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A Simple Example

Oil contamination of water by trading vessels

Typical formulation:
“The accident occurred 10 miles away from the coast.”

Locations of interest: open sea (z3), 12-mile zone (z2), 3-mile zone
(z1), canal (ca), refueling dock (rd), loading dock (ld)

These 6 locations €2 are disjoint and exhaustive

Q=1{z3,z2,z1,ca, rd, Id}



Modeling Degrees of Belief

Statements are often not simply true or false. Decision maker should be able
to quantify their ,,degree of belief". This can be an objective measurement or
subjective valuation. The standard way to model such situations with

uncertainty is to use probability theory:

Sample space © (finite set of distinct possible outcomes of some random
experiment), Events of interest are subsets A €0.The probabilities
are subjectively interpreted as degrees of belief.

P :29 - [0, 1] are then required to satisfy the Kolmogorov axioms. There

are good arguments for using probabilities for, modelling beliefs, e.g. the so called ,,Dutch
Book argument®.



Kolmogorov Axioms

For finite ©, probability function P : 2° — [0, 1] must satisfy

) 0<P(A) <1foralleventsA < O,
1) P(©) =1,
i) ifAnNB = &, thenP(AUB) =P(A) + P(B) for all A,B



Simple Example

Consider the subjective statement: ,The shipisin ca or rd or Id
with degree of certainty 0.6, that‘s all | know.”

A modelling with probility theory forces the user to specify the
degrees of belief for all elementary events. In the subjective
statement above the expert did not want to that.

An option could be to assign the probabilities
P(ca)=P(rd)=P(ca) =0.2, P(z1)=P(z2)=P(z3)= 0.4/3

This is a very precise (too precise) information that doesn‘t
reflect the state of the knowledge - namely the partial
ignorance of the expert.

An alternative solution is to assign beliefs directly to subsets
and not to elements, so called mass distributions.



Mass Distribution

Recall example with Q ={z3,z2,z1,ca, rd, Id}

Propositional statement in port equals event{ca, rd, Id}
Event may represent maximum level of differentiation for expert

Expert specifies mass distribution m : 22 — [0, 1]
Here, Q is called frame of discernment

m : 22 — [0, 1] must satisfy
(i) m(0) =0,
(i) 2aacalA) =1

Subsets A < Q with m(A) > 0 are called focal elements of m



Belief and Plausibility

m(A) measures belief committed exactly to A

For total amount of belief (credibility) of A, sum up m(B) whereas
BCA

For maximum amount of belief movable to A, sum up m(B) with
BNA#() (plausibility)

This leads to belief function and plausibility function

Bel,, : 2 —1[0,1], Bel,(A) = Z m(B)

Pl,: 2% —10.1], Ply,(A)
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Belief and Plausibility

It the evidence tells us that the truth is in A, and A C B, we say that the
evidence supporis B.

@ Given a normalized mass function
m, the probability that the

evidence supports B is thus

Bel(B) = Y m(A)

@ The number Bel(B) is called the
degree of belief in B, and the
function B — Bel(B) is called a
belief function.




Belief and Plausibility

If the evidence does not support B, it is consistent with B.

@ The probability that the evidence
i5 consistent with B is thus

PI(B)= »_ m(A)

AnB{
— 1 — Bel(B).

@ The number Pl E) is called the
plausibility of B, and the function

B — PI(B) is called a plausibility
function.




Example

Consider statement: “ship is in port with degree of certainty of 0.6,
further evidence is not available”

Mass distribution
m : 22 — [0,1], m({in port}) = 0.6, m(Q2) = 0.4, m(A) = 0 otherwise

m(£2) = 0.4 represents inability to attach that amount of mass to any
A, which is different from Q

e.g. m({in port}) = 0.4 would exceed expert's statement



Properties of Belief Functions

Function Bel : 2 — [0.1] is a completely monotone capacity: it verifies
Bel(il) = 0, Bel(f1) = 1 and

Eer(g,q,-)g ) {—1}”-159;([‘],4,-)_

@11, k) iel

for any k > 2 and for any family A,..... Ay in 2%

Conversely, to any completely monotone capacity Bel corresponds a
unigue mass function m such that:

m(A) = Y (-1)4-EBel(B). vACQ.
#-£BCA



Relations between m, Bel, and PL

Let m be a mass function, Bel and Pl the corresponding belief and
plausibility functions

For all A C 2,
Bel(A) = 1 — PI{A)

m(A)= > (-1)""""Bel(B)
I=BCA
m(A) =3 (1)~ 1B PI(B)
BCA
m, Bel and Pl are thus three equivalent representations of

+ a piece of evidence or, equivalently
a a state of belief induced by this evidence



Belief and Plausibility

In any case Bel(£2) = 1 (“closed world” assumption)

Total ignorance modeled by mg : 22 — [0, 1] with mp(Q) = 1,
mo(A) = 0 for all A #Q

mo leads to Bel(2) = PI(2) = 1 and Bel(A) = 0, PI(A) =1 for all
A # Q)

For ordinary probability, use m; : 2 — [0, 1] with m;({w}) = p., and
m1(A) = 0 for all sets A with |A| > 1

my is called Bayesian belief function

Exact knowledge modeled by ms : 2 — [0,1], my({wo}) = 1 and
m2(A) = 0 for all A # {wo}



Fuzzy Sets induce Plausibility Measures

Let variable T be temperature in °C (only integers)

Current but unknown value Ty is given by “ T is around 21°C"

Suppose a fuzzy set i is normal and has a finite number of different membership degrees.

Then p induces a plausibility measure Pl by

PI{x})= u(x), forallx, and PI(B) = max{Pl(x) :xeB} for all B.

Let m be the corresponding mass assignment m. Its focal element (i.e. the subsets with positive
mass) are nested : Al subset of A2, A2 subset of A3, etc ). The focal elements are the alpha cuts
of W.



Possibility and Necessity Measures

These ideas can be expressed in a simpler way by using possibility measures:
We describe an imprecise value by giving possibility degrees to all values. It would be

strange, if we consider no value as possible, so we say that a possibility distribution is a
function r:X = [0, 1]if there is atleastonex withrt(x ) =1

The corresponding possibility measure is defined by

M :29 - [0,1], M(B) = max{T(w):weB}



Properties of Possibility Measures

i) M(0) =0
i) N(Q) =1
i) T(AU B) = max{l(A),I1(B)} for all A, B C {2

Possibility of some set is determined by its “most possible” element

nec(2) =1 — (M) = 1 means closed world assumption:
“necessarily wgp € 2" must be true

Total ignorance: M(B) = 1,nec(B) =0 for all B # (), B # {2

Perfect knowledge: IM({w}) = nec({w}) = 0 for all w # wy and
N({wo}) = nec({woy) =1



Example

Example Domain Relation

color | shape | size

small
medinm

A O small
medinm
. ‘ medium

large
medium
medium

medinm
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>>OOB>P>O000O0

large

e 10 simple geometrical objects, 3 attributes.
e One object is chosen at random and examined.

e I[nferences are drawn about the unobserved attributes.



Example: Representation as a Relation

H B [ @ []
/\ /\
L]
O
large
medium medium

The reasoning space consists of a finite set £ of states.

The states are described by a set of n attributes A;,72=1,...,n,

)

. 1 1 : .
whose domains {a(l A aﬁ?}} can be seen as sets of propositions or events.

The events in a domain are mutually exclusive and exhaustive.

Rudolf Kruse Bayesian Networks



Example: Relation in a many-dimensional space

Relation Visual Description
color shape Size
H B [ O
L] O small
] O medium A
[] O small /|
L] O medium o
[] AN medium / |
] /\ large ) nedium
L] L] medium small
L] L] medium
L] AN medium
] A large Each cube represents one tuple.

The spatial representation helps to understand the decomposition
mechanism.

Rudolf Kruse Bayesian Networks



Example: Reasoning

e Let it be known (e.g. from an observation) that the given object is green.
This information considerably reduces the space of possible value combinations.

e From the prior knowledge it follows that the given object must be

o either a triangle or a square and

o elther medium or large.

H B[] O

small

/\
[]
O

large

medium

H B [ O
/\
[ ]
O
L large
/ medium
small




Example: Extension to possibility distributions

(80]90] 7070 all numbers in
H B [0 @ parts per 1000
40770110170 30
2010 20 20 70
30]30[20[ 0] [90
40780110170 ar%‘z s m |
30110 70| 60 A (20780770
60[ 602010 O] (40770120
A (20720110120 medium ©190]60] 30
01 [30( 10| 401 40 80
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A T40T80T10T70] L0 large [201 707201 70
(]1[30[ 10| 70|60 medium (6080 70 70
O [80190]20] 10 small [ 80900 40 40

Numbers state degrees of possibility of corresponding value
combination



Example: Reasoning

(0] 0] 070
EE 0D
0T 07070
0701020
0l 0010
07010770
0010160
0[0[0][10,
ATOTOT0T20 medium
[0 01040 70
Olol00]10
..Dmsmall
ATOTOT 070 40
0100160
OO0l 0 0]10

70
60
10
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70
large
medium
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all numbers in
parts per 1000

s m |
AN120170] 70
(1140|6020
O 10]10] 10
H B [ O

0|l 0] 070
0|l 0] 070
0| 0] 0140

From the information, that the object is green, we can derive information obout the
possibilities of shape and size. For high dimensional possilities the complexity can be
handled by using information about (conditional) independences



Possibilistic Networks

Example: Decomposition of a 21-dim — -
possibility distribution by using
independences between lower
dimensional possibility distributions .

WILEY SERIES IN COMPUTATIONAL STATISTICS

The (hyper-) graph visualized the
independence structure by separation
properties in the graph, and this
representation allows efficient reasoning
and learning methods in high dimensional
problems.

Christian Borgelt,
Matthias Steinbrecher and Rudolf Kruse

GRAPHICAL
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