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Definition of Relation

A relation among crisp sets X1, ...,Xn is a subset of the Cartesian
Product X1 x...x X, Itis denoted as R(X1,...,Xn) or R(X; | 1<i<n).

So, the relation R(X1,...,Xn) € X1 x...x X, is set, too. The
basic concept of sets can be also applied to relations:
e containment, subset, union, intersection, complement

Each crisp relation can be defined by its characteristic function

R(Xlxn){l Ifand Only 'f (Xlﬁ"“xﬁ)ERr

0. otherwise.

The membership of (x1,...,xn) in R indicates whether the elements
of (x1,...,Xxn) are related to each other or not.



Relation as Ordered Set of Tuples

A relation can be written as a set of ordered tuples.

Thus R(Xi,...,X,) represents n-dim. membership array R = [r;, ;]

e Each element of i; of R corresponds to exactly one member of Xj.

e Each element of i of R corresponds to exactly one member of X5.

¢ And so on...

If (x1,...,%p) € X1 % ... x X, corresponds to r;, . ; € R, then

|J|!;In

{1, if and only if (x1,...,x,) € R,
B sl =

0., otherwise.



Fuzzy Relations

The characteristic function of a crisp relation can be generalized to
allow tuples to have degrees of membership.

A fuzzy relation Ris a fuzzy set of X1 x ... x Xn

The membership grade indicates strength of the present relation
between elements of the tuple.

The fuzzy relation can also be represented by an n-dimensional
membership array.



Example

Let R be a fuzzy relation between two sets X = {New York City, Paris}
and Y = {Beijing, New York City, London}.

R shall represent relational concept “very far”.

It can be represented (subjectively) as two-dimensional membership array:

NYC Paris
Beijing 1 0.9
NYC O 0.7

London 0.6 0.3



Cartesian Product of Fuzzy Sets: nDimensions

Let Aq,...,An be fuzzy sets (n = 2) in Xy, ...,Xn, respectively

The (fuzzy) Cartesian product of A4, ...,A, denoted by A1 x...xA, is
a fuzzy relation of the product space X1 x ... x Xj.

It is defined by its membership function

uA1X...><An(X11 e IXn) = T (“A1(X1)l ceey U-An(Xn))

forxi €X;, 1<i<n. v/ A<B f%‘,b)JqéA,béEj

o] A

In most applications T = min is chosen.




Cartesian Product of Fuzzy Sets in two Dimensions

A special case of the Cartesian product is when n =2.

Then the Cartesian product of fuzzy sets A € F(X) and B € F(Y) is a fuzzy
relation Ax B € F(X x Y) defined by

Haxg(X,y) =T [Ha(x), us(y)], forallxe X,andy €Y.



Example: Cartesian Product in F(X x Y )with t-norm = min
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Projection

Given a relation R(x1,...,Xxn).
Let [R | V] denote the projection of R on ).

It disregards all sets in X except those in the family

Then [R | Y] is a fuzzy relation whose membership function is defined
on the Cartesian product of the sets in )/

[R | Y(y) = max R(x).

X~y

Under special circumstances, this projection can be generalized by
replacing the max operator by another t-conorm.



Example

Consider the sets x1={0, 1}, X2 =10, 1}, X3={0, 1, 2}
and the ternary fuzzy relation on X1 x X2 x X3 :

Let Rjj =[R & {Xi,Xj}] and R; =[R { {Xi}] for alli,j € {1,2,3}.

Using this notation, all possible projections of R are given below.

xo—x2; x3) RixToxoxs—Riztxr,—xz)—Rustxt,—x3)—Ra3txz,—x3)—R1ltx) Ratxz) R3tx3)
0 0 S 04 6.9 10 65 10 6:9 10
0 0 1 0.9 0.9 0.9 0.9 1.0 0.9 0.9
0 0 2 0.2 0.9 0.8 0.2 1.0 0.9 1.0
0 1 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 1 1 0.0 1.0 0.9 0.5 1.0 1.0 0.9
0 1 2 0.8 1.0 0.8 1.0 1.0 1.0 1.0
1 0 0 0.5 0.5 0.5 0.5 1.0 0.9 1.0
1 0 1 0.3 0.5 0.5 0.9 1.0 0.9 0.9
1 0 2 0.1 0.5 1.0 0.2 1.0 0.9 1.0
1 1 0 0.0 1.0 0.5 1.0 1.0 1.0 1.0
1 1 1 0.5 1.0 0.5 0.5 1.0 1.0 0.9
1 1 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0




Example

The projection R1»:

(x1; X2, X3) Rix1;x2,x3) R1r{x1,x2)
0 o—=0 04
0 0 1 0.9 © u) bmax[R(o, 0,0), R(0, 0, 1), R(0, 0, 2)] =0.9
0 0o 2 0.2 /
0 +——0 1.6
0 1 1 0.0 (0 AP max[R(0, 1, 0), R(0, 1, 1), R(0, 1, 2)] = 1.0
0 1 2 0.8 )
1 o—o0 05
1 0o 1 0.3 [ o\ i-max[R(1, 0, 0), R(1, 0, 1), R(1, 0, 2)] =0.5
1 0o 2 0.1 '
1 +—0 0:0 J
1 1 1 0.5 (A _‘)\_vmax[R(l, 1,0),R(1,1,1),R(1,1,2)]=1.0
1 1 2 1.0 :




Cylindrical Extension

Another operation on relations is called cylindric extension.
Let A and ) denote the same families of sets as used for projection.
Let R be a relation defined on Cartesian product of sets in family V.

Let [R T A\ V] denote the cylindric extension of R into sets
X1, (i € IN,) which are in X but not in ).

It follows that for each x with x > y

[RT X\ V](x) = R(y)-
The cylindric extension
e produces largest fuzzy relation that is compatible with projection,
e is the least specific of all relations compatible with projection,

e guarantees that no information not included in projection is used
to determine extended relation.



Example

Consider again the example for the projection.

The membership functions of the cylindric extensions of all projections
are already shown in the table under the assumption that their
arguments are extended to (x1, x2,Xx3) e.g.

[Ro3 T{X1}1(0,0,2) = [Ra3 T {X1}](1,0,2) = Rp3(0,2) =0.2.
In this example none of the cylindric extensions are equal to the
original fuzzy relation.

This is identical with the respective projections.

Some information was lost when the given relation was replaced by
any one of its projections.



Binary Fuzzy Relations



Basic Notions

Binary relations are significant among n-dimensional relations.
They are (in some sense) generalized mathematical functions.

On the contrary to functions from X to Y, binary relations R(X, Y)
may assign to each element of X two or more elements of Y.

Some basic operations on functions, e.g. inverse and composition, are
applicable to binary relations as well.

Given a fuzzy relation R(X, Y).

lts domain dom R is the fuzzy set on X whose membership function is
defined for each x € X as

dom R(x) = max{R(x,y)},

yveyY

i.e. each element of X belongs to the domain of R to a degree equal
to the strength of its strongest relation to any y € Y.



Basic Notions

The range ran of R(X,Y) is a fuzzy relation on Y whose membership
function is defined for each y € Y as

ran R(y) = max{R(x,y)},

xeX

i.e. the strength of the strongest relation which each y € Y has to an
x € X equals to the degree of membership of y in the range of R.

The height h of R(X, Y) is a number defined by

h(R) = max max{R(x,y)}.

veY xeX

h(R) is the largest membership grade obtained by any pair (x,y) € R.



Representation and Inverse

Consider e.g. the membership matrix R =[ry,] with ry, =R(x,y).

Its inverse R~1 (Y, X) of R(X,Y) is a relation on Y x X defined by

R (y,x)=R(x,y) forallx€X,ye€eY.

R~ =[r,}] representing R™(y,x) is the transpose of R for R(X,Y)

(R"Y)™'=R



Standard Composition

X a Y Q e~ = oz b4 Q S

Consider the binary relations P(X,Y), Q(Y,Z) with common set Y.

The standard composition of P and Q is defined as
(x,2)EP-Q <=3y €Y :{(x,y)EPA(y,z) E Q}.

In the fuzzy case this is generalized by

[P o Q](x,z) = sup min{P(x,y), Q(y,z)}

yeyY

If Yis finite, sup operator can be replaced by max.

The standard composition is also called max-min composition.



Example

PoQ=R
3 5 8| [0 5 7 7 8 3 5 5]
0 7 1lel3d3 2 0 8l=|1 2 5 7
1 .6 5] |2 9 5 & 5 & & 6

ri1 = max{min(p11, g11), min(p12, g21), min(p13, g31)}
=max{min(.3,.9), min(.5,.3), min(.8, 1)}
=.8

r32 = max{min(ps1, ga2), min(ps32, g22), min(pss3, g32)}
=max{min(.4,.5), min(.6,.2), min(.5,0)}
=4



Inverse of Standard Composition
,7

X Y

(0

The inverse of the max-min composition follows from its definition:

[P(X,Y)e Q(Y,2)] t=Q Yz Y)> P7L(Y,X).

Its associativity also comes directly from its definition:

[P(X,Y)]e QlY,2)]> R(Z,W)=P(X,Y)° [Q(Y,2)° R(Z, W)].

Note that the standard composition is not commutative.

Matrix notation: [rjj] = [pi] ° [qkj] with rij = max, min(pi, qx;).



Example: Properties of Airplanes (Speed, Height, Type)

4 possible speeds:  Ss1, S2, S3, S4
3 heights: h1, ha, h3
2 types: t1, 12

Consider the following fuzzy relations for airplanes:
e relation A between speed and height,
e relation B between height and the type.

Alh h mh B

L L
s: | 1. 2 O L
hh |1 0
|1 1 o0
h | 9 1
ss| 0 1 1 A
2|0 3 1 =




Example: Properties of Airplanes (Speed, Height, Type)

matrix multiplication scheme flow scheme
s1
1 0 |
A o B|9 1
0 .9
1 2 0|1 .2
1l 1 0.9 1
0 1 1|9 1
0 3 1|3 .9

(Ao B)(s4, t) = max{min{.3, 1}, min{1, .9}}
A o B speed-type relation =9



Binary Relations on a Single Set

It is also possible to define crisp or fuzzy binary relations among
elements of a single set X.

Such a binary relation can be denoted by R(X, X) or R(X?2) which is a
subset of X x X = X2.

These relations are often referred to as directed graphs which is also ari
representation of them.
e Each element of X is represented asnode.

* Directed connections between nodes indicate pairs of x € X for
which the grade of the membership is nonzero.

* Each connection is labeled by its actual membership grade of the
corresponding pair in R.



Example

An example of R(X,X) defined on X ={1, 2, 3,4}.

Two different representation are shown below.
7 7
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