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Simple G r a p h

Simple G r a p h
A simple graph (or just: graph) is a tuple G = (V, E) where

V = {A1, . . . , An}

represents a finite set of vertices (or nodes) and

E ⊆ (V × V ) \ {(A, A) | A ∈ V }

denotes the set of edges.

It is called simple since there are no self-loops and no multiple
edges.
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Edge Types

Let G = (V, E) be a graph. An edge e = (A, B) is  
called

directed if (A, B)∈ E ⇒ (B, A) E
Notation: A → B

undirected if (A, B)∈ E ⇒ (B, A) ∈E
Notation: A − B or B − A

(Un)directed G r a p h
A graph with only (un)directed edges is called an  
(un)directed graph.

Adjacency Set
Let G= (V, E) be a graph. The set of nodes that is
accessible via a given node A ∈ V is called the
adjacency set of A:

adj(A) = { B ∈ V| (A, B) ∈ E }

A B

C D E

F G

A B

C D E

F G

adj(D )
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P at h s

Let G = (V, E) be a graph. A series ρ of r pairwise  
different nodes

ρ = (Ai1 , . . . , Air) 

is called a p a t h from Ai to Aj if

Ai1 = Ai, Air = Aj

Aik+1 ∈ adj(Aik), 1 ≤  k < r

A path with only undirected edges is called an undi-
rected p a t h

ρ = Ai1 − · · · − Air

whereas a path with only directed edges is 
referred  to as a directed p a t h

ρ = Ai1 → · · · → Air

A B

C D E

F G

If there is a directed path ρ
from node A to node B in a
directed graph G we write
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A       B

If the path ρ is undirected we  
denote this with

A     B



L o o p  a n d  C y c l e

Loop
Let G = (V, E) be an undirected graph. A path

ρ = X1 − · · · − Xk

with ( Xk −  X1 ) ∈E is called a loop.

Cycle
Let G = (V, E) be a directed graph. A path

ρ = X1 → · · · → Xk

with (Xk → X1) ∈ E is called a cycle.

Directed Acyclic G r a p h (DAG)
A directed graph G = (V, E) is called acyclic if for
every path X1 → · · · → Xk in G the condition

(Xk → X1) E is satisfied, i. e. it contains no cycle.

A B

C D E

F G

Cycle

A B

C D E

F G

Loop
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Paren t s ,  Chi ldren and Families

Let G = (V, E) be a directed graph. For every node
A ∈ V we define the following sets:

Parents :
parentsG(A) = { B ∈ V | B → A ∈ E }

Children :
childrenG(A) = { B ∈ V | A → B ∈ E }

Family:

familyG(A) = { A } ∪parentsG(A)

If the respective graph is clear from the context, the  
index G is omitted.

A
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B

C D

E F G

H J K

L M

parents(F ) 
children(F ) 

family(F )

= {C, D }
= {J, K }
= {C, D, F }



Ancestors,  Descendants, Non-Descendants

Let G = (V, E) be a DAG. For every node A ∈ V
we define the following sets:

Ancestors :

G
ancs (A) = { B ∈ V | ∃ρ  : B A }

D escen d ant s:

G
descs (A) = { B ∈ V | ∃ρ  : A B }

Non-Descendants:
non-descsG(A) = V \ { A }  \ descsG(A)

If the respective graph is clear from the context, the  
index G is omitted.

A
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B

C D

E F G

H J K

L M

ancs(F ) = {A, B, C, D }
descs(F ) = {J, K, L, M }

non-descs(F ) = {A, B, C, D, E, G, H }



Operat ions  on Graphs

Let G = (V, E) be a DAG.

The Minimal Ancestral Subgraph of G
given a set M ⊆ V of nodes is the smallest
subgraph that contains M and all ancestors of all
nodes in M .

The Moral  G r a p h  of G is the undirected graph  
that is obtained by

1. connecting nodes that share a common child  
with an arbitrarily directed edge and,

2. converting all directed edges into
undirected  ones by dropping the arrow
heads.

A B

C D

E F G

H J K

L M

Moral graph of ancestralgraph  
induced by the set {E, F, G}.
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u -Sep ar a t ion

A
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B

C D

E
G

F

H

J

X Z Y

Let G =  (V, E) be an undirected graph and X, Y , Z ⊆ V three disjoint  
subsets of nodes. We agree on the following separation criteria:

1. Z u-separates X from Y — written as

X G  Y | Z,

if every possible path from a node in X to a node in Y is blocked.

2. A path is blocked if it contains one (or more) blocking nodes .

3. A node is a blocking node if it lies in Z.



u -Sep ar a t ion

A
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B

C D

E
G

F

H

J

X Z Y

e.g. path A −  B −  E −  G −  H is blocked by E ∈ Z. It can be easily  
verified, that every path from X to Y is blocked by Z. Hence we have:

{A, B, C, D } {G, H, J } |{E, F }



u -Sep ar a t ion

A B

C D

E
G

F

H

J

X
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Z Y

Another way to check for u-separation: Remove the nodes in Z from the
graph (and all the edges adjacent to these nodes). X and Y are u-
separated by Z if the remaining graph is disconnected with X and Y in
two separate subgraphs.



Motivation: Separation in Directed Graphs

Idea: Separation in Directed Graphs should fit to the concept of Conditional independence

A B

C

A                           B

C

If C is instantiated with c 
then A and B are conditional independent, 
i.e. P(A,BIC=c)=P(AIC=c)P(BIC=c) 

C separates A and B 
C is a blocking node of the path A-B-C

(walking against the direction of the arrows is allowed)

A B

C

D

A  quality of ingredients

B  cook’s skill

C  meal quality

D  restaurant success

If C is instantiated with c
then A and B are conditional dependent

If D is instantiated with d
Then A and B are conditional dependent

C is no separator of A and B, C is no blocking node

D is no separator of A and B, C is no blocking node



d -Sep ar a t ion

Separation criterion for directed graphs.
We use the same principles as for u-separation. Two modifications are necessary:  

Directed paths may lead also in reverse to the arrows.

The blocking node condition is more sophisticated.

Blocking Node  (in a directed path)

A node A is blocking if its edge directions along the p a t h

are of type 1 and A ∈ Z, or

are of type 2 and neither A nor one of its descendants is in Z.

serial, head-to-tail  

serial, head-to-tail

diverging, tail-to-tail

Type 1

converging, head-to-head  

Type 2
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E x a mp l e s f o r d -Sep ar a t ion X Y | Z

B D

E

F

G

H

J

Checking path A → C → E → G
X

A C
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Z = { E }

Y

Checking path A → C → E ← D:

C is serial and not in Z: non-blocking

E is also serial but in Z: blocking
Path is blocked, no other paths between A and G are available

⇒ A G | E



A C

B D

E

F

G

H

J

X
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Z

Y

Checking path A → C → E ← D:

C is serial and not in Z: non-blocking

E is converging and in Z: non-blocking

⇒ Path is not blocked

A D | E

E x a mp l e s f o r d -Sep ar a t ion  X Y | Z



A C

B D

E

F

G

H

J

X
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Y Z

Checking path A → C → E ← D:

C is serial and not in Z: non-blocking
E is converging and not in Z but one of its descendants (J ) is in Z:  
non-blocking

⇒ Path is not blocked

A D | J

E x a mp l e s f o r d -Sep ar a t ion  X Y | Z



A
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C

B D

E

F

G

H

J

X

Z

Y = {B, H }

Checking path A → C → E → F → H:

C is serial and not in Z: non-blocking

E is serial and in Z: blocking
F is serial and not in Z: non-blocking

⇒ Path is blocked

E x a mp l e s f o r d -Sep ar a t ion  X Y | Z



A
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C

B D

E

F

G

H

J

X

Z

Y = {B, H }

Checking path A → C → E ← D → B:

C is serial and not in Z: non-blocking

E is converging and in Z: non-blocking

D is serial and in Z: blocking
⇒ Path is blocked

A B, H | D, E

E x a mp l e s f o r d -Sep ar a t ion  X Y | Z



d-Separat ion: Al ternat ive  Way for Checking

A
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C

B D

E

F

G

H

J

X

Z

Y = {B, H }

Steps

- Create the minimal ancestral subgraph induced by X ∪Y ∪Z



d-Separat ion: Al ternat ive  Way for Checking

A C

B D

E

F H

X
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Z

Y = {B, H }

Steps

- Create the minimal ancestral subgraph induced by X ∪Y ∪Z -

Moralize that subgraph



d-Separat ion: Al ternat ive  Way for Checking

A C

B D

E

F H

X
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Z

Y = {B, H }

Steps:

- Create the minimal ancestral subgraph induced by X ∪Y ∪Z

- Moralize that subgraph

- Check for u-Separation in that undirected graph

- A H, B | D, E



S u m m a r y : d -Sep ar a t ion

Let G = (V, E) a DAG and X, Y, Z ∈ V three nodes.

a) A set S ⊆ V \ { X ,  Y }  d-separates X and Y , if S blocks all paths between X 
and Y . A path may also route in opposite edgedirection.

b) A path π is d-separated by S if at least one pair of consecutive edges along π is  
blocked. There are the following blockingconditions:
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tail-to-tail

2.

1. X ← Y → Z
X←Y←Z
X→Y→ Z

3. X→Y ← Z

head-to-tail

head-to-head

c) Two edges that meet tail-to-tail or head-to-tail in node Y are 
blocked if Y∈ S.

d) Two edges meeting head-to-head in Y are blocked if neither Y nor 
its successors  are in S.



d-Separat ion  and Condit ional Independence

Theorem
If S ⊆ V \ { X ,  Y } d-separates X and Y in a Bayesian network (V, E, P ),
then X and Y are conditionally independent given S:

P (X, Y | S) = P (X| S) · P (Y| S)

Example

X1

X2 X3

X 4 X 5

X6

Paths:
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π1 = (X2 − X 1 −X3), π2 = (X2− X 5 −X 3 )
π3 = (X2− X 4 − X 1 −X3), S = { X 1 }

π1 X2 ←X1 →X3 tail-to-tail
X1 ∈ S ⇒ π1 is blocked by S

π2 X2 →X5 ←X3 head-to-head
X5, X6 S ⇒ π2 is blocked by S

π3 X4 ← X1 → X3 tail-to-tail  X2 →X4 ←X1
head-to-head  both connections are blocked

⇒ π3 is blocked

X2 and X3 are d-separated via {X1}. 
X2 and X3 are therefore conditionally independent given X1



Algebraic s t ruc ture  of CI s ta tements
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Conditional independence statements can be characterised qualitatively, 
e.g. without specifying the numerical values of probabilities.  



(Semi-)Graphoid Axioms
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Note: The probability calculus satisfies the four semi-graphoid axioms, 
but not the additional fifth intersection axiom of a graphoid. 



I l lustra t ion of t he  (Semi-)Graphoid Axioms

decomposition
X
W Z Y ⇒ W Z Y ∧ X Z Y

weak union X
W Z Y ⇒

X
W Z Y

contraction
X
W Z Y ∧ W Z Y ⇒

X
W Z Y

intersection X
W Z Y ∧ X

W Z Y ⇒
X
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W Z Y



E xam p le
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Independence Maps
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Let be a three-place relation representing the set of conditional independence
statements that hold in a given distribution δ over U.    

A graph G=(U,E) over random variables U is called an independence map (I-map)  for the joint
probability space δ , if for all disjoint subsets X,Y,Z of U the property

holds. 

An I-map G for δ captures only conditional independences that are valid in δ.

An I-map G for δ is called a perfect map, if G captures all valid conditional independences in δ.

An I-map G for is called minimal iff no edge can  be removed from G so that the resulting graph is 
still an I-map for δ.

These definitions hold for directed as well as undirected graphs. 



Independence Maps:  Examples for undirected graphs
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is not an I-map for   

is I-map for   

is a perfect I-map for   

is a minimal I-map for   

{

{



Independence Maps for Probabil i ty Spaces
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If a probability P is given,  then we can check for subsets X,Y,Z of random variables on P 
whether X and Y are conditionally independent with respect to Z. As the result we obtain a 
three-place relation representing a set of conditional independence statements

A directed graph G=(U,E) over U is called an independence map (I-map)  for P, if for all disjoint
subsets X,Y,Z of U the property

holds. 

In an I-map every independence we can observe from G is encoded in P. In most cases the set 
of independencies we can see from the connectivity in the graph (via d-separation or u-
separation) is only a part of the independencies the joint distribution P has. The “ultimate” 
connection between probability distributions and graphs requires the other implication 
direction to hold, namely for every conditional independence in the probability distribution to 
correspond to a separation in the graph. This connection has been called faithfulness of the 
probability distribution and the graph.

An I-map G for P is called a perfect map, if G captures exactly the (conditional) independences 
in P.



Limitat ions of G r a p h Representa t ions
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Limitat ions of G r a p h Representa t ions
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