

Fuzzy Set Operators

Prof. Dr. Rudolf Kruse

Fuzzy Systems SS 2021 Lecture 3

In set theory, **operators** are defined by **propositional logics operator**Let *X* be universal set (often called universe of discourse). Then we define

$$A \cap B = \{x \in X \mid x \in A \land x \in B\}$$

$$A \cup B = \{x \in X \mid x \in A \lor x \in B\}$$

$$A^{c} = \{x \in X \mid x \notin A\} = \{x \in X \mid \neg (x \in A)\}$$

 $A \subseteq B$ if and only if $(x \in A) \rightarrow (x \in B)$ for all $x \in X$

Fuzzy Set Operators can be defined by using multivalues logics operators

$$(\mu \wedge \mu')(x) := \min\{\mu(x), \mu'(x)\}\$$

 $(\mu \vee \mu')(x) := \max\{\mu(x), \mu'(x)\}\$

$$\neg \mu(x) := 1 - \mu(x)$$

complement ("NOT").

 μ is subset of μ' if and only if $\mu \leq \mu'$.

Theorem

$$(\mu \wedge \mu')(x) := \min\{\mu(x), \mu'(x)\}$$
 intersection ("AND"),
 $(\mu \vee \mu')(x) := \max\{\mu(x), \mu'(x)\}$ union ("OR"),
 $\neg \mu(x) := 1 - \mu(x)$ complement ("NOT").

 μ is subset of μ' if and only if $\mu \leq \mu'$.

Theorem

$$(\mu \wedge \mu')(x) := \min\{\mu(x), \mu'(x)\}$$
 intersection ("AND"),
 $(\mu \vee \mu')(x) := \max\{\mu(x), \mu'(x)\}$ union ("OR"),
 $\neg \mu(x) := 1 - \mu(x)$ complement ("NOT").

 μ is subset of μ' if and only if $\mu \leq \mu'$.

Theorem

$$(\mu \wedge \mu')(x) := \min\{\mu(x), \mu'(x)\}$$

intersection ("AND"),

$$(\mu \lor \mu')(x) := \max\{\mu(x), \mu'(x)\}$$

union ("OR"),

$$\neg \mu(x) := 1 - \mu(x)$$

complement ("NOT").

 μ is subset of μ' if and only if $\mu \leq \mu'$.

Theorem

Fuzzy Set Complement

$$\tilde{\mu}(x) = 1 - \mu(x) \quad 0 \Rightarrow [0, 1] \rightarrow [0, 1]$$

$$\tilde{\mu}(x) = 1 - \mu(x) \quad 0 \Rightarrow [0, 1] \rightarrow [0, 1]$$

Fuzzy Complement/Fuzzy Negation

Definition

Let X be a given set and $\mu \in \mathcal{F}(X)$. Then the *complement* $\bar{\mu}$ can be defined pointwise by $\bar{\mu}(x) := \sim (\mu(x))$ where $\sim : [0,1] \to [0,1]$ satisfies the conditions

$$\sim$$
(0) = 1, \sim (1) = 0

and

for
$$x, y \in [0, 1], x \le y \Longrightarrow \sim x \ge \sim y$$
 (\sim is non-increasing).

Abbreviation: $\sim x := \sim(x)$

Strict and Strong Negations

Additional properties may be required

- $x, y \in [0, 1], x < y \Longrightarrow \sim x > \sim y \ (\sim \text{ is strictly decreasing})$
- ∼ is continuous
- $\sim \sim x = x$ for all $x \in [0, 1]$ (\sim is involutive)

According to conditions, two subclasses of negations are defined:

Definition

A negation is called *strict* if it is also strictly decreasing and continuous. A strict negation is said to be *strong* if it is involutive, too.

 $\sim x = 1 - x^2$, for instance, is strict, not strong, thus not involutive

Families of Negations

standard negation:

threshold negation:

Cosine negation:

Sugeno negation:

Yager negation:

0

standard

$$\sim r = 1 - r$$

$$\sim_{\theta}(x) = \begin{cases} 1 & \text{if } x \leq \theta \\ 0 & \text{otherwise} \end{cases}$$

$$\sim x = \frac{1}{2} \left(1 + \cos(\pi x) \right)$$

$$\sim_{\lambda}(x) = \frac{1-x}{1+\lambda x}, \quad \lambda > -1$$

$$\sim_{\lambda}(x) = (1 - x^{\lambda})^{\frac{1}{\lambda}}$$

Fuzzy Set Intersection and Union

warm and hot?

Zadeh' Intersection a and b = min (a,b), for all membership degrees a,b $(\mu_{warm} \cap \mu_{hot})(x) = \min(\mu_{warm}(x), \mu_{hot}(x)), \text{ for all real numbers } x$

Classical Intersection and Union

Classical set intersection represents logical conjunction.

Classical set union represents logical disjunction.

Generalization from $\{0,1\}$ to [0,1] as follows:

$x \wedge y$	0	1
0	0	0
1	0	1
	_	_

$x \lor y$	0	1
0	0	1
1	1	1

Fuzzy Set Intersection and Union

Let A, B be fuzzy subsets of X, i.e. $A, B \in F(X)$.

Their intersection and union are often defined pointwise using:

$$(A \cap B)(x) = T(A(x), B(x))$$
 where $T : [0, 1]^2 \to [0, 1]$

$$(A \cup B)(x) = \bot (A(x), B(x))$$
 where $\bot : [0, 1]^2 \to [0, 1].$

Triangular Norms and Conorms

T is a *triangular norm* (*t-norm*) \iff T satisfies conditions T1-T4

 \bot is a triangular conorm (t-conorm) $\iff \bot$ satisfies C1-C4

Identity Law

T1: \top (*x*, 1) = *x*

C1: $\pm(x, 0) = x$

Commutativity

T2: $\top(x,y) = \top(y,x)$

C2: $\bot(x,y) = \bot(y,x)$

Associativity

T3: $\top(x, \top(y, z)) = \top(\top(x, y), z)$

C3: $\bot(x,\bot(y,z)) = \bot(\bot(x,y),z)$

Monotonicity

T4: $y \le z$ implies $T(x, y) \le T(x, z)$ **C4**: $y \le z$ implies $\bot(x, y) \le \bot(x, z)$.

Triangular Norms and Conorms II

Both identity law and monotonicity respectively imply

$$\forall x \in [0,1] : T(0,x) = 0,$$

$$\forall x \in [0,1] : \bot (1,x) = 1,$$

For any t-norm $\top : \top (x,y) \le \min(x,y)$, for any t-conorm $\bot : \bot (x,y) \ge \max(x,y)$.

$$x = 1 \Rightarrow T(0, 1) = 0$$
 and

$$x \le 1 \Rightarrow T(x,0) \le T(1,0) = T(0,1) = 0$$

De Morgan Triplet I

For every T and strong negation \sim , one can define t-conorm \perp by

$$\perp (x,y) = \sim \top (\sim x, \sim y), \qquad x,y \in [0,1].$$

Additionally, in this case $T(x,y) = \sim \bot(\sim x, \sim y), \ x,y \in [0,1].$

De Morgan Triplet II

Definition

The triplet (T, \bot, \sim) is called *De Morgan triplet* if and only if T is t-norm, \bot is t-conorm, \sim is strong negation, T,\bot and \sim satisfy $\bot(x,y) = \sim T(\sim x, \sim y)$.

In the following, some important De Morgan triplets will be shown, only the most frequently used and important ones.

In all cases, the standard negation $\sim x = 1 - x$ is considered.

The Minimum and Maximum I

$$T_{\min}(x, y) = \min(x, y),$$
 $\bot_{\max}(x, y) = \max(x, y)$

Minimum is the greatest *t*-norm and max is the weakest *t*-conorm.

$$\top(x,y) \le \min(x,y)$$
 and $\bot(x,y) \ge \max(x,y)$ for any \top and \bot

The Special Role of Minimum and Maximum I

 T_{min} and \bot_{max} play key role for intersection and union, resp. In a practical sense, they are very simple.

Apart from the identity law, commutativity, associativity and monotonicity, they also satisfy the following properties for all x, $y,z \in [0,1]$:

Distributivity

$$\perp_{\max}(x, \top_{\min}(y, z)) = \top_{\min}(\bot_{\max}(x, y), \bot_{\max}(x, z)),$$

$$\top_{\min}(x, \bot_{\max}(y, z)) = \bot_{\max}(\top_{\min}(x, y), \top_{\min}(x, z))$$

Continuity

 T_{min} and \bot_{max} are continuous.

The Special Role of Minimum and Maximum II

Strict monotonicity on the diagonal

$$x < y \text{ implies } \top_{\min}(x, x) < \top_{\min}(y, y) \text{ and } \bot_{\max}(x, x) < \bot_{\max}(y, y).$$

Idempotency

$$\top_{\min}(x,x) = x, \quad \bot_{\max}(x,x) = x$$

Absorption

$$\top_{\min}(x, \bot_{\max}(x, y)) = x, \quad \bot_{\max}(x, \top_{\min}(x, y)) = x$$

Non-compensation

$$x < y < z$$
 imply $\top_{\min}(x, z) \neq \top_{\min}(y, y)$ and $\bot_{\max}(x, z) \neq \bot_{\max}(y, y)$.

The Minimum and Maximum II

 T_{min} and \bot_{max} can be easily processed numerically and visually, e.g. linguistic values young and approx. 20 described by μ_y , μ_{20} . $T_{min}(\mu_y, \mu_{20})$ is shownbelow.

The Product and Probabilistic Sum

$$T_{prod}(x,y) = x \cdot y$$
, $\bot_{sum}(x,y) = x + y - x \cdot y$

The Łukasiewicz t-norm and t-conorm

$$T_{\text{tuka}}(x, y) = \max\{0, x + y - 1\}, \qquad \qquad \bot_{\text{tuka}}(x, y) = \min\{1, x + y\}$$

 T_{tuka} , \bot_{tuka} are also called *bold intersection* and *bounded sum*.

The Drastic Product and Sum

$$T_{-1}(x,y) = \begin{cases} \min(x,y) & \text{if } \max(x,y) = 1\\ 0 & \text{otherwise} \end{cases}$$

$$\perp_{-1}(x,y) = \begin{cases} \max(x,y) & \text{if } \min(x,y) = 0\\ 1 & \text{otherwise} \end{cases}$$

 T_{-1} is the weakest *t*-norm, \bot_{-1} is the strongest *t*-conorm.

$$\top_{-1} \leq \top \leq \top_{\min}, \quad \bot_{\max} \leq \bot \leq \bot_{-1} \text{ for any } \top \text{ and } \bot$$

Examples of Fuzzy Intersections

Note that all fuzzy intersections are contained within upper left graph and lower right one.

Examples of Fuzzy Unions

Note that all fuzzy unions are contained within upper left graph and lower right one.

Continuous Archimedian t-norms and t-conorms

Often it is possible to representation functions with several inputs by a function with only one input , *e.g.*

$$K(x,y) = f^{(-1)}(f(x) + f(y))$$

For a subclass of *t*-norms this is possible. The trick makes calculations simpler.

A t-norm T is called

- (a) continuous if T is continuous
- (b) Archimedian if T is continuous and T(x,x) < x for all $x \in]0,1[$.

A t-conorm \perp is called

- (a) continuous if \bot is continuous,
- (b) Archimedian if \bot is continuous and $\bot(x,x) > x$ for all $x \in]0,1[$.

The concept of a pseudoinverse

Definition

Let $f:[a,b] \to [c,d]$ be a monotone function between two closed subintervals of extended real line. The pseudoinverse function to f is the function $f^{(-1)}:[c,d] \to [a,b]$ defined as

$$f^{(-1)}(y) = \begin{cases} \sup\{x \in [a,b] \mid f(x) < y\} & \text{for } f \text{ non-decreasing,} \\ \sup\{x \in [a,b] \mid f(x) > y\} & \text{for } f \text{ non-increasing.} \end{cases}$$

The concept of a pseudoinverse

does ho

Definition

Let $f:[a,b] \to [c,d]$ be a monotone function between two closed subintervals of extended real line. The pseudoinverse function to f is the function $f^{(-1)}:[c,d] \to [a,b]$ defined as

$$f^{(-1)}(y) = \begin{cases} \sup\{x \in [a,b] \mid f(x) < y\} & \text{for } f \text{ non-decreasing,} \\ \sup\{x \in [a,b] \mid f(x) > y\} & \text{for } f \text{ non-increasing.} \end{cases}$$

Archimed an t-norms

Theorem A t-norm **T** is Archimedian if and only if there exists a strictly decreasing and continuous function $f:[0,1]\to[0,\infty]$ with f(1)=0 such that

$$T(x,y) = f^{(-1)}(f(x) + f(y)) \tag{1}$$

where

$$f^{(-1)}(x) = \begin{cases} f^{-1}(x) & \text{if } x \le f(0) \\ 0 & \text{otherwise} \end{cases}$$

is the pseudoinverse of f. Moreover, this representation is unique up to a positive multiplicative constant.

 \top is generated by f if \top has representation (1). f is called additive generator of \top .

Additive Generators of t-norms – Examples

Find an additive generator f of $\top_{\mathbf{kuka}}(x,y) = \max\{x+y-1, 0\}$.

for instance
$$f_{\text{Luka}}(x) = 1 - x$$

then,
$$f_{\text{Luka}}^{(-1)}(x) = \max\{1 - x, 0\}$$

thus
$$\top_{\text{Łuka}}(x,y) = f_{\text{Łuka}}^{(-1)}(f_{\text{Łuka}}(x) + f_{\text{Łuka}}(y))$$

Find an additive generator f of $\top_{prod}(x, y) = x \cdot y$.

to be discussed in the exercise

hint: use of logarithmic and exponential function

Archimed an t-conorms

Theorem

A t-conorm \bot . Archimedian if and only if there exists a strictly increasing and continuous function $g:[0,1]\to[0,\infty]$ with g(0)=0 such that

$$\perp(x,y) = g^{(-1)}(g(x) + g(y))$$
 (2)

where

$$g^{(-1)}(x) = \begin{cases} g^{-1}(x) & \text{if } x \leq g(1) \\ 1 & \text{otherwise} \end{cases}$$

is the pseudoinverse of g. Moreover, this representation is unique up to a positive multiplicative constant.

 \perp is generated by g if \perp has representation (2). g is called additive generator of \perp .

Additive Generators of t-conorms – Two Examples

Find an additive generator g of $\perp_{\text{Łuka}}(x,y) = \min\{x+y, 1\}$.

for instance
$$g_{\text{Łuka}}(x) = x$$

then, $g_{\text{Łuka}}^{(-1)}(x) = \min\{x, 1\}$
thus $\perp_{\text{Łuka}}(x, y) = g_{\text{Łuka}}^{(-1)}(g_{\text{Łuka}}(x) + g_{\text{Łuka}}(y))$

Find an additive generator g of $\perp_{sum}(x,y) = x + y - x \cdot y$.

to be discussed in the exercise

hint: use of logarithmic and exponential function

Now, let us examine some typical families of operations.

Sugeno-Weber Family I

For $\lambda > -1$ and $x, y \in [0, 1]$, define

$$\lambda = 0$$
 leads to $\top_{\text{Łuka}}$ and $\bot_{\text{Łuka}}$, resp.

$$\lambda \to \infty$$
 results in \top_{prod} and \bot_{sum} , resp.

$$\lambda \to -1$$
 creates \top_{-1} and \bot_{-1} , resp.

Sugeno-Weber Family II

Additive generators f_{λ} of \top_{λ} are

$$f_{\lambda}(x) = egin{cases} 1 - x & \text{if } \lambda = 0 \\ 1 - rac{\log(1 + \lambda x)}{\log(1 + \lambda)} & \text{otherwise.} \end{cases}$$

 $\{\top_{\lambda}\}_{\lambda>-1}$ are increasing functions of parameter λ .

Additive generators of \perp_{λ} are $g_{\lambda}(x) = 1 - f_{\lambda}(x)$.

warm and hot?

Zadeh' Intersection a and b = min (a,b), for all membership degrees a,b $(\pmb{\mu}_{warm} \cap \pmb{\mu}_{hot})(x) = min(\; \pmb{\mu}_{warm}(x),\; \pmb{\mu}_{hot}(\pmb{x})), \; \text{for all real numbers } x$

Fuzzy Sets Inclusion

Subset Property

For Classical Sets $x \in A \Rightarrow x \in B$,

For Fuzzy Sets :
$$x \in \mu \Rightarrow x \in \mu'$$

Fuzzy Set Implication

How to model

if speed is fast then distance is high

A straightforward solution with a multivalued logic

- Define fuzzy sets for fast and high
- Determine for all speed values x and all distance values y the membership degrees (i.e. its truth value)
- Calculate for each pair x and y the truth value of the implication

$$\mu_{fast}(x) \Rightarrow \mu_{high}(y)$$

Definition of a Multivalued Implication

One way of defining I is to use the property that in classical logic the
propositions a ⇒ b and ¬a∨ b have the same truth values for all truth
assignments to a and b.

If we model the disjunction and negation as t-conorm and fuzzy complement, resp., then for all $a, b \in [0,1]$ the following defininion of a fuzzy implication seems reasonable:

$$I(a,b) = \bot(\sim a,b).$$

2. Another way is to use the concept of a residuum in classical logic: $a \Rightarrow b$ and $\max\{x \in \{0,1\} \mid a \land x \le b\}$ have the same truthvalues for all truth assignments for a, and b. If in a generalized logic the conjunction is modelled by a t-norm, then a reasonable generalization could be:

$$I(a,b) = \sup\{x \in [0,1] \mid T(a,x) \le b\}.$$

Definition of a Multivalued Implication

3. Another proposal is to use the fact that, in classical logic, the propositions $a \Rightarrow b$ and $\neg a \lor (a \land b)$ have the same truth for all truth assignments.

A possible extension to many valued logics is therefore $I(a,b) = \bot(\sim a, T(a,b)),$ where (T, \bot, \sim) should be a *De Morgantriplet*.

So again, the classical definition of an implication is unique, whereas there is a "zoo" of fuzzy implications.

Typical question for applications: What to use when and why?

S-Implications

Implications based on $I(a,b) = \bot(\sim a,b)$ are called S-implications.

Symbol S is often used to denote t-conorms.

Four well-known S-implications are based on $\sim a = 1 - a$:

Name	I(a,b)	\perp (a,b)
Kleene-Dienes	$I_{max}(a,b) = max(1-a,b)$	$\max(a,b)$
Reichenbach	$I_{sum}(a,b) = 1 - a + ab$	a+b-ab
Łukasiewicz	$I_{L}(a,b) = \min(1,\ 1-a+b)$	min(1, a+b)
largest	$I_{-1}(a,b) = egin{cases} b, & ext{if } a=1 \ 1-a, & ext{if } b=0 \ 1, & ext{otherwise} \end{cases}$	$\begin{cases} b, & \text{if } a = 0 \\ a, & \text{if } b = 0 \\ 1, & \text{otherwise} \end{cases}$

R-Implications

 $I(a,b) = \sup \{x \in [0,1] \mid \top(a,x) \le b\}$ leads to R-implications.

Symbol R represents close connection to residuated semigroup.

Three well-known *R*-implications are based on $\sim a = 1 - a$:

• Standard fuzzy intersection leads to Gödel implication

$$I_{\min}(a,b) = \sup\{x \mid \min(a,x) \le b\} = \begin{cases} 1, & \text{if } a \le b \\ b, & \text{if } a > b. \end{cases}$$

• Product leads to Goguen implication

$$I_{\text{prod}}(a,b) = \sup \{x \mid ax \le b\} = \begin{cases} 1, & \text{if } a \le b \\ b/a, & \text{if } a > b. \end{cases}$$

• Łukasiewicz t-norm leads to Łukasiewicz implication

$$I_{\mathbb{E}}(a,b) = \sup\{x \mid \max(0,a+x-1) \le b\} = \min(1, 1-a+b).$$

QL-Implications

Implications based on $I(a,b) = \bot(\sim a, \top(a,b))$ are called *QL*-implications (*QL* from quantum logic).

Four well-known *QL*-implications are based on $\sim a = 1 - a$:

• Standard min and max lead to Zadeh implication

$$I_Z(a,b) = \max[1-a,\min(a,b)].$$

• The algebraic product and sum lead to

$$I_{p}(a,b) = 1 - a + a^{2}b.$$

- Using $\top_{\underline{t}}$ and $\bot_{\underline{t}}$ leads to **Kleene-Dienes implication** again.
- Using \top_{-1} and \bot_{-1} leads to

$$I_{q}(a,b) = \begin{cases} b, & \text{if } a = 1 \\ 1 - a, & \text{if } a \neq 1, b \neq 1 \\ 1, & \text{if } a \neq 1, b = 1. \end{cases}$$

All I come from generalizations of the classical implication.

They collapse to the classical implication when truth values are 0 or 1.

Generalizing classical properties leads to following propositions:

1)
$$a \le b$$
 implies $I(a, x) \ge I(b, x)$ (monotonicity in 1st argument)

2)
$$a \le b$$
 implies $I(x, a) \le I(x, b)$ (monotonicity in 2nd argument)

3)
$$I(0,a) = 1$$
 (dominance of falsity)

4)
$$I(1,b) = b$$
 (neutrality of truth)

5)
$$I(a,a) = 1$$
 (identity)

6)
$$I(a, I(b, c)) = I(b, I(a, c))$$
 (exchange property)

7)
$$I(a,b)=1$$
 if and only if $a \le b$ (boundary condition)

8)
$$I(a,b)=I(\sim b,\sim a)$$
 for fuzzy complement \sim (contraposition)

Generator Function

I that satisfy all listed axioms are characterized by this theorem:

Theorem

A function $I:[0,1]^2 \to [0,1]$ satisfies Axioms 1–9 of fuzzy implications for a particular fuzzy complement \sim if and only if there exists a strict increasing continuous function $f:[0,1]\to [0,\infty)$ such that f(0)=0,

$$I(a,b) = f^{(-1)}(f(1) - f(a) + f(b))$$

for all $a, b \in [0, 1]$, and

$$\sim a = f^{-1}(f(1) - f(a))$$

for all $a \in [0, 1]$.

Example

Consider $f_{\lambda}(a) = \ln(1 + \lambda a)$ with $a \in [0, 1]$ and $\lambda > 0$.

Its pseudo-inverse is

$$f_{\lambda}^{(-1)}(a) = egin{cases} rac{\mathrm{e}^a - 1}{\lambda}, & ext{if } 0 \leq a \leq \ln(1 + \lambda) \\ 1, & ext{otherwise}. \end{cases}$$

The fuzzy negation generated by f_{λ} for all $a \in [0,1]$ is

$$n_{\lambda}(a) = \frac{1-a}{1+\lambda a}.$$

The resulting fuzzy implication for all $a,b\in [0,1]$ is thus

$$I_{\lambda}(a,b) = \min\left(1, \frac{1-a+b+\lambda b}{1+\lambda a}\right).$$

If $\lambda \in (-1,0)$, then I_{λ} is called **pseudo-Łukasiewicz implication**.