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In set theory, operators are defined by propositional logics operator

Let X be universal set (often called universe of discourse). Then we define

AnNnB={xEX| xXEAAXEB}
AUB={xEX| xXEAV XEB}
AC={xeX| xdA}={xeEX| - (xEA)}

ACBifandonlyif(x€A) > (x € B) forallx € X

Fuzzy Set Operators can be defined by using multivalues logics operators
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Standard Fuzzy Set Operators 41\

AN

(MAR)(X) = min{u(x), K ()} intersection (“AND”), X

(kv i)(x) =max{u(x),u'(x)}  union(“OR"),
—l(x):= 1- p(x) complement (“NOT”).

W is subset of ' ifand only if u <.

Theorem
(F(X),A,V,-) is a complete distributive lattice, but no Boolean algebra.
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Standard Fuzzy Set Operators 41\ M

(MAR)X) = min{u(x), (X)) intersection (“AND”), X

(kv i)(x) =max{u(x),u'(x)}  union(“OR"),

—l(x):= 1- p(x) complement (“NOT”).

W is subset of ' ifand only if u <.

Theorem
(F(X),A,V,-) is a complete distributive lattice, but no Boolean algebra.
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Fuzzy Complement/Fuzzy Negation

Definition
Let X be a given set and p € F(X). Then the complement fi can be
defined pointwise by fi(x) := ~ (uu(x)) where ~ :[0,1] — [0,1]
satisfies the conditions

~(0)=1, ~(1)=0

and

for x,y € [0,1], x <y = ~x >~y (~ isnon-increasing).

Abbreviation: ~ x := ~(x)
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Strict and Strong Negations

Additional properties may be required
e x,y€[0,1], x< y==~ x> ~ y(~ is strictly decreasing)
* ~ s continuous

e ~~x=xforallx €0, 1] (~ is involutive)

According to conditions, two subclasses of negations are defined:
Definition

A negation is called strict if it is also strictly decreasing and
continuous. A strict negation is said to be strong if it is involutive,too.

~x =1-x2, for instance, is strict, not strong, thus not involutive
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Families of Negations

standard negation: ~x=1—x
1 ifx<@
threshold negation: ~p(x) = i ;
0 otherwise
Cosine negation: ~X = % (1 + cos(mx))
Sugeno negation: (x)= = A>-—1
= . ' A T e

Yager negation:

1 1

0 1 0 1
standard cosine




Fuzzy Set Intersection and Union
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Zadeh’ Intersection
a and b = min (a,b), for all membership degrees a,b

(Mwarm n Mhot)(x) = min( Uwarm(x), Plhot(x)), for all real numbers x
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Classical Intersection and Union

Classical set intersection represents logical conjunction.

Classical set union represents logical disjunction.
Generalization from {0.1} to [0, 1] as follows:

xAy |0 1 X

= o<

= Ol

—= |
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Fuzzy Set Intersection and Union

Let A, B be fuzzy subsets of X, i.e. A,B € F(X).

Their intersection and union are often defined pointwise using:

(AN B)(x) = T(A(x), B(x)) where T:[0,11>>[0,1]
(AU B)(x) = L(A(x), B(x)) where 1:[0,1)2> [0,1].
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Triangular Norms and Conorms

T is a triangular norm (t-norm) <=T satisfies conditions T1-T4

1 is a triangular conorm (t-conorm) &= 1 satisfies C1-C4

Identity Law

T1: T(x, 1) =x C1: L(x,0)=x
Commutativity

T2: T(x,y)=T(y,x) C2: L(x,y)=L(y,x)
Associativity

T3: Tix, T(y,2)) = T(T(x,y),2) C3: L(x, L(y,2)) = L(L(x,y),2)

Monotonicity
T4:y<zimplies T(x,y)<T(x,z) C4:y<zimplies L(x,y)<L(x,z).
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Triangular Norms and Conorms |

Both identity law and monotonicity respectively imply
Vx €[0,1]: T(0,x) =0,
Vx €[0,1]: L(1,x)=1,

For any t-norm T :T(x,y) < min(x,y), for any t-conorm L :1(x,y) = max(x,y).

x=1=T(0,1)=0and
x<1= T(x,0)< T(1,0)=T(0,1) =0
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De Morgan Triplet|

Forevery T and strong negation ~, one can define t-conorm L by
Llxy)=~T(~x,~y), x,y €[0,1].

Additionally, in this case T(x,y) =~ L(~x,~y), x,y € [0,1].
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De Morgan Tripletll

Definition

The triplet (T, 1, ~) is called De Morgan triplet if and onlyif
T is t-norm, L is t-conorm, ~ is strong negation,

T,L and ~ satisfy L(x,y) =~ T(~x,~y).

In the following, some important De Morgan triplets will be shown,
only the most frequently used and important ones.

In all cases, the standard negation ~ x = 1 — x is considered.
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The Minimum and Maximum|

Tmin(x,y) = min(x,y), Lmax(x,y) = max(x,y)
Minimum is the greatest t-norm and max is the weakest t-conorm.

T(x,y) < min(x,y) and L(x,y) = max(x,y) forany T and L
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The Special Role of Minimum and Maximuml

Tminand Lmax play key role for intersection and union, resp. In

a practical sense, they are very simple.

Apart from the identity law, commutativity, associativity and
monotonicity, they also satisfy the following properties for all x,
v,z €[0,1]:

Distributivity
Lmax(X, Tmin(y,2)) = Tmin(Lmax(X, ¥), Lmax(x, 2)),
Tmin(X, Lmax(¥,2)) = Lmax(Tmin(X, ¥), Tmin(x,2))

Continuity

Tmin and Lmax are continuous.
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The Special Role of Minimum and Maximum ||

Strict monotonicity on the diagonal

x < y implies Tmin(x, %) < Thminly,¥) and Lpax(x, x) < Linax(¥s ¥).

Idempotency

TrindiGd) =% LinedBd) =5

Absorption
Tmin(x-—Lmax(X-Y)) =X, J—max(X-—|—rr'|'|n("'(-y)) =X
Non-compensation

x <y < zimply Trin(X,2) # Tmin(y,y) and
J_I'I'IEIX(X? Z) ?é J—max(yy]



AT FAKULTAT FOR
6 INFORMATIK

The Minimum and Maximumll

Tminand Lmaxcan be easily processed numerically and visually,
e.g. linguistic values young and approx. 20 described by p, p2o.

Tmin(My , K20) is shownbelow.

40 50
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The Product and Probabilistic Sum

=X+y-X'y

Lsum(x,y)

=Xy,

Tpl’Od(XI y)
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The tukas

t-norm and t-conorm

iewicz

min{1, x +y}

J-tuka(xr y)

1}[

are also called bold intersection and boundedsum.

=max{0, x+y -

T’r_uka(xl y)

Trukar Ltuka

-L’r_uka

T’r_uka
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The Drastic Product and Sum

min(x,y) if max(x,y) =1
T =
1(x:¥) {(] otherwise

max(x,y) if min(x,y)=0
gy Tobarl W minar)
1 otherwise
T_1 is the weakest t-norm, L _1 is the strongest t-conorm.

T = T<Taims  Liaes L< 1 s5:dorsany Tand |
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Examples of Fuzzy Intersections

t-norm T min

/R

t-norm Tprod

t-norm Ty uka

t-norm T-1

Note that all fuzzy intersections are contained within upper left graph

and lower right one.
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Examples of Fuzzy Unions

t-COﬂOFm J_max

t-conorm L;yka

t-conorm Lsym

t-conorm L_;

Note that all fuzzy unions are contained within upper left graph and

lower right one.



AT FAKULTAT FOR
G INFORMATIK

Continuous Archimedian t-norms and t-conorms

Often it is possible to representation functions with several inputs by a
function with only one input, e.g.

K(x,y) = foD(F(x) +£(y)
For a subclass of t-norms this is possible. The trick makes calculations simpler.

At-norm T is called
(a) continuous if T is continuous
(b) Archimedian if T is continuous and T(x,x) < x for all x €]0, 1[.

A t-conorm L is called
(a) continuous if 1 is continuous,

(b) Archimedian if L is continuous and L(x,x)> x for all x €]0, 1[.
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The concept of a pseudoinverse

Definition
Let f : [a, b] — [c, d] be a monotone function between two closed
subintervals of extended real line. The pseudoinverse function to f is

the function f(=1) : [c, d] — [a, b] defined as

FD(y) = sup{x € [a,b] | f(x) <y} for f non-decreasing,
| sup{x € [a,b] | f(x) >y} for f non-increasing.
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The concept of a pseudoinverse d
protap Fdoes wof

-C)'l')'l'

Definition
Let f : [a, b] — [c, d] be a monotone function between two closed
subintervals of extended real line. The pseudoinverse function to f is

the function f(=1) : [c, d] — [a, b] defined as

FD(y) = sup{x € [a,b] | f(x) <y} for f non-decreasing,
| sup{x € [a,b] | f(x) >y} for f non-increasing.
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- ’ Archimedian t-norms

heorem )
t-norm T ig ' " Archimedaan if and only it there exists

a strictly decreasing and continuous function f : [0,1] — [0, o) with
f(1) = 0 such that

T(x,y) = fCV(f(x) + £(¥)) (1)

where
F 0y ifxtHD
Ic'(—l)(x) = ( ) L ( )
0 otherwise
is the pseudoinverse of f. Moreover, this representation is unique up

to a positive multiplicative constant.

T is generated by f if T has representation (1).
f is called additive generator of T.
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Additive Generators of t-norms — Examples

Find an additive generator f of Tyuka(x,y) = max{x +y — 1, 0}.
for instance fyyka(x) =1 — x

then, ft(;kla)(x) = max{l— x; 0}

thus Tyuka(x,y) = fL(LTkla)(fLuka(X) + fruka(y))

Find an additive generator f of T o4(x.y)=x"-y.

to be discussed in the exercise

hint: use of logarithmic and exponential function
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. ~~ - - Archimedian t-conorms

Theorem v .
A t-conorm L . - - .- - Archimedaan if and only if there

exists a strictly increasing and continuous function g : [0,1] — [0, 0]
with g(0) = 0 such that

L(x,y) =g V(g(x) + &(y)) (2)

where
g T {gl(x) if x < g(1)

i otherwise

is the pseudoinverse of g. Moreover, this representation is unique up
to a positive multiplicative constant.

L is generated by g if L has representation (2).
g is called additive generator of L.



0770 VON GUERICKE
i FAKULTAT FUR
G G IN F INFORMATIK
%

Additive Generators of t-conorms — Two
Examples

Find an additive generator g of Lyka(x.y) = min{x +y, 1}.
for instance gy ka(x) = x

then, g,(_::a)(x) = min{x, 1}

thus Lpua(x, ) = 2 o2 (Etuka (%) + Etuka ()

Find an additive generator g of Lgym(X.y) =x+y —x-y.
to be discussed in the exercise

hint: use of logarithmic and exponential function

Now, let us examine some typical families of operations.
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Sugeno-Weber Family |

For A >l and x,y € [0,1], define

—1+A
T)\(x,y)max{x+y1+)\+ i 0},

La(x,y) = mm{x+y+ Ixy, 1}.

A =0 leads to Tyyka and Lyka, resp.
A — 0o results in Tproq and Lgym, resp.

A — —1 creates T_1 and L_q, resp.
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Sugeno-Weber Family Il

Additive generators fy of T are

f()— 1—x if A=0
A= 1—% otherwise.

{Tx}r>_1 are increasing functions of parameter \.

Additive generators of Ly are gy(x) =1 — fi(x).
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Zadeh’ Intersection
a and b = min (a,b), for all membership degrees a,b

(Mwarm n Mhot)(x) = min( Uwarm(x), Plhot(x)), for all real numbers x



Fuzzy Sets Inclusion
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Subset Property

For Classical Sets x EA= xEB, Q’A
8 (b

"B e, OO0

A
As8 | tfacy

For FuzzySets: x Eu = xEW

MOAA




Fuzzy Set Implication
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How to model
if speed is fast then distance is high

A straightforward solution with a multivalued logic

- Define fuzzy sets for fast and high

- Determine for all speed values x and all distance values y the
membership degrees (i.e. its truth value )

- Calculate for each pair x and y the truth value of the implication

ufast(x) = uhigh(y)
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Definition of a Multivalued Implication

One way of defining / is to use the property that in classical logic the
propositions a = b and -aV b have the same truth values for all truth
assignments to a and b.

If we model the disjunction and negation as t-conorm and fuzzy
complement, resp., then for all a, b € [0,1] the following defininion
of a fuzzy implication seems reasonable:

l(a,b)=L(~a,b).

Another way is to use the concept of a residuum in classical logic: a = b and
max{x € {0,1} | aAx < b} have the same truthvaluesforalltruth assignmentsfor
a,and b. If in a generalized logic the conjunction is modelled by a t-norm,
then a reasonable generalization could be:

I(a,b) =sup{x € [0,1] | T(a,x)< b}.
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Definition of a Multivalued Implication

3. Another proposal is to use the fact that, in classical logic, the

propositionsa = b and -aV (a A b) have the same truth for all
truth assignments.

A possible extension to many valued logics is therefore

I(a,b) = L(~a,T(a,b)),
where (T, 1, ~) should be a De Morgantriplet.

So again, the classical definition of an implication is unique, whereas there is
a,zoo” of fuzzy implications.

Typical question for applications: What to use when and why?



AT FAKULTAT FOR
G INFORMATIK

S-Implications
Implications based on /(a. b) = 1 (~ a, b) are called S-implications.

Symbol S is often used to denote f-conorms.

Four well-known S-implications are based on ~a=1-— a:

Name ‘ I(a, b) ‘ 1(a,b)
Kleene-Dienes | Inax(a, b) = max(1 — a, b) | max(a, b)
Reichenbach ‘ lum(a,b) =1—a+ ab ‘ at+b—ab
tukasiewicz ‘ It(a,b) = min(1, 1 —a+ b) ‘ min(1, a + b)
b, ifag=1 b, ifa=0
largest Lifa,b)=41—3, ifb=0 a, ifb=0

L otherwise 1, otherwise




ra i
A

R-Implications
I(a, b) =sup{x €[0,1] | T(a,x) < b} leads to R-implications.
Symbol R represents close connection to residuated semigroup.

Three well-known R-implications are based on ~a =1 — a:
e Standard fuzzy intersection leads to Godel implication

1, ifa<éb
kin{a:b) = sup {c | min(ax) < 6} =47 Rz
b, ifa>b.
e Product leads to Goguen implication
1, ifa<hb
I . b = < b — -
prd{ k) = suprie| = % ) {b/a. if 2> b.

e tukasiewicz t-norm leads to tukasiewicz implication

Iy(a,b) = sup {x | max(0.a +x —1) < b} = min(1, 1 — a+ b).
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QL-Implications
Implications based on [(a, b) = L(~a, T(a, b)) are called
QL-implications (QL from quantum logic).

Four well-known QL-implications are based on ~a =1 — a:
e Standard min and max lead to Zadeh implication

I7(a, b) = max[1l — a, min(a, b)].
e The algebraic product and sum lead to
Ip(a,b) = 1 — a+ a’b.
e Using Ty and Ly leads to Kleene-Dienes implication again.
e Using T 1 and L 4 leads to
b, ifa=1
B8, b)=% b-—a, WatLb=t1
1 if gt lyb =1,
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All I come from generalizations of the classical implication.
They collapse to the classical implication when truth values are 0 or 1.
Generalizing classical properties leads to following Pyoro,sitiov\s :

1) a < b implies /(a, x) > I(b, x) (monotonicity in Ist argument)

2) a < bimplies I(x,a) < I(x,b)  (monotonicity in 2nd argument)
3) I(Ga) =1 (dominance of falsity)
4) I(1,b)=b (neutrality of truth)
5) I(a,a) = (identity)
6) I(a,l(b, )) = l{b; a,c)) (exchange property)
7) I(a,b) =1if and only if a < b (boundary condition)
8) I(a,b) = I(~ b, ~ a) for fuzzy complement ~ (contraposition)
9) /is a continuous function (continuity)
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Generator Function

I that satisfy all listed axioms are characterized by this theorem:

Theor
A functfon [:]0,1]% — [0, 1] satisfies Axioms 1-9 of fuzzy implications

for a particular fuzzy complement ~ if and only if there exists a strict
increasing continuous function f : [0,1] — [0, 00) such that f(0) =0,

I(a,b) = FED(F(1) — f(a) + f(b))
for all a, b € [0,1], and
~a= (1) ~ £(a)
for all a € [0,1].
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Example
Consider fy(a) = In(1 + Aa) with a € [0,1] and A > 0.
Its pseudo-inverse is

£ iz ax
f)\(_l)(a)—{ % b if 0 <a<In(l+A)

il otherwise.

The fuzzy negatisn generated by ffor all a € [0,1] is

l=a
BilE)= 1+Xa
The resulting fuzzy implication for all a,b € [0, 1] is thus
) l—a+b+Ab
l)\(é‘. b) = min (1 H—)\‘g)

If A € (—1,0), then /) is called pseudo-tukasiewicz implication.
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