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Two Interpretations of the Research on Fuzzy Data Analysis

FUZZY data analysis = Fuzzy Techniques for the analysis of (crisp) data

In this course: Fuzzy Clustering FUZZY
CLUSTER
ANALYSIS

FUZZY DATA analysis = Analysis of Data that are described by Fuzzy Sets

In this course: Statistics with Fuzzy Data

STATISTICS
WITH VAGUE DATA




Two Interpretations of Fuzzy Data

Epistemic view of fuzzy data
Fuzzy Sets are used to represent imcomplete knowledge about
an underlying object

y OLD —
Example: The object is Rudolf, | 60,1)
(50, 0.75)
a fuzzy set characterizes the knowledge _ 0,05)
(30, 0.25)
about his (unknown) age oo~
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Memberships are subjective

Ontic view of fuzzy data
Fuzzy Sets are considered as real, complex, graded entities
Example: The object is a photo, a fuzzy set

characterizes the content by grey level pixels

Memberships are objective, the object really exists




Epistemic Fuzzy Data

Example

Datum: “R. ate 2 or 3 eggs yesterday”
This datum is imprecise, it should be modelled by the subset {2,3 }.

Datum: “ R. ate a low number of eggs”

This datum is subjective, it could can be modelled by a fuzzy sets of the Natural
Numbers (including 0) with an epistemic interpretation.

Crucial Question: What is the meaning of a membership degree
and where do the numbers come from?

In real applications it is recommended to give a formal meaning together with a
measurement method for the membership degrees values.



Fuzzy Membership Degrees

Gradual degrees are often used in Questionnaires:

Likert Scale

In general, how you would you rate the quality of Fictionals chocolate ice cream?

Poor Fair @ Good Very Good Excellent

Slider Scale

In general, how you would you rate the quality of Fictionals chocolate ice cream?

Poor —:} Excellent
i 2 3 4 5

The values of the scales can be transformed to the unit interval.



Fuzzy Membership Degrees

MODERATE

UNIVERSAL PAIN ASSESSMENT TOOL

This pain assessment tool is intended to help care providers assess to Individual needs.
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Fuzzy Membership Degrees

There are several different meanings of fuzzy membership degrees
in real applications, often you’ll find a

- Possibilistic Interpretation

- Preference-based Interpretation
- Frequentistic Interpretation

- Similarity-based Interpretation



Fuzzy Data based on Possibilistic Scale

Fuzzy Datum: R. ate approximately two eggs .

The fuzzy data are found by a reasoning process using possibilities
based on physical information (how much can R. eat?) as well as
epistemic information( is it possible that R. ate x eggs?

ji'Pbgg{b“i i), o(eibf@ ' o Pé;siiﬁiify 711&011
olaln] 3|4l | x poss : X = Loyl P psibility measurt
0’2101—[0‘370? 1’0’ Ipasxcx? Pela)= Mak{?oss(o) tchg

< PACAWB) = v § 3CA) PCB)L
/(/ hecem, ?L/., weasuv{

Y W=/ PLA)

AL?qg

There are close links between possibility theory to Fuzzy Set Theory
In the next chapter we will study the epistemic view in more detail.



Fuzzy Data based on a Preference Scale

Datum: R. ate approximately two eggs.
The fuzzy data are found by a reasoning process using preferences.

How many eggs does R. prefer today?

Often this interpretation is used in optimization tasks.



Fuzzy Data based on Statistical Methods

Datum: R. ate approximately two eggs.
The fuzzy data are found by a statistical analysis:

What did he eat in the last days?

Probabilistic uncertainty is modelled by statistical methods or by a
version of subjective probability theory. Often the probabilities are
finally transformed into a fuzzy scale.



Fuzzy Data based on similarity information

Datum: R. ate approximately two eggs.
The fuzzy data are found by similarity based (or case based)
reasoning . Is a day with a similar situation for R. is known? Often

the similarities are transformed into a fuzzy scale.
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Similarity analysis is used in lots of other scientific disciplines.



Semantic of Fuzzy Data

In real applications the data analysis you have to figure
out (e.g. by interviews with expert), what exactly the
meaning of the membership degrees is.

Different interpretations for the same fuzzy set can lead
to completely different algorithms and evaluations.



Descriptive Analysis of Imprecise Data

Experiment Data (sample) mean (arithmetic) Deviation (standard)
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Epistemic Fuzzy Data

In Fuzzy Control: similarity based fuzzy data

STATISTICS
WITH VAGUE DATA

In Statistics: possibility based fuzzy data




How to model similarity?

Proposal 1: Similarity as Equivalence Relation?

Definition
Let A be a set and = be a binary relation on A. = is called an
equivalence relation if and only if Va, b, c€ A,

(i) a=a (reflexivity)
(ii) axbé>b=a (symmetry)
(i) a=bAb=z=c—>a=c (transitivity).

Letustrya=b &|a -b| < e where ¢ is fixed.
= is not transitive, = is no equivalence relation (Poincaré paradox)

A classical equivalence relation is not able to model similarity. What
about a fuzzy version?



How to model similarity?

Proposal 2: Similarity as Fuzzy Equivalence Relation?

Definition
A function E: X2 [0, 1] is called a fuzzy equivalence relation with
respect to a t-norm T if it satisfies for all x, y, z € X the properties

(i) E(x,x)=1 (reflexivity)
(i) E(x,y)=E(y,x) (symmetry)
(iii) T(E(x,y), Ely, 2)) < E(x, 2) (t-transitivity).

E(x, y) is the degree to which x = y holds. The fuzzy relation E is also called
similarity relation, t-equivalence relation, indistinguishability operator, or
tolerance relation.

Note that property (iii ) corresponds to the fuzzy logic statement

if (x=y)A(y=2z)thenx=z.



How to model similarity?

Proposal 3: Similarity as Lukasiewics Equivalence Relation?

Let 6 be a pseudo metricon X, and let T with T(a, b) = max{a+ b -1, 0} be
the tukasiewicz t-norm. Then Es, defined by Es(x, y) =1-min{6(x, y), 1} is a
fuzzy equivalence relation with respect to T.

For the Lukasiewicz T-norm Fuzzy equivalence and distance are dual notions.
This is the only T-norm with this property.

Definition
A function E : X2 [0, 1] is called a (tukasiewicz) similarity relation iff

(i)  E(x,x)=1 (reflexivity)
(i) E(x,y)=E(y, x) (symmetry)
(iii) max{E(x,y)+E(y,z)-1, 0} < E(x, z) (tukasiewicz transitivity)

holds for all x, y, z € X.



Fuzzy Set describe Local Similarity

Simple Example

o(x,y)=|x-y| I\{Iet.ric. |
Es(x,y)=1-min{|x-y], 1} Similarity relation
1] U
0 / | | ,
Xo—1 X X0 xXo+1

Ux,: X =2 [0, 1]
x »>Eg(x, xo) Fuzzy Singleton

Ux, describes “local” similarity of points x to xo. The membership
degree is interpreted as a similarity degree.



A Fuzzy Partition models Global Similarity

Given a family of fuzzy sets that describes “local” similarities.

I B R L A R

0 | ,
0 X

There exists a similarity relation on X with induced singletons u; if and onlyif

Vi, j o sup{ui(x) +ui(x) - 1} <inf{1- [ uily) - wily) | }.
XEX yeX

Control Engineers often have this intuitive understanding of a fuzzy datum.
Mamdani control can be seen as a similarity based interpolation.



Mamdani Control can be seen as Similarity Based Interpolation
It defines a graph that follows the pyramids

if x is large then y is large

output value

A4

current input value



How to model possibility?

Given: It was ‘cloudy’, yesterday at 18, at my home

Fuzzy set Heoudy : X 2 [0, 1], where X=[0, 100]. x € X clouding
degrees in percent. The interpretation is as follows:

It exists a true clouding degree. This value is unknown, but there are
additional information about the possibility of the different options.

17

“cloudy

50 65 85 100

The possibility of x is modelled by the membership degree of x: 0 means

impossible, 1 totally possible, degrees between 0 and 1 indicate partial
possibility.



Possibility Distributions

A function 7 : X = [0, 1] is called a possibility distribution 71 iff thereis
an xo € X with7 (xo) = 1.
From a mathematical point of view they are special fuzzy sets.

™ (u) is interpreted as the subjective degree of “possibility” (which is
different from its probability). It quantifies a state of knowledge.

m(u) =0: u is rejected as impossible

m (u) = 1: u is totally possible

Specificity of possibility distributions:
T is at least as specific as 7 iff

for each x: 7 (x) < 7 '(x) holds.



Possibility Measures

Let 7 : X — [0, 1] a possibility distribution.
Possibility degree of A C X: M(A) :=sup {n(x) : x € A}
Necessity degree of AC X: N(A) :=inf {1 — 7m(x) : x € A}.
[1(A) evaluates to what extent A is consistent with 7
N(A) evaluates to what extent A is certainly implied.
Duality expressed by: N(A) =1 — M(A) for all A.
It holds:

NX) =
(@) =0, and
M(AUB) = max{l(A),M(B)} for all A and B
M(ANB) < min{l(A),IN(B)} for all Aand B

Data Analysts often have this intuitive understanding of a fuzzy datum. The true original
of fuzzy datum is unknown, but there is additional information about the possibility of the
different options.



Fuzzy Random Variables

Standard statistical data analysis is based on random variables X: Q - R,

where Q denotes the set of elementary event, and R the set of real numbers.

The concept of a random set is a generalisation. A random set I : Q > 2R

is @ random variable where the outcomes are subsets of R.

The concept of a fuzzy random set is a further generalization.

A fuzzy random set I : Q - F(R) is a function where the outcome are fuzzy
sets of R. The fuzzy sets are generated by a random mechanism.



Example: Mean Temperature

Let Q denote the days in 2019, P uniform probability distribution on Q

U(w) Temperature on day w at 18 h, we assume that only Tmin(w), Tmax (®)
i.e. the min-max temperatures per day are recorded, but the original values
U(w) are unknown. We know that U(w) is between Tmin(W) and Tmax(W),
What is the mean temperature in 2019 at 18 h? We can calculate lower and
upper borders by calculating the expectations of the random variables Tmin
and Tmax.

The same method is used for handling random intervals
[:Q- 2R, (W) = [Tmin(®), Tmax(w)], is called a random set

E(F) := [E(Tmin), E(Tmax)] is a reasonable definition for the expected value of T.

This concept can be generalized from intervals to general sets.



Descriptive Analysis of Set-Valued Data

(Q, 22, P) Probability space, a random set is a mapping : Q> 2R
For an epistemic interpretation of the sets we define

E(l):={E(U)| U is random variable such that E(U) exists and
U(w)E Nw) forallw € Q }

This method can be used for other quantities such as the variance.

Often subjective information about the (unknown) original data is
available. In that case we can describe the data by fuzzy sets (with a
possibilistic interpretation).

Using the extension principle we create a theory for descriptive statistics
with fuzzy data (with an epistemic interpretation). Note that there are
different models for fuzzy data with an ontic interpretation.



Expected Value of a fuzzy random variable

[: Q- F(R) fuzzy random variable
The original random variable U*: Q - R is unknown

Given a random variable U: Q = R. we can evaluate the possibility,
that U is the original, by QE {(Mw))(U(w))}

Using the extension principle, a reasonable definition for

the expected value of [ is obtained:

Expected value E(I') : R — [0, 1] fuzzy set of X:

X — sup { in; {(F(;;_:)}(U(w))}}

U:E(U)=x (€

With the same method other descriptive values can be defined.
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