

As the fitness curves in figure B.32 show, the generator could find solvable
levels for this game. Since having a sufficient number of diamonds was an im-
portant criteria for winning the game, all final rulesets had 10 to 12 diamonds (a
higher number was not allowed due to the size of the map). Also, the generator
performed well in finding levels with a low amount of NPCs making it possible
for the agents to solve the maps. 7 out of 10 final rulesets had only 1 NPC in their
levels. The other rulesets had 2 to 3 NPCs. Nevertheless, similar to many other
games, the generator created multiple exits and weapons in the levels (see right
part of figure B.31). These objects gave the agents the possibility to gain more
score points.

B.2.7 Pacman
In Pacman, the player has to collect all positive items such as pellets, power pills
and fruits getting 1, 10 and 5 score points. Thereby, he has to avoid collisions
with ghosts. If the player collects a power pill, he can kill a ghost getting 40 score
points. The ghosts are spawned in certain spawn points. As we can see on the left

75

Figure B.33: Pacman levels. Left: level provided by the GVG-AI framework;
right: generated level.

part of figure B.33, the original level consist of labyrinth build with wall tiles. The
size of these levels is relatively big.

Figure B.34: Score differences for the game Pacman. On the left, the minimum,
average and maximum fitness in the population per generation is shown. On the
right, are the corresponding values of the individuals present in the archive at each
generation.

As we can see in figure B.34, the most levels generated for this game were
solvable by at least one of the agents. However, the levels did not have any
labyrinths and had only a few wall tiles (see right part of figure B.33). Searching
for the right difficulty level, the generator concentrated on balancing the amounts
of spawn points and positive items. Thereby, all collectables were handled in a
single rule, so that specifying the number of food, the ruleset did not specify the
numbers of single types of game objects.

Without the labyrinths, the agents could freely move in the levels collecting the
items. The only obstacles were the ghosts. However, looking at the final rulesets,
we could not find any relation between the amounts of the collectables and the
spawn points. There were some relatively empty levels with only 3 spawn points
and 5 food items, as well as some maps with 10 spawn points and 8 collectables.

76

B.2.8 Seaquest

Figure B.35: Seaquest levels. Left: level provided by the GVG-AI framework;
right: generated level.

In the game Seaquest, the player plays the role of a submarine. There are
some dangerous sharks and whales in the water which can kill the player. He can
also shoot at the enemies and get 1 score point killing each of them. Furthermore,
the player has to return to the surface to collect air which he loses colliding with
bubbles. Additionally, he has to save divers bringing them to the surface. For
each diver that he saves, he gets 1000 score points. The left part of figure B.35
shows that the original levels are very empty having only a few holes that spawn
the fishes, one hole for the diver and one for the bubbles. The air is placed on
the top of a level. The player wins the game if he survives the game round (1000
game steps).

Figure B.36: Score differences for the game Seaquest. On the left, the minimum,
average and maximum fitness in the population per generation is shown. On the
right, are the corresponding values of the individuals present in the archive at each
generation.

As we can see in figure B.36, the fitness values for this game were much higher
than 5000 due to the fact that the player got 1000 score points for each diver that
he saved. At this point, the fitness function should be adjusted in accordance
with the maximum score values. Additionally, the fitness curves show that some
rulesets got negative fitness value which means that in some cases the weaker
agent performed better than the smarter one.

77

In this game, the sources of danger were the bubbles and the fishes. Thereby,
the fishes could be killed by the agents whereas the bubbles could not be de-
stroyed. The final rulesets reflected this behavior by having only 1 bubble hole in
all levels and many fish-spawning holes. Looking at the results of all generated
rulesets, we could notice that those rulesets that had more bubble-holes got very
low fitness values.

At the same time, the air and the divers were the positive objects that helped
the player get more score points. Thereby, the air played the more important role
since it could be consumed by the player and was not recovered anymore. Thus,
the amount of air tiles specified the difficulty of the level. Therefor, 9 of 10 final
rulesets had maximal 4 air tiles being solvable, though not too easy for the agents.

As we can see on the right side of figure B.35, the level structure of the gen-
erated maps was similar to the original ones in that sense, that the fish-spawning
holes were placed on the left and right borders of the maps. This happened due to
their orientations that were specified in the VGDL descriptions. However, the air
tiles were placed randomly in the level not representing the surface of the water.

B.2.9 Whackamole

Figure B.37: Whackamole levels. Left: level provided by the GVG-AI frame-
work; right: generated level.

In the game Whackamole, the player has to collect moles which periodically
come out of holes. Thereby, he gets 1 score point for each mole. There is a cat
which also collects the moles decreasing each time the players score by 1 point.
If the player collides with the cat, he dies. To win the game, he has to survive the
game round. As we can see on the left side of figure B.37, there is a high number
of holes for the moles distributed equally in the level.

The results of this experiment have shown that the generator could find many
levels that were solvable by the agents (see figure B.38). With the cats being the
single source of danger and the holes being the single source of attraction, the
generators aim was to find the best balance between these objects. In contrast to
the original levels, all final maps in the archive were more difficult with 2 to 3
cats. The amounts of the holes were between 8 and 12. We could notice that maps

78

Figure B.38: Score differences for the game Whackamole. On the left, the min-
imum, average and maximum fitness in the population per generation is shown.
On the right, are the corresponding values of the individuals present in the archive
at each generation.

with significantly more cats had very low fitness values and could not be solved
by the agents.

B.2.10 Eggomania

Figure B.39: Eggomania levels. Left: level provided by the GVG-AI framework;
right: generated level.

In Eggomania, a chicken that is placed on the top of the level, throws eggs at
the player who is placed on the bottom of the level. There is usually only one
chicken, though in one of the original levels, there are two of them. The players
aim is to kill all chickens. Furthermore, he may not let any eggs reach the ground
(wall). Therefore, he has to catch them. When he catches an egg, he gets 1 score
point and can use the egg as a weapon against the chicken. Killing a chicken gives
the player 100 score points. There are no wall sprites between the avatar and the
chicken. Though, there may be some trunk sprites that do not have any effect in
the game except from an optical one (see right part of figure B.39).

As the results in figure B.40 show, none of the generated rulesets got a fitness
value above 5000. This happened because accordingly to the way we set the
amounts of game objects, there should always be at least 1 object of each type

79

Figure B.40: Score differences for the game Eggomania. On the left, the min-
imum, average and maximum fitness in the population per generation is shown.
On the right, are the corresponding values of the individuals present in the archive
at each generation.

in the level. That way, all rulesets had at least 1 wall tile inside their levels. In
those levels, where the wall tile was placed between the player and the chicken,
an egg could fall onto the wall (which would lead to a game over) without the
player being able to prevent this. However, the results show that those rulesets
have survived the evolution that had a low number of walls.

Additionally, the final rulesets have shown that the generator was able to filter
out levels with a certain degree of difficulty. 9/10 final individuals had 3 chick-
ens providing more difficult levels than the original ones. Furthermore, killing
a chicken would bring an agent 100 score points, meaning that levels with more
chickens could provide higher score differences and fitness values. In all levels,
the main idea of the game sustained, so that the chickens were always placed on
the top and the agents on the bottom of the level as it is shown on the right side of
figure B.39.

80

Bibliography

[1] G. N. Yannakakis and J. Togelius, “A panorama of artificial and computa-
tional intelligence in games,” 2014.

[2] J. Togelius, N. Shaker, and M. J. Nelson, “Introduction,” in Procedural Con-
tent Generation in Games: A Textbook and an Overview of Current Re-
search, N. Shaker, J. Togelius, and M. J. Nelson, Eds. Springer, 2015.

[3] S. Dahlskog and J. Togelius, “Procedural content generation using patterns
as objectives,” in Applications of Evolutionary Computation. Springer,
2014, pp. 325–336.

[4] ——, “A multi-level level generator,” in Computational Intelligence and
Games (CIG), 2014 IEEE Conference on. IEEE, 2014, pp. 1–8.

[5] A. Liapis, C. Holmgård, G. N. Yannakakis, and J. Togelius, “Procedural
personas as critics for dungeon generation,” in Applications of Evolutionary
Computation. Springer, 2015, pp. 331–343.

[6] A. Liapis, G. N. Yannakakis, and J. Togelius, “Towards a generic method of
evaluating game levels.” in AIIDE, 2013.

[7] ——, “Enhancements to constrained novelty search,” 2013.

[8] ——, Generating map sketches for strategy games. Springer, 2013.

[9] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, G. N. Yan-
nakakis, and C. Grappiolo, “Controllable procedural map generation via
multiobjective evolution,” Genetic Programming and Evolvable Machines,
vol. 14, no. 2, pp. 245–277, 2013.

81

[10] J. Togelius, N. Shaker, and J. Dormans, “Grammars and l-systems with ap-
plications to vegetation and levels,” in Procedural Content Generation in
Games: A Textbook and an Overview of Current Research, N. Shaker, J. To-
gelius, and M. J. Nelson, Eds. Springer, 2015.

[11] J. Dormans, “Adventures in level design: generating missions and spaces for
action adventure games,” in Proceedings of the 2010 Workshop on Procedu-
ral Content Generation in Games. ACM, 2010, p. 1.

[12] N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius, and M. O. Neill,
“Evolving levels for super mario bros using grammatical evolution,” in Com-
putational Intelligence and Games (CIG), 2012 IEEE Conference on. IEEE,
2012, pp. 304–311.

[13] N. Shaker, A. Liapis, J. Togelius, R. Lopes, and R. Bidarra, “Constructive
generation methods for dungeons and levels,” Procedural Content Genera-
tion in Games: A Textbook and an Overview of Current Research. Springer,
Heidelberg, 2015.

[14] L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular automata for real-
time generation of infinite cave levels,” in Proceedings of the 2010 Workshop
on Procedural Content Generation in Games. ACM, 2010, p. 10.

[15] I. D. Horswill and L. Foged, “Fast procedural level population with playa-
bility constraints.” in AIIDE, 2012.

[16] A. M. Smith and M. Mateas, “Variations forever: Flexibly generating rule-
sets from a sculptable design space of mini-games,” in Computational In-
telligence and Games (CIG), 2010 IEEE Symposium on. IEEE, 2010, pp.
273–280.

[17] M. J. Nelson and A. M. Smith, “Asp with applications to mazes and levels,”
in Procedural Content Generation in Games: A Textbook and an Overview of
Current Research, N. Shaker, J. Togelius, and M. J. Nelson, Eds. Springer,
2015.

[18] A. M. Smith and M. Mateas, “Answer set programming for procedural con-
tent generation: A design space approach,” Computational Intelligence and
AI in Games, IEEE Transactions on, vol. 3, no. 3, pp. 187–200, 2011.

82

[19] A. M. Smith, E. Butler, and Z. Popovic, “Quantifying over play: Constrain-
ing undesirable solutions in puzzle design.” in FDG, 2013, pp. 221–228.

[20] A. Zook and M. O. Riedl, “Automatic game design via mechanic genera-
tion,” in Proceedings of the 28th AAAI Conference on Artificial Intelligence,
2014.

[21] T. Schaul, “A video game description language for model-based or interac-
tive learning,” in Computational Intelligence in Games (CIG), 2013 IEEE
Conference on. IEEE, 2013, pp. 1–8.

[22] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas, A. Couetoux,
J. Lee, C. Lim, and T. Thompson, “The 2014 general video game
playing competition,” Computational Intelligence and AI in Games, IEEE
Transactions on, 2015. [Online]. Available: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=7038214

[23] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele, “A users guide to gringo, clasp, clingo, and iclingo,” 2008.

[24] M. Preuss, A. Liapis, and J. Togelius, “Searching for good and diverse game
levels,” in Computational Intelligence and Games (CIG), 2014 IEEE Con-
ference on. IEEE, 2014, pp. 1–8.

[25] T. S. Nielsen, G. A. Barros, J. Togelius, and M. J. Nelson, “General video
game evaluation using relative algorithm performance profiles,” in Applica-
tions of Evolutionary Computation. Springer, 2015, pp. 369–380.

[26] D. Perez, J. Togelius, S. Samothrakis, P. Rohlfshagen, and S. Lucas, “Auto-
mated Map Generation for the Physical Travelling Salesman Problem,” IEEE
Transactions on Evolutionary Computation, vol. 18:5, pp. 708–720, 2014.

83

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7038214
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7038214

