Computational Intelligence in Games Summer 2019
Sanaz Mostaghim, Alexander Dockhorn, Christian Wustrau

4. Exercise Sheet

Exercise 1 Regret - Understanding

In the lecture we reviewed multiple methods for action selections and their regret in different
Multi-armed Bandit scenarios. Explicitly we discussed Random selection, Greedy selection,
e-Greedy selection and Soft-Max selection.

a) Explain why we measure regret, why we want to minimize it, and how the different
functions approach this problem.

b) Think about at least one Multi-armed Bandit scenario per method, where the method
should perform very well and one were it will have trouble in finding the best solution. In
case this cannot be fixed with a certain setup of bandits explain which problems should
arise during the initialization of each method.

Hint: A Multi-armed Bandit scenario is characterized by a set of bandits, which each have
(not necessarily) different chances of winning, e.g. the scenario (0.1, 0.1, 0.3) consists of three
bandits, of which choosing either of the first two would yield a win-rate of 10% and choosing
the third one yields a win-rate of 30%.

Hint 2: You can use the program of the programming exercise to search for suitable scenarios or
validate your thoughts on the second part of this exercise. Either modify the example scenario
or add a new scenario to the function get scenario in main.py. Executing main.py will by
default show you the result of the lecture scenarios. Add the id of your newly created scenario
to the for-loop to see the respective result.

Exercise 2 Regret and Bounds - Understanding

Imagine that you have to develop an agent for a game that lasts for at most T (e.g. T =1000)
time steps. You have a model of this game and you are using Flat Monte Carlo.

a) When is exploration/exploitation more important and why?

b) How can you vary the agent’s behaviour towards exploration / exploitation depending on
the time, when one of these is more important?



Computational Intelligence in Games Summer 2019
Sanaz Mostaghim, Alexander Dockhorn, Christian Wustrau

Exercise 3 Monte Carlo Tree Search (MCTS) - Understanding

a) Describe and sketch the basic structure of MCTS and the process of building such a
tree search. Therefore, summarize the 4 basic phases of MCTS and specify the desired

outcome of the search process.

b) Compare the Tree and Default Policy and name their differences.

Exercise 4 Monte Carlo Tree Search - Application

Based on the example Tic-Tac-Toe explain the following elements of MCTS:

a) What is stored in each node of the tree?

How can we transition between nodes?

b

c¢) What is the maximal length of a simulation?

How do we choose the node to be expanded?

)
)
)
d) What is the maximal number of options?
e)
f) What is done during the simulation?
g) What do we update after the simulations are done?
)

h) Which action do we execute after a reasonable number of simulations 7



Computational Intelligence in Games Summer 2019
Sanaz Mostaghim, Alexander Dockhorn, Christian Wustrau

Exercise 5 Programming Exercise - Multi-Armed Bandits

Due to various drawbacks of the methods Random selection, Greedy selection, e-Greedy selec-
tion, and Soft-Max, we discussed how the concepts of exploration and exploitation can help us
in coming up with another method.

Joining the Google Colab project
o Introduction to Google Colab:
https://colab.research.google.com/notebooks/welcome.ipynb

« Join the Google Colab project:
https://colab.research.google.com/drive/10x2PH6mgzJHIbq7nhS7Asfd6B87fyCp_

Accessing all files on Github
o Link to files on GitHub https://github.com/ADockhorn/GymCartPoleCIG

Included files
o main.py includes the experiment setup, bandit strategies to implement and test scenarios

o banditstrategies.py defines access points for action selection methods and provides im-
plementations for Random selection, Greedy selection, e-Greedy selection and Soft-Max
selection

o plotbandits.py provides access to basic plotting methods to visualize the results

o bandit.py implements a basic Bandit scenario

Task
a) Implement decaying e-Greedy selection
b) Implement Upper Confidence Bounds

¢) Test your programmed action selection methods on multiple scenarios, e.g.:

« [0.05,0.03,0.06]

« [0.1,0.1,0.1,0.1,0.9]

« [0.1,0.11,0.09,0.095, 0.12]
. [0.01,0.02,0.03,0.04, 0.05]

The scenarios listed here are already implemented in main.py/google colab and are auto-
matically executed when running the file.

Hint: The provided BanditStrategy class already stores the number of trials (bandit.trials) and
the number of wins per bandit (bandit.wins). You can check banditstrategy.py to see implemen-
tations of basic action selection strategies.


https://colab.research.google.com/notebooks/welcome.ipynb
https://colab.research.google.com/drive/1Ox2PH6mgzJHIbq7nhS7Asfd6B87fyCp_
https://github.com/ADockhorn/GymCartPoleCIG

	4. Exercise Sheet

