Fuzzy Relations

Prof. Dr. Rudolf Kruse

A grey level picture interpreted as a fuzzy set

Definition of Relation

A relation among crisp sets X_{1}, \ldots, X_{n} is a subset of the Cartesian Product $X_{1} \times \ldots \times X_{n}$. It is denoted as $R\left(X_{1}, \ldots, X_{n}\right)$ or $R\left(X_{i} \mid 1 \leq i \leq n\right)$. So, the relation $R\left(X_{1}, \ldots, X_{n}\right) \subseteq X_{1} \times \ldots \times X_{n}$ is set, too. The basic concept of sets can be also applied to relations:

- containment, subset, union, intersection, complement

Each crisp relation can be defined by its characteristic function

$$
R\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1, & \text { if and only if }\left(x_{1}, \ldots, x_{n}\right) \in R \\ 0, & \text { otherwise } .\end{cases}
$$

The membership of $\left(x_{1}, \ldots, x_{n}\right)$ in R indicates whether the elements of $\left(x_{1}, \ldots, x_{n}\right)$ are related to each other or not.

Fuzzy Relations

The characteristic function of a crisp relation can be generalized to allow tuples to have degrees of membership.

A fuzzy relation R is a fuzzy set of $X_{1} \times \ldots \times X_{n}$
The membership grade indicates strength of the present relation between elements of the tuple.

The fuzzy relation can also be represented by an n-dimensional membership array.

Example

Let R be a fuzzy relation between two sets $X=\{$ New York City,Paris\} and $Y=$ \{Beijing, New York City, London\}.
R shall represent relational concept "very far".
It can be represented (subjectively) as two-dimensional membership array:

	NYC	Paris
Beijing	1	0.9
NYC	0	0.7
London	0.6	0.3

Cartesian Product of Fuzzy Sets: nDimensions

Let A_{1}, \ldots, A_{n} be fuzzy sets ($\mathrm{n} \geq 2$) in X_{1}, \ldots, X_{n}, respectively

The (fuzzy) Cartesian product of A_{1}, \ldots, A_{n}, denoted by $A_{1} \times \ldots \times A_{n}$, is a fuzzy relation of the product space $X_{1} \times \ldots \times X_{n}$.

It is defined by its membership function

$$
\begin{aligned}
& \mu_{A_{1} \times \ldots \times A_{n}}\left(x_{1}, \ldots, x_{n}\right)=T\left(\mu_{A_{1}}\left(x_{1}\right), \ldots, \mu_{A_{n}}\left(x_{n}\right)\right) \\
& \text { for } x_{i} \in X_{i}, 1 \leq i \leq n .
\end{aligned}
$$

In most applications $T=\min$ is chosen.

Cartesian Product of Fuzzy Sets in two Dimensions

A special case of the Cartesian product is when $n=2$.
Then the Cartesian product of fuzzy sets $A \in \mathrm{~F}(X)$ and $B \in \mathrm{~F}(Y)$ is a fuzzy relation $A \times B \in \mathrm{~F}(X \times Y)$ defined by

$$
\mu_{A \times B}(x, y)=T\left[\mu_{A}(x), \mu_{B}(y)\right], \text { for all } x \in X \text {, and } y \in Y \text {. }
$$

Example: Cartesian Product in $\mathrm{F}(X \times Y)$ with t-norm $=\mathbf{m i n}$

2 projections

6 projections

Cylindrical Extension

projection of μ
cylindrical extension of μ

Example

Consider the sets $X_{1}=\{0,1\}, X_{2}=\{0,1\}, X_{3}=\{0,1,2\}$ and the ternary fuzzy relation on $X_{1} \times X_{2} \times X_{3}$:

Let $R_{i j}=\left[R \downarrow\left\{X_{i}, X_{j}\right\}\right]$ and $R_{i}=\left[R \downarrow\left\{X_{i}\right\}\right]$ for all $i, j \in\{1,2,3\}$.
Using this notation, all possible projections of R are given below.

(x_{1},	$\times 2$,	*3)	$R\left(x_{1}, x_{2}, x_{3}\right.$	-			R	$R_{2}\left(x_{2}\right)$	$R_{3}\left(x_{3}\right)$
0	0	0	0.4	0.9	1.0	0.5	1.0	0.9	1.0
0	0	1	0.9	0.9	0.9	0.9	1.0	0.9	0.9
0	0	2	0.2	0.9	0.8	0.2	1.0	0.9	1.0
0	1	0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
0	1	1	0.0	1.0	0.9	0.5	1.0	1.0	0.9
0	1	2	0.8	1.0	0.8	1.0	1.0	1.0	1.0
1	0	0	0.5	0.5	0.5	0.5	1.0	0.9	1.0
1	0	1	0.3	0.5	0.5	0.9	1.0	0.9	0.9
1	0	2	0.1	0.5	1.0	0.2	1.0	0.9	1.0
1	1	0	0.0	1.0	0.5	1.0	1.0	1.0	1.0
1	1	1	0.5	1.0	0.5	0.5	1.0	1.0	0.9
1	1	2	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Example: Detailed Calculation

Here, only consider the projection R_{12} :

(x_{1},	x_{2},		$R\left(x_{1}, x_{2}, x_{3}\right)$	$R_{12}\left(x_{1}, x_{2}\right)$
0	0	0	0.4	$(0,0) \mapsto \mapsto^{\max [R(0,0,0), R(0,0,1), R(0,0,2)]=0.9}$
0	0	1	0.9	
0	0	2	0.2	
0	1	0	1.0	$\{(0,1)-)^{\max [R(0,1,0), R(0,1,1), R(0,1,2)]=1.0}$
0		1	0.0 0.8	
0	1	2	0.8	
1	0	0	0.5 0.3	$(1,0)+=-\frac{\max }{}[R(1,0,0), R(1,0,1), R(1,0,2)]=0.5$
1		2	0.3 0.1	
1	1	0	0.0	$\left(1_{1} 1\right) \mapsto \max [R(1,1,0), R(1,1,1), R(1,1,2)]=1.0$
1	1	1	0.5	
1	1	2	1.0	

Binary Fuzzy Relations

Representation and Inverse

Consider e.g. the membership matrix $\boldsymbol{R}=\left[r_{x y}\right]$ with $r_{x y}=R(x, y)$.

Its inverse $R^{-1}(Y, X)$ of $R(X, Y)$ is a relation on $Y \times X$ defined by

$$
R^{-1}(y, x)=R(x, y) \quad \text { for all } x \in X, y \in Y
$$

$\boldsymbol{R}^{-1}=\left[r_{x y}^{-1}\right]$ representing $R^{-1}(y, x)$ is the transpose of \boldsymbol{R} for $R(X, Y)$

$$
\left(R^{-1}\right)^{-1}=R
$$

Standard Composition

Consider the binary relations $P(X, Y), Q(Y, Z)$ with common set Y.
The standard composition of P and Q is defined as

$$
(x, z) \in P \circ Q \Longleftrightarrow \Longrightarrow \exists y \in Y:\{(x, y) \in P \wedge(y, z) \in Q\}
$$

In the fuzzy case this is generalized by

$$
[P \circ Q](x, z)=\sup \left\{\min _{y \in Y}\{P(x, y), Q(y, z)\}\right\}, \text { for all } x \in X \text { and } z \in Z
$$

If Y is finite, sup operator can be replaced by max.
The standard composition is also called max-min composition.

Example

$$
\begin{aligned}
& \\
& {\left[\begin{array}{ccc}
.3 & .5 & .8 \\
0 & .7 & 1 \\
.4 & .6 & .5
\end{array}\right] \circ\left[\begin{array}{cccc}
.9 & .5 & .7 & .7 \\
.3 & .2 & 0 & .9 \\
1 & 0 & .5 & .5
\end{array}\right]=\left[\begin{array}{cccc}
.8 & .3 & .5 & .5 \\
1 & .2 & 5 & .7 \\
.5 & .4 & .5 & .5
\end{array}\right] } \\
& r_{11}=\max \left\{\min \left(p_{11}, q_{11}\right), \min \left(p_{12}, q_{21}\right), \min \left(p_{13}, q_{31}\right)\right\} \\
&=\max \{\min (.3, .9), \min (.5, .3), \min (.8,1)\} \\
&=.8 \\
& r_{32}=\max \left\{\min \left(p_{31}, q_{12}\right), \min \left(p_{32}, q_{22}\right), \min \left(p_{33}, q_{32}\right)\right\} \\
&=\max \{\min (.4, .5), \min (.6, .2), \min (.5,0)\} \\
&=.4
\end{aligned}
$$

Inverse of Standard Composition

The inverse of the max-min composition follows from its definition:

$$
[P(X, Y) \circ Q(Y, Z)]^{-1}=Q^{-1}(Z, Y) \circ P^{-1}(Y, X) .
$$

Its associativity also comes directly from its definition:

$$
[P(X, Y)] \circ Q(Y, Z)] \circ R(Z, W)=P(X, Y) \circ[Q(Y, Z) \circ R(Z, W)] .
$$

Note that the standard composition is not commutative.
Matrix notation: $\left[r_{i j}\right]=\left[p_{i k}\right] \circ\left[q_{k j}\right]$ with $r_{i j}=\max _{k} \min \left(p_{i k}, q_{k j}\right)$.

Example: Properties of Airplanes (Speed, Height, Type)

4 possible speeds: $\quad s_{1}, s_{2}, s_{3}, s_{4}$
3 heights:
2 types: h_{1}, h_{2}, h_{3}
t_{1}, t_{2}

Consider the following fuzzy relations for airplanes:

- relation A between speed and height,
- relation B between height and the type.

\boldsymbol{A}	h_{1}	h_{2}	h_{3}			
s_{1}	1	.2	0	\boldsymbol{B}	t_{1}	t_{2}
s_{2}	.1	1	0	h_{1}	1	0
s_{3}	0	1	1	h_{2}	.9	1
s_{4}	0	.3	1	h_{3}	0	.9

Binary Relations on a Single Set

It is also possible to define crisp or fuzzy binary relations among elements of a single set X.

Such a binary relation can be denoted by $R(X, X)$ or $R\left(X^{2}\right)$ which is a subset of $X \times X=X^{2}$.

These relations are often referred to as directed graphs which is also ari representation of them.

- Each element of X is represented as node.
- Directed connections between nodes indicate pairs of $x \in X$ for which the grade of the membership is nonzero.
- Each connection is labeled by its actual membership grade of the corresponding pair in R.

Example

An example of $R(X, X)$ defined on $X=\{1,2,3,4\}$.
Two different representation are shown below.

	1	2	3	4
1	.7	0	.3	0
2	0	.7	1	0
3	.9	0	0	1
4	0	0	.8	.5

