Extension Principle
 How to "fuzzify" classical methods

Prof. Dr. Rudolf Kruse

$$
\begin{array}{lc}
\text { Addition of Numbers } & \text { Addition of sets } \\
+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} & +: P(\mathbb{R}) \times B(\mathbb{R}) \rightarrow 0(\mathbb{R}) \\
+(3,4)=3+4=7 & (A, B) \mapsto\{x+g \mid x \in A, y \in B\} \\
(3,4) \mapsto 7 & {[1,2]+[3,4]=[4,6]}
\end{array}
$$

How to extend $\phi: X^{n} \rightarrow Y$ to $\hat{\phi}: \mathcal{F}(X)^{n} \rightarrow \mathcal{F}(Y)$?
Let $\mu \in \mathcal{F}(\mathbb{R})$ be a fuzzy set of the imprecise concept "about 2 ".
Then the degree of membership $\mu(2.2)$ can be seen as truth value of the statement " 2.2 is about equal to 2 ".
Let $\mu^{\prime} \in \mathcal{F}(\mathbb{R})$ be a fuzzy set of the imprecise concept "old".
Then the truth value of " 2.2 is about equal 2 and 2.2 is old" can be seen as membership degree of 2.2 w.r.t. imprecise concept "about 2 and old".

Reminder: Operating with Truth Values

Any $T(\perp)$ can be used to represent conjunction (disjunction).
However, now only $T_{\text {min }}$ and $\perp_{\text {max }}$ shall be used.

Let P be set of imprecise statements that can be combined by and, or. truth : $P \rightarrow[0,1]$ assigns truth value $\operatorname{truth}(a)$ to every $a \in P$.
$\operatorname{truth}(a)=0$ means a is definitely false.
$\operatorname{truth}(a)=1$ means a is definitely true.
If $0<\operatorname{truth}(a)<1$, then only gradual truth of statement a.

Extension Principle

Combination of two statements $a, b \in P$:

$$
\begin{aligned}
& \operatorname{truth}(a \text { and } b)=\operatorname{truth}(a \wedge b)= \\
& \min \{\operatorname{truth}(a), \operatorname{truth}(b)\}, \\
& \operatorname{truth}(a \text { or } b)=\operatorname{truth}(a \vee b)=\max \{\operatorname{truth}(a), \operatorname{truth}(b)\}
\end{aligned}
$$

For infinite number of statements $a_{i}, i \in I$:

$$
\begin{aligned}
\operatorname{truth}\left(\forall i \in I: a_{i}\right) & =\inf \left\{\operatorname{truth}\left(a_{i}\right) \mid i \in I\right\}, \\
\operatorname{truth}\left(\exists i \in I: a_{i}\right) & =\sup \left\{\operatorname{truth}\left(a_{i}\right) \mid i \in I\right\}
\end{aligned}
$$

This concept helps to extend $\phi: X^{n} \rightarrow Y$ to $\hat{\phi}: \mathcal{F}(X)^{n} \rightarrow \mathcal{F}(Y)$.

- Crisp tuple $\left(x_{1}, \ldots, x_{n}\right)$ is mapped to crisp value $\phi\left(x_{1}, \ldots, x_{n}\right)$.
- Imprecise descriptions $\left(\mu_{1}, \ldots, \mu_{n}\right)$ of $\left(x_{1}, \ldots, x_{n}\right)$ are mapped to fuzzy value $\hat{\phi}\left(\mu_{1}, \ldots, \mu_{n}\right)$.

Example - How to extend the addition?

$+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, \quad(a, b) \mapsto a+b$
Extensions to sets: $+: 2^{\mathbb{R}} \times 2^{\mathbb{R}} \rightarrow 2^{\mathbb{R}}$

$$
(A, B) \mapsto A+B=\{y \mid(\exists a)(\exists b)(y=a+b) \wedge(a \in A) \wedge(b \in B)\}
$$

Extensions to fuzzy sets:

$$
+: \mathcal{F}(\mathbb{R}) \times \mathcal{F}(\mathbb{R}) \rightarrow \mathcal{F}(\mathbb{R}), \quad\left(\mu_{1}, \mu_{2}\right) \mapsto \mu_{1} \oplus \mu_{2}
$$

$\operatorname{truth}\left(y \in \mu_{1} \oplus \mu_{2}\right)=\operatorname{truth}\left((\exists a)(\exists b):(y=a+b) \wedge\left(a \in \mu_{1}\right) \wedge\left(b \in \mu_{2}\right)\right)$

$$
\begin{aligned}
= & \sup _{a, b}\left\{\operatorname{truth}(y=a+b) \wedge \operatorname{truth}\left(a \in \mu_{1}\right) \wedge\right. \\
& \left.\operatorname{truth}\left(b \in \mu_{2}\right)\right\}
\end{aligned}
$$

$$
=\sup _{a, b: y=a+b}\left\{\min \left(\mu_{1}(a), \mu_{2}(b)\right)\right\}
$$

Example - How to extend the addition?

Example - How to extend the addition?

Extension to Sets

Definition

Let $\phi: X^{n} \rightarrow Y$ be a mapping. The extension $\hat{\phi}$ of ϕ is given by

$$
\begin{aligned}
\hat{\phi}:\left[2^{X}\right]^{n} & \rightarrow 2^{Y} \quad \text { with } \\
\hat{\phi}\left(A_{1}, \ldots, A_{n}\right) & =\left\{y \in Y \mid \exists\left(x_{1}, \ldots, x_{n}\right) \in A_{1} \times \ldots \times A_{n}:\right. \\
& \left.\phi\left(x_{1}, \ldots, x_{n}\right)=y\right\} .
\end{aligned}
$$

Extension to Fuzzy Sets

Definition

Let $\phi: X^{n} \rightarrow Y$ be a mapping. The extension $\hat{\phi}$ of ϕ is given by
$\hat{\phi}:[\mathcal{F}(X)]^{n} \rightarrow \mathcal{F}(Y)$ with

$$
\begin{aligned}
\hat{\phi}\left(\mu_{1}, \ldots, \mu_{n}\right)(y)=\sup \{ & \min \left\{\mu_{1}\left(x_{1}\right), \ldots, \mu_{n}\left(x_{n}\right)\right\} \mid \\
& \left.\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \wedge \phi\left(x_{1}, \ldots, x_{n}\right)=y\right\}
\end{aligned}
$$

assuming that $\sup \emptyset=0$.

Example I

Let fuzzy set "approximately 2 " be defined as

$$
\mu(x)= \begin{cases}x-1, & \text { if } 1 \leq x \leq 2 \\ 3-x, & \text { if } 2 \leq x \leq 3 \\ 0, & \text { otherwise }\end{cases}
$$

The extension of $\phi: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{2}$ to fuzzy sets on \mathbb{R} is

$$
\begin{aligned}
\hat{\phi}(\mu)(y) & =\sup \left\{\mu(x) \mid x \in \mathbb{R} \wedge x^{2}=y\right\} \\
& = \begin{cases}\sqrt{y}-1, & \text { if } 1 \leq y \leq 4 \\
3-\sqrt{y}, & \text { if } 4 \leq y \leq 9 \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Example II

The extension principle is taken as basis for "fuzzifying" whole theories.

Fuzzy Sets of IR

There are many different types of fuzzy sets $\mu: \mathbb{R} \rightarrow[0,1]$,
They play important role in many applications, e.g. fuzzy control, decision making, approximate reasoning, optimization, and statistics with imprecise data.

In most applications the fuzzy sets are very simple functions, in some applications these functions are more complicated and difficult to interprete.

Some Special Fuzzy Sets I

Here, we only consider special classes $\mathcal{F}(\mathbb{R})$ of fuzzy sets μ on \mathbb{R}.

Definition

(a) $\quad \mathcal{F}_{N}(\mathbb{R}) \stackrel{\text { def }}{=}\{\mu \in \mathcal{F}(\mathbb{R}) \mid \exists x \in \mathbb{R}: \mu(x)=1\}$,
(b) $\quad \mathcal{F}_{C}(\mathbb{R}) \stackrel{\text { def }}{=}\left\{\mu \in \mathcal{F}_{N}(\mathbb{R}) \mid \forall \alpha \in(0,1]:[\mu]_{\alpha}\right.$ is compact $\}$,
(c) $\quad \mathcal{F}_{l}(\mathbb{R}) \stackrel{\text { def }}{=}\left\{\mu \in \mathcal{F}_{N}(\mathbb{R}) \mid \forall a, b, c \in \mathbb{R}: c \in[a, b] \Rightarrow\right.$ $\mu(c) \geq \min \{\mu(a), \mu(b)\}\}$.

Some Special Fuzzy Sets II

An element in $\mathrm{F}_{N}(\mathrm{IR})$ is called normal fuzzy set:

- It's meaningful if $\mu \in \mathrm{F}_{N}(\mathrm{IR})$ is used as imprecise description of an existing (but not precisely defined) set $\subseteq \mathbb{I}$.
- In such cases it would not be plausible to assign maximum membership degree of 1 to no single real number at all.

Sets in $F_{C}(\mathbb{R})$ are uppersemi-continuous:

- Function f is upper semi-continuous at point x_{0} iff $\limsup _{x \rightarrow x_{0}} f(x) \leq f\left(x_{0}\right)$.
- This property simplifies arithmetic operations.

Fuzzy sets in $F_{/}(\mathrm{IR})$ are called fuzzy intervals:

- The are normal and fuzzy convex.
- Their core is a classical interval.
- If $\mu \in F_{/}(\mathbb{R})$ is used for describing an imprecise real number, then often people say: $\boldsymbol{\mu}$ is a fuzzy number.

Basic Types of Fuzzy Sets

symmetric bell-shaped

right-open sigmoid

left-open sigmoid

Fuzzy Variables

The concept of a fuzzy sets plays fundamental role in formulating fuzzy variables.

These are variables whose states are fuzzy sets.
When the fuzzy sets represent linguistic concepts, e.g. very small, small, medium, etc.
then final constructs are called linguistic variables.

Each linguistic variable is defined in terms of base variable which is a variable in classical sense, e.g. temperature, pressure, age.

Linguistic terms representing approximate values of the base variable that are captured by appropriate fuzzy sets.

Linguistic Variable

Each linguistic variable is defined by a quintuple (v, T, X, g, m), where

- v name of the variable
- T set of linguistic terms of v
- $X \subseteq \mathbb{R}$ base
- g grammar: syntactic rules for generating a language of linguistic terms
- meaning: $m: T \rightarrow \mathrm{~F}(X)$ assigns the semantics $m(t)$ to every $t \in T$

Operations on Linguistic Variables

To deal with linguistic variables, consider

- not only set-theoretic operations
- but also arithmetic operations on fuzzy numbers (i.e. interval arithmetic).

Statistics with linguistic data

- Given a sample = (small, medium, small, large, ...).
- How to define mean value or standard deviation?

Analysis of Linguistic Data

Example - Application of Linguistic Data

Consider the problem to model the climatic conditions of several towns.

A tourist may want information about tourist attractions.
Assume that linguistic random samples are based on subjective observations of selected people, e.g.

- climatic attribute clouding
- linguistic values cloudless, clear, fair, cloudy, ...

Example - Linguistic Modeling by an Expert

The attribute clouding is modeled by elementary linguistic values, e.g

```
            cloudless \(\mapsto \operatorname{sigmoid}(0,-0.07)\)
            clear \(\mapsto \operatorname{Gauss}(25,15)\)
            fair \(\mapsto \operatorname{Gauss}(50,20)\)
            cloudy \(\mapsto \operatorname{Gauss}(75,15)\)
            overcast \(\mapsto \operatorname{sigmoid}(100,0.07)\)
            exactly \((x) \mapsto\) exact \((x)\)
            approx \((x) \mapsto \operatorname{Gauss}(x, 3)\)
            between \((x, y) \mapsto\) rectangle \((x, y)\)
approx_between \((x, y) \mapsto \operatorname{trapezoid}(x-20, x, y, y+20)\)
where \(x, y \in[0,100] \subseteq \mathbb{R}\).
```


Example

Gauss (a, b) is, e.g. a function defined by

$$
f(x)=\exp \left(-\left(\frac{x-a}{b}\right)^{2}\right), \quad x, a, b \in \mathbb{R}, \quad b>0
$$

induced language of expressions:

$$
\begin{aligned}
\text { <expression> }:= & \text { <elementary linguistic value> | } \\
& (\text { <expression }>) \mid \\
& \{\text { not } \mid \text { dil } \mid \text { con } \mid \text { int }\}<\text { expression }>\mid \\
& \text { <expression }>\{\text { and } \mid \text { or }\} \text { <expression> },
\end{aligned}
$$

e.g. approx (x) and cloudy is represented by function $\min \{\operatorname{Gauss}(x, 3), \operatorname{Gauss}(75,15)\}$.

Example - Linguistic Random Sample

Attribute	$:$	Clouding
Observations	$:$	Limassol, Cyprus
$2009 / 10 / 23$	$:$	cloudy
$2009 / 10 / 24$	$:$	dil approx_between(50, 70)
$2009 / 10 / 25$	$:$	fair or cloudy
$2009 / 10 / 26$	$:$	approx(75)
$2009 / 10 / 27$	$:$	dil(clear or fair)
$2009 / 10 / 28$	$:$	int cloudy
$2009 / 10 / 29$	$:$	con fair
$2009 / 11 / 30$	$:$	approx(0)
$2009 / 11 / 31$	$:$	cloudless
$2009 / 11 / 01$	$:$	cloudless or dil clear
$2009 / 11 / 02$	$:$	overcast
$2009 / 11 / 03$	$:$	cloudy and between(70, 80)
\ldots	$:$	\ldots
$2009 / 11 / 10$	$:$	clear

Statistics with fuzzy sets are necessary to analyze linguistic data.

Example - Ling. Random Sample of 3 People

no.	age (linguistic data)	age (fuzzy data)
1	approx. between 70 and 80 and definitely not older than 80	
2	between 60 and 65	
3	62	

Example - Mean Value of Ling. Random Sample

$$
\operatorname{mean}\left(\mu_{1}, \mu_{2}, \mu_{3}\right)=\frac{1}{3}\left(\mu_{1} \oplus \mu_{2} \oplus \mu_{3}\right)
$$

i.e. approximately between 64 and 69 but not older than 69

Efficient Operations I

How to define arithmetic operations for calculating with $\mathcal{F}(\mathbb{R})$?
Using extension principle for sum $\mu \oplus \mu^{\prime}$, product $\mu \odot \mu^{\prime}$ and reciprocal value $\operatorname{rec}(\mu)$ of arbitrary fuzzy sets $\mu, \mu^{\prime} \in \mathcal{F}(\mathbb{R})$

$$
\begin{aligned}
\left(\mu \oplus \mu^{\prime}\right)(t) & =\sup \left\{\min \left\{\mu\left(x_{1}\right), \mu^{\prime}\left(x_{2}\right)\right\} \mid x_{1}, x_{2} \in \mathbb{R}, x_{1}+x_{2}=t\right\}, \\
\left(\mu \odot \mu^{\prime}\right)(t) & =\sup \left\{\min \left\{\mu\left(x_{1}\right), \mu^{\prime}\left(x_{2}\right)\right\} \mid x_{1}, x_{2} \in \mathbb{R}, x_{1} \cdot x_{2}=t\right\}, \\
\operatorname{rec}(\mu)(t) & =\sup \left\{\mu(x) \mid x \in \mathbb{R} \backslash\{0\}, \frac{1}{x}=t\right\} .
\end{aligned}
$$

In general, operations on fuzzy sets are much more complicated (especially if vertical instead of horizontal representation is applied).
It's desirable to reduce fuzzy arithmetic to ordinary set arithmetic.
Then, we apply elementary operations of interval arithmetic.

Efficient Operations II

Definition
A family $\left(A_{\alpha}\right)_{\alpha \in(0,1)}$ of sets is called set representation of $\mu \in \mathcal{F}_{N}(\mathbb{R})$ if
(a) $0<\alpha<\beta<1 \Longrightarrow A_{\beta} \subseteq A_{\alpha} \subseteq \mathbb{R}$ and
(b) $\mu(t)=\sup \left\{\alpha \in[0,1] \mid t \in A_{\alpha}\right\}$
holds where $\sup \emptyset=0$.

Theorem
Let $\mu \in F_{N}(\mathbb{R})$. The family $\left(A_{\alpha}\right)_{\alpha \in(0,1)}$ of sets is a set representation of μ if and only if

$$
[\mu]_{\underline{\alpha}}=\{t \in \mathbb{R} \mid \mu(t)>\alpha\} \subseteq A_{\alpha} \subseteq\{t \in \mathbb{R} \mid \mu(t) \geq \alpha\}=[\mu]_{\alpha}
$$

is valid for all $\alpha \in(0,1)$.

Efficient Operations III

Theorem

Let $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be normal fuzzy sets of \mathbb{R} and $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a mapping. Then the following holds:
(a) $\forall \alpha \in[0,1):\left[\hat{\phi}\left(\mu_{1}, \ldots, \mu_{n}\right)\right]_{\underline{\alpha}}=\phi\left(\left[\mu_{1}\right]_{\underline{\alpha}}, \ldots,\left[\mu_{n}\right]_{\underline{\alpha}}\right)$,
(b) $\forall \alpha \in(0,1]:\left[\hat{\phi}\left(\mu_{1}, \ldots, \mu_{n}\right)\right]_{\alpha} \supseteq \phi\left(\left[\mu_{1}\right]_{\alpha}, \ldots,\left[\mu_{n}\right]_{\alpha}\right)$,
(c) if $\left(\left(A_{i}\right)_{\alpha}\right)_{\alpha \in(0,1)}$ is a set representation of μ_{i} for $1 \leq i \leq$ n, then $\left(\phi\left(\left(A_{1}\right)_{\alpha}, \ldots,\left(A_{n}\right)_{\alpha}\right)\right)_{\alpha \in(0,1)}$ is a set representation of $\hat{\phi}\left(\mu_{1}, \ldots, \mu_{n}\right)$.

For arbitrary mapping ϕ, set representation of its extension $\hat{\phi}$ can be obtained with help of set representation $\left(\left(A_{i}\right)_{\alpha}\right)_{\alpha \in(0,1)}, i=1,2, \ldots, n$. It's used to carry out arithmetic operations on fuzzy sets efficiently.

Example I

For μ_{1}, μ_{2}, the set representations are

- $\left[\mu_{1}\right]_{\alpha}=[2 \alpha-1,2-\alpha]$,
- $\left[\mu_{2}\right]_{\alpha}=[\alpha+3,5-\alpha] \cup[\alpha+5,7-\alpha]$.

Let $\operatorname{add}(x, y)=x+y$, then $\left(A_{\alpha}\right)_{\alpha \in(0,1)}$ represents $\mu_{1} \oplus \mu_{2}$

$$
\begin{aligned}
A_{\alpha} & =\operatorname{add}\left(\left[\mu_{1}\right]_{\alpha},\left[\mu_{2}\right]_{\alpha}\right)=[3 \alpha+2,7-2 \alpha] \cup[3 \alpha+4,9-2 \alpha] \\
& = \begin{cases}{[3 \alpha+2,7-2 \alpha] \cup[3 \alpha+4,9-2 \alpha],} & \text { if } \alpha \geq 0.6 \\
{[3 \alpha+2,9-2 \alpha],} & \text { if } \alpha \leq 0.6 .\end{cases}
\end{aligned}
$$

Example II

$$
\begin{gathered}
\left(\mu_{1} \oplus \mu_{2}\right)(x)=\left\{\begin{array}{lll}
\frac{x-2}{3}, & \text { if } 2 \leq x \leq 5 \\
\frac{7-x}{2}, & \text { if } 5 \leq x \leq 5.8 \\
\frac{x-4}{3}, & \text { if } 5.8 \leq x \leq 7 \\
\frac{9-x}{2}, & \text { if } 7 \leq x \leq 9 \\
0, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Interval Arithmetic

Determining the set representations of arbitrary combinations of fuzzy sets can be reduced very often to simple interval arithmetic.
Using fundamental operations of arithmetic leads to the following $(a, b, c, d \in \mathbb{R})$:

$$
\begin{aligned}
& {[a, b]+[c, d]=[a+c, b+d]} \\
& {[a, b]-[c, d]=[a-d, b-c]} \\
& {[a, b] \cdot[c, d]= \begin{cases}{[a c, b d],} & \text { for } a \geq 0 \wedge c \geq 0 \\
{[b d, a c],} & \text { for } b<0 \wedge d<0 \\
{[\min \{a d, b c\}, \max \{a d, b c\}],} & \text { for } a b \geq 0 \wedge c d \geq 0 \wedge a c<0 \\
{[\min \{a d, b c\}, \max \{a c, b d\}],} & \text { for } a b<0 \vee c d<0\end{cases} } \\
& \frac{1}{[a, b]}= \begin{cases}{\left[\frac{1}{b}, \frac{1}{a}\right],} & \text { if } 0 \notin[a, b] \\
\left.\frac{1}{b}, \infty\right) \cup\left(-\infty, \frac{1}{a}\right], & \text { if } a<0 \wedge b>0 \\
\left.\frac{1}{b}, \infty\right), & \text { if } a=0 \wedge b>0 \\
\left(-\infty, \frac{1}{a}\right], & \text { if } a<0 \wedge b=0\end{cases}
\end{aligned}
$$

Interval Arithmetic II

In general, set representation of α-cuts of extensions $\hat{\phi}\left(\mu_{1}, \ldots, \mu_{n}\right)$ cannot be determined directly from α-cuts.
It vily works always for continuous ϕ and fuzzy sets in $\mathcal{F}_{C}(\mathbb{R})$.

Theorem

Let $\mu_{1}, \mu_{2}, \ldots, \mu_{n} \in \mathcal{F}_{C}(\mathbb{R})$ and $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous mapping. Then

$$
\forall \alpha \in(0,1]:\left[\hat{\phi}\left(\mu_{1}, \ldots, \mu_{n}\right)\right]_{\alpha}=\phi\left(\left[\mu_{1}\right]_{\alpha}, \ldots,\left[\mu_{n}\right]_{\alpha}\right)
$$

So, a horizontal representation is better than a vertical one.
Finding $\hat{\phi}$ values is easier than directly applying the extension principle.
However, all α-cuts cannot be stored in a computer.
Only a finite number of α-cuts can be stored.

