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In set theory, operators are defined by propositional logics operator

Let X be universal set (often called universe of discourse). Then we define

A ∩ B = {x ∈ X | x ∈ A ∧ x ∈ B}
A ∪ B = {x ∈ X | x ∈ A ∨ x ∈ B}

Ac = {x ∈ X | x ∈/A} = {x ∈ X | ¬ (x∈ A)}

A ⊆ B if and only if (x ∈ A) → (x ∈ B) for all x ∈ X

Fuzzy Set Operators can be defined by using multivalues logics operators
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Standard Fuzzy Set Operators

intersection (“AND”),
union (“OR”),

complement (“NOT”).

(µ ∧ µ′)(x) :=  min{µ(x),µ′(x)}

(µ ∨ µ′)(x) :=max{µ(x),µ′(x)}

¬µ(x):= 1− µ(x)

µ is subset of µ′ if and only if µ ≤ µ′.

Theorem
(F(X),∧,∨,¬) is a complete distributive lattice, but no Boolean algebra.
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Fuzzy Set Complement



Fuzzy Complement/Fuzzy Negation

Definition
Let X be a given set and µ ∈ F(X ). Then the complement can be  
defined pointwise by µ̄ (x ) := ∼ (µ(x )) where ∼ : [0, 1] → [0, 1]  satisfies 
the conditions

∼(0) = 1, ∼(1) = 0

and

for x , y ∈ [0, 1], x ≤ y =⇒∼ x ≥ ∼ y (∼ is non-increasing).

Abbreviation: ∼ x := ∼(x)
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Strict and Strong Negations

Additional properties may be required
• x , y ∈ [0, 1], x < y =⇒∼ x > ∼ y (∼ is strictly decreasing)
• ∼ is continuous
• ∼∼ x = x for all x ∈ [0, 1] (∼ is involutive)

According to conditions, two subclasses of negations are defined:

Definition
A negation is called strict if it is also strictly decreasing and
continuous. A strict negation is said to be strong if it is involutive,too.

∼x = 1− x2, for instance, is strict, not strong, thus not involutive
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Fuzzy Set Intersection and Union



warm and hot ?



Zadeh‘ Intersection
a and b = min (a,b),  for all membership degrees a,b
(µwarm ∩ µhot)(x) = min( µwarm(x), µhot(x)),  for all real numbers x



Classical Intersection and Union

0
1

0 0
0 1

Classical set intersection represents logical conjunction.  

Classical set union represents logical disjunction.

Generalization from {0, 1} to [0, 1] as follows:

x ∧ y 0 1 x ∨ y 0 1
0
1

0 1
1 1
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Fuzzy Set Intersection and Union

Let A,B be fuzzy subsets of X, i.e. A,B ∈ F(X).

Their intersection and union are often defined pointwise using:

(A∩ B)(x) =⊤(A(x),B(x))

(A∪ B)(x) =⊥(A(x),B(x))

where ⊤ : [0, 1]2 → [0,1]

where ⊥ : [0, 1]2 → [0,1].
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Triangular Norms and Conorms

⊤ is a triangular norm (t-norm) ⇐⇒⊤ satisfies conditions T1-T4

⊥ is a triangular conorm (t-conorm) ⇐⇒⊥ satisfies C1-C4

Identity Law
T1: ⊤(x, 1) = x C1: ⊥(x, 0) = x

Commutativity
T2: ⊤(x,y) =⊤(y,x) C2: ⊥(x,y) =⊥(y,x)
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Associativity
T3: ⊤(x,⊤(y,z)) =⊤(⊤(x,y),z) C3: ⊥(x,⊥(y,z)) =⊥(⊥(x,y),z)

Monotonicity
T4: y ≤ z implies ⊤(x , y ) ≤ ⊤(x , z )   C4: y ≤ z implies⊥(x , y ) ≤ ⊥(x , z ).



Triangular Norms and Conorms II

Both identity law and monotonicity respectively imply
∀x ∈ [0,1] :⊤(0,x) = 0,
∀x ∈ [0,1] :⊥(1,x) = 1,

For any t-norm ⊤ :⊤(x,y) ≤ min(x,y),  for any t-conorm ⊥ :⊥(x,y) ≥ max(x,y).

x = 1 ⇒ T(0, 1) = 0 and
x ≤ 1⇒ T(x,0) ≤ T(1,0) = T(0,1) = 0
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De Morgan Triplet I

For every ⊤ and strong negation ∼, one can define t-conorm ⊥ by

⊥(x,y) =∼⊤(∼ x,∼ y), x,y ∈ [0,1].

Additionally, in this case⊤(x,y) =∼⊥(∼x,∼ y), x,y ∈ [0,1].
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De Morgan Triplet II

Definition

The triplet (⊤, ⊥, ∼) is called De Morgan triplet if and onlyif
⊤ is t-norm, ⊥ is t-conorm, ∼ is strong negation,

⊤,⊥ and∼ satisfy⊥(x,y) =∼⊤(∼x,∼ y).

In the following, some important De Morgan triplets will be shown,  

only the most frequently used and important ones.

In all cases, the standard negation ∼ x = 1 − x isconsidered.
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The Minimum and Maximum I

⊤min(x,y) = min(x,y), ⊥max(x,y) = max(x,y)

Minimum is the greatest t-norm and max is the weakest t-conorm.

⊤(x,y) ≤ min(x,y) and⊥(x,y) ≥ max(x,y) for any ⊤ and⊥
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The Special Role of Minimum and Maximum I

⊤min and ⊥max play key role for intersection and union, resp. In

a practical sense, they are very simple.

Apart from the identity law, commutativity, associativity and
monotonicity, they also satisfy the following properties for all x ,
y,z ∈ [0,1]:

Distributivity
⊥max(x,⊤min(y,z)) =⊤min(⊥max(x,y),⊥max(x,z)),
⊤min(x,⊥max(y,z)) =⊥max(⊤min(x,y),⊤min(x,z))

Continuity

⊤min and ⊥max are continuous.
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The Special Role of Minimum and Maximum II

Strict monotonicity on the diagonal

x < y implies⊤min(x,x) < ⊤min(y,y) and ⊥max(x,x) < ⊥max(y,y).

Idempotency

⊤min(x,x) = x, ⊥max(x,x) = x

Absorption

⊤min(x,⊥max(x,y)) = x, ⊥max(x,⊤min(x,y)) = x

Non-compensation
x < y < z imply ⊤min(x,z) ƒ=⊤min(y,y) and

⊥max(x,z) =ƒ ⊥max(y,y).
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The Minimum and Maximum II

⊤min and ⊥max can be easily processed numerically and visually,

e.g. linguistic values young and approx. 20 described by µy , µ20.

⊤min(µy , µ20) is shownbelow.

0

1 µy µ20

µy ∩ µ20

0 10 20 30 40 50
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The Product and Probabilistic Sum

⊤prod(x,y) = x · y, ⊥sum(x,y) = x +y − x · y
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The Łukasiewicz t-norm and t-conorm

⊤Łuka(x,y) = max{0, x +y − 1}, ⊥Łuka(x,y) = min{1, x +y}

⊤Łuka, ⊥Łuka are also called bold intersection and boundedsum.
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The Drastic Product and Sum

⊤−1(x,y) =
.

min(x,y)  
0

if max(x,y) = 1  
otherwise

⊥−1(x,y) =
.

max(x,y)  
1

if min(x,y) = 0  
otherwise

⊤−1 is the weakest t-norm, ⊥−1 is the strongest t-conorm.

⊤−1 ≤ ⊤ ≤ ⊤min, ⊥max ≤ ⊥ ≤ ⊥−1 for any ⊤ and ⊥
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Examples of Fuzzy Intersections

t-norm⊤min t-norm⊤prod

t-norm ⊤Łuka t-norm⊤−1

Note that all fuzzy intersections are contained within upper left graph  
and lower right one.
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Examples of Fuzzy Unions

t-conorm ⊥max t-conorm⊥sum

t-conorm ⊥Łuka t-conorm ⊥−1

Note that all fuzzy unions are contained within upper left graph and
lower right one.
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Continuous Archimedian t-norms and t-conorms

Often it is possible to representation functions with several inputs by a 
function with only one input , e.g.

K(x,y) = f (−1)(f (x) + f (y))

For a subclass of t-norms this is possible. The trick makes calculations simpler.

A t-norm ⊤ is called
(a) continuous if ⊤ is continuous
(b) Archimedian if ⊤ is continuous and ⊤(x,x) < x for all x ∈]0, 1[.

A t-conorm ⊥ is called
(a) continuous if ⊥ is continuous,

(b) Archimedian if ⊥ is continuous and ⊥(x,x) > x for all x ∈]0,1[.
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The concept of a pseudoinverse

f (−1)(y)=
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The concept of a pseudoinverse

f (−1)(y)=
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Continuous Archimedean t-norms
Theorem
A t-norm ⊤ is continuous and Archimedean if and only if thereexists
a strictly decreasing and continuous function f : [0, 1] → [0, ∞] with  f 
(1) = 0 suchthat

⊤(x,y) = f (−1)(f (x) + f (y)) (1)

where
(−1)f (x) =

.
f−1(x) if x ≤ f (0)
0 otherwise

is the pseudoinverse of f . Moreover, this representation is unique up  to 
a positive multiplicative constant.

⊤ is generated by f if ⊤ has representation(1).

f is called additive generator of ⊤.
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Additive Generators of t-norms – Examples

Find an additive generator f of ⊤Łuka(x,y) = max{x +y − 1, 0}.

for instance fŁuka(x) = 1− x

Łukathen, f (−1) (x) = max{1− x, 0}

ŁukaŁuka Łuka Łukathus ⊤ (x,y) = f (−1 )(f (x) + f (y))

Find an additive generator f of ⊤prod(x,y) = x · y.

to be discussed in the exercise

hint: use of logarithmic and exponential function
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Continuous Archimedean t-conorms
Theorem
A t-conorm ⊥ is continuous and Archimedean if and only if there
exists a strictly increasing and continuous function g : [0, 1] → [0,∞]
with g(0) = 0 such that

⊥(x,y) = g(−1)(g(x)+g(y)) (2)

where
(−1)g (x) =

.
g−1(x) if x ≤ g(1)
1 otherwise

is the pseudoinverse of g. Moreover, this representation is unique up  to 
a positive multiplicative constant.

⊥ is generated by g if ⊥ has representation (2).

g is called additive generator of⊥.
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Additive Generators of t-conorms – Two  
Examples

Find an additive generator g of ⊥Łuka(x,y) = min{x +y, 1}.

for instance gŁuka(x) = x

Łukathen, g(−1)(x) = min{x, 1}

ŁukaŁuka Łuka Łukathus ⊥ (x,y) = g(−1)(g (x) +g (y))

Find an additive generator g of ⊥sum(x,y) = x +y − x · y.

to be discussed in the exercise

hint: use of logarithmic and exponential function

Now, let us examine some typical families of operations.
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Sugeno-Weber Family I

For λ > 1 and x,y ∈ [0,1], define

⊤λ(x,y) = max
. x +y − 1+λxy

1+λ

Σ
, 0 ,

⊥λ(x,y) = min{x +y +λxy, 1} .

λ = 0 leads to ⊤Łuka and ⊥Łuka, resp.  λ → 

∞ results in ⊤prod and ⊥sum, resp.  λ → −1 

creates ⊤−1 and ⊥−1,resp.
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Sugeno-Weber Family II

Additive generators fλ of ⊤λ are

1− x

fλ(x) =1 − log(1+λx)
log(1+λ)

if λ = 0  
otherwise
.

{⊤λ}λ>−1 are increasing functions of parameter λ.  

Additive generators of ⊥λ are gλ(x) = 1− fλ(x).
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warm and hot ?



Zadeh‘ Intersection
a and b = min (a,b),  for all membership degrees a,b
(µwarm ∩ µhot)(x) = min( µwarm(x), µhot(x)),  for all real numbers x



Fuzzy Sets Inclusion



Subset Property
For Classical Sets x ∈ A ⇒  x ∈ B, 

For Fuzzy Sets : x ∈ µ ⇒  x ∈µ ′
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Fuzzy Set Implication



How to model
if speed is fast then distance is high

A straightforward solution with a multivalued logic

- Define fuzzy sets for fast and high
- Determine for all speed values x and all distance values y the
membership degrees (i.e. its truth value )

- Calculate for each pair x and y the truth value of the implication

µfast(x) ⇒ µhigh(y)



Definition of a Multivalued Implication

1. One way of defining I is to use the property that in classical logic the
propositions a ⇒ b and ¬a∨ b have the same truth values for all truth
assignments to a and b.
If we model the disjunction and negation as t-conorm and fuzzy 
complement, resp., then for all a, b ∈ [0,1] the following defininion
of a fuzzy implication seems reasonable:

I(a, b) =⊥(∼a,b).

2. Another way is to use the concept of a residuum in classical logic:  a ⇒ b and
max{x ∈ {0,1} | a∧ x ≤ b} ha v e  t h e  same  truth val ues forall truthassignmentsfor
a, and  b.  If in a generalized logic the conjunction is modelled by a t-norm, 
then a reasonable generalization could be:

I(a, b) = sup{x ∈ [0,1] | ⊤(a,x) ≤ b} .
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Definition of a Multivalued Implication
3.  Another proposal is to use the fact that, in classical logic, the

propositions a ⇒ b and ¬a∨ (a∧ b) have the same truth for all 
truth assignments. 

A possible extension to many valued logics is therefore
I(a, b) =⊥(∼a,⊤(a,b)),

where (⊤, ⊥,∼) should be a De Morgantriplet.

So again, the classical definition of an implication is unique, whereas there is

a „zoo“ of fuzzy implications.

Typical question for applications: What to use when and why? 
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S-Implications
Implications based on I(a, b) =⊥(∼a, b) are called S-implications.  

Symbol S is often used to denote t-conorms.

Four well-known S-implications are based on ∼ a = 1− a:

Name I(a, b) ⊥(a,b)

Kleene-Dienes Imax(a,b) = max(1− a,b) max(a,b)

Reichenbach Isum(a,b) = 1− a +ab a +b − ab

Łukasiewicz IŁ(a,b) = min(1, 1 − a +b) min(1, a + b)

b, if a =1


b, if a =0

largest I−1(a, b) = 1 − a, if b =0


a, if b = 0
 1, 1, otherwisotherwis

e
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R-Implications

Imin(a,b) = sup{x | min(a,x) ≤ b} =

I(a, b) = sup{x ∈ [0,1] | ⊤(a,x) ≤ b} leads to R-implications.  

Symbol R represents close connection to residuated semigroup.  

Three well-known R-implications are based on ∼ a = 1− a:
• Standard fuzzy intersection leads to Gödel implication

.
1, if a ≤ b  
b, if a > b.

• Product leads to Goguen implication

Iprod(a, b) = sup{x | ax ≤ b} =
.

1, if a ≤ b  
b/a, if a > b.

• Łukasiewicz t-norm leads to Łukasiewicz implication

IŁ(a, b) = sup{x | max(0,a +x − 1) ≤ b} = min(1, 1− a +b).
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QL-Implications
Implications based on I(a, b) =⊥(∼a,⊤(a,b)) are called
QL-implications (QL from quantum logic).

Four well-known QL-implications are based on ∼ a = 1 −a:
• Standard min and max lead to Zadeh implication

IZ(a,b) = max[1− a,min(a,b)].

• The algebraic product and sum lead to

Ip(a,b) = 1− a +a2b.

• Using ⊤Ł and ⊥Ł leads to Kleene-Dienes implicationagain.
• Using ⊤−1 and ⊥−1 leads to


 b,

Iq(a, b) = 1 −a,
 1,

if a =1
if a ƒ= 1,b ƒ=  1if 
a ƒ=1, b =  1.
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Axioms

All I come from generalizations of the classical implication.
They collapse to the classical implication when truth values are 0 or 1.  

Generalizing classical properties leads to following axioms:

1) a ≤ b implies I(a, x) ≥ I(b, x)
2)a ≤ b implies I(x,a) ≤ I(x,b)  
3) I(0, a) = 1
4) I(1, b) =b
5) I(a, a) =1
6) I(a, I(b, c)) = I(b, I(a, c))
7) I(a, b) = 1 if and only if a ≤b

(monotonicity in 1st argument) 
(monotonicity in 2nd argument)

(dominance of falsity) 
(neutrality of truth)

(identity)
(exchange property)
(boundary condition)

8) I(a, b) = I(∼ b,∼a) for fuzzy complement∼
9) I is a continuous function

(contraposition)  
(continuity)
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Generator Function

I that satisfy all listed axioms are characterized by this theorem:

Theorem 2A function I : [0, 1] → [0, 1] satisfies Axioms 1–9 of fuzzy implications  for a 
particular fuzzy complement ∼ if and only if there exists a strict  
increasing continuous function f : [0, 1] → [0, ∞) such that f (0) =0,

I(a, b) = f (−1)(f (1)− f (a)+ f (b))

for all a, b ∈ [0, 1],and

∼a = f−1(f (1)− f (a))

for all a ∈ [0,1].
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Example
Consider fλ(a) = ln(1+λa) with a∈ [0,1] and λ > 0.  Its 

pseudo-inverse is

λf 
(−1)(a)=

. ea−1,λ
1,

if 0 ≤ a ≤ ln(1+λ)  
otherwise.

The fuzzy complement generated by f for all a ∈ [0, 1]is

1− a
nλ(a) = 1+λa.

The resulting fuzzy implication for all a, b ∈ [0, 1] isthus
.

Iλ(a, b) = min 1,
1+λa

1− a +b +λbΣ
.

If λ ∈ (−1, 0), then Iλ is called pseudo-Łukasiewicz implication.
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