Fuzzy Set Operators

Prof. Dr. Rudolf Kruse

In set theory, operators are defined by propositional logics operator
Let X be universal set (often called universe of discourse). Then we define

$$
\begin{aligned}
A \cap B & =\{x \in X \mid x \in A \wedge x \in B\} \\
A \cup B & =\{x \in X \mid x \in A \vee x \in B\} \\
A^{c} & =\{x \in X \mid x \notin A\}=\{x \in X \mid \neg(x \in A)\}
\end{aligned}
$$

$A \subseteq B$ if and only if $(x \in A) \rightarrow(x \in B)$ for all $x \in X$
Fuzzy Set Operators can be defined by using multivalues logics operators

Standard Fuzzy Set Operators

$$
\begin{array}{rlrl}
\left(\mu \wedge \mu^{\prime}\right)(x): & :=\min \left\{\mu(x), \mu^{\prime}(x)\right\} & & \text { intersection ("AND"), } \\
\left(\mu \vee \mu^{\prime}\right)(x):=\max \left\{\mu(x), \mu^{\prime}(x)\right\} & & \text { union ("OR"), } \\
-\mu(x):=1-\mu(x) & & \text { complement ("NOT"). }
\end{array}
$$

μ is subset of μ^{\prime} if and only if $\mu \leq \mu^{\prime}$.

Theorem
$(\mathrm{F}(\mathrm{X}), \wedge, \vee, \neg)$ is a complete distributive lattice, but no Boolean algebra.

Standard Fuzzy Set Operators

$$
\begin{array}{rlrl}
\left(\mu \wedge \mu^{\prime}\right)(x): & :=\min \left\{\mu(x), \mu^{\prime}(x)\right\} & & \text { intersection ("AND"), } \\
\left(\mu \vee \mu^{\prime}\right)(x):=\max \left\{\mu(x), \mu^{\prime}(x)\right\} & & \text { union ("OR"), } \\
-\mu(x):=1-\mu(x) & & \text { complement ("NOT"). }
\end{array}
$$

μ is subset of μ^{\prime} if and only if $\mu \leq \mu^{\prime}$.

Theorem
$(\mathrm{F}(\mathrm{X}), \wedge, \vee, \neg)$ is a complete distributive lattice, but no Boolean algebra.

Standard Fuzzy Set Operators

$$
\begin{aligned}
\left(\mu \wedge \mu^{\prime}\right)(x):=\min \left\{\mu(x), \mu^{\prime}(x)\right\} & & \text { intersection ("AND"), } \\
\left(\mu \vee \mu^{\prime}\right)(x):=\max \left\{\mu(x), \mu^{\prime}(x)\right\} & & \text { union("OR"), } \\
\neg \mu(x):=1-\mu(x) & & \text { complement ("NOT"). }
\end{aligned}
$$

μ is subset of μ^{\prime} if and only if $\mu \leq \mu^{\prime}$.

Theorem
$(F(X), \wedge, \vee, \neg)$ is a complete distributive lattice, but no Boolean algebra.

Standard Fuzzy Set Operators

$$
\begin{aligned}
\left(\mu \wedge \mu^{\prime}\right)(x):=\min \left\{\mu(x), \mu^{\prime}(x)\right\} & & \text { intersection ("AND"), } \\
\left(\mu \vee \mu^{\prime}\right)(x):=\max \left\{\mu(x), \mu^{\prime}(x)\right\} & & \text { union("OR"), } \\
\neg \mu(x):=1-\mu(x) & & \text { complement ("NOT"). }
\end{aligned}
$$

μ is subset of μ^{\prime} if and only if $\mu \leq \mu^{\prime}$.

Theorem
$(F(X), \wedge, \vee,-)$ is a complete distributive lattice, but no Boolean algebra.

Fuzzy Set Complement

$$
N:[0,1] \rightarrow[0,1]
$$

Fuzzy Complement/Fuzzy Negation

Definition

Let X be a given set and $\mu \in \mathcal{F}(X)$. Then the complement $\bar{\mu}$ can be defined pointwise by $\bar{\mu}(x):=\sim(\mu(x))$ where $\sim:[0,1] \rightarrow[0,1]$ satisfies the conditions

$$
\sim(0)=1, \quad \sim(1)=0
$$

and

$$
\text { for } x, y \in[0,1], x \leq y \Longrightarrow \sim x \geq \sim y \quad(\sim \text { is non-increasing }) .
$$

Abbreviation: $\sim x:=\sim(x)$

Strict and Strong Negations

Additional properties may be required

- $x, y \in[0,1], x<y \Longrightarrow \sim x>\sim y$ (\sim is strictly decreasing)
- \sim is continuous
- $\sim \sim x=x$ for all $x \in[0,1]$ (\sim is involutive)

According to conditions, two subclasses of negations are defined:

Definition
A negation is called strict if it is also strictly decreasing and continuous. A strict negation is said to be strong if it is involutive,too.
$\sim x=1-x^{2}$, for instance, is strict, not strong, thus not involutive

Families of Negations

standard negation:
threshold negation:

Cosine negation:
Sugeno negation:
Yager negation:

Fuzzy Set Intersection and Union

warm and hot?

Zadeh ${ }^{\prime}$ Intersection
a and $b=\min (a, b)$, for all membership degrees a, b
$\left(\mu_{\text {warm }} \cap \mu_{\text {hot }}\right)(x)=\min \left(\mu_{\text {warm }}(x), \mu_{\text {hot }}(x)\right)$, for all real numbers x

Classical Intersection and Union

Classical set intersection represents logical conjunction.
Classical set union represents logical disjunction.
Generalization from $\{0,1\}$ to $[0,1]$ as follows:

$x \wedge y$	0	1
0	0	0
1	0	1

$x \vee y$	0	1
0	0	1
1	1	1

Fuzzy Set Intersection and Union

Let A, B be fuzzy subsets of X, i.e. $A, B \in F(X)$.
Their intersection and union are often defined pointwise using:
$\begin{array}{lll}(A \cap B)(x)=T(A(x), B(x)) & \text { where } & T:[0,1]^{2} \rightarrow[0,1] \\ (A \cup B)(x)=\perp(A(x), B(x)) & \text { where } & \perp:[0,1]^{2} \rightarrow[0,1] .\end{array}$

Triangular Norms and Conorms

T is a triangular norm (t-norm) $\Leftrightarrow \mathrm{T}$ satisfies conditions T1-T4
\perp is a triangular conorm (t-conorm) $\Longleftrightarrow \Longleftrightarrow \perp$ satisfies C1-C4
Identity Law
T1: $T(x, 1)=x$
C1: $\perp(x, 0)=x$
Commutativity
T2: $\mathrm{T}(x, y)=\mathrm{T}(y, x)$
C2: $\perp(x, y)=\perp(y, x)$
Associativity
T3: $T(x, T(y, z))=T(T(x, y), z)$
C3: $\perp(x, \perp(y, z))=\perp(\perp(x, y), z)$
Monotonicity
T4: $y \leq z$ implies $T(x, y) \leq T(x, z) \quad$ C4: $y \leq z$ implies $\perp(x, y) \leq \perp(x, z)$.

Triangular Norms and Conorms II

Both identity law and monotonicity respectively imply
$\forall x \in[0,1]: T(0, x)=0$,
$\forall x \in[0,1]: \perp(1, x)=1$,

For any t-norm $\mathrm{T}: \mathrm{T}(x, y) \leq \min (x, y)$, for any t-conorm $\perp: \perp(x, y) \geq \max (x, y)$.
$x=1 \Rightarrow T(0,1)=0$ and
$x \leq 1 \Rightarrow T(x, 0) \leq T(1,0)=T(0,1)=0$

De Morgan Triplet I

For every T and strong negation \sim, one can define t-conorm \perp by

$$
\perp(x, y)=\sim T(\sim x, \sim y), \quad x, y \in[0,1] .
$$

Additionally, in this case $T(x, y)=\sim \perp(\sim x, \sim y), x, y \in[0,1]$.

De Morgan Triplet II

Definition

The triplet (T, \perp, \sim) is called De Morgan triplet if and only if
T is t-norm, \perp is t-conorm, \sim is strong negation,
T, \perp and \sim satisfy $\perp(x, y)=\sim T(\sim x, \sim y)$.

In the following, some important De Morgan triplets will be shown, only the most frequently used and important ones.

In all cases, the standard negation $\sim x=1-x$ is considered.

The Minimum and Maximum I

$T_{\text {min }}(x, y)=\min (x, y), \quad \perp_{\max }(x, y)=\max (x, y)$
Minimum is the greatest t-norm and max is the weakest t-conorm.
$T(x, y) \leq \min (x, y)$ and $\perp(x, y) \geq \max (x, y)$ for any T and \perp

$\mathrm{T}_{\text {min }}$

$\perp_{\text {max }}$

The Special Role of Minimum and Maximum I

$T_{\text {min }}$ and $\perp_{\text {max }}$ play key role for intersection and union, resp. In a practical sense, they are very simple.

Apart from the identity law, commutativity, associativity and monotonicity, they also satisfy the following properties for all x, $y, z \in[0,1]:$

Distributivity

$\perp_{\max }\left(x, \top_{\min }(y, z)\right)=\top_{\text {min }}\left(\perp_{\max }(x, y), \perp_{\max }(x, z)\right)$,
$\mathrm{T}_{\min }\left(x, \perp_{\max }(y, z)\right)=\perp_{\max }\left(\mathrm{T}_{\min }(x, y), \mathrm{T}_{\min }(x, z)\right)$

Continuity

$\mathrm{T}_{\text {min }}$ and $\perp_{\text {max }}$ are continuous.

The Special Role of Minimum and Maximum II

Strict monotonicity on the diagonal
$x<y$ implies $\top_{\min }(x, x)<\top_{\min }(y, y)$ and $\perp_{\max }(x, x)<\perp_{\max }(y, y)$.

Idempotency
$T_{\text {min }}(x, x)=x, \quad \perp_{\text {max }}(x, x)=x$

Absorption
$T_{\text {min }}\left(x, \perp_{\max }(x, y)\right)=x, \quad \perp_{\max }\left(x, \top_{\min }(x, y)\right)=x$

Non-compensation

$x<y<z$ imply $\top_{\min }(x, z) \neq \top_{\min }(y, y)$ and
$\perp_{\max }(x, z) \neq \perp_{\max }(y, y)$.

The Minimum and Maximum II

$T_{\text {min }}$ and $\perp_{\text {max }}$ can be easily processed numerically and visually, e.g. linguistic values young and approx. 20 described by μ_{y}, μ_{20}. $T_{\min }\left(\mu_{y}, \mu_{20}\right)$ is shownbelow.

The Product and Probabilistic Sum

$$
\mathrm{T}_{\text {prod }}(x, y)=x \cdot y, \quad \perp_{\text {sum }}(x, y)=x+y-x \cdot y
$$

The Łukasiewicz t-norm and t-conorm

$T_{\text {tuka }}(x, y)=\max \{0, x+y-1\}$,
$\perp_{\text {tuka }}(x, y)=\min \{1, x+y\}$
$\mathrm{T}_{\text {tuka, }} \perp_{\text {tuka }}$ are also called bold intersection and boundedsum.

The Drastic Product and Sum

$T_{-1}(x, y)= \begin{cases}\min (x, y) & \text { if } \max (x, y)=1 \\ 0 & \text { otherwise }\end{cases}$
$\perp_{-1}(x, y)= \begin{cases}\max (x, y) & \text { if } \min (x, y)=0 \\ 1 & \text { otherwise }\end{cases}$
T_{-1} is the weakest t-norm, \perp_{-1} is the strongest t-conorm.

$$
\top_{-1} \leq \top \leq \top_{\min }, \quad \perp_{\max } \leq \perp \leq \perp_{-1} \text { for any } \top \text { and } \perp
$$

Examples of Fuzzy Intersections

t-norm $T_{\text {Łuka }}$

Note that all fuzzy intersections are contained within upper left graph and lower right one.

Examples of Fuzzy Unions

t-conorm $\perp_{\text {Łuka }}$

t-conorm \perp_{-1}

Note that all fuzzy unions are contained within upper left graph and lower right one.

Continuous Archimedian t-norms and t-conorms

Often it is possible to representation functions with several inputs by a function with only one input, e.g.

$$
K(x, y)=f^{(-1)}(f(x)+f(y))
$$

For a subclass of t-norms this is possible. The trick makes calculations simpler.
A t-norm T is called
(a) continuous if T is continuous
(b) Archimedian if T is continuous and $\mathrm{T}(x, x)<x$ for all $x \in] 0,1[$.

A t-conorm \perp is called
(a) continuous if \perp is continuous,
(b) Archimedian if \perp is continuous and $\perp(x, x)>x$ for all $x \in] 0,1[$.

3

The concept of a pseudoinverse

Definition

Let $f:[a, b] \rightarrow[c, d]$ be a monotone function between two closed subintervals of extended real line. The pseudoinverse function to f is the function $f^{(-1)}:[c, d] \rightarrow[a, b]$ defined as

$$
f^{(-1)}(y)= \begin{cases}\sup \{x \in[a, b] \mid f(x)<y\} & \text { for } f \text { non-decreasing, } \\ \sup \{x \in[a, b] \mid f(x)>y\} & \text { for } f \text { non-increasing. }\end{cases}
$$

The concept of a pseudoinverse

f^{-1} does not exist

Definition

Let $f:[a, b] \rightarrow[c, d]$ be a monotone function between two closed subintervals of extended real line. The pseudoinverse function to f is the function $f^{(-1)}:[c, d] \rightarrow[a, b]$ defined as

$$
f^{(-1)}(y)= \begin{cases}\sup \{x \in[a, b] \mid f(x)<y\} & \text { for } f \text { non-decreasing, } \\ \sup \{x \in[a, b] \mid f(x)>y\} & \text { for } f \text { non-increasing. }\end{cases}
$$

Archimedian t-norms

Theorem

A t-norm \mathbf{T} is
Archimedian if and only if there exists a strictly decreasing and continuous function $f:[0,1] \rightarrow[0, \infty)$ with $f(1)=0$ such that

$$
\begin{equation*}
\top(x, y)=f^{(-1)}(f(x)+f(y)) \tag{1}
\end{equation*}
$$

where

$$
f^{(-1)}(x)= \begin{cases}f^{-1}(x) & \text { if } x \leq f(0) \\ 0 & \text { otherwise }\end{cases}
$$

is the pseudoinverse of f. Moreover, this representation is unique up to a positive multiplicative constant.
T is generated by f if T has representation (1).
f is called additive generator of T.

Additive Generators of t-norms - Examples

Find an additive generator f of $T_{\text {tuka }}(x, y)=\max \{x+y-1,0\}$. for instance $f_{\text {tuka }}(x)=1-x$ then, $f_{\text {Łuka }}^{(-1)}(x)=\max \{1-x, 0\}$ thus $T_{\text {Łuka }}(x, y)=f_{\text {Łuka }}^{(-1)}\left(f_{\text {Łuka }}(x)+f_{\text {Łuka }}(y)\right)$

Find an additive generator f of $\top_{\operatorname{prod}}(x, y)=x \cdot y$.
to be discussed in the exercise hint: use of logarithmic and exponential function

Archimedian t-conorms

Theorem

A t-conorm \perp.
Archimedian if and only if there exists a strictly increasing and continuous function $g:[0,1] \rightarrow[0, \infty]$ with $g(0)=0$ such that

$$
\begin{equation*}
\perp(x, y)=g^{(-1)}(g(x)+g(y)) \tag{2}
\end{equation*}
$$

where

$$
g^{(-1)}(x)= \begin{cases}g^{-1}(x) & \text { if } x \leq g(1) \\ 1 & \text { otherwise }\end{cases}
$$

is the pseudoinverse of g. Moreover, this representation is unique up to a positive multiplicative constant.
\perp is generated by g if \perp has representation (2).
g is called additive generator of \perp.

Additive Generators of t-conorms - Two Examples

Find an additive generator g of $\perp_{\text {tuka }}(x, y)=\min \{x+y, 1\}$.
for instance $g_{\text {tuka }}(x)=x$
then, $g_{\text {Łuka }}^{(-1)}(x)=\min \{x, 1\}$
thus $\perp_{\text {Łuka }}(x, y)=g_{\text {Łuka }}^{(-1)}\left(g_{\text {Łuka }}(x)+g_{\text {Łuka }}(y)\right)$
Find an additive generator g of $\perp_{\text {sum }}(x, y)=x+y-x \cdot y$.
to be discussed in the exercise
hint: use of logarithmic and exponential function
Now, let us examine some typical families of operations.

Sugeno-Weber Family I

For $\lambda>-1$ and $x, y \in[0,1]$, define

$$
\begin{aligned}
& \top_{\lambda}(x, y)=\max \left\{\frac{x+y-1+\lambda x y}{1+\lambda}, 0\right\}, \\
& \perp_{\lambda}(x, y)=\min \{x+y+\lambda x y, 1\} .
\end{aligned}
$$

$\lambda=0$ leads to $\top_{\text {Łuka }}$ and $\perp_{\text {Łuka }}$, resp.
$\lambda \rightarrow \infty$ results in $\top_{\text {prod }}$ and $\perp_{\text {sum }}$, resp.
$\lambda \rightarrow-1$ creates \top_{-1} and \perp_{-1}, resp.

Sugeno-Weber Family II

Additive generators f_{λ} of T_{λ} are

$$
f_{\lambda}(x)= \begin{cases}1-x & \text { if } \lambda=0 \\ 1-\frac{\log (1+\lambda x)}{\log (1+\lambda)} & \text { otherwise }\end{cases}
$$

$\left\{T_{\lambda}\right\}_{\lambda>-1}$ are increasing functions of parameter λ. Additive generators of \perp_{λ} are $g_{\lambda}(x)=1-f_{\lambda}(x)$.

warm and hot?

Zadeh ${ }^{\prime}$ Intersection
a and $b=\min (a, b)$, for all membership degrees a, b
$\left(\mu_{\text {warm }} \cap \mu_{\text {hot }}\right)(x)=\min \left(\mu_{\text {warm }}(x), \mu_{\text {hot }}(x)\right)$, for all real numbers x

Fuzzy Sets Inclusion

Subset Property

For Classical Sets $x \in A \Rightarrow x \in B$,

For Fuzzy Sets : $x \in \mu \Rightarrow x \in \mu^{\prime}$

Fuzzy Set Implication

How to model
if speed is fast then distance is high

A straightforward solution with a multivalued logic

- Define fuzzy sets for fast and high
- Determine for all speed values x and all distance values y the membership degrees (i.e. its truth value)
- Calculate for each pair x and y the truth value of the implication

$$
\mu_{\text {tast }}(x) \Rightarrow \mu_{\text {igh }}(y)
$$

Definition of a Multivalued Implication

1. One way of defining / is to use the property that in classical logic the propositions $\mathrm{a} \Rightarrow \mathrm{b}$ and $\neg a \vee b$ have the same truth values for all truth assignments to a and b.
If we model the disjunction and negation as t-conorm and fuzzy complement, resp., then for all $a, b \in[0,1]$ the following defininion of a fuzzy implication seems reasonable:

$$
I(a, b)=\perp(\sim a, b) .
$$

2. Another way is to use the concept of a residuum in classical logic: $a \Rightarrow b$ and $\max \{x \in\{0,1\} \mid a \wedge x \leq b\}$ have the same truthvalue sforall truth assignmentsfor a , and b . If in a generalized logic the conjunction is modelled by a t-norm, then a reasonable generalization could be:

$$
I(a, b)=\sup \{x \in[0,1] \mid \top(a, x) \leq b\} .
$$

Definition of a Multivalued Implication

3. Another proposal is to use the fact that, in classical logic, the propositions $\mathrm{a} \Rightarrow \mathrm{b}$ and $\neg a \vee(a \wedge b)$ have the same truth for all truth assignments.

A possible extension to many valued logics is therefore

$$
I(a, b)=\perp(\sim a, \top(a, b))
$$

where (T, \perp, \sim) should be a De Morgantriplet.

So again, the classical definition of an implication is unique, whereas there is a „zoo" of fuzzy implications.

Typical question for applications: What to use when and why?

S-Implications

Implications based on $I(a, b)=\perp(\sim a, b)$ are called S-implications.
Symbol S is often used to denote t-conorms.
Four well-known S-implications are based on $\sim a=1-a$:

Name	$I(a, b)$	$\perp(a, b)$
Kleene-Dienes	$I_{\max }(a, b)=\max (1-a, b)$	$\max (a, b)$
Reichenbach	$I_{\text {sum }}(a, b)=1-a+a b$	$a+b-a b$
Łukasiewicz	$I_{Ł}(a, b)=\min (1,1-a+b)$	$\min (1, a+b)$
largest	$I_{-1}(a, b)= \begin{cases}b, & \text { if } a=1 \\ 1-a, & \text { if } b=0 \\ 1, & \text { otherwise }\end{cases}$	$\begin{cases}b, & \text { if } a=0 \\ a, & \text { if } b=0 \\ 1, & \text { otherwise }\end{cases}$

R-Implications

$I(a, b)=\sup \{x \in[0,1] \mid \top(a, x) \leq b\}$ leads to R-implications.
Symbol R represents close connection to residuated semigroup.
Three well-known R-implications are based on $\sim a=1-a$:

- Standard fuzzy intersection leads to Gödel implication

$$
I_{\min }(a, b)=\sup \{x \mid \min (a, x) \leq b\}= \begin{cases}1, & \text { if } a \leq b \\ b, & \text { if } a>b\end{cases}
$$

- Product leads to Goguen implication

$$
I_{\text {prod }}(a, b)=\sup \{x \mid a x \leq b\}= \begin{cases}1, & \text { if } a \leq b \\ b / a, & \text { if } a>b\end{cases}
$$

- Łukasiewicz t-norm leads to Łukasiewicz implication

$$
I_{Ł}(a, b)=\sup \{x \mid \max (0, a+x-1) \leq b\}=\min (1,1-a+b) .
$$

QL-Implications

Implications based on $I(a, b)=\perp(\sim a, \top(a, b))$ are called $Q L$-implications ($Q L$ from quantum logic).

Four well-known $Q L$-implications are based on $\sim a=1-a$:

- Standard min and max lead to Zadeh implication

$$
I_{Z}(a, b)=\max [1-a, \min (a, b)] .
$$

- The algebraic product and sum lead to

$$
I_{\mathrm{p}}(a, b)=1-a+a^{2} b
$$

- Using $T_{Ł}$ and $\perp_{Ł}$ leads to Kleene-Dienes implication again.
- Using T_{-1} and \perp_{-1} leads to

$$
I_{\mathrm{q}}(a, b)= \begin{cases}b, & \text { if } a=1 \\ 1-a, & \text { if } a \neq 1, b \neq 1 \\ 1, & \text { if } a \neq 1, b=1\end{cases}
$$

All I come from generalizations of the classical implication.
They collapse to the classical implication when truth values are 0 or 1 .
Generalizing classical properties leads to following propositions:

1) $a \leq b$ implies $I(a, x) \geq I(b, x) \quad$ (monotonicity in 1st argument)
2) $a \leq b$ implies $I(x, a) \leq I(x, b) \quad$ (monotonicity in 2nd argument)
3) $l(0, a)=1$
4) $I(1, b)=b$
5) $I(a, a)=1$
(dominance of falsity)
(neutrality of truth)
(identity)
6) $I(a, I(b, c))=I(b, I(a, c))$
7) $I(a, b)=1$ if and only if $a \leq b$ (boundary condition)
8) $I(a, b)=I(\sim b, \sim a)$ for fuzzy complement \sim (contraposition)
9) I is a continuous function

Generator Function

I that satisfy all listed axioms are characterized by this theorem:

Theorem
A function I: $[0,1]^{2} \rightarrow[0,1]$ satisfies Axioms 1-9 of fuzzy implications for a particular fuzzy complement \sim if and only if there exists a strict increasing continuous function $f:[0,1] \rightarrow[0, \infty)$ such that $f(0)=0$,

$$
I(a, b)=f^{(-1)}(f(1)-f(a)+f(b))
$$

for all $a, b \in[0,1]$, and

$$
\sim a=f^{-1}(f(1)-f(a))
$$

for all $a \in[0,1]$.

Example

Consider $f_{\lambda}(a)=\ln (1+\lambda a)$ with $a \in[0,1]$ and $\lambda>0$.
Its pseudo-inverse is

$$
f_{\lambda}^{(-1)}(a)= \begin{cases}\frac{e^{a}-1}{\lambda}, & \text { if } 0 \leq a \leq \ln (1+\lambda) \\ 1, & \text { otherwise }\end{cases}
$$

The fuzzy $\boldsymbol{n e g a t i o n}$ generated by $f_{\boldsymbol{\lambda}}$ for all $a \in[0,1]$ is

$$
n_{\lambda}(a)=\frac{1-a}{1+\lambda a} .
$$

The resulting fuzzy implication for all $a, b \in[0,1]$ is thus

$$
I_{\lambda}(a, b)=\min \left(1, \frac{1-a+b+\lambda b}{1+\lambda a}\right) .
$$

If $\lambda \in(-1,0)$, then I_{λ} is called pseudo- Łukasiewicz implication.

